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Abstract

A core barrier preventing recommender sys-
tems from reaching their full potential lies in
the inherent limitations of user-item interaction
data: (1) Sparse user-item interactions, mak-
ing it difficult to learn reliable user preferences;
(2) Traditional contrastive learning methods of-
ten treat negative samples as equally hard or
easy, ignoring the informative semantic diffi-
culty during training. (3) Modern LLM-based
recommender systems, on the other hand, dis-
card all negative feedback, leading to unbal-
anced preference modeling. To address these
issues, we propose LAGCL4Rec, a framework
leveraging Large Language Models to Activate
interactions in Graph Contrastive Learning
for Recommendation. Our approach operates
through three stages: (i) Data-Level: augment-
ing sparse interactions with balanced positive
and negative samples using LLM-enriched pro-
files; (ii) Rank-Level: assessing semantic diffi-
culty of negative samples through LLM-based
grouping for fine-grained contrastive learning;
and (iii) Rerank-Level: reasoning over aug-
mented historical interactions for personalized
recommendations. Theoretical analysis proves
that LAGCL4Rec achieves effective informa-
tion utilization with minimal computational
overhead. Experiments across multiple bench-
marks confirm our method consistently outper-
forms state-of-the-art baselines.

1 Introduction

Large Language Models (LLMs) have demon-
strated remarkable capabilities in Natural Language
Processing (NLP). The success of LLMs in NLP
has encouraged researchers to explore their poten-
tial in recommendation tasks (Gao et al., 2023; Ren
et al., 2023). Current LLM-based recommendation
approaches generally fall into three categories: (a)
Semantic Augmentation using LLMs: using LLMs
to enhance textual descriptions of users and items
to provide contextual information (Sun et al., 2025;

Liu et al., 2024a); (b) Feature Extractions using
LLMs: using LLMs as feature extractors to gen-
erate item and user embeddings (Hu et al., 2024;
Liao et al., 2023) for downstream models; and (c)
Decision Making using LLMs: directly produce
recommendation lists through prompting or fine-
tuning on foundation models (Li et al., 2023a; Bao
et al., 2023).

Despite these advances, existing approaches fail
to fully unleash LLMs’ potential for recommen-
dation due to three critical limitations: (1) Sparse
User-Item Interactions: While (a) approaches aug-
ment positive interactions, they neglect the latent
potential in negative interactions, leading to an im-
balanced activation of interaction data (Wang et al.,
2024a; Liu et al., 2024a). (2) Ignorance of Diffi-
culty of Negative Samples in Contrastive Learning:
(b) approaches face significant efficiency bottle-
necks, while traditional Graph Contrastive Learn-
ing (GCL) methods fail to activate the semantic po-
tential in interactions by treating all negative sam-
ples uniformly (Yu et al., 2023; Lin et al., 2022). (3)
Neglect of Informative Negative Feedback in LLM
Prompting: By discarding negative interactions,
Current (c) methods fail to harness the complete
spectrum of user preference signals (Yuan et al.,
2023; Bao et al., 2023). Meanwhile, most of these
research using prompting on general foundation
models, ignoring the domain-specific nature of rec-
ommendation.

This leads us to a question: How can we sys-
tematically unlock and activate the full potential of
both positive and negative interactions throughout
the entire recommendation pipeline to maximize
preference modeling capabilities and recommenda-
tion performance?

As an answer to this question, we intro-
duce LAGCL4Rec, a novel approach that lever-
ages LLMs to Activate interaction potential in
Graph Contrastive Learning through a progressive
pipeline operating at each level of the recommen-
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Figure 1: Comparison between conventional methods (left)
and LAGCL4Rec (right). Data Level: Traditional methods
rely on positive feedback only, while our approach activates
potential in both positive and negative interactions. Rank
Level: Conventional methods treat all negatives uniformly,
whereas LAGCL4Rec implements semantic-aware grouping
to differentiate hard/easy negatives, unlocking their potential
for contrastive learning. Rerank Level: Existing approaches
ignore negative interaction potential, while our method acti-
vates both positive and negative profiles through structured
reasoning, enabling full-spectrum personalization.

dation process. Figure 1 contrasts our proposed
solutions with existing research at each level. Our
contributions include:

1. Data-Level Activation: We leverage LLMs
to create semantically rich user and item pro-
files. Our approach activates both positive
preferences and previously untapped negative
interaction signals, transforming sparse data
into a balanced representation of the complete
user preference spectrum. (Section 2.1).

2. Rank-Level Activation: We propose a se-
mantic grouping strategy to group negative
samples based on their semantic relation-
ships, which enables assessing their semantic
difficulty. We then apply fine-grained con-
trastive learning to selectively emphasize in-
formative negatives. By leveraging seman-
tic grouping and efficient preprocessing in-
stead of directly modeling negative interac-
tions, our method improves computational
efficiency while maintaining discriminative
power (Section 2.2).

3. Rerank-Level Activation: We design a

reranking approach that activates the full po-
tential of historical interaction data by simulta-
neously leveraging both positive and negative
signals. By employing LLMs to reason over
these comprehensively activated interactions,
we enable personalized and explainable rec-
ommendations that fully capitalize on all avail-
able preference information. (Section 2.3).

4. Theoretical and Empirical Validation: We
provide rigorous theoretical analysis establish-
ing how our pipeline successfully unlocks the
potential in interaction data, along with ex-
tensive experiments across diverse domains
demonstrating significant performance im-
provements. (Section 3 and Section 4).

2 Methodology

We introduce LAGCL4Rec, a novel framework
that leverages LLMs to Activate Graph Contrastive
Learning through a progressive activation pipeline
operating at multiple levels of the recommendation
process, as illustrated in Figure 2. Our approach
systematically unleashes interaction potential via
three complementary mechanisms: (1) Data-Level
Activation (Section 2.1), (2) Rank-Level Activa-
tion (Section 2.2) and (3) Rerank-Level Activation
(Section 2.3).

2.1 Data-Level Activation

As illustrated in Figure 2 (Data-Level), the data-
level augmentation process involves (1) generat-
ing profiles for user and item to enhance semantic
context for downstream recommendation, and (2)
augmenting the interaction sequence to create a
balanced representation with both positive and neg-
ative interactions.

User and Item Profile Generation. We generate
semantically rich profiles for users and items using
LLM:

Pu = LLMs(Su,Qu), Pv = LLMs(Sv,Qv)
(1)

where Pu and Pv are generated user and item pro-
files, Su and Sv are system prompts (detailed in
Appendix A.1.1 and A.1.2), and Qu and Qv are
query inputs containing user/item information.

Positive Interaction Augmentation. For cold-
start users with less than 30 interactions, we define
candidate items Vcand

u (items with no interactions
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Figure 2: LAGCL4Rec’s Progressive Activation Pipeline: Data-Level generates semantically-rich profiles to activate potential in
user-item interactions. Rank-Level implements semantic-aware grouping for differentiating hard/easy negatives with adaptive
contrastive learning. Rerank-Level leverages both positive and negative historical interactions through structured reasoning for
refined recommendations.

for user u in dataset) and sample 1024 items as
Vsample
u . We score each item from Vsample

u using:

sposuv = LLMs(Pu,Pv,Spos) (2)

where sposuv is the preference score and Spos is the
prompt template detailed in Appendix A.1.3. We
select the top 2% of items to form positive interac-
tions Rpos

u (likely positive preferences).

Negative Interaction Augmentation. We aug-
ment negative interactions by similarly construct-
ing Vneg−cand

u and scoring items from candidate
set:

sneguv = LLMs(Pu,Pv,Sneg) (3)

where sneguv is the dislike score and Sneg is the
prompt template in Appendix A.1.4. We select the
top 2% as negative interactions Rneg

u (likely nega-
tive preferences). This creates truly representative
negative interactions rather than random items.

The final enhanced set combines both kinds of
preference signals:

Renhanced
u = Rpos

u ∪Rneg
u (4)

2.2 Rank-Level Activation

Unlike traditional sign-aware methods that directly
model negative interactions with high computa-
tional overhead, we propose an efficient approach
that indirectly leverages these signals through pre-
processing and semantic grouping. This strat-
egy significantly reduces computational complexity

while maintaining recommendation effectiveness.
Our key insight is that inferring dislikes within
semantic categories (such as an orange lover dislik-
ing bananas) is harder and more informative than
inferring dislikes for random objects. Therefore,
we propose a contrastive learning approach based
on semantic difficulty, as illustrated in Figure 2
(Rank-Level).

LLM-Guided Semantic Grouping. We use
LLMs to identify semantically similar users and
items:

Guser
i = LLMs(PUi ,Sgroup) (5)

where Guser
i represents semantic groups of users,

PUi is the set of user profiles, and Sgroup is the
grouping prompt (Appendix A.2.1). We compute
similarity between groups:

sim(Ga, Gb) = LLMs(Ga, Gb,Ssim) (6)

where sim(Ga, Gb) quantifies group similarity and
Ssim is detailed in Appendix A.2.2. Groups with
similarity above threshold τsim are merged to form
collections Guser and Gitem.

Semantic Difficulty Assessment. Hard negatives
(Nh) are negative samples belonging to the same
semantic group as the positive item i, defined as

Nh(u, i) = {j | j ∈ V, (u, j) /∈ Rpos, g(j) = g(i)}
(7)
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Easy negatives (Ne) are negative samples from
other groups, defined as

Ne(u, i) = {j | j ∈ V, (u, j) /∈ Rpos, g(j) ̸= g(i)}
(8)

Here, V is the item set, Rpos denotes positive inter-
actions, and g(j) maps item j to its group. Similar
definitions apply for item-user pairs.

Difficulty-Aware Contrastive Learning. To en-
able detailed and differentiated supervision using
negative samples of varying difficulty levels, we
propose two difficulty-aware loss functions.

For preference modeling, we propose LABPR
loss, a difficulty-weighted version of BPR loss:

Llabpr =−
∑

(u,i,je)∈De

lnσ(rui − ruje)

−
∑

(u,i,jh)∈Dh

wh · lnσ(rui − rujh) (9)

where De and Dh contain easy and hard negative
triplets, rui is predicted preference, and wh > 1
amplifies the emphasis on hard negatives.

For clearer and more informative signals, we
propose an adaptive-temperature InfoNCE loss for
difficulty-aware contrastive learning:

Llainfo = −
N∑

i=1

log
exp(sim(vi, v

+
i )/τp)

Zi
(10)

where sim(vi, vj) is cosine similarity and the de-
nominator Zi is:

Zi = exp(sim(vi, v
+
i )/τp)+∑

j ̸=i,gj ̸=gi

exp(sim(vi, vj)/τe)+

∑

j ̸=i,gj=gi

wh · exp(sim(vi, vj)/τh)

(11)

We set τh < τe ≤ τp to enhance hard negatives,
where τp, τe, and τh are temperature parameters
for positive, easy negative, and hard negative pairs.
The total loss is computed as:

Ltotal = Llabpr+λcl·(Luser
lainfo+Litem

lainfo)+λreg·Lreg

(12)
where λcl controls contrastive learning strength,
λreg is regularization weight, and Lreg =∑

θ∈Θ ||θ||22 is an L2 regularization term.

2.3 Rerank-Level Activation

To unleash the full potential of LLM in recom-
mendation, we propose an LLM-based reasoning
model as reranker, The reranker reason over the
augmented historic interactions with positive and
negative samples, and is optimized using a task-
specific binary classification loss. as illustrated in
Figure 2 (Rerank-Level).

Historical Interaction Integration. For each u,
we assemble an input sequence reflecting their his-
torical interactions:

Iu = {Pu, Cu,Rpos−hist
u ,Rneg−hist

u } (13)

where Pu denotes the comprehensive user pro-
file generated in the data augmentation stage, Cu
represents the set of candidate items, Rpos−hist

u

contains the user’s historical positive interactions,
Rneg−hist

u contains historical negative interactions.

Training Phase: Binary Classification. To ef-
fectively leverage both positive and negative his-
torical interactions, we formulate reranking as a
binary classification for individual item relevance:

puv = fθrer(Pu, v,Rpos−hist
u ,Rneg−hist

u ,Scot)
(14)

where fθrer represents our reranker parameterized
by θrer (auto-regressive language model with bi-
nary classification head), v is a candidate item,
and Scot is the Chain-of-Thought prompt template
to elicit reasoning in reranking (detailed in Ap-
pendix A.3).

We train the model using binary cross-entropy
loss on a dataset of user-item pairs:

Drer = {(u, v, yuv) |u ∈ Utrain, v ∈ Cu,
yuv = ⊮[(u, v) ∈ Rtrain]},

(15)

where Drer is the training dataset, and yuv is a
binary indicator of whether the interaction (u, v)
appears in the train set Rtrain. The optimization
objective is:

Lbce =
1

|Drer|
∑

(u,v,yuv)∈Drer

[−yuv log(puv)

− (1− yuv) log(1− puv)]
(16)

θ∗rer = argmin
θrer

Lbce(θrer;Drer) (17)
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Inference Phase: List-wise Reranking. During
inference, we apply the reranking to generate a per-
sonalized recommendation result Lrerank

u for each
user. This process activates historical interaction
signals through a structured reasoning process:

Lrerank
u = gθ∗rer(Iu,Scot) (18)

where gθ∗rer represents the application of our trained
model to produce a reordered list of the candidate
items.

Score Fusion Strategy. We combine the origi-
nal collaborative filtering scores with the model-
generated relevance scores:

sfinaluj = α · soriguj + (1− α) · sllmuj (19)

where soriguj is the original score from the rank-level
collaborative filtering model, sllmuj is the normalized
score derived from the trained model, and α ∈
[0, 1] is a weighting parameter that balances these
two signals. The model score is normalized using
softmax:

sllmuj =
exp(s̃llmuj /τ)

∑
vl∈Cu exp(s̃

llm
ul /τ)

(20)

where s̃llmuj is the raw relevance score assigned by
the model and τ is a temperature parameter con-
trolling the sharpness of the distribution. The final
ranked list is obtained by:

Lu = argsortvj∈Cu(s
final
uj ) (21)

where Lu represents the ordered list of items rec-
ommended to user u.

3 Theoretical Analysis

This section provides a theoretical analysis of our
pipeline, focusing on the information gain guaran-
teed by hard negative samples.

3.1 Analysis of Rank-Level Activation
The separate treatment of easy and hard negative
interactions based on semantic grouping enhances
the effectiveness of ranker training. Proposition
below theoretically demonstrates this point.
Proposition 1 (Hard-negative gradient dominance).
Under Eqs. (9) and (10)–(11) with wh > 1 and
τh < τe ≤ τp, the absolute gradient w.r.t. a hard
negative similarity exceeds that of an easy negative
whenever sim(vi, vjh) > 0. Consequently, hard
negatives tighten the InfoNCE mutual-information
lower bound faster than easy negatives.

This justifies our higher weight wh > 1 for
hard negative interactions. Our analysis in Ap-
pendix B.2 shows that under the LABPR loss, hard
negative gradients are amplified by a factor of wh,
ensuring faster convergence for challenging cases.
Similarly, with our adaptive temperature mecha-
nism (Appendix B.3), the model converges to a
more discriminative embedding space.

3.2 Analysis of Rerank-Level Activation

For the reranking component, we establish:
Proposition 2 (CoT features do not decrease task
information). Let Y be the relevance label, X the
base input, and Z = CoT(X;Scot). Then

I(Y ;X,Z) = I(Y ;X)+I(Y ;Z | X) ≥ I(Y ;X),
(22)

with strict inequality if I(Y ;Z | X) > 0.
In Appendix B.4, we prove there exists an op-

timal weighting parameter α∗ ∈ [0, 1] that mini-
mizes expected ranking error by balancing collab-
orative filtering and LLM signals. Furthermore,
our reranking model trained with BCE loss con-
verges to a stable solution when the candidate set
distribution remains consistent between training
and inference (Appendix B.5).

4 Experiments

4.1 Experimental Settings

4.1.1 Datasets
We evaluate LAGCL4Rec on many public recom-
mendation datasets: ML-1M, Amazon-book, Yelp,
and Steam. Following standard practices (Seo et al.,
2022; Wang et al., 2024b; Chen et al., 2024), we
consider ratings more than 3 as positive interac-
tions and ratings no more than 3 as negative inter-
actions for datasets, while all interactions in Steam
are treated as positive due to absence of explicit
ratings. We apply 5-core filtering and divide each
dataset into training, validation, and testing sets
in a 7:1:2 ratio. Table 1 summarizes the dataset
statistics. We adopt the all-rank protocol for com-
prehensive and unbiased evaluation. Two widely
used ranking metrics are employed: Recall@N and
NDCG@N, where N=20 for main results.

4.1.2 Baseline Models
We compare LAGCL4Rec with representative
methods from four categories:

(1) CF Models: MF (Koren et al., 2009),
NCF (He et al., 2017), NGCF (Wang et al., 2019),
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Table 1: Statistics of the experimental datasets.

Dataset #Users #Items #Interactions Density

ML-1M 6,040 3,952 1,000,209 4.2e−2

Amazon-book 11,000 9,332 120,464 1.2e−3

Yelp 11,091 11,010 166,620 1.4e−3

Steam 23,310 5,237 316,190 2.6e−3

LightGCN (He et al., 2020), and SelfGNN (Liu
et al., 2024b), representing classic and advanced
collaborative filtering approaches.

(2) Sign-aware Models: SGFormer (Wu et al.,
2024b), SIGFormer (Chen et al., 2024), and
NFARec (Wang et al., 2024b), state-of-the-art
methods that specifically model signed interac-
tions.

(3) LLM-based Models: RLMRec (Ren et al.,
2023), LLM4Rerank (Gao et al., 2025), and
RankGPT (Sun et al., 2023), recent approaches
leveraging large language models.

(4) GCL-based Models: SGL (Wu et al., 2021),
LightGCL (Cai et al.), and XSimGCL (Yu et al.,
2023).

4.1.3 Implementation Details
We implement all models with embedding dimen-
sion 64. For all experiments, we use Claude 3.7
API. For rerank-level model training, we fine-tune
Qwen-2.5 7B Instruct to perform the reranking task.
Experiments were conducted on 8 NVIDIA A800
GPUs (80GB memory each).

4.2 Overall Performance

Table 2 compares different recommendation mod-
els across four datasets. Our LAGCL4Rec consis-
tently enhances all graph contrastive learning back-
bones, with improvements ranging from 6.79% to
17.42% on Recall@20 and 1.06% to 15.43% on
NDCG@20. The most substantial gains appear on
the Yelp dataset with XSimGCL backbone (17.42%
R@20 improvement), suggesting our approach ex-
cels at activating sparse signals in diverse categori-
cal datasets.

LAGCL4Rec variants outperform traditional CF
methods by large margins and surpass special-
ized sign-aware and LLM-based approaches in
most cases. XSimGCL+LAGCL4Rec achieves
the best overall performance. The strong improve-
ments in NDCG@20 for Amazon-book (consis-
tently 15%) indicate enhanced ranking quality for
sparse datasets through our systematic activation
of dormant interaction signals.

4.3 Runtime Comparison

Time Complexity Analysis The per-epoch compu-
tational complexity of LAGCL4Rec with different
baseline GCL models is summarized in Table 4.
Here, |E+| denotes the number of positive edges,
L the number of graph convolution layers, d the em-
bedding dimension, M the total number of nodes,
and B the batch size. Additional parameters in-
clude a (augmentation views in SGL) and q (singu-
lar values in LightGCL).

Faster Ranker Training As shown in Figure 3,
LAGCL4Rec introduces minimal per-epoch over-
head (1.61-2.24% increase) while substantially re-
ducing total training time (58.7-63.2% reduction)
for all tested architectures (XSimGCL, LightGCL,
and SGL). This favorable efficiency profile aligns
with our theoretical complexity analysis, which
predicted that our rank-level activation would add
minimal computational overhead while enabling
more efficient signal extraction.

Figure 3: Rank-level runtime comparison between baseline
GCL models and LAGCL4Rec variants (excluding rerank-
level operations): (a) time per epoch showing minimal com-
putational overhead; (b) total training time demonstrating
significant efficiency improvements due to faster convergence.

Figure 4: Impact of candidate set size (Cu) on LAGCL4Rec
performance across datasets, showing Recall@20 (left) and
NDCG@20 (right).

4.4 Ablation Study

Component Analysis. We evaluate each compo-
nent’s contribution in LAGCL4Rec (Table 3). Re-
sults show that removing any component leads to
performance degradation across all datasets. The
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Table 2: Performance comparison of different recommendation models across four datasets. The best results are in bold,
the strongest baseline performances are underlined, and * indicates statistical significance with p < 0.01. R@20 and N@20
represent Recall@20 and NDCG@20 metrics, respectively.

Category
Dataset ML-1M Amazon-book Yelp Steam
Model R@20 N@20 R@20 N@20 R@20 N@20 R@20 N@20

CF

MF 0.1329 0.1988 0.0446 0.0397 0.0451 0.0259 0.0387 0.0213
NCF 0.1501 0.2102 0.0693 0.0474 0.0637 0.0408 0.0603 0.0448

NGCF 0.1630 0.2185 0.0809 0.0663 0.0744 0.0395 0.0532 0.0406
LightGCN 0.1993 0.2632 0.0918 0.0699 0.0769 0.0512 0.0749 0.0632
SelfGNN 0.2565 0.2810 0.1024 0.0757 0.0795 0.0603 0.0954 0.0739

Sign-RS
SGFormer 0.1877 0.2680 0.1102 0.0703 0.0658 0.0504 0.1265 0.0803
SIGFormer 0.2995 0.3380 0.1428 0.1045 0.0959 0.0783 0.1448 0.0906

NFARec 0.2840 0.3212 0.1496 0.1032 0.1143 0.0876 0.1369 0.0884

LLM-RS
RLMRec 0.2966 0.3294 0.1543 0.0976 0.1279 0.0885 0.1467 0.0897

LLM4Rerank 0.3007 0.3316 0.1496 0.1033 0.1203 0.0892 0.1416 0.0916
RankGPT 0.2515 0.2801 0.1327 0.0852 0.1154 0.0857 0.1402 0.0893

GCL-RS

Backbone Variants

SGL
base 0.2798 0.3037 0.1438 0.0904 0.1068 0.0847 0.1401 0.0881

LAGCL4Rec 0.2988 0.3279 0.1553 0.1041 0.1238 0.0856 0.1503 0.0927*
improv. 6.79% 7.97% 8.00% 15.15% 15.92% 1.06% 7.28% 5.22%

LightGCL
base 0.273 0.3035 0.1484 0.0933 0.1092 0.0855 0.1322 0.0863

LAGCL4Rec 0.3035 0.3301 0.1598 0.1077* 0.1244 0.0882 0.1466 0.0899
improv. 11.17% 8.76% 7.68% 15.43% 13.92% 3.16% 10.89% 4.17%

XSimGCL
base 0.2729 0.3087 0.1477 0.0925 0.1108 0.0849 0.1397 0.0876

LAGCL4Rec 0.3106* 0.3450* 0.1604* 0.1065 0.1301* 0.0903* 0.1507* 0.0924
improv. 13.81% 11.76% 8.60% 15.14% 17.42% 6.36% 7.87% 5.48%

Table 3: Ablation study evaluating the contribution of each component in LAGCL4Rec. The table compares performance
across four datasets when removing individual components: data-level, rank-level, and reranking-level. Checkmarks (✓)
indicate included components while cross marks (✗) indicate removed components. R@20 and N@20 represent Recall@20 and
NDCG@20, respectively.

Variant Components ML-1M Amazon-book Yelp Steam
data-level rank-level rerank-level R@20 N@20 R@20 N@20 R@20 N@20 R@20 N@20

base ✗ ✗ ✗ 0.2729 0.3087 0.1477 0.0925 0.1108 0.0849 0.1397 0.0876
w/o data-level ✗ ✓ ✓ 0.2707 0.3111 0.1465 0.0944 0.1061 0.0873 0.1401 0.0899
w/o rank-level ✓ ✗ ✓ 0.2976 0.3345 0.1526 0.0989 0.1137 0.0884 0.1412 0.0907

w/o rerank-level ✓ ✓ ✗ 0.3011 0.3303 0.1581 0.0977 0.1232 0.0795 0.1479 0.0884
all ✓ ✓ ✓ 0.3106 0.3450 0.1604 0.1065 0.1301 0.0903 0.1507 0.0924

full model consistently achieves the best perfor-
mance, with substantial gains on the Yelp dataset
(17.42% improvement in R@20 compared to the
base model). Notably, removing data augmentation
sometimes reduces performance below the base
model, highlighting the critical importance of our
LLM-activated sparse interactions. These findings
confirm each component’s essential contribution to
addressing the sparse interaction challenge.

Candidate Set Size Analysis. Figure 4 illustrates
how candidate set size (Cu) affects reranker per-
formance. Performance consistently improves as
Cu increases from 0 to 100, with significant gains
in the 0 to 20 range. The Amazon-book dataset
shows highest sensitivity for NDCG@20, suggest-
ing complex domains benefit most from compre-
hensive candidate consideration. While Recall@20
varies across datasets, NDCG@20 shows consis-
tent improvements, confirming that candidate diver-

sity maximizes the effectiveness of our interaction-
history guided reranker.

4.5 Empirical Analysis

Convergence Speed Analysis. Figure 5 demon-
strates LAGCL4Rec’s dramatically accelerated
convergence across all datasets. This rapid op-
timization empirically validates Proposition 3.1,
which shows hard negatives tighten the MI lower
bound faster than easy negatives. By differentially
amplifying these high-value signals through our
semantic-aware grouping strategy, our Progressive
Activation Pipeline effectively enhances learning
efficiency at multiple levels.

Hyperparameter Analysis. Figure 6 shows sen-
sitivity to key parameters, with optimal settings
at fusion weight α ≈ 0.2, contrastive weight
λcl = 0.15, and temperature ratios τe/τp = 0.45
and τh/τp = 0.1 across all datasets. The opti-
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Table 4: Per-epoch time complexity of different LAGCL4Rec variants.

Component LAGCL4Rec + SGL LAGCL4Rec + LightGCL LAGCL4Rec + XSimGCL

Baseline GCL Per-Epoch O(2|E+|Ld+ 4a|E+|Ld+ 3Md) O(2|E+|Ld+ 2qMLd+ 3Md) O(2|E+|Ld+ 3Md)
Rank-Level Addition O(Bd) O(Bd) O(Bd)

Total Per-Epoch O(2|E+|Ld+ 4a|E+|Ld+ 3Md+Bd) O(2|E+|Ld+ 2qMLd+ 3Md+Bd) O(2|E+|Ld+ 3Md+Bd)
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Figure 5: Performance across training epochs for LAGCL4Rec versus baseline models on four datasets.
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Figure 6: Impact of key hyperparameters on ranking quality (decrease in Recall@20 & NDCG@20 relative to optimal settings).

mal α value confirms our theoretical prediction in
Proposition 3.2 that an intermediate fusion weight
balancing collaborative filtering and LLM signals
yields the best performance. Similarly, the tem-
perature ratio settings align with our analysis of
how adaptive temperatures enhance discriminative
power.
User and Item Profiles Visualization. Figure 7
presents word clouds visualizing activated signals
in user-item profiles. Across all domains, we ob-
serve the activation of both positive signals (terms
like "enjoy," "appreciate") and negative signals
(terms like "dislike," "negative review"), which
aligns with our goal of awakening dormant pref-
erences and illustrates how our approach captures
domain-specific preference signals and activates

relevant interactions.

4.6 Case Study
In Figure 8, we conducted detailed case analysis
on the ML-1M dataset, examining a user with clear
preferences for action/war films and aversions to
horror. These bidirectional adjustments empirically
validate Proposition 3.2, demonstrating how our
approach effectively extracts higher information
content from historical interactions compared to
standard methods.

5 Related Work

Recommender systems have long been recog-
nized as a canonical research problem and have
attracted sustained attention from the academic
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Figure 7: Word cloud visualizations of activated signals in user and item profiles from the datasets.

Figure 8: Case study demonstrating LAGCL4Rec’s recom-
mendation process for a user (ID: 2814) and two candidate
movies: Patton (1970, ID: 1272) and The Addiction (1995,
ID: 152). Red highlights indicate activated positive preference
signals, while purple highlights indicate activated negative
preference signals. The right panels show score and ranking
changes throughout the recommendation pipeline.

community (Wu et al., 2024a, 2025; Di et al.,
2025a,b,c), and the advent of large language
models (LLMs) (Touvron et al., 2023; lla, 2023;
Grattafiori et al., 2024; Qwen et al., 2025) has
infused new vitality into the field, opening up
fresh opportunities for innovation in recommen-
dation (Wang and Lim, 2023; He et al., 2023; Li
et al., 2025; Liang et al., 2024; Zhang et al., 2024;
Feng et al., 2024; Fan et al., 2023; Chen et al.,
2023; Zhang et al., 2023; Ortega et al., 2024; Li
et al., 2023b; Yang et al., 2023; Wang et al., 2023).
While LLM-based approaches have shown promise,
they typically overlook dormant negative signals.

Graph Neural Networks (GNNs) have emerged

as a highly active research frontier and are being
applied across a wide spectrum of domains (Du
et al., 2025a,b,c; Liu and Wang, 2025; Liu et al.,
2024c), which have transformed recommender sys-
tems through their ability to model complex user-
item relationships (Wu et al., 2023; Zheng et al.,
2025a,b), but these methods treat all negative in-
teractions uniformly rather than differentiating by
difficulty level.

Our work addresses these limitations through a
progressive activation pipeline operating at mul-
tiple levels. Unlike existing sign-aware sys-
tems (Derr et al., 2018; Huang et al., 2023; Wang
and Cao, 2021; Gong and Zhu, 2022; Wu et al.,
2020; Zhao et al., 2018) that lack systematic ac-
tivation mechanisms, we explicitly awaken dor-
mant signals in raw data, differentially amplify
them based on semantic difficulty, and leverage
historical interactions through structured reason-
ing. While recent reranking approaches (Xiong
et al., 2023; Carraro and Bridge, 2024; Zhang et al.,
2025; Wang et al., 2025a,b) have explored LLM
integration, they fail to provide the comprehensive
activation strategy we introduce.

6 Conclusion

We introduced LAGCL4Rec, a framework that ac-
tivates the untapped potential in user-item interac-
tions through our Progressive Activation Pipeline.
By integrating LLMs with graph contrastive learn-
ing via Data-Level, Rank-Level, and Rerank-Level
mechanisms, we addressed key limitations in ex-
isting approaches. Experiments across diverse
datasets demonstrated significant performance im-
provements, highlighting the value of systemati-
cally unlocking and leveraging interaction poten-
tial.
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Limitations

While our experimental results demonstrate the ef-
fectiveness of LAGCL4Rec across multiple public
datasets, a notable limitation of our work is the
absence of validation in industrial recommendation
systems with real-world deployment. Industrial
environments often present additional challenges
including larger-scale data, more complex user-
item interactions, and stricter latency requirements
that may affect the practical applicability of our
approach. Future work should focus on evaluating
and adapting LAGCL4Rec for industrial deploy-
ment to comprehensively validate its effectiveness
under production constraints.

Ethical Considerations

Our research exclusively uses public benchmark
datasets with properly anonymized data. The rec-
ommendation domains explored (movies, books,
businesses, and games) involve no sensitive content
categories. Our LLM prompting approach focuses
solely on preference patterns without introducing
demographic or social biases. No human subjects
were involved, and our work complies with stan-
dard ethical practices in recommendation systems
research.
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A Progressive Activation Pipeline
Prompts

This section provides comprehensive details of
the prompts used in our Progressive Activation
Pipeline. These prompts systematically activate
dormant signals across the recommendation pro-
cess, with particular focus on sparse interactions.

A.1 Data-Level Activation Prompts

A.1.1 User Profile Generation Prompt
This prompt generates comprehensive user profiles
based on demographic information and ratings. It
instructs the LLM to analyze both positive prefer-
ences (ratings 4-5) and negative preferences (rat-
ings 1-3), explicitly activating dormant negative
signals. Figure 9 shows the system instruction, Fig-
ure 10 demonstrates a sample input, and Figure 11
illustrates the resulting profile.

A.1.2 Item Profile Generation Prompt
This prompt analyses items and their potential ap-
peal to different user demographics. Figure 12
shows the system instruction, Figure 13 illustrates
a sample input, and Figure 14 displays the resulting
profile.

A.1.3 Sparse Positive Interaction Activation
Prompt

This prompt activates high-quality positive interac-
tions for cold-start users. Figure 15 illustrates the
prompt that guides the LLM through a systematic
evaluation process to identify and activate relevant
positive interactions.

A.1.4 Sparse Negative Interaction Activation
Prompt

This prompt explicitly activates sparse negative
preferences. Figure 16 guides the LLM to ana-
lyze patterns of aversion in user profiles and assign
dislike scores with high discrimination, activating
typically overlooked negative signals.

A.2 Rank-Level Activation Prompts

A.2.1 User/Item Grouping Prompt
This prompt implements a differentiated activation
strategy based on interaction difficulty. Figure 17
shows how the LLM partitions users into semanti-
cally similar groups, enabling identification of hard
and easy negative interactions requiring different
activation levels.

A.2.2 Group Similarity Assessment Prompt
This prompt assesses similarity between groups to
refine the differentiated activation strategy. Fig-
ure 18 illustrates the prompt that establishes the
optimal grouping structure for differentiating be-
tween easy and hard negative interactions.

A.3 Rerank-Level Activation Prompts

This prompt activates historical user interactions
during reranking. Figure 19 presents the structured
Chain-of-Thought reasoning process that enables
the LLM to systematically analyze preferences,
compare items, and produce personalized rankings
that effectively incorporate activated signals.

B Detailed Theoretical Proofs

B.1 Relationship Between Lemmas and
Propositions

The theoretical analysis in Section 3 presents con-
cise propositions that establish the effectiveness of
our Progressive Activation Pipeline. These proposi-
tions are supported by a set of technical lemmas pre-
sented below, which provide more detailed mathe-
matical properties and convergence guarantees.

Specifically, the first proposition on information
gain from hard negative samples is supported by
Lemma 1 and Lemma 2, which establish the gra-
dient scaling properties and temperature-adaptive
convergence behavior, respectively. The second
proposition on Chain-of-Thought reasoning pro-
cess is supported by Lemma 3 and Lemma 4, which
prove the optimal weighting parameter existence
and the convergence of our reranking approach.
Together, these lemmas provide the mathematical
foundation for our theoretical claims and explain
why the Progressive Activation Pipeline effectively
addresses the sparse interaction challenge in rec-
ommendation systems.

Lemma 1 (Difficulty-Based Gradient Scaling). Un-
der the LABPR loss with wh > 1, the expected
gradient magnitude for hard negative samples is
proportionally larger than for easy ones, ensuring
accelerated learning for challenging cases.

Lemma 2 (Temperature-Adaptive Convergence).
With adaptive temperature parameters τh < τe ≤
τp in our InfoNCE loss, the model converges to a
more discriminative embedding space compared to
uniform temperature settings.

Lemma 3 (Score Fusion Optimality). There exists
an optimal weighting parameter α∗ ∈ [0, 1] that
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minimizes the expected ranking error:

α∗ = arg min
α∈[0,1]

E(u,v)∼D[L(s
final
uv , yuv)] (23)

Lemma 4 (Reranking Convergence). The rerank-
ing model trained with BCE loss converges to a
stable solution when the candidate set distribution
remains consistent between training and inference.

B.2 Detailed Proof of Lemma 1:
Difficulty-Based Gradient Scaling

Considering the LABPR loss function 9, for a
model parameterized by θ, the gradient with re-
spect to parameters is:

∂Llabpr

∂θ
= (24)

−
∑

(u,i,je)∈De

σ′(rui − ruje)

σ(rui − ruje)
· ∂rui − ruje

∂θ

−
∑

(u,i,jh)∈Dh

wh ·
σ′(rui − rujh)

σ(rui − rujh)
· ∂rui − ∂rujh

∂θ
(25)

Since σ(x) = 1
1+e−x , we have σ′(x) = σ(x) ·

(1− σ(x)). Therefore:

σ′(x)
σ(x)

= 1− σ(x) (26)

The gradient becomes:

∂Llabpr

∂θ
= (27)

−
∑

(u,i,je)∈De

(1− σ(rui − ruje)) ·
∂rui − ruje

∂θ

−
∑

(u,i,jh)∈Dh

wh · (1− σ(rui − rujh)) ·
∂rui − ∂rujh

∂θ

(28)

For any pair of examples, one from De and one
from Dh with identical σ(rui − ruj) values, the
ratio of their gradient contributions is exactly wh.
Since wh > 1, the gradient contribution from hard
negatives is proportionally larger, leading to faster
adjustment of parameters to distinguish these chal-
lenging cases.

Furthermore, assuming that the distribution of
(rui − ruj) is similar for both easy and hard neg-
ative sets at initialization, the expected gradient
magnitude ratio between hard and easy negatives
is:

E(u,i,jh)∈Dh
[||∇θL(u,i,jh)||]

E(u,i,je)∈De
[||∇θL(u,i,je)||]

≈ wh (29)

This ensures that the model allocates more learn-
ing capacity to hard negative examples, which is
essential for developing fine-grained preference
discrimination.

To establish the convergence implications, the
overall loss function is as eq 12. Under standard
gradient descent optimization with learning rate η,
the parameter update rule is:

θt+1 = θt − η · ∇θLtotal (30)

The component of this update attributable to the
LABPR loss for hard negatives is approximately
wh times larger than for easy negatives, assuming
similar initial conditions. This leads to faster con-
vergence for hard negative cases, which is precisely
what we desire for effective contrastive learning in
sparse interaction scenarios.

B.3 Detailed Proof of Lemma 2:
Temperature-Adaptive Convergence

Considering the activation-enhanced InfoNCE loss
with adaptive temperature parameters in Eq 10 and
Eq 11, let’s denote dij = sim(vi, vj) for simplicity.
For any embedding pair (vi, vj), the contribution
to the loss through the temperature parameter is
determined by exp(dij/τ).

With τh < τe, for any similarity value dij , we
have:

exp(dij/τh) > exp(dij/τe) (31)

assuming dij > 0 (which holds for cosine simi-
larity of normalized embeddings with some posi-
tive correlation).

The gradient of the loss with respect to the simi-
larity dij for a hard negative is:

∂Llainfo

∂dij
= − 1

Zi
· wh ·

1

τh
· exp(dij/τh) (32)

and for an easy negative:

∂Llainfo

∂dij
= − 1

Zi
· 1

τe
· exp(dij/τe) (33)

For a given similarity value dij , the ratio of gra-
dient magnitudes is:
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|∂Llainfo

∂dij
|h

|∂Llainfo

∂dij
|e

= wh ·
τe
τh

· exp(dij/τh)
exp(dij/τe)

(34)

= wh ·
τe
τh

· exp
(
dij

(
1

τh
− 1

τe

))

(35)

Since τh < τe, we have 1
τh

> 1
τe

, so

exp
(
dij

(
1
τh

− 1
τe

))
> 1 for positive dij . Ad-

ditionally, τe
τh

> 1. Therefore:

|∂Llainfo

∂dij
|h

|∂Llainfo

∂dij
|e

> wh > 1 (36)

This demonstrates that the gradient magnitude
for hard negatives is substantially larger than for
easy negatives, leading to more aggressive opti-
mization for challenging cases.

To establish convergence to a more discrimina-
tive embedding space, we need to analyze the equi-
librium state of the optimization. Let us denote the
embeddings after t iterations of gradient descent as
v
(t)
i . The update rule for embeddings is:

v
(t+1)
i = v

(t)
i − η · ∇viLlainfo (37)

The gradient with respect to the embedding vi
depends on the similarities with all other embed-
dings and their contributions to the loss. Due to
the larger gradient magnitudes for hard negatives
(as established above), the embedding vectors will
move more quickly to reduce similarities with hard
negatives compared to easy negatives.

At convergence, the embeddings reach a state
where the gradients approach zero. Due to the
differential treatment of hard and easy negatives,
this equilibrium state will have:

Ej∈Nh(i)[sim(vi, vj)] < Ej∈Ne(i)[sim(vi, vj)]
(38)

This indicates that hard negatives are pushed fur-
ther away in the embedding space than easy nega-
tives, creating a more discriminative representation
where semantically similar but distinct items are
well-separated. This property is crucial for fine-
grained recommendation capabilities, especially in
sparse interaction scenarios.

B.4 Detailed Proof of Lemma 3: Score Fusion
Optimality

We establish the existence of an optimal weighting
parameter α∗ that minimizes the expected ranking
error. The activation-weighted score is defined as:

sfinaluv = α · soriguv + (1− α) · sllmuv (39)

Let L(sfinaluv , yuv) be a ranking loss function
measuring the discrepancy between the predicted
score sfinaluv and the ground truth relevance yuv.
Common choices include pairwise ranking loss or
listwise ranking loss.

Define the expected loss as:

R(α) = E(u,v)∼D[L(s
final
uv , yuv)] (40)

We need to prove there exists an α∗ ∈ [0, 1] that
minimizes R(α).

First, the continuity of R(α) with respect to α
can be established through the following observa-
tions: sfinaluv is a continuous function of α, the loss
function L(sfinaluv , yuv) is typically continuous in
its first argument for common ranking losses, and
the expectation operator preserves continuity.

To analyze the behavior of R(α), we examine
the extreme cases:

R(0) =E(u,v)∼D[L(s
llm
uv , yuv)]

(using only LLM scores)
(41)

R(1) =E(u,v)∼D[L(s
orig
uv , yuv)]

(using only CF scores)
(42)

If either R(0) ≤ R(α) for all α ∈ [0, 1] or R(1) ≤
R(α) for all α ∈ [0, 1], then α∗ is trivially 0 or 1,
respectively.

Otherwise, by the extreme value theorem, since
R(α) is continuous over the compact interval [0, 1],
there exists an α∗ ∈ [0, 1] such that R(α∗) ≤ R(α)
for all α ∈ [0, 1].

To prove that α∗ ∈ (0, 1) is likely in practice
(rather than at the extremes), we can construct a
scenario where the original and LLM scores have
complementary strengths. Let U1 and U2 partition
the user space such that:

E(u,v)∼D,u∈U1
[L(soriguv , yuv)] <

E(u,v)∼D,u∈U1
[L(sllmuv , yuv)]

(43)

E(u,v)∼D,u∈U2
[L(soriguv , yuv)] >

E(u,v)∼D,u∈U2
[L(sllmuv , yuv)]

(44)
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That is, collaborative filtering scores perform
better for users in U1, while LLM scores perform
better for users in U2.

In this case, neither α = 0 nor α = 1 would be
optimal across all users. There exists an interme-
diate value α∗ ∈ (0, 1) that minimizes the overall
expected loss by balancing the strengths of both
score sources.

To find this optimal value analytically, we can
differentiate R(α) with respect to α and set it to
zero:

dR(α)

dα
= E(u,v)∼D

[
∂L(sfinaluv , yuv)

∂sfinaluv

· ∂s
final
uv

∂α

]

= 0
(45)

Since ∂sfinal
uv
∂α = soriguv − sllmuv , we have:

E(u,v)∼D

[
∂L(sfinaluv , yuv)

∂sfinaluv

· (soriguv − sllmuv )

]
= 0

(46)
This equation has a solution α∗ ∈ (0, 1) when

the original and LLM scores have complementary
strengths across different regions of the user-item
space. In practical recommendation scenarios, this
is often the case, as collaborative filtering excels at
capturing collaborative patterns while LLM-based
models capture semantic relationships.

B.5 Detailed Proof of Lemma 4: Reranking
Model Convergence

We analyze the convergence properties of the
reranking model trained with binary cross-entropy
(BCE) loss. The BCE loss is defined as:

Lbce =
1

|Drer|
∑

(u,v,yuv)∈Drer

[−yuv log(puv)

− (1− yuv) log(1− puv)]
(47)

where puv is the model’s predicted probability
that user u would interact with item v.

First, we establish that BCE loss is convex with
respect to model predictions. For a single example
(u, v, yuv), the loss is:

ℓ(puv, yuv) = −yuv log(puv)−(1−yuv) log(1−puv)
(48)

The second derivative with respect to puv is:

∂2ℓ

∂p2uv
=

yuv
p2uv

+
1− yuv

(1− puv)2
(49)

Since yuv ∈ {0, 1} and puv ∈ (0, 1) in practice,
the second derivative is always positive, confirm-
ing that BCE loss is strictly convex in the model
predictions.

For the reranking model with parameters θrer,
assuming it maps inputs to probabilities via a func-
tion fθrer , the optimization problem is:

θ∗rer = argmin
θrer

Lbce(θrer;Drer) (50)

When the model has sufficient capacity and the
mapping from parameters to predictions is contin-
uous, gradient-based optimization of convex loss
functions converges to a global minimum under
standard conditions (e.g., appropriate learning rate
scheduling, sufficient iterations).

Now, we analyze the stability of the solution
when the candidate set distribution remains consis-
tent between training and inference. Let Dtrain be
the distribution of examples in the training set and
Dinf be the distribution during inference.

The training objective is:

E(u,v,yuv)∼Dtrain
[ℓ(fθrer(u, v), yuv)] (51)

The optimal parameters under this objective are:

θ∗rer = argmin
θrer

E(u,v,yuv)∼Dtrain
[ℓ(fθrer(u, v), yuv)]

(52)
At inference time, we want these parameters to

perform well under Dinf . The performance gap
can be bounded by:

|E(u,v,yuv)∼Dinf
[ℓ(fθ∗rer(u, v), yuv)]

− E(u,v,yuv)∼Dtrain
[ℓ(fθ∗rer(u, v), yuv)]|

≤ TV (Dinf ,Dtrain) · C
(53)

where TV is the total variation distance between
distributions and C is a constant related to the max-
imum possible loss value.

When the candidate set distribution remains
consistent between training and inference,
TV (Dinf ,Dtrain) is small, ensuring that the
model’s performance generalizes well from
training to inference.

Furthermore, since the collaborative filtering
model is fixed during reranking optimization, any
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instability in the overall system would have to orig-
inate from the reranking model itself. By ensuring
stable convergence of the reranking model through
proper regularization and training procedures, the
overall system maintains stability.

To analyze the convergence rate, we can use
standard results from convex optimization. For
a strongly convex loss function with parameter µ
and Lipschitz continuous gradients with constant L,
gradient descent with learning rate η = 1

L achieves
linear convergence:

Lbce(θt)− Lbce(θ
∗)

≤
(
1− µ

L

)t
· [Lbce(θ0)− Lbce(θ

∗)]

(54)
where θt is the parameter vector at iteration t,

and θ∗ is the optimal parameter vector.
In practice, while the BCE loss itself is convex

in model predictions, the overall loss landscape
may not be strongly convex in model parameters
due to the non-linear mapping from parameters to
predictions in neural networks. However, empiri-
cal evidence suggests that well-regularized models
with appropriate architectures converge reliably to
good solutions, even if they are local rather than
global minima.

The stability of the reranking process is further
enhanced by the activation-weighted score compu-
tation, which combines the collaborative filtering
scores with the LLM-generated scores as eq 19.
This weighted combination acts as a form of ensem-
ble learning, which is known to improve stability
and generalization. Even if one component (either
the collaborative filtering model or the LLM rerank-
ing model) experiences instability, the weighted
combination can mitigate its effects on the final
recommendations.
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Figure 9: User Profile Generation Instruct

Figure 10: User Profile Prompt Input

Figure 11: User Profile Prompt Output
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Figure 12: Item Profile Generation Instruct

Figure 13: Item Profile Prompt Input

Figure 14: Item Profile Prompt Output

Figure 15: Cold-Start Positive Interaction Activation Instruct
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Figure 16: Sparse Negative Interaction Activation Instruct

Figure 17: Group Merge Instruct
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Figure 18: Group Partition Instruct

Figure 19: Chain-of-Thought Activation Process Instruct
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