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Abstract

Large language models excel at many tasks but
often incur high inference costs during deploy-
ment. To mitigate hallucination, many systems
use a knowledge graph to enhance retrieval-
augmented generation (KG-RAG). However,
the large amount of retrieved knowledge con-
texts increase these inference costs further. A
promising solution to balance performance and
cost is LLM routing, which directs simple
queries to smaller LLMs and complex ones
to larger LLMs. However, no dedicated rout-
ing methods currently exist for RAG, and ex-
isting training-based routers face challenges
scaling to this domain due to the need for ex-
tensive training data. We observe that the score
distributions produced by the retrieval scorer
strongly correlate with query difficulty. Based
on this, we propose an extremely simple yet ef-
fective routing framework, the first specifically
designed for KG-RAG that efficiently balances
performance and cost in a plug-and-play man-
ner. It delivers over 3x higher routing effective-
ness while reducing runtime to less than 0.001x
compared to existing methods. Our code is
available at https://github.com/hrwang00/
SkewRoute.

1 Introduction

Large Language Models (LLMs) (OpenAI et al.,
2024; Llama Team, 2024; Qwen et al., 2025; Team
et al., 2024) exhibit remarkable capabilities across a
wide range of tasks. However, LLMs often halluci-
nate due to a lack of up-to-date or domain-specific
knowledge (Hong et al., 2023; Wang et al., 2023).
To mitigate this, LLMs are often augmented with
retrieved external knowledge (Asai et al., 2024; Yu
et al., 2024; Gao et al., 2024) during application.
Notably, many methods use externally structured
Knowledge Graphs (KGs) as external bases, re-
trieving query-relevant context to enhance subse-
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Figure 1: A Training-Free Routing Framework for
LLMs in KG-RAG. Scores of retrieved contexts sorted
in descending exhibit distinct skewness pattern. The
framework utilizes the score skewness of retrieved con-
texts to route requiring no training.

quent LLM generation (LUO et al., 2024; He et al.,
2024; Hu et al., 2024; Li et al., 2025). KGs typi-
cally represent knowledge as triples. In Retrieval-
Augmented Generation (RAG), each triple serves
as a knowledge context unit, scored based on its se-
mantic and structural relevance to the given query.
Subsequently, a set of high-scoring candidates is
selected and concatenated to provide the LLM with
supplementary knowledge, thereby enhancing gen-
eration quality. For instance, SubgraphRAG (Li
et al., 2025) employs a lightweight MLP to score in-
dependent triple as knowledge context and achieves
state-of-the-art performance by concatenating these
contexts.

Given the autoregressive nature of LLMs, in-
ference costs are directly proportional to the num-
ber of tokens (Hao et al., 2025; Snell et al., 2025).
While KG-RAG mitigates hallucinations and im-
proves generation quality, it dramatically expands
input tokens due to the increased retrieved con-
text. As shown in Figure 2a, answering a ques-
tion directly with an LLM requires 62 tokens per
question. However, retrieving 100 triples using
SubgraphRAG increases this to 1873 tokens per
question, resulting in an over 30x increase in in-
put token consumption. This significant overhead
hinders practical LLM application.

To reduce LLM inference costs in applications,
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Figure 2: Token and Performance-Cost Statistics on
CWQ. (a) illustrates how input tokens varies with re-
trieved contexts in KG-RAG. (b) presents inference cost
and performance on LLM cloud service platform of dif-
ferent LLM scales.

recent studies have focused on LLM routing (Ag-
garwal et al., 2024; Ding et al., 2024; Ong et al.,
2025; Feng et al., 2025), routing simple questions
to smaller LLMs and complex questions to larger
LLMs. This is primarily because the performance
benefits of increased model scale exhibit diminish-
ing returns; for example, Qwen2.5-14B-Instruct in-
curs less than twice the inference cost of Qwen2.5-
7b-Instruct while delivering a 7.45% performance
increase. In contrast, Qwen2.5-72b-Instruct re-
quires almost 7x the inference cost of Qwen2.5-
14b but only achieves a 2.12% improvement, as
illustrated in Figure 2b. However, while recent
routing methods have been explored in direct LLM
QA applications, their application and extensibility
to RAG domains is limited, primarily due to two
reasons:

(1) Training-Based Routing is Difficult to Con-
struct: Existing methods rely on training a classi-
fier to route between multiple LLMs, which inher-
ently requires substantial amounts of high-quality
labeled data specifying the optimal model for a
given query. Acquiring this data via expert anno-
tation is costly and doesn’t generalize well to new
datasets, typically necessitating retraining or fine-
tuning.

(2) Knowledge Source Shift Drives Routing
Objective Transformation: In direct LLM QA,
the LLM router relies on the internal knowledge
differences between models for routing. This dif-
fers fundamentally from common RAG scenarios,
where knowledge dependence is shifted to exter-
nally retrieved knowledge. This reduces the impor-
tance of inherent model knowledge and increases
focus on the LLMs’ reasoning ability over exter-
nal knowledge. This difference in routing objec-
tives makes existing routing methods unsuitable for
RAG.

These challenges highlight the significant hur-

dles of effective routing LLMs in RAG scenarios,
which raises a critical question: Can we develop a
training-free routing method, specifically tailored
for RAG, that routes by focusing target reasoning
on external knowledge sources?

By analyzing the score distribution of retrieved
contexts in KG-RAG, we surprisingly find signifi-
cant differences for different queries, as shown in
Figure 1. The score distribution for some queries
exhibits high skewness, characterized by power-
law behavior,which is widely observed across many
fields. 1 (Takahashi and Tanaka-Ishii, 2019; Neu-
mann and Gros, 2024; Cao et al., 2024; Feng et al.,
2024). A handful of contexts dominate with high
scores, leaving a long tail of many lower-scoring
ones. This indicates that only a few knowledge
contexts are highly relevant to the query, while
the majority are not. However, other queries show
a distinctly different, low skewness distribution,
where a substantial portion of the contexts exhibit
high relevance scores. This skewness variation is
strongly correlated with the difficulty of reason-
ing over external knowledge. For instance, sim-
ple questions may require only simple matching
within a single context, while difficult questions
often demand multi-hop reasoning across multiple
knowledge contexts. Thus, the varying skewness
of the score distribution may serve as an indicator
of query difficulty.

Inspired by the score skewness of retrieved in-
formation in KG-RAG, we first investigate the cor-
relation between skewness patterns and query dif-
ficulty. Building on this insight, we propose the
first training-free routing framework to address the
existing routing challenges in KG-RAG scenarios.
This framework employs a lightweight and efficient
workflow, as shown in Figure 1, that leverages the
skewness pattern of the retrieved context scores
to dynamically route queries. Simpler queries are
assigned to smaller LLMs, while more difficult
queries are routed to larger LLMs, effectively bal-
ancing performance and cost. Our main contribu-
tions are summarized as follows:

• To the best of our knowledge, this work is
the first to introduce a training-free routing
framework tailored for KG-RAG, leveraging
the skewness patterns in retrieved scores to
dynamically assess query difficulty, offering
a novel perspective for future efficient RAG

1For a detailed introduce of power-law, please see Sec-
tion 2.
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research

• We propose a novel training-free framework
that fully leverages the skewness pattern of re-
trieved scores from external knowledge bases,
enabling it to balance cost and performance
between different LLMs with high flexibility.

• Extensive evaluations across multiple LLM
scales demonstrate the superiority and effi-
ciency of our proposed routing framework,
highlighting its strong generalization capabil-
ity and practical value for cost-effective LLM
deployment.

2 Preliminaries

Power-law. Power-law (Song et al., 2024; Havrilla
and Liao, 2024), ubiquitous in nature, reveals an
inverse relationship between scores and their de-
scending ranks: S(n) = C

nα . In this formulation,
n denotes the rank and S(n) is the corresponding
score. In log-log space, logS(n) against log(n)
approximates a straight line with slope −α. While
in linear space, it appears as a few high scores fol-
lowed by a long tail of lower ones. In KG-RAG,
we observe that for certain queries, the scores of
retrieved contexts also follow this power-law be-
havior.
KG-RAG. RAG integrates contexts retrieved from
external knowledge bases to enhance LLMs. In
KG-RAG, the knowledge bases are KGs, and the
retrieved contexts take the form of triples {τ =
(h, r, t)}. Existing research on KG-RAG gener-
ally involves two stages: retrieval and generation.
For example, the state-of-the-art KG-RAG method,
SubgraphRAG trains a scorer R to select a sub-
set of triples T = {τ1, τ2, . . . , τK} by their scores
W = {s1, s2, ..., sK} relevant to q from G in the
retrieval phase. And then feeds q, an instruction
I , and T to a generator G (typically an LLM) to
produce the final answer: G(I, T, q) → a, where
a ∈ A. Knowledge Graph Question Answering
(KGQA) is often used to evaluate KG-RAG, aim-
ing to obtain answers from KGs given query q,
where q ∈ Q.
LLM Route. Based on scale, LLMs are broadly
categorized as larger LLMs and smaller ones.
Given a query q ∈ Q, a larger LLM is formally
represented as a function FL(I, T, q) = a, map-
ping the query q and retrieved information T to
an answer a, while a smaller LLM is denoted as
FS(I, T, q) = a. Larger LLMs deliver high quality
with significant cost. In contrast, smaller LLMs

are less capable but substantially reduce overhead.
For queries that smaller LLMs fail but larger LLMs
handle correctly, using the larger LLMs boosts per-
formance. However, for queries both LLMs an-
swer correctly, relying on the larger LLMs incurs a
substantial extra cost. Unlike previous works (Ag-
garwal et al., 2024; Ding et al., 2024; Ong et al.,
2025) that train a binary classifier to route between
smaller LLMs and larger LLMs, we design training-
free router L on the scores W of retrieved contexts
for given query q, L : W → {FS , FL}, whereW
is the space of possible W and θ is a threshold.

a =

{
FS(I, T, q) if L(W, θ) ≤ 0

FL(I, T, q) if L(W, θ) > 0

3 Methodology

3.1 Skewness of Retrieved Context Scores
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Figure 3: Score of Retrieved Contexts in CWQ. (a)(b)
are plotted in linear coordinates, while (c)(d) employ a
log-log scale.

The KG-RAG method typically trains a scorer
that assigns higher scores to contexts relevant to the
query and lower scores to irrelevant ones. Based
on these scores, the top-K contexts are selected
to enhance LLM generation, making the quality
of this selection directly affect the final answer
quality. In reality, queries can be categorized as
simple or difficult (Berant et al., 2013; Yih et al.,
2014; Min et al., 2019; Saxena et al., 2020). Simple
queries often require only single-hop information
matching within one knowledge context to find the
answer, while difficult queries usually need multi-
hop reasoning across multiple knowledge contexts.
To explore this, we visualize the score distributions
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assigned by the scorer across different queries and
find significant differences that strongly correlate
with the query difficulty.

Figure 3 presents two typical examples of the
top-100 context score distributions for different
queries, showing clear and significant differences.
Power-law distribution is highly skewed with long-
tail. In Figure 3a and Figure 3c, the distribution
exhibits power-law behavior and approximates a
straight line at the loglog scale: only a few contexts
are relevant to the question, while most score below
0.1 and are irrelevant. By contrast, Figure 3b and
Figure 3d show lower skewness, with a large por-
tion of contexts clearly relevant—100% contexts
have scores above 0.1. This difference in skewness
intuitively corresponds well with the query diffi-
culty: difficult queries naturally require reasoning
across more knowledge contexts, resulting in lower
skewness.

3.2 Correlation Between Skewness and Query
Difficulty

We directly quantify skewness using the area under
the min-max normalized score curve: a smaller
area indicates high skewness (rapid score drop-off),
while a larger area reflects low skewness (many
high scores and gradual decline). For example,
Figure 3c has an area of 1.07, whereas Figure 3d
has 65.65.

However, query difficulty does not have explicit
labels for direct assessment. Moreover, in RAG,
retrieval context directly affects difficulty: clear
and sufficient contexts make questions inherently
easier. Therefore, we approximate question dif-
ficulty by analyzing the scorer’s retrieval results.
In an extreme case, if the top-ranked triple con-
text already contains the answer, the question is
relatively easy, as it can be answered by matching
a single fact from the KG. The scorer identifies
the correct triple with high confidence during re-
trieval. Conversely, if the answer-containing triple
context appears lower in the ranked list, this typi-
cally indicates a more difficult, multi-hop reasoning
scenario, where several semantically related but in-
direct triples are retrieved. Thus, we use the rank
of the answer-containing triple as a proxy for query
difficulty: a lower rank (i.e., further down the list)
corresponds to higher difficulty.

Using the above metrics, we examine the cor-
relation between the skewness of retrieved scores
and query difficulty. Queries are divided into three
equally sized groups based on the area size, where a

smaller area indicates higher skewness. As shown
in Figure 4, higher skewness is strongly associ-
ated with lower query difficulty, as the answer-
containing context is more likely to be top-ranked.
This insight allows us to classify queries as simple
or difficult based on score skewness and, accord-
ingly, route them to LLMs of different scales to
balance inference cost and performance. 2
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Figure 4: Query Difficulty Across Score Skewness.

Algorithm 1: Routing Framework
Data: Dataset D, Threshold θ;

1 Initialize list of answers A ← [ ];
2 foreach query q in Dataset D do
3 if L(W, θ) ≤ 0 then
4 ans← FS(I, T, q);

5 else
6 ans← FL(I, T, q);

7 Add ans to A;

8 return A;

3.3 Using Skewness to Route
In this section, we present our training-free rout-
ing framework, which can be seamlessly integrated
into KG-RAG in a plug-and-play manner, as shown
in Algorithm 1. By leveraging the strong corre-
lation between score skewness of retrieved con-
texts and query difficulty, we require no additional
training. And any metric for measuring distribu-
tion skewness is compatible with our framework
for LLM selection. Queries with high score skew-
ness are routed to economical smaller LLMs, while
those with low skewness are directed to more pow-
erful larger LLMs, thereby striking an optimal bal-
ance between response quality and inference cost.

As previously mentioned, area under scores can
serve as a metric of distribution skewness, yet it
still has important drawbacks. First, it is highly
sensitive to min-max normalization: differences in

2Further analysis is provided in Appendix A.7.
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raw score ranges across queries lead to inconsistent
scaling and unstable area comparisons. Second, it
collapses the entire scores into a single value, sac-
rificing crucial information about its distribution
shape. The consequence is that widely divergent
distributions can produce similar area, undermin-
ing its ability to differentiate distinct skewness. To
address these shortcomings, we further explore new
solutions to measure score skewness. We propose
a cumulative threshold-based routing method and
analyze scores from the perspective of entropy and
gini coefficient to make routing decisions. Com-
pared with the straightforward area under scores,
these methods offer superior and robust discrimina-
tive power between simple and difficult queries.

Cumulative Threshold-based Routing. In
probability and statistics, Cumulative Distribution
Function (Kolmogoroff, 1933; Kolmogorov, 2018)
quantifies the probability a random variable X is
less than or equal to value x, offering a compre-
hensive view of the distribution. Queries with high
score skewness due to the rapid decay, require only
a few contexts to reach a cumulative probability.
Conversely, queries with low skewness need more
contexts to achieve the same value. Thus, cumula-
tive threshold-based routing could guide LLM se-
lection. The context scores W need to rank in a de-
scending order and then normalize by the score sum
into a probability distribution: pi = si/

∑K
j=1 sj .

Building upon this, the cumulative sum Ck of them
is computed by: Ck =

∑k
i=1 pi. For a given prob-

ability P (e.g., 95%), we find the smallest k satis-
fying Ck ≥ P . The function L(W, θ) is defined as
k − θk. Queries are classified as simple if k ≤ θk,
otherwise difficult.

Entropy-based Routing Entropy (Shannon,
1948) can quantify the uniformity of a probabil-
ity distribution. Queries with low score skewness,
characterized by with more uniform and slower
decaying context scores, exhibit higher entropy,
while highly skewed distributions correspond to
lower entropy. Thus, entropy can effectively assess
query difficulty based on context scores, enabling
dynamic routing of queries. Calculating the entropy
for scoresW requires converting them into a proba-
bility distribution p = {p1, p2, . . . , pK} by normal-
izing the scores pi = si/

∑K
j=1 sj . The entropy

is then calculated as H = −∑N
i=1 pi log2(pi). In

this context, L(W, θ) refers to H − θH . A query
is routed as simple if the entropy of context scores
falls below a predetermined threshold θH , and as

difficult otherwise.
Gini Coefficient-based Routing The Gini coef-

ficient (Gates, 1909; Lorenz, 1905), traditionally
measuring income inequality, can effectively re-
flect the imbalance of context scores. A higher Gini
coefficient indicates greater skewness of context
scores, reflecting a more pronounced imbalance
among the retrieved knowledge contexts. Thus,
Gini coefficient can serve as an effective metric
for routing decision. The calculation of the Gini
coefficient for context scores W involves sorting
them in ascending order s′1 ≤ s′2 ≤ · · · ≤ s′K
and applying the following formula: Gini =

1
K

(
K + 1− 2

∑K
i=1(K−i+1)s′i∑K

j=1 s
′
j

)
. Here, L(W, θ) is

θG −Gini. Queries are routed as simple if the cal-
culated Gini coefficient exceeds a threshold θG,
indicating high skewness, and as difficult if it falls
below θG.

4 Experiments

4.1 Settings

Datasets. To test the effectiveness of routing on
knowledge-intensive reasoning tasks, we used two
widely recognized KGQA datasets: CWQ (Tal-
mor and Berant, 2018) and WebQSP (Yih et al.,
2016). Freebase (Bollacker et al., 2008) serves as
the KG for both datasets, comprising more than 120
million triples. Query difficulty, assessed by the
number of required contexts, varies across datasets.
Specifically, WebQSP is relatively simple, contain-
ing queries with only 1 or 2 knowledge contexts.
Conversely, CWQ contains more difficult reason-
ing problems involving up to 4 contexts. Further
details are described in Appendix A.1.
Baselines. SubgraphRAG, the latest SOTA method
in KG-RAG, achieves effective and efficient perfor-
mance. We thereby adopt its scorers in this study.
We compare with the following baselines: Random
Routing, which serves as the lower bound. Un-
der the same budget, improvements over this base-
line demonstrate the effectiveness of other rout-
ing methods. RouteLLM (Ong et al., 2025) and
GraphRouter (Feng et al., 2025) are included as
representatives of the latest routing methods. Fol-
lowing their claim of generalization across unseen
data and LLMs, we use their pre-trained weights as
the routing baseline against our training-free frame-
work. Although these methods involve additional
training cost, they still face significant challenges
under the RAG setting.
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Reasoning LLMs. We utilize a diverse selection of
open-source models for our experiments: Qwen2.5-
7B-Instruct, Qwen2.5-72B-Instruct (Qwen et al.,
2025), Llama3.1-8B-Instruct, and Llama3.1-70B-
Instruct (Llama Team, 2024). Based on their param-
eter counts, Qwen7B and Llama8B are classified as
smaller LLMs, while their counterparts, Qwen72B
and Llama70B, fall under the larger LLMs.
Evaluation Metrics. Consistent with prior re-
search, we employ Hit@1 3 as evaluation metrics.
It measures the rate at which the correct answer ap-
pears at the top prediction position. The objective
of LLM routing is to balance performance and cost,
which means a higher Hit@1 is preferable under
the same call ratio of the larger LLM. Thereby, we
define Average Effectiveness (Avg. Eff.) as the
mean improvement in Hit@1 over random routing.

4.2 Results

Table 1 present the experimental results of our rout-
ing methods on the WebQSP and CWQ datasets
between Qwen7B and Qwen72B. Overall, all skew-
ness indicators in our training-free framework con-
sistently outperform baselines across all scenarios.
Specifically, our gini coefficient-based, entropy-
based and cumulative threshold-based methods cut
larger LLM call ratio by 40% while achieving on
par with full inference of larger LLM. Furthermore,
the gini coefficient-based routing method demon-
strates a significant average effectiveness, outper-
forming RouteLLM by over 8x and surpassing an-
other strong baseline, GraphRouter, by more than
2x on WebQSP dataset. The same trend is observed
on the CWQ dataset, where our method shows con-
sistent improvements over the baselines. These
results strongly demonstrate the effectiveness of
our routing methods based on score skewness to
optimizing performance and cost. Additionally,
we find that the performance gap on WebQSP is
smaller than that of CWQ dataset. While routing is
effective in both cases, the narrower gap produces
superior routing outcomes.

Table 2 illustrates our experimental results rout-
ing between Llama8B and Llama70B. Overall, our
training-free methods possess and strong flexibility
and generalization, performing well across various
datasets and model combinations. Gini coefficient-

3Here, we use the officially updated evaluation code of
SubgraphRAG, which leads to slightly lower results com-
pared to those reported in the original paper (see https:
//github.com/Graph-COM/SubgraphRAG). However, this
does not affect the validity of our routing method’s evaluation.

based, entropy-based, and cumulative threshold-
based routing methods demonstrate a significant ad-
vantage. Even under conditions where RouteLLM
and GraphRouter fail completely, with their per-
formance dropping below the naive random rout-
ing, our routing methods deliver a notable gain, in-
creasing the average effectiveness by nearly 1% on
WebQSP dataset. On the more challenging CWQ
dataset, our routing methods overwhelmingly sur-
pass all baselines. While the GraphRouter still
remains ineffective, our gini coefficient-based rout-
ing method achieves average effectiveness 5x better
than RouteLLM.

4.3 Case Study
4.3.1 Routing Across Diverse Model Sizes
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Figure 5: Routing Between Multiple Models

In this section, we further extend our methods
to include an additional model size to demonstrate
its generalization. Specifically, we use Qwen7B as
the small LLM, Qwen72B as the large LLM, and
Qwen14B as the medium LLM, which sits between
them in terms of parameters, performance, and cost.
The experimental results are presented in Figure
5. Notably, including the medium LLM signifi-
cantly improves the trade-off between performance
and cost. Routing with the medium model yields
much better results than routing directly between
the small and large models. Overall, our method
also demonstrates clear effectiveness, consistently
outperforming the random routing baseline. This
highlights the generalization and robustness of our
methods, effectively enabling training-free routing
across multiple LLM sizes and allowing for finer-
grained cost-performance trade-offs tailored to the
user’s budget.

4.3.2 Routing Across Model Families
As shown in Table 3, we further explore routing
across different model families, such as between
Qwen7B and Llama70B, which are trained on dif-
ferent corpora and have different model architec-
tures, to evaluate the generalization ability of our
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Dataset Method 0% 20% 40% 60% 80% 100% Avg. Eff.

WebQSP

Random Routing 77.52 78.18 78.85 79.51 80.18 80.84 -
RouteLLM [ICLR, 25] 77.52 78.56 (+0.38) 79.18 (+0.33) 79.55 (+0.04) 79.98 (-0.20) 80.84 +0.14
GraphRouter [ICLR, 25] 77.52 78.26 (+0.08) 79.30 (+0.45) 80.22 (+0.71) 80.71 (+0.53) 80.84 +0.44
Ours (Gini-based) 77.52 79.48 (+1.30) 79.98 (+1.13) 81.20 (+1.69) 80.96 (+0.78) 80.84 +1.23
Ours (Entropy-based) 77.52 79.18 (+1.00) 80.34 (+1.49) 81.08 (+1.57) 80.77 (+0.59) 80.84 +1.16
Ours (Cumulative-based) 77.52 79.24 (+1.06) 80.04 (+1.19) 80.71 (+1.20) 80.71 (+0.53) 80.84 +1.00

CWQ

Random Routing 45.68 47.59 49.51 51.42 53.34 55.25 -
RouteLLM [ICLR, 25] 45.68 47.81 (+0.22) 50.41 (+0.90) 52.00 (+0.58) 53.61 (+0.27) 55.25 +0.49
GraphRouter [ICLR, 25] 45.68 47.83 (+0.24) 50.10 (+0.59) 52.02 (+0.60) 53.78 (+0.44) 55.25 +0.47
Ours (Gini-based) 45.68 48.94 (+1.35) 50.92 (+1.41) 52.53 (+1.11) 54.15 (+0.81) 55.25 +1.17
Ours (Entropy-based) 45.68 48.74 (+1.15) 50.72 (+1.21) 52.70 (+1.28) 54.01 (+0.67) 55.25 +1.08
Ours (Cumulative-based) 45.68 49.02 (+1.43) 50.89 (+1.38) 52.82 (+1.40) 53.89 (+0.55) 55.25 +1.19

Table 1: Routing Between Qwen2.5 Models: 7B as the Small LLM and 72B as the Large LLM.

Dataset Method 0% 20% 40% 60% 80% 100% Avg. Eff.

WebQSP

Random Routing 78.56 79.68 80.80 81.91 83.03 84.15 -
RouteLLM [ICLR, 25] 78.56 79.73 (+0.05) 80.47 (-0.33) 81.82 (-0.09) 82.86 (-0.17) 84.15 -0.14
GraphRouter [ICLR, 25] 78.56 79.67 (-0.01) 80.65 (-0.15) 81.39 (-0.52) 83.35 (+0.32) 84.15 -0.09
Ours (Gini-based) 78.56 81.33 (+1.65) 81.57 (+0.77) 82.62 (+0.71) 83.35 (+0.32) 84.15 +0.86
Ours (Entropy-based) 78.56 81.08 (+1.40) 82.00 (+1.20) 82.49 (+0.58) 83.66 (+0.63) 84.15 +0.95
Ours (Cumulative-based) 78.56 81.57 (+1.89) 81.27 (+0.47) 82.62 (+0.71) 83.60 (+0.57) 84.15 +0.91

CWQ

Random Routing 49.90 51.51 53.12 54.72 56.33 57.94 -
RouteLLM [ICLR, 25] 49.90 51.26 (-0.25) 53.61 (+0.49) 55.03 (+0.31) 56.75 (+0.42) 57.94 +0.24
GraphRouter [ICLR, 25] 49.90 50.84 (-0.67) 52.79 (-0.33) 54.80 (+0.08) 56.16 (-0.17) 57.94 -0.27
Ours (Gini-based) 49.90 52.65 (+1.14) 55.00 (+1.88) 56.16 (+1.44) 57.04 (+0.71) 57.94 +1.29
Ours (Entropy-based) 49.90 52.51 (+1.00) 54.89 (+1.77) 56.07 (+1.35) 56.78 (+0.45) 57.94 +1.14
Ours (Cumulative-based) 49.90 52.68 (+1.17) 54.77 (+1.65) 56.41 (+1.69) 56.61 (+0.28) 57.94 +1.20

Table 2: Routing Between Llama3.1 Models: 8B as the Small LLM and 70B as the Large LLM.

routing methods. Even when routing across distinct
model families, our routing framework remains
consistently effective, demonstrating strong robust-
ness and generalization. Specifically, on the We-
bQSP dataset, the average effectiveness of the gini
coefficient-based routing method is over 4x higher
than GraphRouter. On the CWQ dataset, our rout-
ing methods significantly outperform all baselines.
At a 40% large LLM call ratio, our gini coefficient-
based routing method brings a 2.57% and 2.46%
improvement over random routing on the WebQSP
and CWQ datasets, respectively. These results
highlight the superiority of our routing methods
in reducing inference costs while maintaining in-
ference performance. Our gini coefficient-based
routing method achieves the best average effec-
tiveness. Therefore, we recommend it for routing
across model families.

4.3.3 Routing of Retrieved Contexts Nums

In addition to routing between models of differ-
ent sizes, dynamically adjusting the number of re-
trieved contexts is another promising direction. For
simple queries, reducing the number of retrieved

contexts effectively decreases the input token count
and lowers inference costs. In this case study, we
employ our skewness-based routing algorithm to
achieve this: for complex queries, we retain 100
retrieved contexts as before, whereas for simple
queries, only 10 contexts are used. As illustrated in
Table 4, our routing methods demonstrate remark-
able efficiency and performance. Notably, even
when using only 10 retrieved contexts for 60% of
the queries, our cumulative threshold-based rout-
ing method outperformes using 100 contexts for
all queries on WebQSP, while drastically reducing
inference costs. Furthermore, the average effective-
ness of this method is nearly 3x that of RouteLLM.
This highlights the broad applicability of our pro-
posed skewness-based plug-and-play algorithm and
its promising potential for future applications.

4.3.4 Other Scorer in KG-RAG

The focus of this work is not on improving the
scorers used in the KG-RAG pipeline. Instead, our
method leverages the score distributions produced
by existing scorers in a plug-and-play manner for
routing, making it largely agnostic to the choice of
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Dataset Method 0% 20% 40% 60% 80% 100% Avg. Eff.

WebQSP

Random Routing 77.52 78.85 80.17 81.50 82.82 84.15 -
RouteLLM [ICLR, 25] 77.52 78.81 (-0.04) 79.79 (-0.38) 81.33 (-0.17) 82.49 (-0.33) 84.15 -0.23
GraphRouter [ICLR, 25] 77.52 78.99 (+0.14) 80.84 (+0.67) 82.06 (+0.56) 83.42 (+0.60) 84.15 +0.49
Ours (Gini-based) 77.52 81.51 (+2.66) 82.49 (+2.32) 83.66 (+2.16) 83.97 (+1.15) 84.15 +2.07
Ours (Entropy-based) 77.52 81.27 (+2.42) 82.74 (+2.57) 83.42 (+1.92) 83.97 (+1.15) 84.15 +2.02
Ours (Cumulative-based) 77.52 81.63 (+2.78) 82.31 (+2.14) 83.60 (+2.10) 83.85 (+1.03) 84.15 +2.02

CWQ

Random Routing 45.68 48.13 50.58 53.04 55.49 57.94 -
RouteLLM [ICLR, 25] 45.68 48.12 (-0.01) 51.09 (+0.51) 53.58 (+0.54) 56.05 (+0.56) 57.94 +0.40
GraphRouter [ICLR, 25] 45.68 48.00 (-0.13) 50.78 (+0.20) 53.50 (+0.46) 55.31 (-0.18) 57.94 +0.09
Ours (Gini-based) 45.68 50.13 (+2.00) 53.04 (+2.46) 54.83 (+1.79) 56.53 (+1.04) 57.94 +1.82
Ours (Entropy-based) 45.68 49.82 (+1.69) 52.82 (+2.24) 54.86 (+1.82) 56.41 (+0.92) 57.94 +1.67
Ours (Cumulative-based) 45.68 49.90 (+1.77) 52.76 (+2.18) 55.00 (+1.96) 56.05 (+0.56) 57.94 +1.62

Table 3: Routing Across Model Families: Qwen2.5-7B-Instruct and Llama-3.1-70B-Instruct.

Dataset Method 0% 20% 40% 60% 80% 100% Avg. Eff.

WebQSP

Random Routing 72.79 73.74 74.68 75.63 76.57 77.52 -
RouteLLM [ICLR, 25] 72.79 74.26 (+0.52) 75.25 (+0.57) 76.17 (+0.54) 77.33 (+0.76) 77.52 +0.60
GraphRouter [ICLR, 25] 72.79 73.59 (-0.15) 74.69 (+0.01) 75.92 (+0.29) 77.03 (+0.46) 77.52 +0.15
Ours (Gini-based) 72.79 75.12 (+1.38) 77.27 (+2.59) 76.78 (+1.15) 77.52 (+0.95) 77.52 +1.52
Ours (Entropy-based) 72.79 75.31 (+1.57) 77.21 (+2.53) 77.21 (+1.58) 77.46 (+0.89) 77.52 +1.64
Ours (Cumulative-based) 72.79 75.25 (+1.51) 77.21 (+2.53) 77.58 (+1.95) 77.40 (+0.83) 77.52 +1.71

CWQ

Random Routing 41.18 42.08 42.98 43.88 44.78 45.68 -
RouteLLM [ICLR, 25] 41.18 41.97 (-0.11) 42.65 (-0.33) 43.39 (-0.49) 44.41 (-0.37) 45.68 -0.33
GraphRouter [ICLR, 25] 41.18 41.49 (-0.59) 42.03 (-0.95) 43.16 (-0.72) 44.72 (-0.06) 45.68 -0.58
Ours (Gini-based) 41.18 42.45 (+0.37) 43.59 (+0.61) 44.94 (+1.06) 45.37 (+0.59) 45.68 +0.66
Ours (Entropy-based) 41.18 42.65 (+0.57) 43.64 (+0.66) 44.94 (+1.06) 45.20 (+0.42) 45.68 +0.68
Ours (Cumulative-based) 41.18 42.31 (+0.23) 43.50 (+0.52) 44.86 (+0.98) 45.51 (+0.73) 45.68 +0.62

Table 4: Routing of Retrieved Contexts Nums (Top-K, k=10 vs.k=100) of Qwen2.5-7B-Instruct.

scorer. To further demonstrate the generality of our
method, we conduct additional evaluations using a
domain fine-tuned MLP scorer in conjunction with
the gte-large-en-v1.5 embedding model as new
scorer. Across all settings, our routing method
still achieves substantial performance gains over
existing routing methods. These results provide
further validation of the effectiveness and broad
applicability of our methods, as shown in the Table
5. Although the scorer trained on the semantic
similarity between context and query don’t perform
as well as SubgraphRAG, our routing methods still
lead the pack, a strong testament to their versatility.
Specifically, our entropy-based routing method is
particularly notable, with its average effectiveness
being nearly 3x that of RouteLLM.

4.3.5 Computational Efficiency of Routing

Table 6 presents a runtime comparison of differ-
ent routing methods. Our method is training-free
and extremely fast, as it estimates the skewness
level simply by analyzing the score distribution of
the top-K retrieved contexts. In contrast, training-
based methods like GraphRouter and RouteLLM

require GPU resources for deployment and suffer
significant slowdowns when only CPUs are avail-
able. Our method, however, runs efficiently on
CPUs alone. Specifically, GraphRouter incurs sub-
stantial latency due to query embedding, running
5,460× slower than our cumulative-based method
on CPUs, and still 2,714× slower even with GPU
acceleration.

5 Related Works

In LLM routing, the necessity of maximizing qual-
ity under cost constraints is challenging. Numerous
studies have sought to mitigate this issue by train-
ing a model on a specifically constructed dataset
designed to determine the most suitable LLM to
handle the query. For instance, AutoMix (Aggar-
wal et al., 2024) strategically routes queries to large
LLMs, employing a POMDP router based on an-
swer confidence of small LLMs. However, it re-
quires multiple model calls, increasing latency and
overhead. Hybrid-LLM (Ding et al., 2024) trains
a BERT-based router that performs binary classi-
fication based on the predicted query difficulty.
RouteLLM (Ong et al., 2025) leverages human
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Dataset Method 0% 20% 40% 60% 80% 100% Avg. Eff.

WebQSP

Random Routing 75.61 76.42 77.23 78.05 78.86 79.67 -
RouteLLM [ICLR, 25] 75.61 76.66 (+0.24) 77.40 (+0.17) 78.01 (-0.04) 78.50 (-0.36) 79.67 +0.003
GraphRouter [ICLR, 25] 75.61 76.84 (+0.42) 77.95 (+0.72) 78.93 (+0.88) 80.04 (+1.18) 79.67 +0.80
Ours (Gini-based) 75.61 77.46 (+1.04) 78.62 (+1.39) 79.55 (+1.50) 79.67 (+0.81) 79.67 +1.19
Ours (Entropy-based) 75.61 77.40 (+0.98) 78.69 (+1.46) 79.55 (+1.50) 79.73 (+0.87) 79.67 +1.20
Ours (Cumulative-based) 75.61 77.58 (+1.16) 78.56 (+1.33) 79.79 (+1.74) 79.61 (+0.75) 79.67 +1.25

CWQ

Random Routing 43.98 45.72 47.46 49.20 50.94 52.68 -
RouteLLM [ICLR, 25] 43.98 46.13 (+0.41) 48.12 (+0.66) 49.70 (+0.50) 51.29 (+0.35) 52.68 +0.48
GraphRouter [ICLR, 25] 43.98 45.71 (-0.01) 47.78 (+0.32) 49.67 (+0.47) 51.29 (+0.35) 52.68 +0.28
Ours (Gini-based) 43.98 46.84 (+1.12) 49.05 (+1.59) 50.89 (+1.69) 51.97 (+1.03) 52.68 +1.36
Ours (Entropy-based) 43.98 46.87 (+1.15) 49.16 (+1.70) 51.06 (+1.86) 51.85 (+0.91) 52.68 +1.41
Ours (Cumulative-based) 43.98 46.45 (+0.73) 48.99 (+1.53) 51.01 (+1.81) 51.91 (+0.97) 52.58 +1.26

Table 5: Routing Between Qwen Models with Other Scorer: 7B as the Small LLM and 72B as the Large LLM.

Model RouteLLM GraphRouter Our (Gini-based) Our (Entropy-based) Our (Cumulative-based) Our (Area-based)

CPU 25.21 46.41 0.01 0.03 0.01 0.01
GPU 10.12 23.07 - - - -

Table 6: Time Statistics of Different Routing Methods (ms/query).

preference data and employs data augmentation
techniques to enhance the router performance. Af-
terwards, GraphRouter (Feng et al., 2025) builds
router for LLM selections from the graph perspec-
tive and models the LLM selection problem as an
edge prediction task. Compared to them, our meth-
ods offer a novel solution that does not necessitate
training on specific datasets. This not only saves
substantial data synthesis and training costs but also
ensures high flexibility and generalization, partic-
ularly in scenarios like KG-RAG where dedicated
training data is infeasible.

Knowledge Graph Question Answering (KGQA)
serves as a crucial application for evaluating KG-
RAG, which requires precise answers from struc-
tured KGs. These KG-RAG methods are primarily
divided into two categories: decoupled retrieval
methods and integrated retrieval methods based on
whether LLMs dynamically participate in the re-
trieval process on KGs. The integrated retrieval
methods (Jiang et al., 2024; Sun et al., 2024; Ma
et al., 2024, 2025) exemplified by ToG, enable
the LLMs to interactively explore related entities
and relations on KGs and perform reasoning based
on the retrieved knowledge. However, this tight
coupling requires frequent LLM calls, leading to
substantial inference overhead. The decoupled re-
trieval methods (Mavromatis and Karypis, 2024;
LUO et al., 2024; He et al., 2024; Hu et al., 2024;
Wang et al., 2025; Li et al., 2025) focus on dis-
tilling prior knowledge from KGs into LLMs. For
instance, RoG fine-tunes LLMs to generate relation

paths as faithful plans that are then used to retrieve
valid paths from KGs. However, this method in-
curs substantial computational expense due to fine-
tuning and processing latency, which can amount
to thousands of seconds per query. In contrast,
SubgraphRAG, demonstrates superior effective and
efficient results by integrating a lightweight multi-
layer perceptron (MLP) with structural and seman-
tic information. Accordingly, all our subsequent
experiments are conducted based on it.

6 Conclusion

In this paper, we present the first LLM routing
framework tailored for KG-RAG in a plug-and-
play manner. This is motivated by the observation
that the skewness of retrieval score distributions
naturally reflects query difficulty in reasoning over
external knowledge, aligning well with the RAG
paradigm. By exploiting this skewness, our method
dynamically routes queries among LLMs of differ-
ent scales, achieving an effective trade-off between
performance and cost. This simple yet robust so-
lution also overcomes prior methods’ dependence
on costly training data and generalizes well across
datasets and model sizes. Extensive experiments
validate the effectiveness of our method. We offer
a new perspective for efficient RAG deployment by
reducing costs through LLM routing. Future work
will focus on extending this training-free routing
paradigm to broader RAG settings, including text-
based and multimodal scenarios.
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Limitations

SkewRoute is a highly flexible and generalizable
method based on score skewness. However, cur-
rent experiments focus mainly on KG-RAG, while
its principles should also apply to broader RAG
settings, such as chunk-based text RAG or multi-
modal RAG. Consequently, exploring SkewRoute’s
effectiveness across these wider RAG scenarios is
a promising direction. We acknowledge this as a
limitation of the current work and leave it for future
study.
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A Appendix

A.1 Datasets

The WebQuestionsSP (WebQSP) dataset, extends
the original WebQuestions dataset by providing
4,737 natural language questions annotated with
corresponding SPARQL queries executable against
Freebase. The ComplexWebQuestions (CWQ)
dataset is designed to assess models’ abilities to
answer complex queries that necessitate reasoning
across multiple knowledge contexts of KGs. We-
bQSP and CWQ are widely utilized for training
and evaluating KG-RAG methods.

Table 7 summarizes the statistics of the datasets
used in our experiments. Specifically, the WebQSP
dataset consists of 2,826 training samples and 1,628
test samples, with a maximum hop of 2. The CWQ
dataset contains 27,639 training samples and 3,531
test samples, with a maximum hop count of 4.

Datasets Train Test Max hop

CWQ 27,639 3,531 4
WebQSP 2,826 1,628 2

Table 7: Statistics of Datasets.

Table 8 details the distribution of query hops
across the datasets. The WebQSP dataset is rela-
tively simpler, comprising only 1-hop and 2-hop
queries, with 1-hop queries forming the majority.
In contrast, CWQ is a more complex dataset. Al-
though it comprises 1-hop and 2-hop queries, a con-
siderable percentage (20.8%) consists of queries
requiring three or four hops.

Dataset 1 hop 2 hop ≥ 3 hop

WebQSP 65.5 % 34.5% 0.00%
CWQ 40.9 % 38.3% 20.8%

Table 8: Statistics of Query Hops of Datasets

A.2 Implementation Details.

For reasoning, we use one-shot prompting to
LLMs’ generation. Consistent with SubgraphRAG,
the prompt template we employe is detailed in Ap-
pendix A.9. The temperature parameter is set to 0
for reproduction, and the maximum token length
for generation is fixed at 4000.

A.3 Performance and Cost

The performance of the KG-RAG state-of-the-art
method SubgraphRAG on the CWQ and WebQSP
datasets is presented in Table 9 with 100 retrieved
triples. All our experiments are conducted on

Models Llama-8b Llama-70b Qwen-7b Qwen-72b

CWQ

F1-Score 46.83 53.53 42.77 52.11
Hit@1 49.90 57.94 45.68 55.25

WebQSP

F1-Score 69.29 73.93 67.55 70.76
Hit@1 78.56 84.15 77.52 80.84

Table 9: Results of SubgraphRAG with 100 Triples on
CWQ and WebQSP datasets.

the LLM cloud service platform. Table 9 presents
the cost per one million tokens of different LLMs.
More pricing details are provided on the official
Silicon Flow website4.

Models Qwen7b Qwen14b Qwen32b Qwen72b Llama8b Llama70b

Cost/M tokens 0.0485 0.0970 0.1746 0.5724 0.0485 0.5724

Table 10: Inference Cost ($) of LLMs with Different
Scale on SiliconFlow.

Driven by architectural innovations and scaling
laws, LLMs has emerged. As shown in the Ta-
ble 9, the cost-efficient smaller LLMs have lim-
ited capabilities while powerful larger LLMs incur
high inference cost. This inherent performance-
cost trade-off poses a significant deployment chal-
lenge. LLM routing offers an effective solution
by directing queries to balance response quality
with cost efficiency. For users, routing enables
them handling simpler queries on their devices lo-
cally while call to expensive cloud APIs only for
more difficult queries.For LLM platform providers,
routing facilitates automatically directing simple
queries to lower-cost smaller LLMs on the backend
without sacrificing user experience. Consequently,
LLM routing provides a flexible and cost-effective
method, helping to unlock the full potential of
LLMs across various scales while accommodating
diverse budget and performance requirements.

A.4 Score Skewness on WebQSP Dataset

Figure 6 illustrates the scores of retrieved contexts
for queries within the WebQSP dataset, a trend

4https://siliconflow.cn/
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likewise observed in the CWQ dataset as described
earlier. Specifically, the left panel displays high
skewness, with retrieved context scores declining
sharply as rank increases. This highly skewed
scores indicate that a few of high-ranked contexts
contribute the vast majority of the total score, while
the extensive long tail comprises numerous con-
texts with significantly lower individual scores. In
stark contrast, the right panel shows low skewness,
deviating from this linear drop pattern. A promi-
nent inflection point in its upper-right region in-
dicates that contexts, particularly those of higher
scores, diminish at a substantially more gradual
pace than that of high skewness.
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Figure 6: Score of Retrieved Contexts in WebQSP.

A.5 Cumulative Probability of Context Scores

Building upon the previously observed variations
in score skewness across queries, we visualize their
cumulative probability on the WebQSP and CWQ
dataset, as shown in Figure 7. These plots reveal
two primary types of cumulative behavior: high
skewness and low skewness. For the former, where
scores are concentrated among just a few retrieved
contexts, the cumulative probability rises steeply.
Thus, a high cumulative probability is achieved
with only a minimal number of contexts (e.g., Fig-
ure 7a illustrates reaching 95% cumulative prob-
ability with just 5 triples). In contrast, the low
skewness where scores are more evenly distributed
among more contexts, exhibit a slower rise in cu-
mulative probability, requiring more to reach the
same value (e.g., Figure 7b, 95% requires 63).Simi-
lar behavior was also observed in the CWQ dataset.
This significant variation in the number of contexts
required for a given cumulative probability directly
reflects the differences in underlying distribution
skewness of scores. This observation inspires our
cumulative threshold-based method, which lever-
ages the context number needed to achieve a preset
cumulative probability to inform dynamic routing
decisions.
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Figure 7: Cumulative Probability of Context Scores.
(a)(b) Results on the WebQSP Dataset (c)(d) Results on
the CWQ Dataset.

A.6 Routing Across Cumulative Probability

We conduct an experiment to explore the impact
of the probability P in the cumulative threshold-
based method, as shown in Figure 8. Overall,
results show that our training-free methods con-
sistently outperform the random mixing baseline
for cumulative probability P ranging from 0.35
to 0.95, demonstrating its robustness. For exam-
ple, on the WebQSP dataset, compared to using
the LLM exclusively for inference, our methods
reduce cost over 50% without any loss in perfor-
mance. Highly skewed distributions of contexts
scores reach given P with very few examples,
while those with low skewness require many more.
The probability choice is crucial. A low probability
P is easily triggered by queries with highly skewed
scores, but it also allows those with low skewness
to pass, thereby diminishing the router’s discrim-
inative power. As the results illustrate, P = 0.95
steadily outperforms P = 0.35.

A.7 Correlation Analysis

In the absence of supervision, there are no explicit
labels to directly assess query difficulty. Never-
theless, in the RAG scenario, the retrieval quality
directly impacts the answer generation of LLMs.
The retrieval of clear and sufficient contexts inher-
ently lowers the difficulty of answering the given
query. A query is trivially simple if it can be an-
swered with a single triple that appears right next
to it in the prompt. Thus, to assess query difficulty,
we use a straightforward metric: we check whether
the top-ranked context in retrieved set contains the
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Figure 8: Results of Cumulative Threshold-based
Routing with Different P . (a)(b) on WebQSP and
(c)(d) on CWQ between Qwen7b and Qwen72b with
Cumulative Probability P in {0.35, 0.65, 0.95}.
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Figure 9: Simple Query Number Across Skewness.

answer for given query. Simple query requires only
a single knowledge context to answer. If the Top-
1 contains real answer, we consider this query is
simple. In this case, the scorer has accurately iden-
tified the context critical for reasoning with high
confidence.

Next, we investigate the relationship between
score skewness of retrieved contexts and query dif-
ficulty. To this end, we extract queries whose an-
swers appear in the top-scoring context and com-
pute the areas under their scores. Smaller areas
correspond to higher skewness. We partition the
area from their minimum to maximum into sev-
eral contiguous intervals, each corresponding to a
distinct level of skewness. Figure 9 illustrates the
count of simple queries across different skewness
levels. Overall, a consistent trend was observed
in both datasets, which queries are predominantly
concentrated at higher skewness levels. This allows
us to select simple queries based on their skewness.
The finding further reveals the strong correlation be-
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Figure 10: Correlation Between Query Difficulty and
Score Skewness. The subfigures show results for differ-
ent skewness calculation metrics on WebQSP and CWQ
dataset: (a)(b) Gini Coefficient, (b)(d) Entropy, (e)(f)
Cumulative Threshold. The red line shows the mean
answer position of each group.

tween query difficulty and score skewness, which
can serve as effective indicator for routing LLMs
to balance performance and cost.

Furthermore, our gini-based, entropy-based and
cumulative-based metrics for distribution skew-
ness exhibit a trend consistent with the area-based
method, as depicted in Figure 10. The rank of
the answer-containing context can indicate query
difficulty, where a lower position typically corre-
sponds to a more complex, multi-hop reasoning sce-
nario. We can observe a strong correlation where
as the score distribution becomes more skewed, the
rank of answer-containing context is higher, con-
sequently, lower query difficulty. This reinforces
the core insight: score skewness is a reliable indica-
tor of query difficulty, enabling a dynamic routing
strategy to balance inference performance and cost
across different LLMs.

A.8 Results of Area-based Routing Method

To evaluate the area-based routing method, we
conduct experiments on the WebQSP and CWQ
datasets using Qwen2.5-7B-Instruct and Qwen2.5-
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Dataset Method 0% 20% 40% 60% 80% 100% Avg. Eff.

WebQSP

Random Routing 77.52 78.18 78.85 79.51 80.18 80.84 -
RouteLLM [ICLR, 25] 77.52 78.56 (+0.38) 79.18 (+0.33) 79.55 (+0.04) 79.98 (-0.20) 80.84 +0.14
GraphRouter [ICLR, 25] 77.52 78.26 (+0.08) 79.30 (+0.45) 80.22 (+0.71) 80.71 (+0.53) 80.84 +0.44
Ours (Area-based) 77.52 78.26 (+0.08) 80.10 (+1.25) 81.08 (+1.57) 81.14 (+0.96) 80.84 +0.97
Ours (Gini-based) 77.52 79.48 (+1.30) 79.98 (+1.13) 81.20 (+1.69) 80.96 (+0.78) 80.84 +1.23
Ours (Entropy-based) 77.52 79.18 (+1.00) 80.34 (+1.49) 81.08 (+1.57) 80.77 (+0.59) 80.84 +1.16
Ours (Cumulative-based) 77.52 79.24 (+1.06) 80.04 (+1.19) 80.71 (+1.20) 80.71 (+0.53) 80.84 +1.20

CWQ

Random Routing 45.68 47.59 49.51 51.42 53.34 55.25 -
RouteLLM [ICLR, 25] 45.68 47.81 (+0.22) 50.41 (+0.90) 52.00 (+0.58) 53.61 (+0.27) 55.25 +0.49
GraphRouter [ICLR, 25] 45.68 47.83 (+0.24) 50.10 (+0.59) 52.02 (+0.60) 53.78 (+0.44) 55.25 +0.47
Ours (Area-based) 45.68 48.06 (+0.47) 49.59 (+0.08) 52.02 (+0.60) 53.95 (+0.61) 55.25 +0.44
Ours (Gini-based) 45.68 48.94 (+1.35) 50.92 (+1.41) 52.53 (+1.11) 54.15 (+0.81) 55.25 +1.17
Ours (Entropy-based) 45.68 48.74 (+1.15) 50.72 (+1.21) 52.70 (+1.28) 54.01 (+0.67) 55.25 +1.08
Ours (Cumulative-based) 45.68 49.02 (+1.43) 50.89 (+1.38) 52.82 (+1.40) 53.89 (+0.55) 55.25 +1.19

Table 11: Routing Between Qwen2.5 Models: 7B as the Small LLM and 72B as the Large LLM with Area-
based Routing Method. The best scores are highlighted with bold, the second-best scores are highlighted with
underline and the third-best scores are indicated in italics.

Dataset Method 0% 20% 40% 60% 80% 100% Avg. Eff.

WebQSP

Random Routing 78.56 79.68 80.80 81.91 83.03 84.15 -
RouteLLM [ICLR, 25] 78.56 79.73 (+0.05) 80.47 (-0.33) 81.82 (-0.09) 82.86 (-0.17) 84.15 -0.14
GraphRouter [ICLR, 25] 78.56 79.67 (-0.01) 80.65 (-0.15) 81.39 (-0.52) 83.35 (+0.32) 84.15 -0.09
Ours (Area-based) 77.52 80.22 (+0.54) 81.76 (+0.96) 82.43 (+0.52) 83.91 (+0.88) 80.84 +0.73
Ours (Gini-based) 78.56 81.33 (+1.65) 81.57 (+0.77) 82.62 (+0.71) 83.35 (+0.32) 84.15 +0.86
Ours (Entropy-based) 78.56 81.08 (+1.40) 82.00 (+1.20) 82.49 (+0.58) 83.66 (+0.63) 84.15 +0.95
Ours (Cumulative-based) 78.56 81.57 (+1.89) 81.27 (+0.47) 82.62 (+0.71) 83.60 (+0.57) 84.15 +0.91

CWQ

Random Routing 49.90 51.51 53.12 54.72 56.33 57.94 -
RouteLLM [ICLR, 25] 49.90 51.26 (-0.25) 53.61 (+0.49) 55.03 (+0.31) 56.75 (+0.42) 57.94 +0.24
GraphRouter [ICLR, 25] 49.90 50.84 (-0.67) 52.79 (-0.33) 54.80 (+0.08) 56.16 (-0.17) 57.94 -0.27
Ours (Area-based) 49.90 52.25 (+0.74) 53.87 (+0.75) 55.45 (+0.73) 56.73 (+0.40) 57.94 +0.66
Ours (Gini-based) 49.90 52.65 (+1.14) 55.00 (+1.88) 56.16 (+1.44) 57.04 (+0.71) 57.94 +1.29
Ours (Entropy-based) 49.90 52.51 (+1.00) 54.89 (+1.77) 56.07 (+1.35) 56.78 (+0.45) 57.94 +1.14
Ours (Cumulative-based) 49.90 52.68 (+1.17) 54.77 (+1.65) 56.41 (+1.69) 56.61 (+0.28) 57.94 +1.20

Table 12: Routing Between Llama3.1 Models: 8B as the Small LLM and 70B as the Large LLM with
Area-based Routing Method. The best scores are highlighted with bold and the second-best scores are highlighted
with underline and the third-best scores are indicated in italics.

72B-Instruct. The area under the context score
curve naturally reflects skewness. High skewness
corresponds to a rapid decline, yielding a smaller
area enclosed with the coordinate axes, whereas
low skewness indicates gradual declines with more
high-scoring contexts, thus forming a larger area.
Despite being simple and intuitive, this area-based
method proves effective, as demonstrated by Ta-
ble 11. Overall, the area-based method consis-
tently outperforms all baselines on the WebQSP
dataset. Specifically, although slightly less com-
petitive than other three methods, it still surpasses
RouteLLM nearly 7x and GraphRouter over 2x.
On the CWQ dataset, the area-based method per-
forms on par with RouteLLM and GraphRouter,
while requiring no training. These findings under-
score the potential of area-based method as an ef-

fective and training-free solution for query routing
in knowledge-intensive tasks.

Table 12 presents the routing results between
Llama3.1-8B-Instruct and Llama3.1-70B-Instruct.
The area-based method demonstrates strong plug-
and-play generalization, requiring no training
while still delivering consistent gains over base-
line routers. On the WebQSP dataset, the area-
based method achieves an Average Effectiveness
of 0.73, even when RouteLLM and GraphRouter
fail. On the CWQ dataset, the area-based method
remains effective, outperforming the strong base-
line RouteLLM by nearly 3x. These results high-
light the area-based method as a training-free, plug-
and-play and readily deployable routing strategy
with strong generalization across both datasets and
model families.

11339



A.9 Prompts
The following is the detailed prompt template used in SubgraphRAG for all experiments. Due to the
effects of positional encoding in the self-attention mechanism that tokens appearing later in the sequence
tend to receive higher attention weights, we place triples in ascending order.

SubgraphRAG Prompt

System:
Based on the triplets retrieved from a knowledge graph, please answer the question. Please return
formatted answers as a list, each prefixed with "ans:".

User:
Triplets:
(m.011zsc4_, organization.leadership.organization, San Francisco Giants)
(m.0crtd80, sports.sports_league_participation.league, National League West)
. . .
(San Francisco Giants, time.participant.event, 2014 Major League Baseball season)
(San Francisco Giants, time.participant.event, 2012 Major League Baseball season)
(AT&T Park, location.location.events, 2010 World Series)
(San Francisco Giants, sports.professional_sports_team.owner_s, Bill Neukom)
(San Francisco Giants, time.participant.event, 2010 Major League Baseball season)
(San Francisco Giants, sports.sports_team.championships, 2010 World Series)
(San Francisco Giants, time.participant.event, 2012 World Series)
(Crazy Crab, sports.mascot.team, San Francisco Giants)
(San Francisco Giants, time.participant.event, 2010 World Series)
(San Francisco Giants, sports.sports_team.championships, 2012 World Series)
(San Francisco Giants, sports.sports_team.team_mascot, Crazy Crab)
(San Francisco Giants, sports.sports_team.championships, 2014 World Series)
(Lou Seal, sports.mascot.team, San Francisco Giants)

Question: What year did the team with mascot named Lou Seal win the World Series?

Assistant:
To find the year the team with mascot named Lou Seal won the World Series, we need to find the
team with mascot named Lou Seal and then find the year they won the World Series. From the
triplets, we can see that Lou Seal is the mascot of the San Francisco Giants. Now, we need to find
the year the San Francisco Giants won the World Series. From the triplets, we can see that San
Francisco Giants won the 2010 World Series and 2012 World Series and 2014 World Series. So,
the team with mascot named Lou Seal (San Francisco Giants) won the World Series in 2010, 2012,
and 2014. Therefore, the formatted answers are:
ans: 2014 World Series
ans: 2012 World Series
ans: 2010 World Series

User:
Triplets:
Question:
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