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Abstract

Children learn to speak with a low amount
of data and can be taught new words on a
few-shot basis, making them particularly data-
efficient learners. The BabyLM challenge aims
at exploring language model (LM) training in
the low-data regime but uses metrics that con-
centrate on the head of the word distribution.
Here, we introduce LongTail-Swap (LT-Swap),
a benchmark that focuses on the tail of the dis-
tribution, i.e., measures the ability of LMs to
learn new words with very little exposure, like
infants do. LT-Swap is a pretraining corpus-
specific test set of acceptable versus unaccept-
able sentence pairs that isolate semantic and
syntactic usage of rare words. Models are eval-
uated in a zero-shot fashion by computing the
average log probabilities over the two members
of each pair. We built two such test sets asso-
ciated with the 10M words and 100M words
BabyLM training sets, respectively, and evalu-
ated 16 models from the BabyLM leaderboard.
Our results not only highlight the poor perfor-
mance of language models on rare words but
also reveal that performance differences across
LM architectures are much more pronounced
in the long tail than in the head. This offers new
insights into which architectures are better at
handling rare word generalization. We’ve also
made the code publicly available on GitHub, en-
abling the generation of LT-Swap benchmarks
based on any English text corpus.’.

1 Introduction

The most recent efforts in NLP have focused
on large language models (LLMs) trained on
Internet-scale datasets (OpenAl, 2024; MetaAl,
2024; Google, 2024). These datasets are composed
of trillions of words, which is orders of magni-
tude above what humans hear and read in their
lifetime (Willits and Huebner, 2021; Hart and Ris-
ley, 2003) yet LLM intelligence still has significant

"https://github.com/facebookresearch/It-swap

blind spots compared to humans (Benchekroun
et al., 2023). As an answer to this problem, a re-
cent research effort, called the BabyLM challenge
(Warstadt et al., 2023a; Choshen et al., 2024; Char-
pentier et al., 2025), has stimulated interest in the
building of data-efficient language models (LM)
pre-trained in human-scale datasets.

In this work, we brought our attention to the abil-
ity of LMs to learn words in a few shots, like infants
when they learn to speak (Carey and Bartlett, 1978;
Markson and Bloom, 1997). This is a notoriously
difficult task because of the skewed distribution of
words which features a long-tail of very rare word
types, a phenomenon known as Zipf’s law (Zipf,
1949). Those long-tail words are ubiquitous in lan-
guage (Popescu and and, 2008; Fengxiang, 2010)
and are known to pose problems for language mod-
els training at all scales. For example, Kandpal
et al. (2023) shows a large performance decline
when LMs are asked questions about rare named
entities. Shumailov et al. (2024) has unveiled a
mode collapse when LMs are recursively trained
on their own output. More specific to our prob-
lem, Dohmatob et al. (2024) has pointed out that
LM generations trim the long-tail distribution of
words by over-representing frequent words. How-
ever, even though long-tail words are notoriously
hard to learn, the benchmarks used in the BabyLM
challenge (BLiMP (Warstadt et al., 2019), EwoK
(Ivanova et al., 2024) and SuperGLUE (Wang et al.,
2019)) focus on the other end of the distribution,
avoiding most of the long-tail words (see Appendix
E for more details). Here, we wish to correct this
blind spot and build a metric that specifically tar-
gets long-tail words.

Addressing the difficulty of learning words from
the long-tail, we introduce a framework to automat-
ically create a dataset-dependent evaluation task
that we called LongTail-Swap (or LT-Swap). LT-
Swap measures the syntactic and semantic abilities
of pretrained LMs when probed on long-tail words
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extracted from their pretraining dataset. Our frame-
work is applicable to any text corpus used for LM
pretraining and is scalable to LLM corpus. Inspired
by the BLiMP (Warstadt et al., 2019) benchmark,
LMs’ performance on LT-Swap is measured by
their ability to discriminate between two sentences,
one of which is making an incorrect use of a long-
tail word. We leverage the instruction-following
capabilities of recent LLMs (Brown et al., 2020)
to generate sentence pairs containing the words of
interest. These words range from frequent words,
seen more than 512 times, down to words seen
only once or even harder: never seen inflections
of words present in the pretraining set. LT-Swap
can be divided into three subtasks: WordSwap, a
semantic metric, InflectionSwap, a POS tagging
metric, and AgreementSwap , a syntactic metric.

Using the BabyLLM datasets, containing, respec-
tively, 10M and 100M words, we automatically
create two LT-Swap tasks: LT-Swap10M and LT-
Swap100M and use those two tasks to evaluate 16
different LMs pretrained on the BabyLLM datasets.
The main takeaways of our analysis are the follow-
ing:

e First, while the LT-Swap scores align with
those of BLiMP, one of BabyLM’s benchmarks,
they also reveal a frequency effect, specifically, a
sharp decline as the model moves from frequent
to long-tail words. These trends are expected and
serve as a validity check for LT-Swap.

e Second, LT-Swap scores show much greater
variation across LM architectures in the long-tail
compared to the head of the word distribution. This
finding can help identify more data-efficient LM
architectures.

e Third, we realized that increasing the number
of words during pretraining (from 10M to 100M
words) without increasing model size makes LMs
better at understanding long-tail words 2.

e Finally, we show that a simple RAG-like
method (Lewis et al., 2021), without any finetuning,
can boost semantic scores (WordSwap) for almost
all models. However, this method does not improve
syntactic performance as evaluated by Inflection-
Swap and AgreementSwap. This shows that LMs
trained on small corpora have in-context-learning
abilities, and points to directions in which models
could be improved to address the long-tail problem.

*Note that this is not trivial as it means that on average,
words with frequency count ¢ in BabyLM10M are not as well
encoded by LMs than words with the same frequency count ¢
in BabyLM100M.

These findings highlight the significance of eval-
uating language models on long-tail words. While
the trends observed with LT-Swap are anticipated,
our benchmark is the first to enable the measure-
ment of long-tail generalization, addressing a key
blind spot in current LM benchmarks. Addition-
ally, we’ve made the code publicly available on
GitHub, allowing users to generate new LT-Swap
benchmarks based on any English text corpus’. In
addition, we release the generated sentences from
LT-Swap10M and LT-Swap100M and encourage
people to use those tasks to evaluate any LMs pre-
trained on BabyLLM text datasets. Note that the
proposed framework is applied to the text dataset
composing the BabyLM challenge but that it should
be applicable to any text corpus used for LM pre-
training.

2 Method

2.1 Overview

Figure 1 gives an overview of our process to cre-
ate the LT-Swap benchmark automatically starting
from a pretraining text dataset. LT-Swap

First, words are POS tagged with NLTK (Bird
and Loper, 2004) and only verbs and nouns are kept
because other syntactic categories are not present
in enough instances in the long-tail. We add white
spaces between words and symbols* and segment
sentences using white spaces. Word frequencies are
obtained by counting the number of occurrences af-
ter segmentation. For each word, we automatically
compute their most common inflections leverag-
ing the predictable syntactic structure of the En-
glish language: plural/singular forms for nouns,
past/present-continuous/present for verbs (see Ap-
pendix Section A for details). Selected words and
inflections are placed in their respective frequency
bins defined by {[0], [20,2!], [2!, 22[...[2", +-oc[}
with n = 9. The frequency bin 0 serves for in-
flections never seen in the pretraining set. From
typical work on word counts from psycholinguis-
tics (Baayen and Sproat, 1995; Fengxiang, 2010;
Popescu and and, 2008), long tail word is a loose
term that refers to words below 10ppm° that rep-
resent an absolute frequency count up to 100 for a
corpus of 10M words. Our choice of frequency bins

3While Wordswap can run on any language, some parts
of the code for AgreementSwap and InflectionSwap are hard-
coded for the English language only.

*mainly numbers and punctuations

Sparts per million
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on extracted words
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Figure 1: Overview of our framework to create the dataset-dependant LT-Swap tasks. The candidate LM is evaluated
on sentences, generated by LLM, that contain long-tail words from its pretraining set. S1* and S2* are obtained by
swapping the long-tail words from S1 and S2, thereby creating incorrect sentences. A last LLM filtering step assert

that S1* and S2* are indeed less likely than S1 and S2.

enables us to explore both the long tail while keep-
ing some frequency bins for the frequent words.
See Appendix Table 12 for example words that
belong to each bin.

After this preprocessing step, we ask an LLM
to generate sentences that are example usages for
each long-tail word or inflection. The generated
sentences are paired together. For each pair of
sentences, for example, S1 and S2, we create S1*
and S2* by swapping long-tail words. S1 and S2
are meant to be two correct usages of two long-tail
words, whereas S1* and S2* are two incorrect
sentences. Inspired by (Warstadt et al., 2019;
Nguyen et al., 2020), pretrained LMs are evaluated
using their own confidence to discriminate the
correct from the incorrect sentences. We make
sure that the task is feasible with a last LLM
filtering step that rejects pairs of sentences that
cannot be discriminated from their incorrect
versions. The LLM used in this work for both the
generation and filtering steps is Llama3.1-405B.
The way sentences are generated, paired together,
and filtered depends on the LT-Swap subtasks:
WordSwap, InflectionSwap, AgreementSwap.
The rest of this section explains how those three
subtasks are created (see example generations in
the Appendix Table 11).

The final LT-Swap score is the accuracy score
on the number of times the candidate LM correctly
discriminated a correct sentence from an incorrect
one. More specifically, we compute an accuracy for
each frequency bin and each subtask (WordSwap,
InflectionSwap and AgreementSwap) and then av-
erage all those accuracies together to form the final
LT-Swap score.

2.2 WordSwap

WordSwap is a task that aims to measure the seman-
tic abilities of LMs across the frequency bins. First,
we simply ask the LLM to generate sentences using
the words selected previously (not the automatic in-
flections). Some generated sentences may contain
words never seen in the pretraining dataset, which
can mislead the pretrained LMs when evaluated
on our task. Therefore, we filter out generations
that include words not present in the pretraining
dataset. Then, we pair sentences together if the two
long-tail words from which they originate satisfy
three conditions: 1) they belong to the same fre-
quency bins, 2) they have the same POS tag, and
3) their frequency bin is not 0. From each pair of
generated sentences, we create two semantically
incorrect sentences by swapping the target words
at the same position but on the other sentence of
the pair. The role of the LM is to use its own likeli-
hood to discriminate semantically correct sentences
from semantically incorrect ones. Below is a toy
example of a quadruplet, S1 and S2 being the gener-
ated sentences and S1* and S2* being the incorrect
sentences (see Appendix 11 for other examples).

S1: The cat is sleeping on the mat.
S2: The boat is sailing on the sea
S1*: The boat is sleeping on the mat.
S2*: The cat is sailing on the sea

At this stage, we need to ensure that the task is
feasible. In fact, for words seen very few times,
there may not be enough context in the pretrain-
ing data set to understand the meaning of those
words. In such cases, it would be impossible for
any LM trained on this dataset to discriminate cor-
rect from incorrect sentences. Therefore, we use
the in-context learning abilities of the LLM to play
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a game in which three sentences are given: a pair of
sentences generated previously and one sentence
extracted from the pretraining data set that con-
tains one of the two long-tail words. Here is an
example: let us use our example generations from
before, S1 and S2, and let us pretend that the pre-
training dataset contains the sentence ’The cat slept
peacefully on the windowsill’. The prompt for the
example would be the following:

Prompt for WordSwap filtering step

I have invented a new English word "blick"
that you can use as in the following sen-
tence:

"<start of sentence> The blick slept peace-
fully on the windowsill <end of sentence>"
Now, I give you two new sentences A and
B:

"<start of sentence A> The blick is sleeping
on the mat. <end of sentence A>"

"<start of sentence B> The blick is sailing
on the sea <end of sentence B>"

Which of the sentences A or B uses the word
’blick’ correctly? Put your answer, A or B,
in between brackets.

In this example, if the LLM is successful, then
it means that the sentence extracted from the pre-
training set brings enough contextual information
on the word ’blick’ to tell which of sentence A
or B is more probable. To reduce false positives,
we duplicate this prompt by switching the order
of sentences A and B. Then we also do the same
thing using a sentence that contains the word "boat’
from the pretraining set. Finally, the quadruplet, in
this case {S1,S2,S1*,S2*}, is kept only if the LLM
successfully solves the four prompts; otherwise,
the pair of sentences is discarded.

2.3 InflectionSwap

InflectionSwap works similarly to WordSwap but
aims at measuring the syntactic abilities of pre-
trained LM instead of semantics. In the previous
sections, we asked the LLM to generate sentences
using the selected long-tail words, leaving the in-
flection aside. We keep those sentences for Inflec-
tionSwap and, in addition, the LLM is asked to
generate sentences using the inflections. Then, we
pair sentences together if the two words from which
they originate satisfy one condition: they are inflec-
tions of each other. From each pair of sentences,

we create two syntactically incorrect sentences by
swapping the target words at the same position but
on the other sentence of the pair. LMs are evaluated
in their ability to discriminate syntactically correct
and incorrect sentences. Below is an example with
S1 and S2 generated by the LLM using sleep and
sleeping.

S1: He couldn’t sleep last night.

S2: The baby was sleeping peacefully.
S1*: He couldn’t sleeping last night.
S2*: The baby was sleep peacefully.

Previously, each pair of words was composed
of two words belonging to the same frequency bin.
Here, it is not possible to do that anymore as there
are not enough pairs of words and inflections that
both belong to the same frequency bin. Therefore,
pairs are put into the frequency bin given by the
least frequent of the two words. In this case, the
frequency bin can be 0 as during the automatic
generation of inflections, we may end up with word
types that never occur in the pretraining corpus.

Finally, as for WordSwap, we need to make sure
that the InflectionSwap task is feasible by filtering
out the sentence pairs that cannot be discriminated
by the LLM. Yet, InflectionSwap being simpler
than WordSwap, we assume that even if the long-
tail words have been seen only once in the pretrain-
ing dataset, it is enough context to understand their
syntactic function. Therefore, we use the follow-
ing prompt on every generated sentence pair, for
instance here we S1 and S1*.

Prompt for InflectionSwap filtering step

Given the two sentences A and B:

"<start of sentence A> He couldn’t sleep
last night. <end of sentence A>"

"<start of sentence B> He couldn’t sleeping
last night. <end of sentence B>"

Which of the two sentences A or B is syn-
tactically correct? Put your answer, A or B,
in between brackets.

As before, we duplicate this prompt by switching
the order of sentences A and B in order to reduce
false negatives. Then we do the same with S2 and
S2*. The quadruplet {S1,S2,S1*,S2*} is kept only
if the LLM is correct on four prompts.
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2.4 AgreementSwap

Although InflectionSwap measures if pretrained
LMs can identify POS tags, it is not an explicit eval-
uation of identifiable synractic rules. Here, in the
spirit of the BLiIMP benchmark, AgreementSwap
focuses on analyzing specific syntactic rules that
can be easily generated by an LLM: subject-verb
agreements, anaphore agreements and determinant-
noun agreements. Those three rules require an
agreement between the subject of the sentence, that
is, either singular, third-person, or plural, and an-
other word in the sentence that can be either a verb,
a reflexive pronoun, or a determinant.

Once again, the generation process starts by ask-
ing an LLM to generate sentences based on pairs
of inflected words. However, here, our aim was to
control the difficulty of the task by manipulating
the number of words between the two elements in-
volved in the agreement relation. Therefore, we de-
signed both short-distance and long-distance agree-
ment tasks by explicitly instructing the LLM to
generate sentences where the subject appeared ei-
ther immediately adjacent to the agreement target
(short-distance) or separated by intervening mate-
rial (long-distance). After the generation process,
quadruplets are made in the same fashion as for
WordSwap and InflectionSwap. Here is an exam-
ple quadruplet for each of the three syntactic rules
for the short-distance and long-distance cases.

e Subject-verb agreement:

S1: The strategist analyzes.

S2: The strategists analyze.

S1%*: The strategists analyzes.

S2*: The strategist analyze.

e Anaphore agreement:

S1: The interviewees considered themselves.
S2: The interviewee presented herself.

S1*: The interviewee considered themselves.
S2*: The interviewees presented herself.

e Determinant-noun agreement:

S1: This renunciation.

S2: These renunciations.

S1%*: This renunciations.

S2*: These renunciation.

e Subject-verb agreement long-distance:

S1: The strategist that can be trusted, analyzes.
S2: The strategists that can be trusted, analyze.
S1*: The strategists that can be trusted,
analyzes.

S2*: The strategist that can be trusted, analyze.

e Anaphore agreement long-distance:

S1: The interviewees that can be chosen for
the job, considered themselves.

S2: The interviewee that can be trusted,
presented herself.

S1*: The interviewee that can be chosen for
the job, considered themselves.

S2*: The interviewees that can be trusted,
presented herself.

Note that we did not do a long-distance version

of the determinant-noun agreement because it was
too difficult to control this setup with the LLM
(see more examples in the Appendix Table 11).
The prompts used to generate AgreementSwap sen-
tences are in Appendix D.
Once all sentences are generated, we need to make
sure that swapping the target word will indeed be
a test of the target syntactic rule. For instance in
the determinant-noun task, the LLM may gener-
ate S1:"This misconduct is a serious offense’ and
S2:’These misconducts are serious offenses’. The
last words ’offense’/’ offenses’ give away the sin-
gular/plural nature of the subject. By swapping
the long-tail words in italic font, this would not be
a pure determinant-noun agreement task but also
a subject-verb agreement task. Therefore, for all
agreement tasks, we usually cut the sentence just
after the last word marking the agreement. In this
case the pair S1:’This misconduct.” and S2:"These
misconducts.”. Even though cutting the sentences
makes them not semantically correct, the candidate
LM should still realize that one sentence is less
likely than the other. Finally, we make sure that
all quadruplets can be solved by an LLM using
the same filtering strategy as for InflectionSwap.
In addition, we check programatically that gener-
ated sentences correctly follow the desired syntac-
tic rules.

3 Experiments

3.1 Swapl0M and Swap100M

We applied our task creation framework from Sec-
tion 2 to the two BabyLLM text corpora composed of
10M words, called BabyLM10M, and 100M words
(Warstadt et al., 2023a), called BabyLM100M.
Those corpora are a mixture of written text (En-
glish Wikipedia, children stories (Gerlach and
Font-Clos, 2018)), transcribed dialogues (Switch-
board(Stolcke et al., 2000), Opensubtitles(Lison
and Tiedemann, 2016))
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Figure 2: BLiIMP and LT-Swap scores across LMs pretrained on BabyLM10M or BabyLM100M. Both LT-Swap

and BLiMP are accuracy scores with 50% random chance.
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Figure 3: LT-Swap scores (i.e average of WordSwap, InflSwap and AgrSwap) broken down across frequency bins
for selected architetures pretrained on BabyLM10M and BabyLM100M (16 models in total). The star symbols is a
reminder that the bin 0 is only the average of AgreementSwap and InflectionSwap which explains why it is shifted
up compare to the bin 1. The standard error for the Swap scores is less than 0.02 while for BLiMP the standard

error than go as high as 0.2.

and transcribed child-directed speech (MacWhin-
ney, 2000). We refer to Swap10M and Swap100M
for the tasks built on the word distribution of
BabyLM10M and BabyLM100M respectively (see
the number of pairs per frequency bins in Appendix
Tables 8 and 7).

3.2 Selected range of pretrained LMs

We evaluated all language model architectures sub-
mitted to the BabyLM Challenge, each available in
two versions: one pretrained on the BabyLM10M
dataset and the other on the BabyLM100M dataset.
We have two GPT models (OPT (Zhang et al.,
2022), BabyLLama(Warstadt et al., 2023b)), one
BERT model (Roberta-base(Liu et al., 2019)),
one modified BERT with disentangled atten-
tion and shared positional embeddings (LGT-
BERT(Samuel et al., 2023)), two mixtures of GPT
and BERT (GPT-BERT(Charpentier and Samuel,
2024), ant-lm-mlm(Yu et al., 2024)), and two

BERTs trained with a teacher-student method
(LSM and MLSM(Berend, 2023)). All models use
either BPE or a SentencePiece tokenizer; they have
around 150 million parameters. Each model is
evaluated using the appropriate inference method
following the recommendations of their respective
published papers (see the Appendix B for details
on inference methods and models not included in
this study).

LT-Swap WS IS AS
10M 1(0) 10) 098(0)  0.90(0.04)
100M 1(0) 10) 093(0) 0.48(0.35)

Table 1: Spearman correlation cofficients and p-value
(in between parenthesis), for both dataset sizes 10M
and 100M, when correlating frequency bins and Swap
scores. Those coefficients are computed on each model
separately, and then averaged across models. WS:
WordSwap, IS: InflectionSwap, AS: AgreementSwap.
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Accuracy drop

Accuracy spread ratio

LT-Swap WS IS AS | LT-Swap WS IS AS
10M -0.208 -0.319  -0199 -0.126 | 129 1.44  1.80  0.90
100M -0.163 -0.291  -0.175  -0.079 | 211 3.80 238 1.26

Table 2: Accuracy drop and Accuracy spread ratio of LT-Swap scores (i.e average of WordSwap, InflSwap and
AgrSwap) for 10M and 100M dataset sizes. Both metric are differences/ratios between the most frequent and the
least frequent bins. WS: WordSwap, IS: InflectionSwap, AS: AgreementSwap.

4 Results

In this section, we present the scores obtained by
the selected range of language models on our tasks,
along with a detailed analysis of the results.

4.1 LT-Swap frequency effect

We show in Figure 2 that LT-Swap is consistent
with a similar benchmark, BLiMP, which also eval-
uates the confidence of LMs in distinguishing syn-
tactically correct sentences from incorrect ones. In
addition to being correlated with BLiMP scores®,
LT-Swap scores shown in Figure 3 reveal a fre-
quency effect with a sharp decline of LMs’ perfor-
mance when going from frequent to rare words (see
Appendix Tables 10 and 9 and Figure 6 detailed
scores per subtasks). This frequency effect is made
possible because, unlike the BLiMP benchmark,
LT-Swap includes enough sentence pairs per fre-
quency bin to ensure that the standard error for all
models across all bins remains below 0.02 absolute
points (see Appendix E for an analysis of BLIMP
scores across frequencies).

Although LT-Swap shows a clear correlation
with frequencies in Figure 3, the breakdown of LT-
Swap into its subtasks in Table 1, shows that this is
not the case for AgreementSwap. These findings
suggest that the acquisition of syntactic patterns in
language models is not primarily driven by abso-
lute word frequencies, but rather by other factors
such as model architecture, tokenization strategy,
and loss function. For example, if the tokeniza-
tion method separates base words from their plural
markers (e.g., "cat" and "-s"), the model may detect
syntactic inconsistencies without necessarily rec-
ognizing the lexical identity of the base word. This
reduces the model’s reliance on word frequency
and allows it to leverage subword-level or struc-
tural cues instead (see Appendix Section F for an
analysis on the impact of tokenizations).

%We recomputed BLiMP scores ourselves due to some
inconsistencies on the BabyLM leaderboard and papers.

4.2 Accuracy drop and spread ratio

From the scores obtained on the LT-Swap bench-
mark, we make two observations that are summa-
rized in Table 2.

First, the sharp drop in accuracy, that is, the aver-
age drop in accuracy between the highest frequency
bin and the lowest frequent bin, is a sign that LMs
struggle with long-tail words much more than with
frequent words. Even in the case of hapax, the ac-
curacy scores remain significantly above random
chance (50%), which is a surprising result. We
propose two possible explanations for this result.
First, the language model (LM) might rely on the
meaning associated with each BPE unit, enabling
it to infer the meaning of hapax words. Alterna-
tively, it may be the case that the LM requires only
a single gradient update to distinguish novel words
effectively. Further investigation is needed to better
understand what aspects of word learning a LM
can acquire from a single exposure.

The second observation is that accuracy scores
are more different across models for the rare words
than they are for the frequent words. In Table 2 we
measure the spread ratio by taking the difference in
LT-Swap scores between the best and worst models
in the rarest bin and dividing it by the difference
between the best and worst models in the most
frequent bin. These ratios can reach up to 3.8 for
WordSwap, highlighting the importance of evalu-
ating LMs on very rare words, where performance
differences are more pronounced.

4.3 10M and 100M models

In Figure 4, we present the average LT-Swap scores
for language models (LMs) trained on 10M or
100M words. It is evident that LMs trained on
10M words underperform those trained on 100M
words in the lowest frequency bins. This result is
noteworthy because it indicates that, on average,
words with frequency count ¢ in BabyLM10M are
not encoded as well by LMs as words with the same
frequency count ¢ in BabyLM100M. This suggests
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that training on a larger corpus enables LMs to
better capture contextual information, thereby im-
proving their ability to understand rare word types.

In addition, in Figure 5, we calculate the long-
and short-distance scores of AgreementSwap on
LMs trained in 10M or 100M words. As expected,
the short-distance case is easier to solve than the
long-distance case for both BabyLM datasets.
More interestingly, the accuracy gap between short
and long distances is smaller for LMs trained
on 100M words than for LMs trained on 10M
words. This shows that increasing the number
of words also helps syntax learning, even for the
lowest-frequency bins.

Our analysis demonstrates that, while keeping
model size fixed’, increasing the dataset size im-
proves language models (LMs) on the long tail.
These findings complement the work of Kandpal
et al. (2023), which showed that increasing model
size, while keeping dataset size fixed, also benefits
performance on the long tail. However, the com-
bined effect of both larger dataset and model sizes
remains unclear, and further research is needed to
disentangle the individual contributions of dataset
size and model size to long-tail performance.

® LT-Swap100M @ LT-Swap10M
1.0

0.9
0.8
0.7
0.6

0.5

N
O N PP B B S g

Vv N Q \©
¢ & Q'V@v@@@ob

Figure 4: LT-Swap scores averaged across LMs. The
standard error on those scores is less than 0.02. The
star symbols is a reminder that the bin O is the aver-
age of only AgreementSwap and InflectionSwap, not
WordSwap which does not apply on this bin.

4.4 Boosting semantic scores using a prefix

With a simple RAG-like (Lewis et al., 2021)
method that requires no finetuning, we show that
almost all LMs get a performance boost on the
lowest frequency bins of the WordSwap task. The
idea is to say that sentences from the pretraining

’All models evaluated in this study have approximately
125 million parameters
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Figure 5: AgreementSwap short and long distance
scores averaged over LMs for 10M and 100M pretrain-
ing size. The standard error on those scores is less than
0.03.

set can be added in the context of WordSwap sen-
tences to add valuable information on the meaning
of long-tail words. Therefore, for each WordSwap
sentence, both semantically correct and incorrect
ones, we retrieve one sentence from the pretraining
set that contains the target long-tail word and we
add that sentence as a prefix. When computing
LMs’ confidence score, we exclude the prefix from
the (pseudo) log-probabilities. In Table 3 we show
a consistent positive gain for almost all LMs on
the average of the three lowest frequency bins of
WordSwap: [1,2[,[2,4] and [4-8[. This simple ex-
periment suggests that even LMs trained on small
datasets have in-context learning abilities.

This method is not intended for general-purpose
use, as it typically degrades performance on
WordSwap for higher frequency bins and on Inflec-
tionSwap and AgreementSwap across all frequency
bins.

WordSwaplOM ~ WordSwap100M

antlm-bert +0.10 +0.13
babyllama +0.07 +0.09
LSM-bert +0.02 +0.05
MSLM-bert +0.01 +0.05
gpt-bert +0.08 -0.03
Itgbert +0.06 +0.07
opt-125M +0.09 +0.06
roberta-base +0.04 +0.03
average +0.049 +0.048

Table 3: Accuracy increase on WordSwap, averaged
over the three lowest frequency bins (1,[2,4[ and [4,8]),
due to adding prefix for LMs trained on BabyLM10M
and BabyLM100M. For higher frequency bins, this
method significantly decrease accuracies.
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5 Conclusion

In this paper, we introduced a framework for gen-
erating LT-Swap, a set of tasks based on long-tail
words from a pretraining dataset. Our benchmark
highlights the need to study the performances of
LMs on the long-tail as it unveils sharper differ-
ences across architectures. In addition, our bench-
mark shows that increasing the number of words
during improve LMs encoding of long-tail words.
Finally, our prefix method hints at a potential direc-
tion to improve LMs on long-tail generalizations.

Limitations

Our work relies on NLTK POS tagger and on
automatically computed word inflections that are
hard-coded for the English language. More work
is needed to adapt InflectionSwap and Agree-
mentSwap to the multilingual setting. Only
WordSwap can be used as is in another language.

Another limitation of our work is that we have
focused only on the BabyLLM datasets, which con-
tain a lot of transcribed speech. This kind of
text has a shorter long tail than written text like
Wikipedia. We do not know how the frequency ef-
fect would change when using other datasets with
significantly different word distributions. In ad-
dition, the English language used in this work is
mainly US English and is not representative of all
English-speaking groups. Finally, one takeaway
from the paper is that training on more words in-
creases the ability to understand long-tail words.
We do not know how this effect evolves with even
larger dataset sizes and how this effect changes for
different model sizes.
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A  Word candidates

The LT-Swap sentences are constructed to be ex-
ample usages of target words whose frequencies
are computed on a given pretraining set. Here are
the preprocessing steps to construct the list of word
candidates and compute their frequencies.

First, all sentences are segmented into words
using white spaces. All words are POS-tagged in
the context of their sentence using NLTK (Bird
and Loper, 2004) before being set to lowercase.
Then, we add white spaces on the left and right
sides of all symbols and figures. For instance, e.g:
"Jeremy’s 59th birthday." becomes " jeremy ' s 5
9 th birthday . ". Finally, we re-segment using
the newly added white spaces and remove all
words that do not belong to the English dictionary.
After those steps, the word frequencies can be
computed by counting the number of occurrences.
Words are placed in their respective frequency bins
which we chose to be the power of twos between 1
and 512. At this stage, we remove all words that
are not nouns and verbs, as only those two are
present in enough instances in all frequency bins.
Specifically, the only POS tags that are kept at this
stage are: noun, plural noun, verb, past tense verb,

and present continuous verb.

We want to account for the fact that some words
may belong to the long-tail while having inflections
(i.e., a singular, plural, third person, past tense, etc.)
that are much more frequent. Such words cannot
count as a real long-tail words as the concept they
refer to may actually be quite frequent. Therefore,
for all words selected that way, we automatically
compute a set of predefined common inflections.
As the English language has a predictable grammar,
plural and third-person forms are created by adding
’s” at the end of words, present-continuous and past
tense by adding ’ing’ or ’ed’, each time checking if
the created inflection belongs to the English dictio-
nary 3. Based on the frequencies of all inflections
of a word, we decide whether this word should be
considered for the word pairing stage. More specif-
ically, for a given word, we sum the frequencies
of itself and all its inflections. If this sum is larger
than the ceiling of this word’s frequency bin, the
word is filtered out from the candidate list.

B LMs selection and confidence scores

There are a number of architectures submitted
to the BabyLLM challenge that we decided not to
include in our analysis, either because loading
those on huggingface raises an error or because
they have not been pretrained on the official
versions of BabyLM10M and BabyLM100M.
Some models have been pretrained either on
only one of the two BabyLM datasets, or on
phonemized versions of the BabyLM datasets, or
even on totally different datasets (the challenge
allows for pretraining on other datasets as long as
the maximal number of words does not exceed
100M).

The way confidence scores are obtained depends
on the LM architecture. GPT-like models are eval-
uated using the confidence score given by the log-
probability of predicting the sentence. It is com-
puted by summing over all tokens in the sentence,
the log-softmax for predicting the next token. For
BERT models, we compute a pseudo-likelihood
score: we mask tokens one at a time and sum the
log-softmax output of predicting the masked to-
kens. More than one token could be masked to
obtain a pseudolikelihood score, yet we found that

8For plural and third person, words finishing by ’y’ gets

’+ies’, and words finishing by x,z,s gets +es. For past tense,
the words ending with 'y’ get *+ied’.
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scores were in general lower if more than one to-
ken is masked. Finally, for the two special cases
of mixture between GPT and BERT, ant-lm-mlm
is evaluated like a GPT model, and GPT-BERT is
evaluated like a BERT model with the difference
that the labels are shifted right in a GPT-like fash-
ion. We did not search the temperature parameters
that maximize the scores as suggested in (Charpen-
tier and Samuel, 2024).

C Using quadruplets

An important aspect of this task is that it is based
on quadruplets of sentences instead of simple pairs
of sentences as most zeroshot NLP benchmarks
(storyclose, blimp, wuggy,...). Using quadruplets
instead of pairs limits biases that could nudge
the LM in the right direction (sentence lengths,
unigram probabilities,...). In Table 4, we compute
the Spearman correlation of performances with
frequency bins, in the same way as in the main
paper at Table 1. Yet this time we made pairs
instead of quadruplets.

D AgreementSwap prompts

Here is the list of the prompts used to generate the
AgreementSwap syntactic examples. 342gkj

Prompt for Subject-Verb agreement at short
distance with ’cat’ and ’cats’

Using the nouns ’cat’ and ’cats’, please
write a minimal pair of sentences that show
a short distance subject-verb agreement at
the present tense. The subject and the verb
must be placed close to each other. You
must encapsulate the two sentences together
in between brackets.
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Prompt for Subject-Verb agreement at long
distance with ’cat’ and ’cats’

Using the nouns ’cat’ and ’cats’, please
write a minimal pair of sentences that
shows a long distance subject-verb agree-
ment through a relative clause starting by
’that can be’. For instance, using the nouns
"neighbor’ and ’neighbors’, you can write
something like: *The neighbor that can be
trusted lets his dog out. The neighbors that
can be trusted let their dog out.’. Now please
do the same with ’cat’ and ’cats’. You must
encapsulate the two sentences together in
between brackets.

Prompt for Anaphore agreement at short
distance with ’cat’ and ’cats’

Using the nouns ’cat’ and ’cats’, please
write a minimal pair of sentences that shows
a short distance usage of reflexive pronouns.
The pronouns must be placed close to the
subjects ’cat’ and "cats’. Please use the past
tense. Now please do the same with ’cat’
and ’cats’. You must encapsulate the two
sentences together in between brackets.

Prompt for Anaphore agreement at long dis-
tance with ’cat’ and ’cats’

Using the nouns ’cat’ and ’cats’, please
write a minimal pair of sentences that shows
a long distance usage of reflexive pronouns
through a relative clause starting by ’that
can be’. For instance, using the verbs
’medecine’ and *medecines’, you can write
something like: *The medecine that can be
bought anywhere, proved itself to be very
effective. The medecines that can be bought
anywhere, proved themselves to be very ef-
fective’. Now please do the same with "cat’
and ’cats’. You must encapsulate the two
sentences together in between brackets.



Prompt for determinant-noun agreement at
short distance with ’cat’ and ’cats’

Using the nouns ’cat’ and ’cats’, please
write a minimal pair of sentences that shows
a determiner-noun agreement, using either
that/these/this/those. For instance, using the
nouns 'misconduct’ and misconducts’, you
can write something like: *This misconduct
is a serious offense. These misconducts are
serious offenses.’. Now please do the same
with ’cat’ and ’cats’. You must encapsu-
late the two sentences together in between
brackets.

E BLiMP10M and BLiMP100M

The BLiMP benchmark (Warstadt et al., 2019) can
also be applied to the study of the effect of word fre-
quencies on LMs’ syntactic capabilities. As for the
LT-Swap tasks, the LMs are evaluated in BLiIMP
using their own confidence on automatically gen-
erated sentence pairs. Most of the time, the pair
of sentences differs by only one word, so they can
be placed in different frequency bins using the fre-
quencies computed in the BabyL.M datasets. As for
InflectionSwap and AgreementSwap, the two tar-
get words may have different frequencies, in which
case the frequency bin for this pair is the one of
the least frequent target words. Some BLiMP sen-
tence pairs do not differ by any word but by the
order of the words; in these cases, the frequency
bin is the least frequent word in the whole sentence.
We call BLIMPOOM and BLiMP100M the two dif-
ferent sortings of sentence pairs in frequency bins
obtained with the frequencies of BabyLM10M and
BabyLM100M, respectively. The number of pairs
of sentences per frequency bin can be found in
Tables 6 and 5.

The BLiMP10M and BLiMP100M scores per
frequency bin can be found in Figure 6. By com-
puting the Spearman correlation with frequencies,
we observe that BLIMP10M is well correlated with
frequencies (spearman R=0.89) yet BLIMP100M
is not (spearman R=0.29). The low correlation co-
efficients of BLIMP100M could be a consequence
of the extremely imbalanced number of pairs be-
tween frequency bins and subtasks, as shown in
Tables 6 and 5. In contrast, our tasks contain more
pairs in subtasks and each frequency bin as shown
in Tables 8 and 7. Those results prove that BLIMP
is not adapted to the study of long-tail words.
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No quadruplets Using half of the pairs

R and p-values All WordSwap InfiISwap Syntax All WordSwap  InflSwap Syntax
10M 0.86 (0.04) 0.99 (0) 0.56 (0.18)  -0.18 (0.45)  0.99 (0) 1(0) 0.98 (0)  0.88 (0.02)
100M 0.7 (0.23) 1(0) -0.34(0.28) -0.45(0.4)  0.97 (0) 1(0) 0.92(0)  0.51(0.46)

Table 4: Using quadruplets is necessary to see correlations between LT-Swap performances and with frequency bins

BLiMP-100M anap-agr arg_struct binding control det-agr ellipsis filler irreg island npi quant select sv-agr

0 0 20 6 4 13 18 0 0 41 20 0 0 7
1 0 0 14 27 60 16 1 0 70 69 0 8 20
2 0 7 0 32 28 14 1 0 23 30 0 9 13
4 0 44 5 23 0 0 0 0 94 151 0 2 29
8 0 138 15 18 109 24 4 0 157 204 0 43 81
16 0 281 35 94 361 69 5 0 320 403 0 43 305
32 0 422 133 214 481 68 6 0 744 636 0 95 289
64 0 851 180 173 130 156 9 0 1265 975 0 138 154
128 0 1025 308 582 258 128 6 93 1270 994 0 145 278
256 0 998 570 503 270 240 18 0 1818 1349 0 292 341
512 2000 3212 5729 3330 6290 1267 6950 1907 2198 2169 4000 1225 4483

Table 5: Number of pair of sentences in BLiMP across frequency bins using the frequencies of BabyLM100M.

BLiMP-10M anap-agr arg_struct binding control det-agr ellipsis filler irreg island npi quant select sv-agr

0 0 143 71 72 130 65 3 0 484 611 0 52 88
1 0 172 7 32 410 18 6 0 68 128 0 26 137
2 0 326 75 166 281 67 5 0 542 534 0 83 244
4 0 663 91 137 263 115 5 0 728 629 0 100 348
8 0 773 259 277 203 158 10 0 1201 956 0 123 183
16 0 1233 428 618 330 149 12 93 1714 1272 0 202 320
32 0 1027 643 679 320 247 22 0 1757 1253 0 331 328
64 0 977 437 745 469 286 24 0 897 790 491 277 355
128 0 723 395 427 374 270 22 725 408 482 0 282 289
256 0 428 217 774 145 247 17 252 149 202 0 152 164
512 2000 533 4366 1073 5075 378 6874 930 52 143 3509 372 3544

Table 6: Number of pair of sentences in BLIMP across frequency bins using the frequencies of BabyLM10M.

11244



LT-Swap-100M  WS-VERB WS-NOUN IS-VERB IS-NOUN AG-LONG AG-SHORT

0 NA NA 1039 387 595 628
1 974 1980 559 154 403 384
2 985 1993 721 191 398 424
4 992 1701 823 147 507 556
8 1006 1413 767 154 425 509
16 998 1435 724 189 427 451
32 1006 1232 692 241 487 491
64 991 1266 658 250 464 490
128 1022 1160 830 407 576 579
256 1003 1108 813 483 804 766
512 1021 1599 1534 1265 1378 1421

Table 7: Number of pair of sentences generated by LLM for LT-Swap across frequency bins using the frequencies
of BabyLM100M. Each of these pairs is used to form a quadruplet. WS: WordSwap, IS: InflectionSwap, AS:
AgreementSwap.

LT-Swap-10M WS-VERB WS-NOUN IS-VERB IS-NOUN AG-LONG AG-SHORT

0 NA NA 3180 1469 2258 2371
1 982 1988 937 305 810 910
2 984 1734 779 234 562 648
4 1004 1506 531 146 379 367
8 1001 1510 498 113 399 434
16 1002 1197 294 135 268 269
32 1002 1179 263 126 206 233
64 997 663 242 155 233 250
128 734 705 199 173 170 152
256 620 416 155 152 167 178
512 742 1121 102 190 82 80

Table 8: Number of pair of sentences generated by LLM for LT-Swap across frequency bins using the frequencies
of BabyLM10M. Each of these pairs is used to form a quadruplet. WS: WordSwap, IS: InflectionSwap, AS:
AgreementSwap.

LT-Swap-10M  WS-NOUN WS-VERB IS-NOUN IS-VERB AG-LONG AG-SHORT average

gpt-bert 0.873 0.874 0.898 0.921 0.838 0.871 0.879
MLSM 0.83 0.814 0.881 0.873 0.747 0.833 0.83
LSM 0.831 0.82 0.875 0.865 0.719 0.825 0.823
babyllama 0.844 0.83 0.818 0.84 0.672 0.775 0.796
Itgbert 0.738 0.734 0.846 0.85 0.62 0.74 0.755
roberta-base 0.799 0.79 0.814 0.812 0.55 0.697 0.744
antlm-bert 0.822 0.81 0.792 0.747 0.561 0.656 0.731
opt-125M 0.78 0.784 0.76 0.756 0.52 0.618 0.703

Table 9: LT-Swap scores per subtasks for models pretrained on BabyLM100M. WS: WordSwap, IS: InflectionSwap,
AS: AgreementSwap.
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LT-Swap-100M WS-VERB WS-NOUN IS-VERB IS-NOUN AG-LONG AG-SHORT average

gpt-bert 0.907 0.899 0.9 0.916 0.857 0.859 0.89
ltgbert 0.774 0.767 0.88 0.879 0.869 0.84 0.835
MLSM 0.753 0.719 0.87 0.869 0.846 0.886 0.824
opt-125M 0.894 0.878 0.819 0.808 0.657 0.767 0.804
babyllama 0.851 0.828 0.815 0.814 0.763 0.78 0.808
LSM 0.734 0.704 0.851 0.855 0.775 0.869 0.798
roberta-base 0.812 0.793 0.829 0.816 0.592 0.687 0.755
antlm-bert 0.735 0.72 0.742 0.673 0.619 0.688 0.696

Table 10: LT-Swap scores per subtasks for models pretrained on BabyLM10M. WS: WordSwap, IS: InflectionSwap,
AS: AgreementSwap.

WordSwap Noun

Sentence A: The magician’s skillful performance held the audience in a state of complete captivation,
mesmerizing them with his incredible illusions and tricks.

Sentence B: The scientists at the research institute used advanced spectrography techniques to analyze
the chemical composition of the newly discovered planet.

WordSwap Verb

Sentence A: The renowned actress reprized her iconic role as the lead character in the classic musical,
receiving a standing ovation.

Sentence B: The highly skilled neurosurgeon carefully innervated the damaged nerve endings to
restore full motor function to the patient’s paralyzed limb.|42

InflectionSwap Noun

Sentence A: The recipe calls for one medium-sized zucchini , which should be sliced into thin rounds.
Sentence B: The farmers market had a large basket of zucchinis , each one perfectly ripe and ready to
eat.

InflectionSwap Verb

Sentence A: The hikers had finally surmounted the steep mountain trail after hours of climbing.
Sentence B: Every year , a new group of adventurers surmounts the same challenging peak.
AgreementSwap long-distance subject-verb

Sentence A: The archivist that can be relied upon to handle fragile documents takes .

Sentence B: The archivists that can be relied upon to handle fragile documents take .
AgreementSwap short-distance subject-verb

Sentence A: The archivist takes .

Sentence B: The archivists take .

AgreementSwap long-distance anaphora

Sentence A: The adventurist that can be found in the most remote places proved himself .

Sentence B: The adventurists that can be found in the most remote places proved themselves .
AgreementSwap short-distance anaphora

Sentence A: The adventurist proved himself .

Sentence B: The adventurists proved themselves .

AgreementSwap short-distance determinant-noun

Sentence A: This choirboy.

Sentence B: These choirboys.

Table 11: Example generations for LT-Swap100M.
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Nouns
1 : landsman garrulity cusk pitchman relator sternum greensward oryx mineralogy virtuoso
[2, 4] : fallow covey plurality codeine bushman poesy quince chancery quinsy backgammon

[ bluebird kilt fourpence yap tapestry pinny butchery conformance chaise sexist

16[ : buckwheat reeve buckwheat bloc buckwheat forester carp droning fanfare spaceflight

16, 32[ : merchandise ape meteor churchyard severity hub dew lineage grocer incline
32, 64] : revival activism shotgun baptism squire diesel clover bandaid creepy terrazzo
64, 128] : bride breach porridge stake combat imagination costume ichinomiya contrast devotion
128, 256] : intake stove chamber arrondissement height donkey discussion chin description hammer
256, 512[ : prince theory difficulty campaign mayor cash ocean mail valley wolf

[4,
8,
[
[
[
[
[
[

512 + [ : number cup television attack sight duck chance company country truck

Verbs

1 : codify yammer lengthwise introspect heliolatry phrensy betaken bilk overreach clayey

[2, 4] : redid therefor snuffy therefor meathead firsthand almshouses certes comport misspoke

[4, 8] : wiggled outlived dictated accentuated embossed battled certificated disadvantaged resuscitated
amputated

[8,16] : exchanging converging videotaping alluring resolving videotaping resolving alluring rearrang-
ing videotaping

[16,32] : securing clasping typing prowling decorating inquiring interfering completing cuddling
clasping

[32,64][ : ignoring scoring scratching supposing scoring challenging ignoring challenging scoring
investigating

[64,128] : acquired commenced struggled complicated graduated ejaculated rescued counted compli-
cated commenced

[128, 256 : associated inquired seized ceased claimed supported compared connected divided shed
[256, 512] : distributed realized split hidden sang hidden split sang facing kidding

[512 + [ : lay feel came put stay drew wear grew knew stop

Table 12: Example nouns and verbs per frequency bins found in BabyLM 100M.
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Figure 6: Scores obtained on our three Swap tasks over BabyLM10M and BabyLM100M for the 8 selected
architectures across frequency bins. The standard error for all Swap scores is less than 0.02.
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F Tokenization analysis

F.1 Context

Although subword units—such as BPEs and Word-
Piece—are the most widely used form of tok-
enization in language models (Brown et al., 2020;
Google, 2024; MetaAl, 2024), some recent archi-
tectures have begun to eliminate tokenizers alto-
gether, operating directly on character sequences
(Clark et al., 2021; Yu et al., 2023; Pagnoni et al.,
2024). Character-level LMs present a double-
edged sword. On one hand, they are expected to
generalize better than subword-based models on
certain tasks, as they have direct access to word
spellings. On the other hand, character-level tok-
enization significantly increases sequence length,
which may impair performances on semantic tasks
requiring efficient learning of word co-occurrences.

This trade-off motivates our hypothesis in Sec-
tion 4.1: language models that explicitly separate
syntactic markers from their base words should
perform better on syntactic tasks (InflectionSwap
and AgreementSwap), particularly when dealing
with rare words. However, WordSwap performance
may suffer due to the increased sequence length
introduced by character-level tokenization.

To evaluate this hypothesis, we train language
models on the BabyLLM datasets using a range of
tokenization strategies, spanning characters, sub-
words (BPEs), and full words.

BLiMP LT-Swap
10M 100M 10M 100M
words 0.611 0.738 0.720  0.796
BPE-50k*  0.602  0.733 0.748  0.822
BPE-50k 0.582  0.752 0.736  0.835
BPE-16k 0.643 0.741 0.767  0.843
chars 0.646  0.721 0.818  0.857

Table 13: BLiMP and LT-Swap scores (i.e average
of WordSwap, InflectionSwap and AgreementSwap)
for LM trained with different tokenization methods
(words, BPE, characters) on either BabyLM10M and
BabyLM100M. BPE-50k* is the score obtained by the
baseline provided by the BabyLM organizers while
BPE-50k is our attempt at replicating this baseline.

F.2 Experiments

Here are the details of our training setups for char-
acter, BPE and word tokenizers. Character-level to-
kenization is obtained by splitting text into individ-
ual characters. For BPEs, we trained BPE models
on the BabyL M datasets using 16k units as done by
the GPT-BERT authors (Charpentier and Samuel,

2024). In addition, in order to replicate the baseline
OPT-125M provided by the BabyLLM organizers,
we took a 50k units BPE tokenizer pretrained on
WebText by Radford et al. (2019). Finally, in or-
der to train a word-level language models with a
manageable vocabulary size, we lower-cased the
BabyLM datasets, we put white space around all
symbols and figures and we put to "<UNK>" all
words longer than 5 letters that did not belong to the
English dictionnary. By doing so we reach a vocab-
ulary size of 69384 for BabyLM10M and 131059
for BabyLM100M. After checking, the number of
word tokens that are in the BabyLLM datasets but
not in the BLiMP or LT-Swap is marginal (even in
the rarest frequency bins of LT-Swap).

For each tokenization method and each BabyLM
dataset (10M and 100M), we trained an OPT-125M
transformer encoder (Zhang et al., 2022) with 12
layers and hidden size 768, using Adam optimizer,
250 warm up steps, peak learning rate 0.001 and
cosine decay down to 0.0001. The batch size is
set to 0.5M tokens and sequence length to 128
for words and BPEs and 512 for characters. We
stopped training when the loss on the BabyLM dev
set stopped decreasing.

F.3 Results
F.4 Overall scores

LMs performances on BLiMP and LT-Swap are
presented in Table 13. From those results, we first
notice that our training procedure replicates the
OPT-125M baseline provided by the BabyLLM orga-
nizers with scores. Second, while BLiMP scores do
not show a clear trend across tokenization method,
the LT-Swap benchmark reveals a clear correlation:
the lower the vocabulary size, the better the scores.
In order to explain this trend, we present the de-
tailed LT-Swap scores across frequency bins and
subtasks in Figure 7.

The first observation is that once again LMs
performances are more evenly distributed for rare
words than for frequent words. This explains why
BLiMP, which focuses on the head of the word
distribution instead of the tail, do not show clear
differences across tokenization methods.

Second, for the semantic task (WordSwap) high
vocabulary size generaly gives better performances
(except for the hapax case which we detail in the
next section). Yet, the opposite is happening very
clearly on syntactic tasks (measured by Inflection-
Swap and AgreementSwap) where the lower the
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vocabulary size the higher the performance.

These results confirm our hypothesis from Sec-
tion 4.1. Subword and word-level tokenizations out-
perform character-level models on semantic tasks,
likely because larger token units make it easier to
learn word co-occurrence patterns—world knowl-
edge and concepts can often be captured by a sin-
gle or a small number of embeddings. However,
character-level language models consistently out-
perform subword and word-level models on syntac-
tic tasks.

More notably, character-level LMs exhibit only
a mild performance drop between high- and low-
frequency words on syntactic tasks, while showing
a substantial drop on the semantic WordSwap task.
We hypothesize that this robustness stems from the
character-level model’s ability to isolate syntactic
cues (e.g., -ed for past tense, -s for plural) from the
base word. As a result, the model can effectively
perform syntactic transformations even when the
base word appears rarely—or not at all—during
training.

F.5 Hapaxes and word-level tokens

Another unexpected result is the sharp performance
drop (down to random chance) of the word-level
language model on the WordSwap-100M dataset
specifically for the hapax case—words that appear
only once. This degradation is notably absent on
the smaller WordSwap-10M dataset. This suggests
that in small enough corpora, even a single oc-
currence of a word can suffice to derive a useful
semantic embedding. However, as the dataset size
grows while the model size remains fixed, it be-
comes increasingly difficult for the model to retain
information about such rare words. In effect, the
model may "forget" what it has learned about ha-
paxes due to capacity constraints.
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Figure 7: Scores obtained on our three LT-Swap tasks over BabyLM10M and BabyLM100M for four different
tokenization methods: char-level, bpe (16k and 50k units) and words (i.e white space segementation). The standard
error for all Swap scores is less than 0.02.
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