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Abstract

Large language models (LLMs) excel in natural
language tasks, with Chain-of-Thought (CoT)
prompting enhancing reasoning through step-
by-step decomposition. However, CoT strug-
gles in knowledge-intensive tasks with multiple
entities and implicit multi-hop relations, fail-
ing to connect entities systematically in zero-
shot settings. Existing knowledge graph meth-
ods, limited by static structures, lack adapt-
ability in complex scenarios. We propose DS-
MHP, a zero-shot framework to enhance LLM
reasoning in multi-entity relation tasks. DS-
MHP operates in three stages: 1) construct-
ing query-specific subgraphs by extracting en-
tities and relations; 2) generating and refin-
ing multi-hop paths using a hybrid strategy of
Breadth-First Search, greedy expansion, and
LLM supplementation; and 3) guiding LLMs
with subgraphs and paths, aggregating answers
via majority voting. Evaluated on 12 datasets
spanning commonsense, logical, symbolic, and
arithmetic reasoning, DS-MHP outperforms
baselines and state-of-the-art methods in nearly
all benchmarks. It achieves overall average ac-
curacy increases of 3.9% on Mistral-7B and
3.6% on GPT-3.5 Turbo compared to SOTA,
with significant gains in logical and symbolic
reasoning. Additionally, DS-MHP reduces run-
time and LLM calls compared to SOTA, en-
hancing computational efficiency. These im-
provements demonstrate DS-MHP’s superior
reasoning accuracy, explainability, and effi-
ciency in complex multi-entity tasks.

1 Introduction

Large language models (LLMs) (Hoffmann et al.,
2022; Chowdhery et al., 2023; Touvron et al., 2023;
OpenAI, 2023; DeepSeek-AI, 2025) have demon-
strated remarkable capabilities across a wide range
of natural language processing (NLP) tasks, such as
question answering (Robinson et al., 2022; Li et al.,
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2024b; Singhal et al., 2025), machine translation
(Moslem et al., 2023; Xu et al., 2023; Zhu et al.,
2024), and information extraction (Dagdelen et al.,
2024; Li et al., 2024c). Leveraging extensive pre-
trained knowledge, these models generate coher-
ent and contextually relevant responses. Chain-of-
Thought (CoT) (Wei et al., 2022) has significantly
enhanced LLMs’ reasoning abilities by guiding
them to decompose complex problems into sequen-
tial reasoning steps, outperforming traditional zero-
shot and few-shot approaches in tasks requiring
logical, symbolic, and arithmetic reasoning.

However, CoT-based methods face challenges
in knowledge-intensive tasks involving multiple
entities and implicit multi-hop relations. For ex-
ample, in questions like “Which historical figure
influenced a modern leader’s policies through an in-
termediary event?”. CoT may produce intermediate
steps but struggles to systematically connect enti-
ties (e.g., historical figure, event, modern leader)
across multiple relational hops in zero-shot settings
without examples. While Named Entity Recogni-
tion (NER) (Wang et al., 2023b; Ye et al., 2024; Lu
et al., 2024) and relation extraction (Wadhwa et al.,
2023; Zhang et al., 2023a; Zhao et al., 2024) can
identify entities and explicit relations, LLMs often
lack structured mechanisms to infer implicit multi-
step dependencies. Knowledge graph (KG)-based
approaches, such as Paths-over-Graph (PoG) (Tan
et al., 2025), rely on pre-defined KGs and few-shot
prompts to explore multi-hop paths but are limited
by static knowledge structures, restricted path di-
versity, and challenges in adapting to ambiguous
multi-entity scenarios without dynamic implicit re-
lation inference.

In this paper, we introduce DS-MHP, a novel
framework designed to enhance LLM reasoning
through dynamic subgraph-guided multi-hop path
in complex multi-entity scenarios. DS-MHP oper-
ates in three stages: (1) Dynamic Subgraph Con-
struction, where entities are extracted using zero-
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shot NER, and explicit and implicit relations are
identified and scored for confidence to form a
query-specific directed subgraph; (2) Multi-Hop
Path Generation, which selects key entities based
on semantic and structural relevance, generates di-
verse multi-hop paths using a hybrid strategy of
Breadth-First Search (BFS), greedy expansion, and
LLM supplementation, and refines them through
merging, deduplication, semantic and LLM scor-
ing, and subpath filtering; and (3) Question An-
swering, where the subgraph and paths are inte-
grated into structured prompts to guide LLM, with
answers aggregated via majority voting for robust-
ness.

We evaluate DS-MHP on 12 widely adopted
datasets covering commonsense, logical, symbolic,
and arithmetic reasoning, using Mistral-7B (Al-
bert et al., 2023) and GPT-3.5 Turbo (OpenAI,
2023). DS-MHP outperforms baselines and state-
of-the-art (SOTA) method in nearly all benchmarks,
achieving overall average accuracy increases of
3.9% on Mistral-7B and 3.6% on GPT-3.5 Turbo
compared to SOTA. This indicates that dynamically
constructing query-specific subgraphs and gener-
ating multi-hop paths can significantly enhance
the reasoning capabilities and answer accuracy of
LLMs. Our main contributions can be summarized
as follows:

• We propose DS-MHP, a zero-shot framework
that addresses complex multi-entity reasoning
by dynamically constructing query-specific
subgraphs and generating multi-hop paths,
achieving robust and accurate answers across
diverse reasoning tasks.

• DS-MHP builds dynamic query-specific sub-
graph via zero-shot NER, relation extraction
and assessment, generates diverse multi-hop
paths through a hybrid strategy of BFS, greedy
expansion, and LLM supplementation, and de-
livers answers using structured prompts with
majority voting.

• Empirical results demonstrate that DS-MHP
achieves superior performance across four rea-
soning scenarios, with average accuracy gains
of 3.9% on Mistral-7B and 3.6% on GPT-3.5
Turbo, particularly in logical and symbolic
reasoning tasks.

2 Related Work

2.1 Chain-of-Thought Prompting

CoT prompting enhances the reasoning capabili-
ties of LLMs by encouraging step-by-step prob-
lem decomposition (Wei et al., 2022). This ap-
proach guides LLMs to break down complex tasks
into intermediate steps, improving performance in
arithmetic, commonsense, and symbolic reason-
ing tasks. Zero-shot CoT (Kojima et al., 2022)
further demonstrated that simple prompts, such as
“Let’s think step by step”, enable LLMs to perform
logical reasoning without demonstrations, achiev-
ing competitive results. Subsequent advances have
refined CoT’s applicability and efficiency. For in-
stance, Auto-CoT (Zhang et al., 2023b) automates
CoT construction by analyzing questions, reduc-
ing manual prompt engineering. CoT-SC (Wang
et al., 2023c) introduces self-consistency, sampling
multiple reasoning paths and selecting the most
frequent outcome via majority voting to enhance
robustness. Complex-CoT (Fu et al., 2023) esti-
mates reasoning steps based on problem complex-
ity, while Wang et al. (2023a) separates tasks into
planning and solving phases to generate structured
CoT answers. RE2 (Xu et al., 2024) improves
question comprehension through iterative rephras-
ing, and Nash CoT (Zhang et al., 2024) optimizes
multi-path inference using game-theoretic princi-
ples. More recently, ERA-CoT (Liu et al., 2024)
incorporates entity relation analysis for multi-entity
scenarios, and DeCoT (Wu et al., 2024) addresses
logical inconsistencies via causal interventions.

However, CoT-based methods face significant
challenges in knowledge-intensive tasks involving
multiple entities and implicit multi-hop relations.
These approaches often generate verbose or inco-
herent reasoning steps, particularly in zero-shot
settings, where the lack of structured knowledge
leads to increased computational overhead and re-
duced accuracy. Additionally, existing CoT meth-
ods struggle to systematically capture and reason
over complex, implicit relations among entities,
limiting their effectiveness in scenarios requiring
deep contextual understanding.

2.2 KG-based LLM Reasoning

KGs provide structured representations of factual
knowledge, significantly enhancing LLM reason-
ing capabilities (Pan et al., 2024). Early approaches
embedded KG knowledge into LLMs during pre-
training or fine-tuning, enabling models to leverage
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relational triples for tasks like question answer-
ing (Peters et al., 2019; Zhang et al., 2021; Li
et al., 2024a; Luo et al., 2024). However, these
embedding-based methods often compromised in-
terpretability and required retraining for new do-
mains. To address these limitations, prompt-based
methods emerged, transforming KG triples into tex-
tual prompts to facilitate reasoning in natural lan-
guage (Pan et al., 2024; Wen et al., 2024). While
effective, these approaches frequently overlooked
the structural richness of KGs, such as multi-hop
relational paths. More recent advancements en-
able LLMs to directly navigate KGs, starting from
an initial entity and iteratively exploring relation
edges (Jiang et al., 2023; Sun et al., 2024; Ma et al.,
2024). For instance, Think-on-Graph (ToG) (Sun
et al., 2024) implements a graph-based reasoning
loop to explore paths dynamically, while Paths-
over-Graph (PoG) (Tan et al., 2025) constructs
question-specific subgraphs from pre-defined KGs,
employs few-shot prompting to guide multi-hop
path exploration, and prunes paths using a three-
stage Beam Search to ensure relevance.

Nevertheless, existing KG-based LLM reasoning
methods exhibit notable limitations. Embedding-
based approaches lack interpretability and flexi-
bility, relying on static, domain-specific training.
Prompt-based methods often fail to capture the
structural details of KGs, limiting their ability to
reason over complex relational paths. Navigation-
based methods, typically starting from a single en-
tity, struggle to incorporate multiple topic entities,
leading to incomplete path exploration. Methods
like PoG, which depend on pre-existing KGs, lack
the ability to construct query-specific knowledge
dynamically, restricting their effectiveness in com-
plex multi-hop reasoning tasks. These limitations
highlight the potential of adapting KG-inspired
structured reasoning approaches to text-based infer-
ence, motivating the development of methods that
dynamically construct knowledge representations
from raw text.

3 Methodology

Problem Formulation. Given an input query q and
context x, the objective is to predict the answer y by
constructing a dynamic, query-specific subgraph
Gs = (E,R) with entity set E and relation set R,
and deriving its multi-hop paths P (Gs).We address
this by maximizing the conditional probability of

the answer given the subgraph and paths:

y = argmax
yi

P (yi | Gs, P (Gs), q, x), (1)

where yi represents possible answer candidates
(e.g., multiple-choice options or free-form re-
sponses). This formulation leverages Gs and
P (Gs) to guide LLM toward accurate answers
across diverse contexts.

As shown in Figure 1, we introduce DS-MHP, a
novel framework designed to enhance the model’s
understanding and reasoning of multi-entity rela-
tions in various NLP tasks. DS-MHP comprises
three progressive stages: dynamic subgraph con-
struction, multi-hop path generation, and ques-
tion answering. The framework dynamically con-
structs query-specific knowledge subgraphs from
text and leverages multi-hop paths to jointly learn
explicit and implicit entity relations, filtering rele-
vant knowledge to improve reasoning accuracy and
adaptability.

3.1 Dynamic Subgraph Construction
This phase constructs a query-specific subgraph
Gs by extracting and refining entities and relations
from the input text, ensuring a robust representation
of context-specific knowledge.

NER. The framework employs the information
extraction capabilities of LLM in a zero-shot set-
ting to identify entities from the query q and con-
text x. The LLM generates np reasoning paths,
each producing a candidate entity list extracted
from its output. Entities undergo normalization
by removing parenthetical content and converting
to lowercase for consistency. Candidate entities
are aggregated by removing duplicates using a set-
based approach, yielding the entity set E. This
method mitigates entity ambiguity and eliminates
redundancy, providing a clean and reliable entity
foundation.

Relation Extraction. The framework extracts
both explicit and implicit relations among entities
in E within a zero-shot setting to form the relation
set R.

(1) Explicit Relations. The LLM’s contextual
understanding is leveraged by prompting it with
E, q, and x to generate np reasoning paths. Each
path produces candidate relational triples (ei, r, ej),
where ei, ej ∈ E and r is a concise relation phrase
(e.g., “is_a”, “part_of”, “locate_in”). These triples
are aggregated by removing duplicates to form the
explicit relation set Rext, capturing direct connec-
tions explicitly stated in the text.
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Figure 1: Overview of the DS-MHP framework, illustrating the three-stage process of dynamic subgraph construc-
tion, multi-hop path generation, and question answering.

(2) Implicit Relations. Implicit relations, not
explicitly stated, are inferred based on E, Rext,
and the context x. The LLM generates np reason-
ing paths, producing up to ninf candidate implicit
triples per entity pair. These triples are aggregated
by removing duplicates, retaining only syntacti-
cally valid triples (i.e., those with ei, ej ∈ E and a
plausible r) to form the implicit relation set:

Rinf = {(ei, r, ej) | ei, ej ∈ E}. (2)

This step enriches the subgraph with both direct
and inferred knowledge, deducible from context
and explicit relations.

Relation Assessment. The LLM evaluates the
confidence of implicit triples in Rinf as a scoring
agent. Each triple (ei, r, ej) is assessed using a
prompt incorporating E, Rext, and x, producing a
confidence score s(ei, r, ej) ∈ [0, 1]. Triples with
a score exceeding a threshold θr are merged into
Rext to form the final relation set:

R = Rext ∪ {(ei, r, ej) | (ei, r, ej) ∈ Rinf,

s(ei, r, ej) ≥ θr}.
(3)

The subgraph Gs = (E,R) is constructed as a
directed graph, filtering out unreliable inferences
to ensure a high-quality knowledge representation
tailored to the query.

3.2 Multi-Hop Path Generation
This phase generates a refined set of multi-hop
paths P (Gs) from the subgraph Gs to facilitate
structured reasoning over complex relations, en-
abling LLM to systematically explore dependen-
cies. The process integrates multiple path genera-
tion strategies with pruning techniques, to ensure
diversity and relevance.

Entity Selection. The framework selects enti-
ties to anchor path generation (Algorithms 1 in
Appendix A), balancing structural connectivity and
semantic relevance:

(1) Key Entities (Ekey): Entities appearing in
the query q or context x (case-insensitive) are iden-
tified. For each entity e ∈ E, a combined score is
computed:

skey(e) = ssem(e, q) + wqIq(e) + wxIx(e), (4)

where ssem(e, q) =
ve·vq

∥ve∥∥vq∥ is the cosine similar-
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ity (normalized to [0, 1]) between embeddings of e
and q using an embedding model M (all-MiniLM-
L6-v21), Iq(e) = 1 if e ∈ q, else 0, and Ix(e) = 1
if e ∈ x, else 0, with weights wq = 1.0, wx = 0.5.
The top k entities with the highest skey(e) form
Ekey ⊆ E, capturing query and context-specific
focal points.

(2) Starting Entity (es): A single entity es is se-
lected to explore broader graph connectivity, scored
as:

sstart(e) =

dout(e)
dmax

+ ssem(e, q)

2
, (5)

where dout(e) is the out-degree of e in Gs, dmax =
maxe′∈E dout(e

′) normalizes the out-degree, and
ssem(e, q) is defined as above. The starting entity
is es = argmaxe∈E sstart(e).

Path Generation. Paths are generated in three
complementary phases using a hybrid strategy of
BFS, greedy expansion, and LLM supplementa-
tion (Algorithms 2 in Appendix A), constrained
by a fixed hop limit hmax = 5, to capture diverse
reasoning trajectories:

(1) Key Entity Joint Paths: For each consecu-
tive pair (ei, ei+1) in Ekey, if a path exists in Gs, the
shortest path from ei to ei+1 (computed via BFS) is
added to P (Gs) if its length satisfies l(p) ≤ hmax,
reflecting explicit relations in q and x.

(2) Starting Entity Paths: From es, shortest
paths (via BFS) to all reachable nodes in Gs are
computed, forming an initial path set Pinit with
l(p) ≤ hmax. Paths with a semantic similarity score
ssem(p, q) > θsem (via M ) are greedily extended
by appending neighboring nodes if the extended
path’s score exceeds a fraction α of the original
score, exploring deeper dependencies within hmax.

(3) LLM-Supplemented Paths: The LLM is
prompted with es, E, R, q, and x to suggest up to
three additional reasoning paths, validated against
Gs (i.e., entities in E and consecutive entities con-
nected via R) and constrained to l(p) ≤ hmax, en-
riching P (Gs) with inferred connections.

Path Refinement. The framework ensures a
concise and relevant P (Gs) through the following
steps:

(1) Path Merging: Paths with identical start
and end entities are merged. For single-hop paths,
relations are fused (e.g., r1 and r2 into r1 AND r2);
for multi-hop paths, the longest path is retained to
preserve richer semantics in Gs.

1https://huggingface.co/sentence-transformers/
all-MiniLM-L6-v2

(2) Deduplication: Paths are deduplicated, re-
taining only unique sequences with no repeated
entities.

(3) Semantic and LLM Scoring: Each path p
is evaluated with a combined metric:

s(p) = ssem(p, q) + sLLM(p, q, x), (6)

where ssem(p, q) is the cosine similarity (via M )
between the path string (entities and relations) and
q, and sLLM(p, q, x) ∈ [0, 1] is LLM’s relevance
score, computed by prompting LLM to assess the
path’s relevance to q and x.

(4) Subpath Filtering: Paths are sorted by s(p)
in descending order, retaining the top npath paths
via Beam Search. Subpaths subsumed by longer,
higher-scoring paths are discarded, ensuring non-
redundancy in P (Gs).

This multi-phase approach ensures P (Gs) con-
tains non-redundant, semantically relevant multi-
hop paths tailored to the query and context, enhanc-
ing LLM’s reasoning over complex relations.

3.3 Question Answering
We generate answer candidates using Gs and
P (Gs) in a zero-shot setting with LLM. The sub-
graph and paths are formatted into a structured
natural language prompt, including Gs, P (Gs),
q, and x, enhancing CoT reasoning by systemati-
cally exploring multi-hop relations. For each path
p ∈ P (Gs), combined with Gs, LLM produces a
candidate answer, forming set A. A fixed number
of candidate answers are generated, and the final
answer is selected using a majority voting strategy
(Wang et al., 2023c):

A = {π(p,Gs, q, x) | p ∈ P (Gs)}, (7)

y = argmax
yi

Count(yi, A), (8)

where π is LLM’s prediction function, and
Count(yi, A) is the frequency of candidate yi in
A. If the top answer’s count is below a support
threshold τ or a tie occurs among top answers, ad-
ditional answers are iteratively generated (up to
nattempt attempts) using the same prompt, updating
A until a reliable y is determined. This approach
ensures robust answer selection for the question.

4 Experimental Setup

4.1 Datasets and Models
We consider four reasoning scenarios, i.e., com-
monsense reasoning, symbolic reasoning, logical
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Model Method Common Logical Symbolic Arithmetic Overall
Avg.StrategyQA CSQA ARC-C LogiQA ReClor AR-LSAT Date Obj-Track Letter AQuA GSM8K SVAMP

Mistral-7B

Vanilla LLM 59.7 67.8 73.5 44.5 51.8 19.9 31.2 29.2 0.0 20.5 6.4 47.4 37.7
CoT 60.5 71.6 74.7 47.4 54.2 23.6 33.6 32.8 0.0 22.1 8.2 50.5 39.9
CoT-SC@5 61.2 73.1 76.2 50.3 56.9 25.8 34.8 34.4 0.2 24.4 10.1 53.6 41.8
Auto-CoT 60.8 72.8 75.8 48.6 55.4 25.3 34.0 33.2 0.0 23.2 9.4 51.9 40.9
Complex-CoT 59.5 71.5 73.7 50.1 56.5 25.5 34.4 33.6 0.0 24.0 13.5 55.1 41.5
PS 60.7 72.4 74.9 48.1 54.7 24.1 34.0 33.2 0.2 24.4 12.3 54.2 41.1
PS+ 61.3 72.7 75.6 48.5 55.3 25.7 34.4 34.0 0.4 25.2 12.8 55.3 41.8
RE2 62.1 73.2 76.5 49.9 56.4 26.3 35.2 34.8 0.6 24.0 13.0 54.5 42.2
ERA-CoT 64.2 74.8 78.6 51.2 57.6 27.8 36.8 36.0 0.4 25.6 14.5 55.2 43.6
DS-MHP 67.5 77.3 82.7 54.8 61.8 32.7 42.4 41.2 1.2 30.7 17.8 59.8 47.5

GPT-3.5
Turbo

Vanilla LLM 65.6 72.3 82.9 28.5 52.5 21.1 45.2 35.6 3.0 31.9 52.6 77.4 47.4
CoT 63.4 77.4 80.7 36.5 56.8 17.4 47.6 33.6 3.2 59.8 70.5 79.8 52.2
CoT-SC@5 65.3 78.5 84.5 38.3 60.7 22.3 48.8 36.4 3.8 66.5 74.8 83.2 55.3
Auto-CoT 64.8 77.8 81.5 38.7 61.5 22.5 46.8 35.2 3.2 54.7 77.4 84.5 54.1
Complex-CoT 64.4 76.4 80.8 38.8 61.8 22.4 47.2 35.6 3.6 57.4 80.2 86.3 54.6
PS 65.9 77.7 81.2 37.5 58.6 21.6 46.4 34.4 3.2 53.5 76.6 83.3 53.3
PS+ 66.4 77.3 82.4 38.9 61.2 22.8 47.2 35.6 3.4 52.3 76.1 82.7 53.9
RE2 67.3 79.5 83.2 39.2 62.7 23.5 46.8 36.0 3.2 53.8 76.7 83.5 54.6
ERA-CoT 71.5 83.5 83.4 45.3 64.5 24.9 48.0 36.2 3.4 56.9 79.8 82.2 56.6
DS-MHP 74.8 86.7 88.3 50.8 68.9 28.8 51.6 40.4 4.2 62.5 79.5 86.1 60.2

Table 1: Main experimental results. The best results are highlighted in bold. We use accuracy as the evaluation
metric. CoT-SC@5 represents retrieving five CoT reasoning chains to make majority votes.

reasoning, and arithmetic reasoning. Specifically,
for commonsense reasoning, we use Common-
senseQA (CSQA) (Talmor et al., 2019), Strate-
gyQA (Geva et al., 2021) and ARC-Challenge
(ARC-C) (Clark et al., 2018); for symbolic rea-
soning, we use Date Understanding (Date), Object
Tracking (Obj_Track) (Suzgun et al., 2023) and
Last Letters (Letter) (Wei et al., 2022); for logical
reasoning, we use LogiQA (Liu et al., 2021), Re-
Clor (Yu et al., 2020), and AR-LSAT (Wang et al.,
2022); for arithmetic reasoning, we use AQuA
(Ling et al., 2017), GSM8K (Cobbe et al., 2021)
and SVAMP (Patel et al., 2021). The details of
dataset statistics are in Appendix C. For models,
we use Mistral-7B (Albert et al., 2023) and GPT-
3.5 Turbo (175B) (OpenAI, 2023).

4.2 Baselines

To comprehensively evaluate our method, we com-
pare DS-MPR with the leading CoT methods base-
lines: Vanilla LLM, CoT (Wei et al., 2022), CoT-
SC (Wang et al., 2023c), Auto-CoT (Zhang et al.,
2023b), Complex-CoT (Fu et al., 2023), PS and
PS+ (Wang et al., 2023a), RE2 (Xu et al., 2024)
and ERA-CoT (SOTA)(Liu et al., 2024). The sim-
ple introduction of baselines is in Appendix B.

4.3 Implementation

We access GPT-3.5 Turbo through the OpenAI
(OpenAI, 2023) API (gpt-3.5-turbo-0301) and uti-
lize Mistral-7B with its default model parameters
from the original implementation (Albert et al.,
2023). The details of parameter settings are in Ap-

pendix D. To ensure reliability, we conduct five
rounds of experiments for each dataset, reporting
average scores. For evaluation, we use Exact Match
(EM) and Accuracy (Acc) metrics. Further details
are provided in Appendix E. The experiments are
conducted on a single NVIDIA A100-80G GPU
for each method.

5 Experiments

5.1 Main Results
Table 1 presents the main experimental results.
DS-MHP achieves superior performance, out-
performing all baselines, including the SOTA
ERA-CoT, on Mistral-7B across all 12 datasets
and on GPT-3.5 Turbo for 9 out of 12 datasets,
with overall average accuracies of 47.5% and
60.2%, respectively. This indicates that through
dynamic subgraph construction and multi-hop
path generation, LLMs could make better pre-
dictions and enhance their performance. DS-
MHP demonstrates robust performance across di-
verse reasoning tasks, with particularly notable
gains in logical and symbolic reasoning, while
maintaining strong results in commonsense and
arithmetic tasks. Our source code is public at
https://github.com/casanovalauz/DS-MHP.

Commonsense Reasoning. DS-MHP achieves
average accuracies of 75.8% on Mistral-7B and
83.3% on GPT-3.5 Turbo across StrategyQA,
CSQA, and ARC-C, surpassing ERA-CoT by 4.4%
and 4.8%, respectively. Significant improvements
are observed on ARC-C and CSQA. Compared to
CoT, DS-MHP improves by 7.1% on Mistral-7B.
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DS-MHP’s dynamic subgraph approach effectively
filters irrelevant reasoning paths, enhancing robust-
ness in commonsense reasoning tasks.

Logical Reasoning. On LogiQA, ReClor, and
AR-LSAT, DS-MHP attains average accuracies of
49.8% (Mistral-7B) and 49.5% (GPT-3.5 Turbo),
outperforming ERA-CoT by 9.5% and 10.2%, re-
spectively. The largest gain is on AR-LSAT, where
multi-entity reasoning navigates complex logical
structures. Compared to CoT, DS-MHP achieves
an 8.7% improvement on Mistral-7B. These results
highlight DS-MHP’s strength in capturing intricate
relational dependencies through structured multi-
hop paths.

Symbolic Reasoning. DS-MHP excels on Date,
Obj-Track, and Letter, with average accuracies of
28.3% (Mistral-7B) and 32.1% (GPT-3.5 Turbo),
surpassing ERA-CoT by 16.0% and 9.9%, respec-
tively. Notable gains are seen on Date, which re-
quires temporal reasoning, and Obj-Track, which
involves tracking multi-entity interactions. On Let-
ter, which demands complex sequence processing,
DS-MHP achieves 1.2% (vs. 0.4%) on Mistral-
7B and 4.2% (vs. 3.4%) on GPT-3.5 Turbo. De-
spite the task’s difficulty, DS-MHP’s improvements
demonstrate its capability to handle intricate pat-
tern recognition through dynamic subgraph-based
reasoning.

Arithmetic reasoning. For AQuA, GSM8K,
and SVAMP, DS-MHP achieves average accuracies
of 36.1% (Mistral-7B) and 76.0% (GPT-3.5 Turbo),
outperforming ERA-CoT by 13.5% and 4.1%, re-
spectively. DS-MHP excels on AQuA, leveraging
contextual entity analysis for complex problems.
However, on GPT-3.5 Turbo, it slightly trails CoT-
SC@5 on AQuA (62.5% vs. 66.5%) and Complex-
CoT on GSM8K (79.5% vs. 80.2%) and SVAMP
(86.1% vs. 86.3%). Compared to CoT, DS-MHP
improves by 14.7% on Mistral-7B. These results
demonstrate that DS-MHP’s subgraph-based rea-
soning enhances performance on tasks with re-
lational complexity, but numerical computation-
heavy tasks benefit less compared to sampling-
based methods.

5.2 Ablation Study
We evaluate the contributions of DS-MHP’s core
components by conducting an ablation study com-
paring the complete DS-MHP method with three
variants: (1) Subgraph Only, which uses only the
dynamic subgraph construction module without
multi-hop path generation; (2) Multi-Hop Paths

Only, which provides LLM with only the multi-hop
paths P (Gs) during question answering, without
the dynamic subgraph Gs; and (3) No Majority Vot-
ing, which removes the majority voting mechanism
and uses the answer from the most reliable path
instead.

Table 2 summarizes the results. The complete
DS-MHP method consistently outperforms all
ablated variants, confirming the importance
of integrating dynamic subgraph construction,
multi-hop path generation, and majority vot-
ing. On Mistral-7B, DS-MHP achieves an overall
average accuracy of 47.5%, compared to 44.6%
for Subgraph Only (2.9% drop), 43.5% for Multi-
Hop Paths Only (4.0% drop), and 46.0% for No
Majority Voting (1.5% drop). On GPT-3.5 Turbo,
DS-MHP attains 60.2%, surpassing Subgraph Only
(57.7%, 2.5% drop), Multi-Hop Paths Only (56.7%,
3.5% drop), and No Majority Voting (59.0%, 1.2%
drop). The smaller performance drops on GPT-3.5
Turbo reflect its greater robustness compared to
Mistral-7B.

Subgraph Only. The Subgraph Only variant,
which relies solely on the dynamic subgraph Gs

without multi-hop path generation, shows reduced
performance, particularly in logical and symbolic
reasoning. This indicates that while Gs provides
a structured knowledge foundation, the absence
of multi-hop path exploration limits the ability to
navigate complex relational dependencies.

Multi-Hop Paths Only. The Multi-Hop Paths
Only variant, which provides only the multi-hop
paths P (Gs) to LLM during question answering
without the dynamic subgraph Gs, exhibits the
largest performance drop (4.0% on Mistral-7B;
3.5% on GPT-3.5 Turbo). The lack of Gs’s com-
prehensive knowledge structure restricts the rela-
tional context available for reasoning, significantly
impacting symbolic and logical reasoning tasks,
where multi-entity interactions are critical.

No Majority Voting. The No Majority Voting
variant, which uses the answer from the most re-
liable path instead of aggregating answers from
multiple paths via majority voting, reduces over-
all accuracy by 1.5% on Mistral-7B and 1.2% on
GPT-3.5 Turbo. Declines are notable in logical and
symbolic reasoning, indicating that majority voting
enhances answer reliability by leveraging multiple
paths to mitigate errors.

These results highlight the synergistic effect
of DS-MHP’s components. Dynamic subgraph
construction provides a robust knowledge founda-
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Model Variant Commonsense Logical Symbolic Arithmetic Overall Avg.

Mistral-7B

Subgraph Only 73.2 46.8 25.5 33.2 44.6
Multi-Hop Paths Only 72.8 46.0 24.5 32.8 43.5
No Majority Voting 74.2 48.2 26.8 34.8 46.0
Complete DS-MHP 75.8 49.8 28.3 36.1 47.5

GPT-3.5 Turbo

Subgraph Only 81.2 47.0 29.8 73.5 57.7
Multi-Hop Paths Only 80.8 46.5 29.0 73.0 56.7
No Majority Voting 82.0 48.0 31.0 75.0 59.0
Complete DS-MHP 83.3 49.5 32.1 76.0 60.2

Table 2: Ablation study results. The best results are highlighted in bold. We use average accuracy to compute
accuracies across datasets in each reasoning scenario.

tion, multi-hop path generation enables complex
relational reasoning, and majority voting ensures
reliable answer aggregation. The moderate per-
formance drops in ablated variants, with larger
declines on Mistral-7B than on GPT-3.5 Turbo,
demonstrate DS-MHP’s robustness and the comple-
mentary contributions of each component to its su-
perior performance across diverse reasoning tasks.

5.3 Efficiency Comparison
We compare the computational efficiency of DS-
MHP and ERA-CoT on AR-LSAT and Obj-Track
datasets, measuring runtime (seconds) and LLM
calls per question using Mistral-7B and GPT-3.5
Turbo. Table 3 summarizes the results. DS-MHP
consistently requires less runtime and fewer LLM
calls than ERA-CoT across both datasets and mod-
els, with larger savings on AR-LSAT’s complex
reasoning tasks due to efficient relation assessment
and path refinement techniques that prune unreli-
able inferences early. These efficiency gains align
with the improved accuracy reported in Table 1.
Obj-Track’s simpler structure results in lower over-
all costs compared to AR-LSAT’s demanding logi-
cal reasoning. These results highlight DS-MHP’s
balance of efficiency and accuracy in multi-entity
reasoning tasks.

Model Method AR-LSAT Obj-Track

Time (s) Calls Time (s) Calls

Mistral-7B
ERA-CoT 4.4 8.6 2.0 4.0
DS-MHP 3.8 7.2 1.8 3.5

GPT-3.5 Turbo
ERA-CoT 4.9 9.4 2.4 4.4
DS-MHP 4.2 7.8 2.1 3.8

Table 3: Efficiency comparison of DS-MHP, and ERA-
CoT on AR-LSAT and Obj-Track datasets, reporting
average runtime (seconds) and LLM calls per question
for Mistral-7B and GPT-3.5 Turbo.

Figure 2: Error distribution for DS-MHP on AR-LSAT
and Obj-Track, based on manual analysis of error cases.
Percentages reflect the proportion of errors attributed to
each category.

5.4 Error Analysis

We analyze DS-MHP’s errors to identify its limi-
tations and guide future improvements. Focusing
on logical (AR-LSAT) and symbolic (Obj-Track)
reasoning tasks, where DS-MHP shows significant
gains in MAIN RESULTS but notable declines in
ABLATION STUDY. Errors are manually inspected
and categorized into subgraph construction, path
generation, answer aggregation, and model reason-
ing issues.

Figure 2 shows that subgraph construction and
path generation errors dominate, accounting for
75.9% of errors on Mistral-7B and 66.0% on GPT-
3.5 Turbo. In AR-LSAT, DS-MHP often fails when
the dynamic subgraph Gs omits implicit relations.
For example, in a question requiring the inference
“If A, then B; not B, therefore not A,” Mistral-7B’s
subgraph misses the conditional relation, leading to
an incorrect answer. GPT-3.5 Turbo mitigates some
errors by inferring missing relations, but still strug-
gles with severely incomplete subgraphs, aligning
with the Multi-Hop Paths Only variant’s 4.0% drop
on Mistral-7B (vs. 3.5% on GPT-3.5 Turbo).

In Obj-Track, path generation errors are preva-
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lent, where multi-hop paths P (Gs) include irrele-
vant relations. For instance, in a question tracking
object ownership after swaps (e.g., “Alice swaps
a red ball with Bob, who swaps with Charlie”),
DS-MHP generates a path connecting the ball to
an irrelevant entity (e.g., “ball→ table”), causing
errors on both models. This corresponds to the
Subgraph Only variant’s 2.9% drop on Mistral-7B
(vs. 2.5% on GPT-3.5 Turbo). Answer aggregation
errors, less frequent, occur in tasks like LogiQA
when majority voting favors a low-quality path,
contributing to the No Majority Voting variant’s
1.5% drop on Mistral-7B.

Subgraph construction and path generation
errors are the primary limitations of DS-MHP
in logical and symbolic reasoning tasks. Mistral-
7B’s higher error rates, particularly in subgraph
construction, reflect its greater reliance on DS-
MHP’s components compared to GPT-3.5 Turbo.

6 Conclusion

In this paper, we propose DS-MHP to address the
limitations of LLMs in complex knowledge rea-
soning and open-domain question answering tasks.
By leveraging dynamic subgraphs, multi-hop paths,
and majority voting, DS-MHP excels in diverse rea-
soning scenarios, with particularly notable gains
in logical and symbolic reasoning tasks. Exten-
sive experiments demonstrate its superior perfor-
mance, along with reduced runtime and LLM calls
for enhanced computational efficiency. These re-
sults validate the effectiveness of DS-MHP’s mod-
ular design in improving both reasoning accuracy
and practical applicability across various reasoning
scenarios.

Limitations

We acknowledge that DS-MHP struggles with in-
complete subgraph construction and imprecise path
generation, often missing implicit relations or in-
cluding irrelevant connections, which limits its
effectiveness. Its sensitivity to noisy or incom-
plete input reduces robustness in diverse scenarios.
Future improvements could incorporate external
knowledge bases to enhance subgraphs, develop
context-aware path scoring to refine paths, and im-
prove input processing to boost robustness, thereby
strengthening DS-MHP’s performance across var-
ied reasoning tasks.
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A Algorithms

The process of Entity Selection in Algorithms 1,
Path Generation in Algorithms 2.

Algorithm 1 Entity Selection

Input: Subgraph Gs = (E,R), query q, context
x, embedding model M

Output: Key entities Ekey, starting entity es
1: Ekey ← ∅
2: for e ∈ E do
3: ssem ← ve·vq

∥ve∥∥vq∥
4: skey ← ssem + wqIq(e) + wxIx(e)

5: sstart ← dout(e)/dmax+ssem
2

6: end for
7: Ekey ← topk{skey(e) | e ∈ E}
8: es ← argmax{sstart(e) | e ∈ E}
9: return Ekey, es

Algorithm 2 Path Generation

Input: Subgraph Gs = (E,R), query q, context
x, key entities Ekey, starting entity es, embed-
ding model M , LLM

Output: Path set P
1: P ← ∅, hmax ← 5
2: for (ei, ei+1) in pairs(Ekey) do
3: if has_path(Gs, ei, ei+1) then
4: P ← P ∪ {BFS(ei, ei+1) | l(p) ≤

hmax}
5: end if
6: end for
7: for et ∈ E \ {es} do
8: if has_path(Gs, es, et) then
9: P ← P ∪{BFS(es, et) | l(p) ≤ hmax}

10: end if
11: end for
12: for p ∈ P do
13: if ssem(p, q) > θsem and l(p) < hmax then
14: P ← P ∪ extend(p,Gs, q, α)
15: end if
16: end for
17: P ← P ∪ LLM(es, E,R, q, x, hmax)
18: return P

B Baselines

Vanilla LLM, employs in-context learning to di-
rectly predict answers by presenting tasks and ques-
tions without intermediate reasoning steps.

CoT (Wei et al., 2022), generates step-by-step

Dataset Question Type Num. Domain

CommonsenseQA multi-choice 3741 Commonsense Reasoning
StrategyQA multi-choice 1580 Commonsense Reasoning
ARC-Challenge multi-choice 1695 Commonsense Reasoning
Date Understanding multi-choice 250 Symbolic Reasoning
Object Tracking multi-choice 250 Symbolic Reasoning
Last Letters question-answering 500 Symbolic Reasoning
LogiQA multi-choice 3688 Logical Reasoning
ReClor multi-choice 2069 Logical Reasoning
AR-LSAT multi-choice 1523 Logical Reasoning
AQuA multi-choice 3850 Arithmetic Reasoning
GSM8K number words 3500 Arithmetic Reasoning
SVAMP number words 1000 Arithmetic Reasoning

Table 4: Dataset statistics, where “Num.” represents the
number of sampled datasets.

explanations to derive answers, enhancing reason-
ing through structured intermediate steps.

CoT-SC (Wang et al., 2023c), samples multiple
CoT reasoning paths and selects the most frequent
answer via majority voting to improve robustness.

Auto-CoT (Zhang et al., 2023b), automatically
constructs multi-step reasoning sequences in natu-
ral language, reducing the need for manual prompt
design.

Complex-CoT (Fu et al., 2023), adopts a
complexity-based approach, sampling multiple
CoT paths and choosing answers that align con-
sistently across complex reasoning chains through
voting.

PS and PS+ (Wang et al., 2023a), utilize zero-
shot CoT by dividing tasks into planning and solv-
ing phases to generate answers. PS+ incorporates
additional details, such as variables, to facilitate the
reasoning process.

RE2 (Xu et al., 2024), enhances reasoning by
rephrasing and re-reading the question before gen-
erating CoT steps, serving as a plug-and-play
method.

ERA-CoT (Liu et al., 2024), the current SOTA,
captures relations between entities and supports
reasoning across diverse tasks through CoT, lever-
aging structured entity interactions for improved
performance.

C Dataset Statistics

Table 4 provides detailed information about the
data included in the experiment, where the sampled
data are randomly selected from datasets.

D Parameter Settings

For entity and relation extraction, we employ an
LLM in a zero-shot setting, generating np = 5
reasoning paths per task. Implicit relations are
scored by LLM, retaining those with confidence
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scores above a threshold θr = 0.7. For multi-hop
path generation, we retain up to npath = 5 paths
via Beam Search, filtering paths with a semantic
similarity threshold θsem = 0.5 (computed using
all-MiniLM-L6-v2) and extending them with a fac-
tor α = 0.5. The generation temperature is set to
0.3 to ensure stable outputs. In question answering,
answers are aggregated via majority voting with a
threshold τ = 2, iterating up to nattempt = 3 times
if needed.

E Evaluation Metrics

We use accuracy and exact match as the evalua-
tion metric for different datasets. Specifically, for
datasets like CommonsenseQA, AR-LSAT, and Ob-
ject Tracking that contain options, we utilize the ac-
curacy based on whether the options match the stan-
dard answers. For problems like SVAMP, where the
output is a number, we use regular expressions for
exact match judgment of the answers. For datasets
like Last Letter that do not contain question options,
we compare the output with answer alternatives and
also use the exact match method for accuracy esti-
mation. The same processing approach is adopted
for different methods across these datasets.

F Example

Table 5 shows an example procedure of the DS-
MHP on AR-LSAT dataset.
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Context: Each of five illnesses—J, K, L, M, and N—is characterized by at least one of the following three symptoms:
fever, headache, and sneezing. None of the illnesses has any symptom that is not one of these three. Illness J is
characterized by headache and sneezing. Illnesses J and K have no symptoms in common. Illnesses J and L have at
least one symptom in common. Illness L has a greater number of symptoms than illness K. Illnesses L and N have
no common symptoms. Illness M has more symptoms than illness J.
Question: If Walter has exactly two of the three symptoms, then he cannot have all of the symptoms of ?
Choices: A: both illness J and illness L, B: both illness J and illness N, C: both illness K and illness L,
D: both illness K and illness N, E: both illness L and illness N
Answer: E

Dynamic Subgraph Construction
NER: [j, k, l, m, n, fever, headache, sneezing, walter]
Relation Extraction:
Explicit Relation:
[(j, has_symptom, headache), (j, has_symptom, sneezing), (j, no_common_symptom, k), (j, common_symptom, l),
(l, more_symptoms, k), (l, no_common_symptom, n), (m, more_symptoms, j)]
Implicit Relations:
[(k, has_symptom, fever), (l, has_symptom, fever), (l, has_symptom, headache), (m, has_symptom, fever),
(m, has_symptom, headache), (m, has_symptom, sneezing), (n, has_symptom, sneezing)]
Relation Assessment:
(k, has_symptom, fever): 0.90
(l, has_symptom, fever): 0.85
(l, has_symptom, headache): 0.95
(m, has_symptom, fever): 0.90
(m, has_symptom, headache): 0.90
(m, has_symptom, sneezing): 0.90
(n, has_symptom, sneezing): 0.85
Final Relations:
[(j, has_symptom, headache), (j, has_symptom, sneezing), (j, no_common_symptom, k), (j, common_symptom, l),
(l, more_symptoms, k), (l, no_common_symptom, n), (m, more_symptoms, j), (k, has_symptom, fever),
(l, has_symptom, fever), (l, has_symptom, headache), (m, has_symptom, fever), (m, has_symptom, headache),
(m, has_symptom, sneezing), (n, has_symptom, sneezing)]
Subgraph:
j -has_symptom-> headache, j -has_symptom-> sneezing, j -no_common_symptom-> k, j -common_symptom-> l,
l -more_symptoms-> k, l -no_common_symptom-> n, m -more_symptoms-> j, k -has_symptom-> fever,
l -has_symptom-> fever, l -has_symptom-> headache, m -has_symptom-> fever, m -has_symptom-> headache,
m -has_symptom-> sneezing, n -has_symptom-> sneezing

Multi-Hop Path Generation
Entity Selection:
Key entities: [walter, j, l, n]
Start entity: walter
Path Generation:
Key Entity Joint Paths: j -common_symptom-> l -no_common_symptom-> n
Starting Entity Paths: walter has no outgoing edges, so no BFS paths.
LLM-Supplemented Paths: walter -> headache -> j, walter -> fever -> l, walter -> sneezing -> n,
Discarded (no edges from walter).
Path Refinement:
j -common_symptom-> l -no_common_symptom-> n

Question Answering
Answer Generation: [E, E, E, E, E]
Majority Voting: E
Answer: E

Table 5: Case On AR-LSAT.
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