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Abstract

In the context of fact-checking, claims are often
repeated across various platforms and in differ-
ent languages, which can benefit from a process
that reduces this redundancy. While retrieving
previously fact-checked claims has been inves-
tigated as a solution, the growing number of
unverified claims and expanding size of fact-
checked databases calls for alternative, more
efficient solutions. A promising solution is to
group claims that discuss the same underlying
facts into clusters to improve claim retrieval
and validation. However, research on claim
clustering is hindered by the lack of suitable
datasets. To bridge this gap, we introduce Mul-
tiClaimNet, a collection of three multilingual
claim cluster datasets containing claims in 86
languages across diverse topics. Claim clusters
are formed automatically from claim-matching
pairs with limited manual intervention. We
leverage two existing claim-matching datasets
to form the smaller datasets within MultiClaim-
Net. To build the larger dataset, we propose
and validate an approach involving retrieval of
approximate nearest neighbors to form candi-
date claim pairs and an automated annotation
of claim similarity using large language models.
This larger dataset contains 85.3K fact-checked
claims written in 78 languages. We further
conduct extensive experiments using various
clustering techniques and sentence embedding
models to establish baseline performance. Our
datasets and findings provide a strong founda-
tion for scalable claim clustering, contributing
to efficient fact-checking pipelines.

1 Introduction

Automated fact-checking has become a crucial task
to tackle the vast amount of unverified informa-
tion circulating online. The core objectives of
fact-checking pipelines are to identify claims that
require verification, retrieve evidence, and assess
their veracity automatically. The process can be-
come even more challenging when the same claims

are posted on different platforms in different lan-
guages (Smeros et al., 2021; Quelle et al., 2023).
To overcome this challenge, the claim retrieval
component in a fact-checking pipeline can retrieve,
for each unverified claim, a set of previously fact-
checked claim matches from a database, where
available (Panchendrarajan and Zubiaga, 2024).

As the number of verified and unverified claims
grows, performing pairwise checks of each new
claim against each of the database entries be-
comes inefficient and impractical for scalable fact-
checking pipelines. Since claims are often repeated,
an alternative solution is to form claim clusters by
grouping the verified/unverified claims discussing
the same underlying facts. This not only reduces
redundancy in claim retrieval and validation but
also enhances the efficiency and scalability of the
fact-checking process.

Research on identifying claim clusters has re-
ceived limited attention in the literature, primarily
due to the lack of suitable datasets. Existing studies
have applied various clustering techniques to man-
ually verify the existence of claim clusters (Kazemi
et al., 2021; Nielsen and McConville, 2022; Quelle
et al., 2023). However, to the best of our knowl-
edge no prior work has assessed the quality of the
clusters due to the unavailability of datasets. Mean-
while, recent studies (Kazemi et al., 2021; Larraz
et al., 2023) have focused on annotating claim pairs
that discuss the same underlying facts, enabling a
more granular analysis of relationships between
two claims. However, extending this to manual an-
notation of groups of claims that discuss the same
fact is a more challenging and time-consuming task,
which has hindered creation of datasets.

In this research, we address this challenge by
introducing and validating a methodology for data
collection and labeling, and by automatically con-
structing multilingual claim cluster datasets from
claim-matching pairs with limited manual inter-
vention. To the best of our knowledge, this is the
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first work to create dedicated datasets for claim
clustering. We present MultiClaimNet, a collection
of three multilingual claim cluster datasets. The
smaller datasets within MultiClaimNet are derived
from two existing claim-matching datasets, while
the larger dataset is automatically constructed from
the fact-checked claim dataset MultiClaim (Piku-
liak et al., 2023). Our approach for building this
largest dataset involves retrieval of approximate
nearest neighbors (ANN) to form candidate claim
pairs, followed by automated similarity annotation
using three large language models (LLMs). Mul-
tiClaimNet comprises claims written in 86 unique
languages across its three datasets, with the largest
dataset containing 85.3K fact-checked claims. Fur-
thermore, we conduct extensive experiments on the
three datasets using various clustering approaches
in combination with sentence embedding models,
including LLMs, to establish baseline performance.
We make the following key contributions:

• We present MultiClaimNet1, a collection of
three multilingual claim cluster datasets, con-
structed from claim-matching pairs with mini-
mal manual intervention.

• We automatically generate the largest dataset
in MultiClaimNet by leveraging a novel data
collection and labeling methodology involv-
ing ANN retrieval and LLM annotation with
no human intervention.

• We conduct extensive experiments with var-
ious clustering approaches and sentence em-
bedding models to provide initial insights into
the baseline performance.

We believe our datasets and findings will pave the
way for further research in claim clustering, con-
tributing to scalable automated fact-checking.

2 Related Work

Claim clustering has been less widely studied than
other subtasks within automated fact-checking, pri-
marily due to the lack of available datasets. Most
existing studies have only explored claim cluster-
ing as a means to validate the task and to check if
clusters can be found.

Kazemi et al. (2021) applied a single-link hier-
archical clustering, a variation of agglomeration
clustering algorithm in multilingual claims to con-
firm the existence of claim clusters. While their
study identified meaningful multilingual clusters,

1The dataset is available at https://zenodo.org/
records/15100352

it did not assess the quality of the clusters identi-
fied. Hale et al. (2024) followed the same approach
to perform an extensive manual analysis of claim
clusters found in social media posts related to the
Brazilian general election. To address limitations
arising from the unavailability of datasets, Adler
and Boscaini-Gilroy (2019) assumed that claims
related to the same article belonged to the same
cluster. They employed the DBSCAN clustering
algorithm along with a community detection algo-
rithm (Ester et al., 1996) to form claim clusters.
The authors performed a quantitative evaluation by
measuring the fraction of claims that belong to the
same news article.

The most relevant study, conducted by Quelle
et al. (2023), aimed to track claim evolution across
languages. The authors represented claims as vec-
tors using sentence embeddings and identified con-
nected components by retrieving the most similar
nearest neighbors. These connected components
were considered claim clusters. However, none
of the works created datasets with ground-truth
labels, primarily due to the challenges associated
with manual annotation.

Instead of grouping claims discussing the same
facts, several studies attempted to analyze the
claims discussing the same topic. Nielsen and Mc-
Conville (2022) employed HDBSCAN (McInnes
et al., 2017) on sentence embeddings to obtain
more granular clusters discussing the same topic.
Smeros et al. (2021) used topic modeling tech-
niques such as LDA (Jelodar et al., 2019) to gen-
erate topic vectors and then applied the KMeans
algorithm to form the topic clusters. In contrast to
these approaches, Shliselberg et al. (2024) lever-
aged large language models to annotate the topic
associated with a claim and then trained a topic
classifier in the synthetic dataset. while the topic la-
bels can be used to form topic clusters, the number
of distinct topics remains limited.

3 Building the Claim Cluster Datasets

We construct the claim cluster datasets from claim
matching datasets, which consist of annotated
claim pairs labeled as either similar or dissimilar
based on whether they discuss the same underlying
fact (Panchendrarajan and Zubiaga, 2024). We ad-
here to the definition of claim similarity provided
by Larraz et al. (2023). If two claims are labeled as
similar, we assume the similarity is bidirectional;
therefore, they belong to the same cluster. This as-
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Dataset # Claim Pairs # Clusters # Claims Avg. Cluster Size Max Cluster Size # Language
ClaimCheck 5.2K 197 1187 6.03 28 22
ClaimMatch 1.5K 192 1171 6.1 35 36
MultiClaim 54.4K 30.9K 85.3K 2.76 54 78

Table 1: Statistics of MultiClaimNet

sumption enables the creation of links between sim-
ilar claim pairs, forming clusters of interconnected
claims. For example, if Claim A is annotated as
similar to Claim B, and Claim B is similarly linked
to Claim C, we infer that Claims A, B, and C be-
long to the same cluster. We utilized two existing
multilingual claim matching datasets along with
automatically annotated claim pairs using large lan-
guage models to form three different claim cluster
datasets.

3.1 Using Existing Claim Matching Datasets
3.1.1 Data Source
We leveraged the following two claim matching
datasets as the sources for creating the first two
claim cluster datasets.
ClaimCheck (Larraz et al., 2023) - This dataset
consists of 7.7K claim pairs annotated for their
similarity. The annotations were generated through
a combination of manual and automated methods,
with a 46-54 ratio. Automated annotation was per-
formed using a similarity-based approach. The
dataset primarily includes claims in Spanish and
English, along with 20 other languages. For cluster
creation, we utilized the 5.2K claim pairs labeled as
similar. The remaining pairs labeled as dissimilar
were discarded as they are not suitable for forming
links between claims.
ClaimMatch - This dataset was obtained from the
authors of ClaimCheck (Larraz et al., 2023) from
Newtral Media Audiovisual, a fact-checking or-
ganization from Spain. This dataset is relatively
smaller, with 2K claim pairs manually annotated.
The authors used a set of queries or topics to cu-
rate these claims from the Google FactCheck API.
For cluster creation, we utilized 1.5K similar pairs
written in 36 languages.

3.1.2 Cluster Creation
As mentioned earlier, we automatically generate
clusters by linking claims shared among similar
claim pairs. Using this approach, we clustered the
claims from the two datasets discussed in the pre-
vious section, resulting in two multilingual claim
clusters. However, this approach has the following
two key limitations.

• Missing links - If two similar claims do not
appear as similar pairs in the claim-matching
dataset, this may not create the link between
them, resulting in subclusters discussing the
same fact.

• Merging of wrong clusters - If a statement
discusses multiple claims, then creating links
using such statements may result in the merg-
ing of claim clusters discussing different facts.

To avoid the first limitation of missing links, we
performed a manual inspection of clusters with
high similarity. We converted the English transla-
tion of the claim to sentence embedding using Sen-
tence Transformer (Reimers and Gurevych, 2019)
and then computed the cluster embedding by aver-
aging the sentence embedding of all claims within
a cluster. ClaimMatch dataset includes both orig-
inal and translated claims. For the ClaimCheck
dataset, we translated the claims into English using
Microsoft Azure AI translator (Junczys-Dowmunt,
2019). We then retrieved all the claim clusters with
a cosine similarity greater than 0.75 and manually
merged them into a single cluster if they discussed
the same fact. This process resulted in only a small
number of manual merges for both datasets.

To address the second limitation, we manually
validated clusters containing more than 20 claims
for potential mismerges. However, we found that
none of the clusters contained claims discussing
different facts across both datasets, which further
helped validate our approach. Table 1 presents
the statistics of the two datasets. Despite having
a higher number of claim pairs in ClaimCheck,
both datasets exhibit similar data patterns, except
for the maximum cluster size and the number of
languages present, both of which are slightly higher
in ClaimMatch.

Figure 1 presents the 2D visualization of the
ClaimCheck clusters obtained using UMAP dimen-
sionality reduction on the sentence embeddings
of claims. Claims within the same cluster are as-
signed the same color within a subspace (colors
reused due to larger number of clusters). Some
clusters in the figure are labeled with their respec-
tive topics. Interestingly, similar topics or concepts
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Figure 1: 2D Visualization of ClaimCheck Clusters

are placed closer together in the 2D space, and
there exist smooth transitions in topics across the
space. For instance, the progression from Vaccine
→ COVID-19 → Wearing Mask → WHO → Envi-
ronmental Issues illustrates how clusters are interre-
lated. This suggests that beyond distinct claim clus-
ters, broader conceptual groupings emerge, linking
related topics across the space.

3.2 MultiClaim Dataset

The two datasets introduced earlier exhibit cer-
tain biases due to their curation process. Notably,
ClaimCheck contains similar pairs with higher se-
mantic similarity, while ClaimMatch covers only
a limited set of topics. Further, both datasets are
relatively small in size, which does not represent a
real-world fact-checked database. To address these
limitations, we automatically constructed a large-
scale claim cluster dataset, mitigating biases related
to similarity, topic coverage, and dataset size.

For this study, we utilized the fact-checked multi-
lingual claims from the MultiClaim (Pikuliak et al.,
2023) dataset, which comprises 204K claims in 97
languages. The claims were primarily sourced from
Google FactCheck Explorer. Given the dataset’s
extensive size, we propose a two-step approach for
automatically constructing claim clusters. Figure 2
illustrates this approach, which is further detailed
in the following sections.

3.2.1 Sub-Cluster Creation

To identify groups of claims that discuss the same
facts, we first need to detect similar claim pairs.
Similar claims are likely to be positioned close
together in a semantic vector space. Therefore,
we employed an Approximate Nearest Neighbor
(ANN) search to find the closest claim for each
claim in the dataset. Specifically, we use Hierarchi-
cal Navigable Small Worlds (HNSW) (Malkov and
Yashunin, 2018), one of the most widely used ANN
algorithms. Each claim is represented as an em-
bedding vector of its English translation, generated
using a Sentence Transformer. We then retrieve
the nearest neighbor of each claim as a potential
candidate for similar claim pairs. This resulted in
162K unique claim pairs (some claim pairs were
duplicated because they were mutually the nearest
neighbors of each other) to be annotated as similar
or dissimilar. We retrieved only one nearest neigh-
bor, as selecting more would significantly increase
the volume of candidate pairs.

Although we retrieved the closest neighbor for
each claim, the similarity of the resulting candidate
pairs ranged from 0.3 to 1, with an average of 0.71
(Refer to Figure 5 in Appendix for similarity dis-
tribution). Among the 162K claim pairs, some of
them were an exact translation of the other claim,
which we automatically annotated as similar. The
remaining 160K claim pairs were annotated as simi-
lar or dissimilar using seven large language models
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Figure 2: Methodology used for MultiClaim Dataset

(LLMs): Falcon 11B, Falcon 40B, GPT-4, Llama3
8B, Mistral 7B, Mixtral 8×7B, and Phi3 14B. We
compared models of varying sizes within the same
family to assess their consistency and agreement.
We prompted these models with the question:

Do ‘Claim 1’ and ‘Claim 2’ discuss the same
claim? Respond with Yes or No.

We deliberately used the term ‘same’ instead
of ‘similar’ in the prompt, as the latter introduced
more noise. Further, the prompt was not tailored to
an LLM to have a generalized and simple prompt
formulation that can be applied uniformly across
models to identify similar claim pairs. Among
the seven LLMs, GPT-4, Phi-3 14B, and Falcon
40B exhibited a higher agreement rate of 77–80%
(Refer to Figure 6 in Appendix for agreement rate
between LLMs). To minimize noise in cluster cre-
ation, we selected only these three models with
higher agreement as LLM annotators.

To reduce the impact of potential inaccuracies
or hallucinations, we rely on a consensus-based ap-
proach: only the claim pairs that were unanimously
labeled as similar by all three selected LLMs were
retained to ensure label reliability. While this may
exclude some positive samples misclassified by one
of the models, we found that relaxing the labeling
criteria introduced more noise in subsequent steps.
This process yielded 54K claim pairs consistently
labeled as similar by all three LLMs. We followed
a similar approach to construct claim clusters by
linking these similar claim pairs. However, since
we initially retrieved only one nearest neighbor
per claim, this may lead to the splitting of clusters.
Therefore, we refer to the generated clusters as sub-
clusters and apply a merging process to refine them.
In total, 31.2K sub-clusters were constructed at this
stage.

3.2.2 Cluster Merging

We merge the sub-clusters generated in the previous
step to eliminate biases, including the limitation of
retrieving only a single nearest neighbor and the
strict selection of claim pairs annotated as similar
by all three LLMs. First, we represent each sub-
cluster as an embedding by averaging the sentence
embeddings of its claims. Next, we retrieve the
top 20 nearest neighbors of each sub-cluster using
HNSW and sample one claim per cluster to form
candidate claim pairs. Since our clustering criteria
is based on links between claim pairs, we believe
that retrieving 20 nearest neighbors is sufficient to
identify missing links between sub-clusters. Simi-
lar to the manual validation, we filtered out claim
pairs from clusters with a cosine similarity of less
than 0.75. This process yields 25K claim pairs,
which are then for their similarity by LLMs.

During the annotation of inter-cluster claim pairs,
we observed a decrease in label agreement across
LLMs, ranging from 41% to 69%. This suggests
that annotating inter-cluster claim pairs was more
challenging for the LLMs compared to the annota-
tion of nearest neighbors. However, we only con-
sidered the 8.5K claim pairs annotated with the
same label by all three LLMs as valid, as relax-
ing this criterion led to mismerges. This process
yielded a final set of 30.9K claim clusters. We refer
to this dataset with its original name, MultiClaim,
and its statistics are detailed in Table 1.

3.3 Multilingual Claims

Our MultiClaimNet dataset encompasses multilin-
gual claims written in 86 unique languages across
the three cluster datasets. Refer to Appendix A.3
for the language-wise statistics of the datasets. The
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Dataset
Monolingual vs

Multilingual
Clusters

Avg. Unique
Languages in

Multilingual Clusters
ClaimCheck 55/142 3.2
ClaimMatch 58/134 3.8
MultiClaim 15.9K/15K 2.4

Table 2: Statistics of Multilingual Clusters

Figure 3: Number of Claims Repeated over First 100
Days in MultiClaim Clusters

smaller datasets exhibit similar language distribu-
tions, with Spanish being the dominant language in
the ClaimCheck dataset, and English as the major-
ity language in ClaimMatch. Additionally, both of
these datasets predominantly feature European lan-
guages. In contrast, MultiClaim includes a broader
mix of both Asian and European languages, with
English remaining the dominant language.

Table 2 presents the statistics of multilingual
clusters present in the cluster datasets. Notably,
the smaller datasets contain a higher proportion
of multilingual clusters, whereas the larger one
has an equal number of monolingual and multilin-
gual clusters. Furthermore, the multilingual claim
clusters consist of claims written in 2.4-3.8 unique
languages on average, validating the existence of
similar claims across different languages. Further,
this highlights the importance of advancing mul-
tilingual research in automated fact-checking to
effectively handle repeated claims across diverse
linguistic contexts.

3.4 Temporal Claims

The reoccurrence of the same claim demands tech-
niques to tackle repeated claims for an effective
fact-checking pipeline. Among the three datasets,
MultiClaim contains the timestamps of the claims,
making it an ideal choice for further research on
temporal claims. Figure 3 illustrates the distribu-
tion of claim repetitions over the first 100 days.
Notably, 50% of the claims are repeated within just

1.6 days, and 75% are repeated within the first 29.3
days from the occurrence of the first claim in a
cluster. This underscores the need for advanced
methods to detect and manage repeated claims ef-
ficiently, ensuring that fact-checking systems can
respond swiftly and accurately to the rapid spread
of misinformation.

4 Experiment Setup

We employ various clustering techniques to eval-
uate the performance of baseline models on the
claim cluster datasets.

4.1 Clustering Approaches

In real-world fact-checked databases, the number
of clusters is often unknown. Therefore, we utilize
clustering techniques that do not require the num-
ber of clusters as a predefined parameter. Instead,
these methods automatically determine the optimal
number of clusters based on other controlling pa-
rameters, such as density thresholds or distance
metrics. We apply the following clustering meth-
ods:

• HDBSCAN (McInnes et al., 2017) - A hierar-
chical density-based clustering algorithm that
determines dense regions and merges them to
form hierarchical trees.

• Agglomerative clustering (Müllner, 2011) - A
hierarchical clustering method that builds tree-
like structures and iteratively merges them
using links.

• Affinity Propagation (Dueck, 2009) - A
message-passing clustering algorithm that
identifies representative points and generates
clusters by assigning other points to them
based on similarity.

• Birch (Zhang et al., 1996) - A scalable algo-
rithm designed for large datasets to form tree
structures and merge trees iteratively.

• MeanShift (Comaniciu and Meer, 2002) - A
centroid-based clustering algorithm that iter-
atively shifts points toward high-density re-
gions to form clusters automatically

• Optics (Ankerst et al., 1999) - A density-based
clustering algorithm that identifies dense re-
gions from points ordered according to their
reachability distance.

The hyperparameters used for the clustering al-
gorithms and detailed in Appendix A.4. Density-
based approaches are shown to be very effective
when combined with dimensionality reduction tech-
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Distiluse-base-multilingual-cased 135M 512
Paraphrase-multilingual-MiniLM-L12 118M 768
Paraphrase-multilingual-mpnet-base 278M 768
Gte-multilingual-base 305M 768
All-roberta-large-v1 355M 1024
LaBSE 471M 768
KaLM-embedding-multilingual-mini-instruct-v1.5 494M 896
Multilingual-e5-large-instruct 560M 1024
Bge-m3 567M 1024
Gte-Qwen2-1.5B-instruct 1B 1536
MiniCPM-Embedding 2.4B 2304
E5-mistral-7b-instruct 7B 4096
Gte-Qwen2-7B-instruct 7B 3584
LLM2Vec-Llama-3-8B-Instruct-mntp 8B 4096
Bge-multilingual-gemma2 9B 3584

Table 3: Multilingual Sentence Embedding Models

niques such as UMAP (Nielsen and McConville,
2022). Therefore, we reduce the sentence embed-
ding to 8 dimensions (optimal for all datasets) for
HDBSCAN and Optics.

4.2 Multilingual Sentence Embedding Models

Unlike dataset curation, where we used the English
translation, we explore multilingual representations
of claims by encoding their original text as sen-
tence embeddings. In our experiments, we evaluate
fifteen multilingual sentence embedding models
listed in Table 3.

4.3 Metrics

We report the following metrics, which measure
different aspects of the clusters generated against
the ground-truth clusters (Pauletic et al., 2019).

• Adjusted Rand Index (ARI) - Measures simi-
larity between two clusters

• Adjusted Mutual Index (AMI) - Measures mu-
tual information shared between two clusters

• Homogeneity (HMG) - Measures the fraction
of cluster instances belonging to the same
ground-truth cluster

• Completeness (CMP) - Measures the frac-
tion of ground-truth cluster instances that are
grouped together

• V-Measure (VM) - Measures the harmonic
mean of homogeneity and completeness

• Purity - Measures chances of cluster instances
belonging to the same ground truth cluster

5 Results

5.1 Clustering Approaches

Table 4 presents the performance of different clus-
tering approaches across the three datasets. For this

experiment, we use the Bge-m3 (Chen et al., 2024)
model, as it performed well across all datasets. Re-
sults for the Affinity propagation and MeanShift
approaches are not reported for MultiClaim due to
high memory and running time requirements. How-
ever, Affinity propagation generally performs well
across the smaller dataset, achieving the highest
scores across multiple metrics.

Agglomerative clustering is the only approach
that consistently performed well in the largest
dataset across all metrics. This highlights its
potential for integration in large-scale fact-check
databases. However, its performance slightly de-
clines on smaller datasets as they tend to generate
more fine-grained clusters (i.e., a larger number of
clusters than the ground truth), leading to higher
homogeneity and purity scores. HDBSCAN effi-
ciently clusters both small and large datasets. How-
ever, in MultiClaim, it tends to perform poorly, as
the reduction in dimensionality consistently leads
to excessively granular clusters.

Although ClaimMatch contains a similar number
of claims and clusters, it shows significant drops
in ARI and AMI, suggesting substantial overlap
between clusters. In contrast, ClaimCheck exhibits
clearer semantic separation, possibly due to highly
similar claim pairs, allowing the baselines to easily
achieve 99% homogeneity and 93% completeness.
These results highlight that while the baselines can
effectively handle ClaimCheck, they struggle to re-
solve the ambiguity present in ClaimMatch, despite
its smaller size, and face even greater challenges
with the large and complex MultiClaim dataset.

5.2 Multilingual Sentence Embedding Models
Table 5 presents the performance of various sen-
tence embedding models when applied with Ag-
glomerative clustering. Interestingly, smaller mod-
els (< 1B parameters) achieved the highest scores
compared to the larger models. In particular, gte-
multilingual-base (Zhang et al., 2024) achieves the
highest performance across small datasets, while
Bge-m3 (Chen et al., 2024) outperforms others on
the MultiClaim dataset. This suggests that large
language models are not necessarily required for
effective sentence representation in semantic simi-
larity tasks such as clustering.

However, we observed that clustering algorithms
are highly sensitive to sentence representation un-
less combined with a dimensional reduction tech-
nique. For instance, Table 7 presents the average
number of clusters and their corresponding stan-
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Dataset Approach # Clusters ARI AMI HMG CMP V-Measure Purity

ClaimCheck

HDBScan 188 0.794 0.89 0.952 0.96 0.956 0.893
Agglomerative 275 0.723 0.874 0.994 0.922 0.956 0.987
AffinityPropagation 183 0.806 0.9 0.956 0.963 0.96 0.919
Birch 196 0.551 0.827 0.894 0.957 0.925 0.796
MeanShift 212 0.116 0.629 0.743 0.916 0.821 0.637
Optics 258 0.051 0.53 0.749 0.857 0.799 0.702

ClaimMatch

HDBScan 191 0.584 0.779 0.908 0.913 0.91 0.819
Agglomerative 292 0.591 0.791 0.978 0.885 0.93 0.946
AffinityPropagation 158 0.68 0.819 0.915 0.934 0.924 0.833
Birch 99 0.269 0.64 0.688 0.931 0.792 0.437
MeanShift 186 0.041 0.413 0.588 0.83 0.688 0.439
Optics 284 0.11 0.537 0.828 0.821 0.825 0.759

MultiClaim

HDBScan 10599 0.007 0.383 0.733 0.975 0.837 0.339
Agglomerative 27853 0.574 0.714 0.961 0.973 0.967 0.784
Birch 32034 0.071 0.398 0.873 0.946 0.908 0.605
Optics 21509 0.001 0.221 0.71 0.935 0.807 0.519

Table 4: Performance of Different Clustering Approaches

ClaimCheck ClaimMatch MultiClaim
ARI AMI VM ARI AMI VM ARI AMI VM

Distiluse-base-multilingual-cased 0.544 0.752 0.924 0.425 0.635 0.894 0.222 0.477 0.939
Paraphrase-multilingual-MiniLM-L12 0.657 0.821 0.941 0.552 0.743 0.915 0.331 0.564 0.947
Paraphrase-multilingual-mpnet-base 0.702 0.854 0.95 0.606 0.788 0.927 0.488 0.639 0.957
Gte-multilingual-base 0.845 0.919 0.969 0.711 0.842 0.941 0.467 0.656 0.952
All-roberta-large-v1 0.411 0.634 0.892 0.328 0.522 0.855 0.111 0.344 0.908
LaBSE 0.586 0.772 0.928 0.462 0.672 0.899 0.506 0.631 0.96
KaLM-embedding-multilingual-mini-
instruct-v1.5

0.703 0.826 0.925 0.489 0.686 0.86 0.138 0.371 0.872

Multilingual-e5-large-instruct 0.732 0.85 0.931 0.545 0.738 0.875 0.132 0.391 0.867
Bge-m3 0.723 0.874 0.956 0.591 0.791 0.93 0.574 0.714 0.967
Gte-Qwen2-1.5B-instruct 0.587 0.796 0.935 0.478 0.708 0.909 0.443 0.569 0.952
MiniCPM-Embedding 0.585 0.783 0.931 0.439 0.654 0.893 0.301 0.489 0.938
Gte-Qwen2-7B-instruct 0.665 0.835 0.945 0.51 0.732 0.915 0.493 0.634 0.958
E5-mistral-7b-instruct 0.821 0.905 0.963 0.626 0.789 0.921 0.268 0.465 0.914
LLM2Vec-Llama-3-8B-Instruct-mntp 0.285 0.47 0.786 0.208 0.372 0.744 0.045 0.219 0.836
Bge-multilingual-gemma2 0.607 0.798 0.933 0.507 0.73 0.913 0.438 0.591 0.952

Table 5: Performance of Different Multilingual Sentence Embedding Models

dard deviation across different sentence embedding
models combined with HDBSCAN and Agglom-
erative clustering. Agglomerative exhibits greater
sensitivity to the sentence representation, leading
to a 4-7.5 fold increase in standard deviation com-
pared to HDBSCAN. This suggests that developing
more robust clustering solutions, independent of
the number of data instances and sentence repre-
sentations, is essential for future research.

5.3 Error Analysis

Table 6 lists some of the error scenarios found
across all three datasets during the error analysis
of the clusters formed using baselines. Except for
the last, merge due to common entities, other sce-
narios result in misplacing claims discussing the
same facts in different clusters. This highlights the
limitations of the baseline approaches and suggests
the need for task-specific solutions for obtaining
accurate claim clusters.

Figure 4: Similarity Distribution of Misplaced Claims
and their Closest Counterparts from Baseline Clusters
in MultiClaim. Blue: Original Claims; Orange: English
Translation.

Beyond the above misgrouped cases, we ob-
served that the baseline struggles to cluster highly
similar claims across languages in the MultiClaim
dataset, possibly due to the linguistic diversity
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Scenario Misgrouped Claims (English Translation)
Not recognizing the same
entities with different reference

AstraZeneca vaccine against covid-19 causes monkeypox
Monkeypox is a consequence of anti-covid vaccination

Not knowing the background
of the entities

Tedros Adhanom was arrested by Interpol
WHO Chief Arrested For Crimes Against Humanity

Not focusing on keywords The American Rescue Plan helped create nearly 10 million new jobs.
Joe Biden states that the American Rescue Plan helped create nearly 10 million new jobs.

Prone to noise A satirical article virally shared via social media ’reported’ that World Health Organization
director Tedros Adhanom Ghebreyesus had been arrested for crimes against humanity.
Tedros Adhanom was arrested by Interpol

Not recognizing implicit claim Picture shows Zelenskyy’s Russian passport.
Zelensky has a Russian passport and not a Ukrainian passport

Merge due to common entities Maduro has threatened to send missiles to Spain
Maduro asks for support for Brazil’s military to overthrow Bolsonaro

Table 6: Error Scenarios and Sample Misgrouped Claims

HDBSACN Agglomerative
ClaimCheck 207 ± 19 276 ± 92
ClaimMatch 215 ± 14 290 ± 104
MultiClaim 8.5K ± 2.3K 22.1K ± 9.4K

Table 7: Average Number of Clusters Found

present. Figure 4 illustrates the similarity distri-
bution of misplaced claims with respect to their
closest counterparts within the baseline clusters.
We compute cosine similarity using both the origi-
nal and the translated claims. While the majority of
original claims exhibit lower similarity scores (av-
erage of 0.5± 0.16), their corresponding English
translations yield much higher similarity (average
of 0.68 ± 0.1). These differences in distribution
indicate that the model has difficulty identifying se-
mantically similar claims across languages, under-
scoring the need for stronger multilingual models.

6 Applications

Although claim clustering can be integrated across
various components of automated fact-checking,
we outline key applications of our datasets.

• Claim cluster database - Verified claims can be
maintained as claim clusters by grouping the
claims discussing the same facts. Traditional
clustering techniques can be further explored
to group multilingual claims at a larger scale.

• Fact-checked claim cluster retrieval - Instead
of retrieving individual verified claims from
a fact-checked dataset, an unverified claim
can be matched against an entire cluster, of-
fering a broader context of the claim across
different occurrences of the claim in different
languages.

• Iterative claim clustering - Clustering ap-
proaches can be explored further to perform it-
erative clustering representing real-world sce-

narios of integration of new claims, where it
can be merged into an existing cluster or form
a new cluster.

• Verification of claim clusters - Similar to the
grouping of verified claims, unverified claims
can be clustered together, streamlining the ver-
ification process by allowing entire clusters to
be assessed collectively.

• Visualize topic themes - Claim clusters can
be further grouped using techniques such as
hierarchical clustering to analyze inter-related
claim clusters and to identify topic themes.

7 Conclusion

This paper introduces MultiClaimNet, a collec-
tion of three multilingual claim clustering datasets
constructed from similar claim pairs. The largest
dataset within MultiClaimNet was created by re-
trieving claim pairs using approximate nearest
neighbor approaches and annotating them with
large language models. We conduct extensive ex-
periments on these datasets, evaluating different
clustering approaches and multilingual sentence
embedding models. Our results show that Ag-
glomeration clustering performs well on the largest
dataset and remains competitive across the smaller
ones. In contrast, HDBSCAN excels only on the
smaller datasets, underscoring the need for robust
solutions. Additionally, the smaller sentence em-
bedding models outperform larger ones, highlight-
ing their potential for scalable fact-checking so-
lutions. Our error analysis further suggests that
task-specific approaches are essential for improv-
ing clustering accuracy. We further highlight the
potential applications of our dataset and believe it
will be a valuable resource for advancing multilin-
gual fact-checking research.
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Limitations

The limitations of this work are as follows:
• Data curation bias - As discussed earlier,

the smaller dataset introduces biases such as
highly similar claim pairs and a limited range
of topics due to the data curation techniques.

• Reliance on textual content alone for annota-
tion - Claim pairs in MultiClaim dataset were
annotated for their similarity based solely on
textual content presented to LLMs. This may
result in false positives when other media asso-
ciated with a claim refer to different incidents.

• Mismerge due to text with multiple claims -
We assume that a fact-checked claim gener-
ally discusses one factual statement. However,
the presence of claims with more than one fac-
tual statement may create false positive links
between claim pairs.

Acknowledgments

This project is funded by the European Union
and UK Research and Innovation under Grant No.
101073351 as part of Marie Skłodowska-Curie Ac-
tions (MSCA Hybrid Intelligence to monitor, pro-
mote, and analyze transformations in good democ-
racy practices). We gratefully acknowledge Neutral
Media Audiovisual for providing the ClaimCheck
and ClaimMatch claim-matching datasets. We ac-
knowledge Queen Mary’s Apocrita HPC facility,
supported by QMUL Research-IT, for enabling our
experiments (King et al., 2017).

References
Ben Adler and Giacomo Boscaini-Gilroy. 2019. Real-

time claim detection from news articles and retrieval
of semantically-similar factchecks. arXiv preprint
arXiv:1907.02030.

Mihael Ankerst, Markus M Breunig, Hans-Peter
Kriegel, and Jörg Sander. 1999. Optics: Ordering
points to identify the clustering structure. ACM Sig-
mod record, 28(2):49–60.

Parishad BehnamGhader, Vaibhav Adlakha, Marius
Mosbach, Dzmitry Bahdanau, Nicolas Chapados, and
Siva Reddy. 2024. LLM2Vec: Large language mod-
els are secretly powerful text encoders. In First Con-
ference on Language Modeling.

Jianlv Chen, Shitao Xiao, Peitian Zhang, Kun Luo, Defu
Lian, and Zheng Liu. 2024. Bge m3-embedding:
Multi-lingual, multi-functionality, multi-granularity
text embeddings through self-knowledge distillation.
Preprint, arXiv:2402.03216.

Dorin Comaniciu and Peter Meer. 2002. Mean shift: A
robust approach toward feature space analysis. IEEE
Transactions on pattern analysis and machine intelli-
gence, 24(5):603–619.

Delbert Dueck. 2009. Affinity propagation: clustering
data by passing messages. Ph.D. thesis.

Martin Ester, Hans-Peter Kriegel, Jörg Sander, Xiaowei
Xu, et al. 1996. A density-based algorithm for dis-
covering clusters in large spatial databases with noise.
In kdd, volume 96, pages 226–231.

Scott A Hale, Adriano Belisario, Ahmed Nasser
Mostafa, and Chico Camargo. 2024. Analyzing mis-
information claims during the 2022 brazilian gen-
eral election on whatsapp, twitter, and kwai. In-
ternational Journal of Public Opinion Research,
36(3):edae032.

Shengding Hu, Yuge Tu, Xu Han, Ganqu Cui, Chaoqun
He, Weilin Zhao, Xiang Long, Zhi Zheng, Yewei
Fang, Yuxiang Huang, et al. Minicpm: Unveiling
the potential of small language models with scalable
training strategies. In First Conference on Language
Modeling.

Xinshuo Hu, Zifei Shan, Xinping Zhao, Zetian Sun,
Zhenyu Liu, Dongfang Li, Shaolin Ye, Xinyuan
Wei, Qian Chen, Baotian Hu, et al. 2025. Kalm-
embedding: Superior training data brings a stronger
embedding model. arXiv preprint arXiv:2501.01028.

Hamed Jelodar, Yongli Wang, Chi Yuan, Xia Feng,
Xiahui Jiang, Yanchao Li, and Liang Zhao. 2019.
Latent dirichlet allocation (lda) and topic modeling:
models, applications, a survey. Multimedia Tools and
Applications, 78:15169–15211.

Marcin Junczys-Dowmunt. 2019. Microsoft translator
at wmt 2019: Towards large-scale document-level
neural machine translation. In Proceedings of the
Fourth Conference on Machine Translation (Volume
2: Shared Task Papers, Day 1), pages 225–233.

Ashkan Kazemi, Kiran Garimella, Devin Gaffney, and
Scott A. Hale. 2021. Claim matching beyond En-
glish to scale global fact-checking. In Proceedings
of the 59th Annual Meeting of the Association for
Computational Linguistics and the 11th International
Joint Conference on Natural Language Processing
(Volume 1: Long Papers), pages 4504–4517, Online.
Association for Computational Linguistics.

Thomas King, Simon Butcher, and Lukasz Zalewski.
2017. Apocrita - High Performance Computing Clus-
ter for Queen Mary University of London.

Irene Larraz, Rubén Míguez, and Francesca Sallicati.
2023. Semantic similarity models for automated
fact-checking: Claimcheck as a claim matching tool.
Profesional de la Información, 32(3).

Zehan Li, Xin Zhang, Yanzhao Zhang, Dingkun Long,
Pengjun Xie, and Meishan Zhang. 2023. Towards
general text embeddings with multi-stage contrastive
learning. arXiv preprint arXiv:2308.03281.

11212

https://openreview.net/forum?id=IW1PR7vEBf
https://openreview.net/forum?id=IW1PR7vEBf
https://arxiv.org/abs/2402.03216
https://arxiv.org/abs/2402.03216
https://arxiv.org/abs/2402.03216
https://doi.org/10.18653/v1/2021.acl-long.347
https://doi.org/10.18653/v1/2021.acl-long.347
https://doi.org/10.5281/zenodo.438045
https://doi.org/10.5281/zenodo.438045


Yu A Malkov and Dmitry A Yashunin. 2018. Efficient
and robust approximate nearest neighbor search us-
ing hierarchical navigable small world graphs. IEEE
transactions on pattern analysis and machine intelli-
gence, 42(4):824–836.

Leland McInnes, John Healy, Steve Astels, et al. 2017.
hdbscan: Hierarchical density based clustering. J.
Open Source Softw., 2(11):205.

Daniel Müllner. 2011. Modern hierarchical, ag-
glomerative clustering algorithms. arXiv preprint
arXiv:1109.2378.

Dan S Nielsen and Ryan McConville. 2022. Mumin:
A large-scale multilingual multimodal fact-checked
misinformation social network dataset. In Proceed-
ings of the 45th International ACM SIGIR Confer-
ence on Research and Development in Information
Retrieval, pages 3141–3153.

Rrubaa Panchendrarajan and Arkaitz Zubiaga. 2024.
Claim detection for automated fact-checking: A sur-
vey on monolingual, multilingual and cross-lingual
research. Natural Language Processing Journal,
7:100066.

Iva Pauletic, Lucia Nacinovic Prskalo, and Marija Brkic
Bakaric. 2019. An overview of clustering models
with an application to document clustering. In 2019
42nd International Convention on Information and
Communication Technology, Electronics and Micro-
electronics (MIPRO), pages 1659–1664. IEEE.

Matúš Pikuliak, Ivan Srba, Robert Moro, Timo Hro-
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A Appendix

A.1 Statistics

Figure 5: Similarity Distribution of Claim Pairs Extrac-
tion for Sub-cluster Creation

Figure 5 illustrates the similarity distribution
of the nearest neighbors retrieved during the sub-
clustering stage as described in 3.2.1. The similar-
ity of nearest neighbors ranges from 0.31 to 1.

Figure 6 presents the percentage of same label
annotated by the seven LLMs. Among the seven
LLMs compared, Falcon20B, GPT4, and Phi3-14B
exhibited a higher percentage of agreement ranging
from 77.38% to 80.63.

A.2 Sample Claims
Table 8 presents sample claims from the largest
cluster in each dataset. Claims about the same
fact vary in length and tend to refer to the same
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Dataset Factchecked Claim (English Translation)

ClaimCheck
COVID-19 vaccines contain graphene oxide
Former Pfizer employee confirms vaccine contains graphene oxide nanoparticles
A Facebook post claimed that Spanish doctors had detected graphene oxide in Covid vaccines

ClaimMatch
This video proves chemtrail
Harmful substances are being dropped from airplanes.
The claim that the video shows the moment when the pilot mistakenly released harmful chemicals
referred to as chemtrails at the airport

MultiClaim
Video shows Russian forces attacking Ukraine
A video of a recent Russian airstrike on Ukraine
The video shows a large explosion that took place in Ukraine after Russian President Vladimir Putin
announced a military operation in Ukraine

Table 8: Sample FactChecked Claims from the Largest Clusters

Figure 6: Percentage of Same Label Annotation among
LLMs during Sub-cluster Creation

entities related to the claim with various references.
As mentioned in Limitations (Section 7), the LLM-
based annotation for claim similarity may introduce
false positive samples when the media associated
with the claims refer to different incidents. For
example, in MultiClaim, the largest cluster consists
of claims about Russian attacks in Ukraine. While
these claims share similar textual descriptions, they
may refer to different events within the war.

A.3 Language Statistics

Figure 7 presents the language statistics across
three datasets, including only languages that ap-
pear at least three times in a dataset.

A.4 Hyperparameter Tuning

We use the Scikit-learn2 library for the execution
of clustering algorithms and the UMAP library3

for dimension reduction. The optimal hyperparam-
eters that yield the best performance in terms of
V-Measure across all three datasets were used to re-

2https://scikit-learn.org/stable/api/sklearn.cluster.html
3https://umap-learn.readthedocs.io/

port the results. Table A.4 lists the hyperparameter
search and the optimal settings used. Apart from
these hyperparameters, we use the default parame-
ters recommended in the library for each clustering
approach.

A.5 Implementation

Baseline performances were obtained using 1 GPU
(Volta V100 or Ampere A100) with 8 CPU cores,
each composed of 11 GB memory. We used the
following multilingual sentence embedding mod-
els available in HuggingFace for the analysis of
baseline performance.

• Distiluse-base-multilingual-cased4 (Reimers
and Gurevych, 2019)

• Paraphrase-multilingual-MiniLM-L125

(Reimers and Gurevych, 2019)
• Paraphrase-multilingual-mpnet-base6

(Reimers and Gurevych, 2019)
• Gte-multilingual-base7 (Zhang et al., 2024)
• All-roberta-large-v18 (Reimers and Gurevych,

2019)
• LaBSE9 (Reimers and Gurevych, 2019)
• KaLM-embedding-multilingual-mini-

instruct-v1.510 (Hu et al., 2025)
• Multilingual-e5-large-instruct11 (Wang et al.,

2024b)
• Bge-m312 (Chen et al., 2024) (Chen et al.,

2024)
4https://huggingface.co/sentence-transformers/

distiluse-base-multilingual-cased-v1
5https://huggingface.co/sentence-transformers/

paraphrase-multilingual-MiniLM-L12-v2
6sentence-transformers/

paraphrase-multilingual-mpnet-base-v2
7Alibaba-NLP/gte-multilingual-base
8sentence-transformers/all-roberta-large-v1
9sentence-transformers/LaBSE

10HIT-TMG/KaLM-embedding-multilingual-mini-\
instruct-v1.5

11intfloat/multilingual-e5-large-instruct
12https://huggingface.co/BAAI/bge-m3
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(a) ClaimCheck and ClaimMatch

(b) MultiClaim

Figure 7: Statistics of Language Occurrence in the MultiClaimNet Dataset

Approach Hyperparameter Search Options Optimal

HDBSAN

vector dimenstion [2,3,4,8,16,32,64,128,256,512] 8
cluster selection epsilon Minimum value 0.1
min samples Minimum value 1
min cluster size Minimum value 2

Agglomerative distance threshold [0.5 - 2], step size of 0.5 1
linkage [ward, complete, average, single] ward

Birch threshold [0.1 - 1], step size 0.1 0.7
Meanshift bandwidth [0.1 - 0.8], step size of 0.05 0.75
OPTICS min samples Minimum value 2

Table 9: Hyperparameters of Clustering Approaches

• Gte-Qwen2-1.5B-instruct13 (Li et al., 2023)
• MiniCPM-Embedding14 (Hu et al.)
• E5-mistral-7b-instruct15 (Wang et al., 2024a)
• Gte-Qwen2-7B-instruct16 (Li et al., 2023)
• LLM2Vec-Llama-3-8B-Instruct-mntp17

(BehnamGhader et al., 2024)
• Bge-multilingual-gemma218 (Chen et al.,

2024)
We used all-MiniLM-L6-v219 model (Reimers

and Gurevych, 2019) to convert the English trans-
lations of the claim to sentence embedding during
the data curation process (Section 3).

13Alibaba-NLP/gte-Qwen2-1.5B-instruct
14openbmb/MiniCPM-Embedding
15intfloat/e5-mistral-7b-instruct
16Alibaba-NLP/gte-Qwen2-7B-instruct
17McGill-NLP/LLM2Vec-Meta-Llama-3-8B-Instruct-mntp
18BAAI/bge-multilingual-gemma2
19https://huggingface.co/sentence-transformers/

all-MiniLM-L6-v2

C
la

im
C
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C
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im
M
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M
ul

tiC
la

im

HDBScan 0.001 0.001 0.388
Agglomerative 0.005 0.006 42.276
AffinityPropagation 0.007 0.017 -
Birch 0.001 0.001 0.329
MeanShift 0.387 0.585 -
Optics 0.032 0.037 4.372

Table 10: Running Time of the Clustering Algorithms
in Minutes

A.6 Running Time
Table 10 lists the running time of the clustering
algorithms across three datasets.
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