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Abstract

LLMs are highly sensitive to prompt phrasing,
yet standard benchmarks typically report perfor-
mance using a single prompt, raising concerns
about the reliability of such evaluations. In
this work, we argue for a stochastic method of
moments evaluation over the space of meaning-
preserving prompt perturbations. We introduce
a formal definition of reliable evaluation that
accounts for prompt sensitivity, and suggest
RELIABLEEVAL — a method for estimating the
number of prompt resamplings needed to ob-
tain meaningful results. Using our framework,
we stochastically evaluate five frontier LLMs
and find that even top-performing models like
GPT-40 and Claude-3.7-Sonnet exhibit substan-
tial prompt sensitivity. Our approach is model-,
task-, and metric-agnostic, offering a recipe for
meaningful and robust LLM evaluation.'

1 Introduction

A host of recent work has noticed that LLMs
are highly sensitive to seemingly arbitrary prompt
perturbations, throwing into question many of
the results reported on popular benchmarks.
These perturbations span various dimensions:
semantically-equivalent paraphrases of the task in-
structions (Mizrahi et al., 2024), changes in de-
limiters or whitespace (Sclar et al., 2024; Voronov
et al., 2024), the order of in-context few-shot exam-
ples (Lu et al., 2022), among many others (Perlitz
et al., 2024; Levy et al., 2024; Liu et al., 2024b).
While these works observed that LLMs are
highly sensitive to prompt perturbations, to the
best of our knowledge there is currently no pre-
scriptive recipe for conducting meaningful eval-
uation which takes this sensitivity into account.
Evidently, many recent evaluation efforts resort to
reporting LLM performance against a single arbi-
trary prompt, while often acknowledging that this

!Code and data available at https://github.com/
SLAB-NLP/Reliable-Eval
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Figure 1: Evaluation of frontier LLMs on multiple
meaning-preserving prompt perturbations following RE-
LIABLEEVAL, estimating the complete prompt sample
space. Models vary in both expected value and variance,
highlighting the importance of stochastic evaluation.

practice is flawed (Gu et al., 2024a,b), highlighting
the need for new evaluation practices.

In this work, we argue that the evaluation of such
sensitive LLMs requires stochastic evaluation over
the spectrum of perturbations via a method of mo-
ments analysis (expected value, variance, etc.). To
estimate moments over the combinatorially large
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perturbation sample space, we define the notion
of reliable evaluation, which bounds the probabil-
ity that a sample of prompt perturbations is repre-
sentative of the entire sample space. Further, we
formulate RELIABLEEVAL — a simple recipe for es-
timating the number of samples needed to achieve
reliable evaluation per dataset.

Using our recipe, we perform stochastic eval-
uation of five frontier models, as well as leading
open-source models, on three popular benchmarks.
Our findings, shown in Figure 1, reveal the statis-
tical differences between models, highlighting the
need for stochastic evaluation. Moreover, we show
that the number of resamplings required to reliably
estimate model performance varies depending on
both the model and the dataset being evaluated.

We hope that our recommendations will be
adopted to achieve meaningful and reliable report-
ing of LLM performance.

2 Stochastic Evaluation of LLMs:
Desiderata and Approximation

Here we propose a set of desired metrics for
LLM evaluation in light of their observed sensitiv-
ity (§2.1). Since computing these metrics directly
is infeasible, we also describe the desired statistical
properties of a reliable approximation (§2.2). In
the following sections, we will operationalize these
concepts (§3), and use this approach to evaluate
frontier LLMs (§4).

2.1 Characterizing LLM Performance Using
Distributional Analysis

We formulate the behavior a model M as a random
variable with respect to a deterministic evaluation
metric €:

em:Sp — R+ (D)

Where D denotes an evaluation dataset (e.g.,
MMLU), the sample space Sp denotes the space
of all meaning-preserving prompt perturbations of
D (e.g., different instruction paraphrases, differ-
ent answer enumerators, addition or removal of
whitespace), and ¢/(s) denotes the performance
of model M on a single prompt s € Sp according
to metric €. For example, £5/(s) € [0, 1] can de-
note the exact-match accuracy of Llama (M) on a
single MMLU instance under prompt s. Using this
notation, the limitations of current evaluations are
evident — they report the values of £;; on arbitrary
samples from Sp, while aiming to make claims
about the entire sample space Sp.

A statistically-meaningful evaluation of LLMs.
This stochastic formulation of LLM performance
gives rise to a method of moments analysis of its
behavior (Casella and Berger, 2024). In particular,
we treat s € Sp, as i.i.d. resulting from uniform
sampling over Sp. Le., since we focus on meaning-
preserving prompt perturbations, they are consid-
ered to be equally likely. We further focus on the
first and second moments of ;.

The first moment p; denotes the model’s ex-
pected value over the space of all meaning-
preserving prompt perturbations:

/,Ll(M,SD): E
slrlvdSD

= > emls) P(S=s)
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Similarly, the second moment pus, i.e., variance,
is given by:

uz(M,SD)ZEnd e’
gigg, [(En(s) = )]

uniform i.i.d. ]- Z E )
To 1 ]\/[
S

€Sp
(3)
This framework allows future work to extend the
analysis to additional moments and other distribu-
tions beyond uniform i.i.d (Siska et al., 2024).

2.2 Reliable Estimation of Distributional
Analysis

Note that explicitly computing the moments in
Equations 2 and 3 is infeasible, as it requires
knowing the entire space of meaning-preserving
prompt perturbations, which explodes combinatori-
ally (e.g., for all of the permutations of few shot ex-
amples) and is even hard to enumerate (e.g., such is
the case for the space of all instruction paraphrases).
Instead, we aim to estimate these moments using a
random sample S’ C Sp, relying on the linearity
of expectations, as is similarly done in stochastic
gradient descent.

Below we define dataset-specific requirements to
make sure that S’ is large enough to enable reliable
estimation of the true moments.

Definition 1 (Reliable evaluation). Given an error
margin € and confidence level 9, let Sp be the space
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Figure 2: Convergence of the deviation from the true mean accuracy with increasing resampling size. Round
markers indicate n*, the min. resamplings as defined in Eq. 6, shown per benchmark in (a) and per model in (b).

of all meaning-preserving prompt perturbations of
dataset D, and let S’ C Sp be a random subset of
size n. Then, we say that n samples yield a reliable
evaluation if for every moment p; (expected value
and variance), it holds that:

P | |pi(M,S") = (M, Sp)| > €| <& 4)
S'CSp

IS"|=n

In other words, an evaluation based on n resam-
plings of S’ C Sp with |S’| = n is considered
reliable if the probability that the empirical mo-
mentum of the sample S’ deviates from the mo-
mentum over the entire distribution by more than e
is bounded by §. In section 3 we propose a method
for estimating the required n, by constructing a
confidence interval around this deviation.

We can then perform stochastic evaluation over
this reduced resampling space, reporting empirical
moments which are expected to yield with high
probability a good estimation of the true moments
over the entire sample space.

3 RELIABLEEVAL: Recipe for Stochastic
Evaluation

In this section, we present a practical recipe for con-
ducting a reliable stochastic evaluation of LLMs.

The recipe assumes a scenario aiming to eval-
uate a set of models M, ..., M} on a dataset D,
while accounting for LLMs’ sensitivity to meaning-
preserving prompt perturbations.

Step 1: Specify evaluation parameters ¢ and
4. Set the acceptable deviation € between the em-
pirical value of the i-th moment over a sample
S’ c Sp and the corresponding moment over the

full distribution Sp, as well as the confidence level
¢ with which this guarantee should hold, as de-
fined in Equation 4. In particular, we propose to set
€ = 0.01 and 6 = 0.1, i.e., that evaluation should
be considered reliable if it deviates from true dis-
tribution by no more than 0.01 with probability of
at least 0.9. This can critically examine claims of
state of the art performance, which typically re-
volve around a difference of a few performance
points between models (Liu et al., 2024a).

Step 2: Define the sample space of meaning-
preserving paraphrases Sp. Identify dimen-
sions of meaning-preserving prompt perturbations
that may influence model performance — such as
instruction phrasing, output format, or few-shot
examples. We recommend leveraging existing
work aligned with the task type. For instance,
for multiple-choice QA datasets, the framework
by Habba et al. (2025) can be used to generate
the prompt perturbation space Sp. Their approach
builds on the Unitxt framework for structured data
preparation, which can also be extended to gener-
ate prompt perturbations for other task types (Ban-
del et al., 2024). Notably, our proposed method
is flexible and not restricted to any predefined set
of meaning-preserving prompt perturbations, and
other paraphrases can be used to construct the sam-
ple space Sp.

Step 3: Estimate the minimal reliable sample
size n*. Our goal here is to identify the smallest
sample size n which satisfies the reliability condi-
tion in Definition 1. This is challenging since it
requires computing true moments over the entire
distribution. To estimate this, we propose to choose
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a reference model M/ and compute its empirical mo-
ments over large IV as proxy for true moments. In
the following section, we will show that choosing
a relatively cheap model gives empirically good
estimates, which hold across models. For each can-
didate sample size n = 1,2,..., N, compute the
set of deviations between the empirical value of the
i-th moment over each subset S’ C Sp of size n,
and the i-th moment computed over N samples:

An) = { [1(M, ') = pi(M, 5p)| 18| = n }
&)

Next, construct the d-level confidence interval
(CI) over A(n), which filters A(n) to the range
between the 0/2 and 1 — §/2 percentiles. For in-
stance, if 6 = 0.1, the corresponding CI 1 (A(n))
includes all values of A(n) which lie between the
5th and 95th percentiles. Then, define n* as the
smallest n for which e is larger than the maximum
of this confidence interval:

n* =min{n € [1,N] | ¢ > max CI;(A(n))}
(6)
‘We note that in some scenarios, such as when
the focus is on evaluating a single model or when
the variations between models is large, it may be
preferable to use a reference dataset instead of a ref-
erence model. For example, if we want to evaluate
model M on multiple datasets, we can choose a ref-
erence dataset D’, compute its empirical moments
over large N as a proxy for the true moments.

Step 4: Report empirical distribution analysis.
Finally, sample a subset of perturbations S’ C Sp
of size |S’| = n* uniformly at random. Then,
evaluate each model M, ..., M} on all prompt
variations s € S’, and report empirical moment
analysis. In particular, we recommend reporting
box plot showing median and interquartile range of
observed performance, as can be seen in Figure 1.

4 Reliable Stochastic Evaluation of
Frontier Models

In this section, we present a reliable stochastic eval-
uation of five state-of-the-art LLMs, including both
open-source and proprietary models, across three
widely used benchmarks.

4.1 Experimental Setup

We run RELIABLEEVAL on MMLU (Hendrycks
et al., 2021), GPQA-Diamond (Rein et al., 2024),

and SimpleQA (Wei et al., 2024), which are all
widely-used English benchmarks. The curation of
the meaning-preserving prompt perturbations space
is done by leveraging unitxt (Bandel et al., 2024)
and Dove (Habba et al., 2025).We evaluate five
LLMs: Llama-3.3-70B (Grattafiori et al., 2024),
Deepseek-v3 (Liu et al., 2024a), GPT-40 (Hurst
et al., 2024), Claude-3.7-Sonnet (Anthropic, 2025),
and Grok-3 (xAlI, 2025). As defined in Section 2,
we set the following parameters to estimate a reli-
able evaluation e = 0.01, § = 0.1, NV = 100, with
Llama-3.3-70B serving as the reference model M
for estimating n*. See additional implementation
details in the Appendix.

4.2 Results

Frontier models are sensitive to meaning-
preserving prompt perturbations, underscor-
ing the need for stochastic evaluation. Fig-
ure 1 shows that across all three evaluated bench-
marks, model performance varies across different
prompt resamplings. This highlights the impor-
tance of stochastic evaluation, i.e., reporting sta-
tistical measures over the distribution of scores
rather than relying on single prompts. As shown
by the overlapping boxplots in Figure 1, there is of-
ten no definitive winner — any meaning-preserving
prompt could be cherry-picked to suggest a partic-
ular model ranking.

The number of resamplings required for reliable
evaluation depends both on the dataset and on
the model. In Figure 2a, we show that the con-
vergence behavior of Llama-3.3-70B’s estimation
depends on the benchmark. Moreover, in Figure 2b,
we observe that different models exhibit different
convergence rates on the same dataset, suggesting
that reliable evaluation is determined by both the
model and the dataset.

Llama-3.1-8B can guide the number of resam-
plings needed for reliable evaluation of Llama-
3.3-70B. While Llama-3.3-70B substantially out-
performs the smaller Llama-3.1-8B, Figure 2b
shows that the smaller model provides a valid up-
per bound on convergence behavior. This suggests
that smaller models can serve as effective proxies
for estimating the number of prompt resamplings
required for reliable stochastic evaluation of larger
models. This is shown also for the GPQA-Diamond
and SimpleQA (Figure 3 in Appendix).
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5 Related Work

Most related to our work, Polo et al. (2024) pro-
posed a method for multi-prompt evaluation, hing-
ing on a binary Bernoulli distribution, limiting
its applicability to text generation, and revolving
around the selection of representative evaluation
examples. In contrast, we find a minimal represen-
tative random subspace, are agnostic to the type
of perturbations, and do not make any assumption
about the scoring function. Other works highlight
the importance of multi-prompt evaluations , albeit
without prescriptive guidelines (Voronov et al.,
2024; Tam et al., 2024; Zhuo et al., 2024; Hida
et al., 2024).

6 Conclusion

We propose to estimate model performance over
prompt variations using moment analysis and show
how to compute how many samples are needed for
reliable results.

Our proposed method is designed to accommo-
date any computational budget, with an inherent
trade-off between budget, error margin, and con-
fidence. The practical question becomes: “Given
a specific compute budget, what is the most reli-
able evaluation achievable?” In our framework,
the compute budget sets the maximum feasible N
and constrains n*. If for a given error margin ¢
and confidence level ¢ the number of samples nx*
exceeds a given budget, it is still possible run the
evaluation with n < n* resamplings, accepting a
larger margin of error or lower confidence as a re-
sult. Thus, even with limited compute resources,
our method provides guidance on how to maximize
evaluation reliability within those constraints.

Finally, by evaluating frontier models across
benchmarks, we find that sensitivity varies widely,
underscoring the need for more robust evaluation
practices.

Limitations

We identify several limitations of this work that
future research may address.

First, RELIABLEEVAL requires running a ref-
erence model M over a large number of resam-
plings N. While this is performed only once, it
can be computationally expensive—especially in
LLM-based evaluation settings where the reference
model also serves as a judge and is costly to query.

Second, there are two additional factors that may
influence the required resampling size, which we

did not directly investigate. Future work may ex-
plore: (1) the effect of dataset size on the number
of resamplings needed, and (2) the impact of the
model’s decoding strategy, which is known to af-
fect evaluation outcomes (Song et al., 2025). For
the latter, we provide an initial comparison in Fig-
ure 4, showing results for GPT-40 using greedy
decoding versus sampling with a default tempera-
ture. However, further experimentation is needed
to better understand these effects.
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A Appendix

A.1 Benchmarks and Prompt Perturbations

We provide additional details about the benchmarks
used in our evaluation with RELTABLEEVAL.

Prompt Perturbation Dimensions. For each
benchmark, we define task-specific dimensions of
prompt perturbations over which we resample.

For MMLU and GPQA-Diamond (Multiple-
Choice QA), we follow the resampling strategy
from (Habba et al., 2025), varying along four di-
mensions: (1) instruction paraphrasing, (2) answer
choice order, (3) answer choice enumerator (e.g.,
letters, numbers, Roman numerals), and (4) choice
separators (e.g., whitespace, tab, newline) between
the answers.

For SimpleQA (Open-Ended QA), we vary: (1)
instruction phrasing (e.g., “Answer the following
question”), (2) which examples are selected for
evaluation, (3) the selection and ordering of few-
shot demonstrations, and (4) whether prompts in-
clude ‘Question:” and ‘Answer:” markers.

Number of Examples Per Benchmark. For
GPQA-Diamond, we evaluate the full dataset, with
198 examples per resampling. For MMLU, we
sample 100 examples from each subcategory, re-
sulting in 5,700 total examples (from the 14K test
split), reused across all resamplings. For Sim-
pleQA, which includes variation in the evaluation
examples themselves, we randomly select 1K ex-
amples (from 4K) per resampling, ensuring full
coverage over multiple runs.

Prompting Technique. We use 5-shot prompting
for all benchmarks during evaluation.

A.2 Evaluation Setup

LLM-as-a-Judge for SimpleQA. To evaluate
SimpleQA, we use an LLM-as-a-judge setup to
determine alignment between predictions and gold
answers. We adopt the judging prompt from the
official SimpleQA repository.> Our judge model is
Atla Selene Mini (Alexandru et al., 2025), which
currently ranks highest among open-source models
on the Judge Arena Leaderboard.’

Model Decoding Temperatures. To match typi-
cal usage, we adopt model-specific decoding tem-
peratures aligned with standard evaluation prac-
tices, informed by official documentation and com-
munity reports.

2https://github.com/openai/simple—evals
3https://huggingface.co/spaces/AtlaAI/
judge-arena

11152


https://x.ai/news/grok-3
https://doi.org/10.18653/v1/2024.findings-emnlp.108
https://doi.org/10.18653/v1/2024.findings-emnlp.108
https://github.com/openai/simple-evals
https://huggingface.co/spaces/AtlaAI/judge-arena
https://huggingface.co/spaces/AtlaAI/judge-arena

Model Version Decoding Temp. Inference Platform/API  Total Cost ($)
GPT-40 gpt-40-2024-08-06 1.0 OpenAl 100
Llama-3.3-70B Llama-3.3-70B-Instruct-Turbo 0.0 Together Al 420
Deepseek-v3 DeepSeek-V3 0.3 Together Al 60
Grok-3 grok-3 0.1 XAI 60
Claude-3.7-Sonnet  claude-3-7-sonnet-20250219 0.0 Anthropic 60
Llama-3.1-8B meta-llama/Llama-3.1-8B-Instruct 0.0 vLLM on local a6000 (1) N/A
Table 1: Model inference configurations.
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Figure 3: Error convergence of Llama-3.3-70B vs Llama-3.1-8B.
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Figure 4: GPT-40’s error convergence on GPQA-Diamond,
greedy decoding versus default temperature sampling (temp=1).
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