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Abstract

Code-specific Large Language Models (Code
LLMs) have greatly improved performance
across code-related tasks, offering substantial
benefits in practical applications. However, ex-
isting research reveals significant performance
bottlenecks in Code Execution tasks, which re-
quires models to predict the execution results
of given code snippets. This study identifies
that the Attention Trap phenomenon in train-
ing data constitutes a key constraint on model
performance. To address this phenomenon, we
propose the Attention Cracking with Rejection
Sampling (AC-RS) method. The method first
applies structural optimization to training data
to eliminate attention traps. Then, it conducts
secondary training on the outputs generated
by the fine-tuned model to mitigate potential
negative impacts from manual data interven-
tion. Experimental results show that AC-RS
significantly enhances the accuracy of Code
Execution while preserving models’ original
capabilities. Notably, the optimized 7B model
achieves Code Execution accuracy comparable
to 32B model and GPT-4o.1

1 Introduction

With the rapid advancement of large language
models (LLMs) (OpenAI, 2022; Ouyang et al.,
2022; OpenAI et al., 2024; Touvron et al., 2023a,b;
Grattafiori et al., 2024; Bai et al., 2023; Yang et al.,
2024), Code LLMs have attracted substantial aca-
demic and industrial attention due to their applica-
bility and broad potential. From early models like
StarCoder (Li et al., 2023) and CodeLlama (Roz-
ière et al., 2024) to recent advancements including
Deepseek Coder (Guo et al., 2024; DeepSeek-AI
et al., 2024) and Qwen Coder (Qwen-Team, 2024;
Hui et al., 2024), Code LLMs have shown remark-
able performance across code-related tasks.

1Data are publicly available for research purposes:
https://github.com/L1ttleBad/Attention-Cracking-Data

Figure 1: Attention Trap in Leetcode data.

However, studies (Austin et al., 2021; Nye
et al., 2021; Gu et al., 2024) indicate that cur-
rent Code LLMs underperform in Code Execution
tasks. Austin et al. (2021) reveals that even 137B
model struggles to predict execution results of basic
Python code, and fine-tuning only provides mini-
mal performance gains. Nye et al. (2021) attributes
this to the lack of explicit step-by-step reasoning
before giving the predicted results. While previ-
ous work focuses on reasoning deficiencies, our
work reveals that attention traps in widely-used
LeetCode training data fundamentally constrain
execution prediction capabilities.

When models process training data with lexi-
cal similarities, their attention mechanisms become
overly focused on surface-level token correlations
while neglecting deeper abstract relationships be-
tween data components. Lexical similarity-induced
cognitive bias exhibits universality in deep learn-
ing systems (Gururangan et al., 2018; Liusie et al.,
2022; Chew et al., 2024). For instance, models
tend to misclassify samples containing categori-
cal lexical cues (e.g., texts with "cinema" being
erroneously categorized as "film"). We term this
phenomenon "Attention Trap" in code execution
training scenarios utilizing LeetCode data, and in-
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Figure 2: Pipeline of Attention Cracking with Rejection Sampling (AC-RS). The two edges of the orange arrow
corresponding to "Train" represent the Query and Response used for training, respectively. For instance, Arrow ②
denotes the use of AC Query as the Query and the result obtained through LC-Base model inference on Fetch Query
as the Response, which fine-tunes the Instruct Model to derive the AC model. The full pseudocode is provided in
Appendix C.

vestigate how the Attention Trap affects the train-
ing process. Figure 1 demonstrates how trained
model distributes attention during predicting Code
Execution result token. The target outputs in ex-
ample sections (e.g., the values 5 and 8 in "Output:
5" and "Output: 8") exactly match the current to-
ken, which attracts high attention weights. During
learning, models excessively attend to these target
outputs in the input queries, preventing proper mod-
eling of the multi-step reasoning chain connecting
problem descriptions, program code, and execution
results. Full example are provided in Appendix A.

To eliminate attention traps and analyze its ef-
fects on training process, we propose Attention
Cracking with Rejection Sampling. Our method
contains two stages: (1) Attention Cracking (AC)
modifies training data to eliminate attention traps;
(2) Rejection Sampling (RS) (Liu et al., 2024b) em-
ploys self-generated model outputs for secondary
training, preventing performance degradation from
manual data modifications. Experimental results
demonstrate that AC-RS significantly improves per-
formance with minimal data requirements. Us-
ing only 1,000 LeetCode samples, our method
achieves 13.57% improvements on the Code Exe-
cution tasks of LiveCodeBench (Jain et al., 2024).
It also shows 10.96% gains on Test Output Predic-
tion tasks, which require predicting results from
problem descriptions rather than code, while main-
taining code generation capabilities.

2 Related Works

The field of Code LLMs originated from data-
centric methodologies and has gradually developed

into a thriving research area (Jiang et al., 2024).
Early studies in code-related domains adopted data
construction methods from general-purpose do-
mains. For instance, Chaudhary (2023) employed
the Self-Instruct (Wang et al., 2023) approach to
automatically generate code instruction dataset
CodeAlpaca. Luo et al. (2023) further enhanced
this dataset through Evol-Instruct (Xu et al., 2023),
training the WizardCoder model. Additionally,
Magicoder (Wei et al., 2024) attempted to generate
high-quality instruction tuning data using open-
source code. As data-related challenges were pro-
gressively addressed, multiple high-performance
open-source code models emerged. Representa-
tive examples include the Qwen Coder series and
DeepSeek Coder series. Concurrently, researchers
achieved notable progress in other dimensions of
code-related tasks. Frameworks like MFTCoder
(Liu et al., 2024a) and models like Phi (Abdin et al.,
2024) advanced the field through multi-task train-
ing strategies and parameter efficiency improve-
ments, respectively.

3 Method

This section details the implementation of AC-RS
method. To ensure fair comparison and better
prepare for subsequent training data generation,
we first train LC-Base model using Leetcode data
through Rejection Sampling (① in Figure 2). AC-
RS method then introduces two formal stages: At-
tention Cracking and Rejection Sampling. The full
pseudocode of AC-RS is provided in Appendix C.
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Table 1: Accuracy(%) on LiveCodeBench. Qwen2.5-Coder, DeepSeek-Coder, CodeLlama are all Instruct models.

Model Size Code Gen Self Repair Test Output Prediction Code Execution Avg

GPT-4o-0806 - 49.35% 59.75% 76.02% 58.04% 60.79%
Qwen2.5-Coder 32B 52.61% 62.25% 70.81% 57.41% 60.77%
CodeLlama 7B 10.29% 10.50% 25.11% 20.46% 16.59%
DeepSeek-Coder 6.7B 19.44% 24.25% 26.02% 39.67% 27.35%
Qwen2.5-Coder 7B 36.44% 45.75% 49.55% 44.68% 44.11%
LC-Base 7B 38.07% 48.50% 54.52% 48.23% 47.33%
AC 7B 37.42% 46.75% 57.92% 58.04% 50.03%
AC-RS 7B 39.54% 47.75% 60.41% 58.25% 51.49%

3.1 Attention Cracking

The AC stage aims to eliminate attention traps.
Concretely, by removing target outputs from
queries, we prevent models from relying on su-
perficial pattern matching. This forces models
to allocate attention to problem descriptions and
generated code for output reasoning, effectively
eliminating attention traps. The AC stage modifies
LeetCode queries through two operations: (1) AC
Queries: Remove target outputs from examples in
original queries for training. (i.e., Remove "Out-
put: 5" and "Output: 8" in Figure 1) (2) Fetch
Queries: Append "Please give all the examples in
the answer." at query endings, increasing the like-
lihood of including examples in retrieved results.
Fetch Queries collect generation results from the
LC-Base model. Generated results are processed
by selecting responses with the same examples as
queries, prioritizing those passing tests. Finally, we
fine-tune the Instruct model using AC Queries and
processed results to derive the AC model.

3.2 Rejection Sampling

To prevent performance degradation from AC stage
data modifications, we introduce a RS stage. Un-
like the conventional use of Rejection Sampling to
enhance data quality or expand dataset scale, we
employ this mechanism to utilize AC queries for
obtaining outputs from AC-trained models, thereby
eliminating attention distortion caused by query-
output mismatches. Through quality filtering of
model-generated responses, RS substantially re-
duces training difficulty while maintaining data
quality. Notably, we pre-applied Rejection Sam-
pling in both LC-Base model and AC model train-
ing stages.

In implementation, we encountered output for-
matting issues when applying RS with LeetCode
data(Appendix B). To resolve this, we devel-
oped specialized Helper models by combining
CodeAlpaca samples (Chaudhary, 2023) with Leet-

Table 2: Accuracy(%) on HE and MBPP. Qwen* repre-
sents Qwen2.5-Coder-7B-Instruct.

Model HE HE+ MBPP MBPP+

Qwen* 87.19% 82.20% 83.33% 71.67%
LC-Base 86.10% 80.30% 84.92% 74.07%
AC 85.24% 79.63% 77.25% 67.20%
ACnE 84.63% 79.09% 75.66% 65.87%
AC-RS 86.46% 80.67% 83.07% 72.75%

Code/Fetch/AC queries. These Helper models ef-
fectively replace direct model generations for train-
ing purposes.

4 Experiments

4.1 Datasets & Models

During training, we validate the AC method using
LeetCode data from Shen and Zhang (2024). To
build helper models, we randomly select 10,000
samples from CodeAlpaca (Chaudhary, 2023)
and obtain corresponding outputs via GPT-4o-
20240806 (OpenAI, 2024). For evaluation, we
employ LiveCodeBench (Jain et al., 2024), Hu-
manEval (HE) (Chen et al., 2021) and MBPP
(Austin et al., 2021) benchmarks with the EvalPlus
framework (Liu et al., 2023) to assess AC-RS ef-
fectiveness. We additionally use the HumanEval
(HE) (Chen et al., 2021) and MBPP (Austin et al.,
2021) benchmarks to evaluate the generalization
code generation capabilities.

For model selection, Qwen2.5-Coder-7B-
Instruct (Hui et al., 2024) serves as baseline
model. Comparative experiments include
CodeLlama-7B-Instruct (Rozière et al., 2024),
DeepSeek-Coder-6.7B-Instruct (Guo et al., 2024),
GPT-4o-20240806, and Qwen2.5-Coder-32B-
Instruct (Hui et al., 2024). All models are trained
using LLaMA Factory (Zheng et al., 2024) and
deployed via vLLM (Kwon et al., 2023). Detailed
experimental configurations are elaborated in
Appendix D.
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4.2 Results

Table 1 presents performance comparisons between
AC-RS and other models on LiveCodeBench. Ex-
perimental results demonstrate that AC-RS out-
performs Qwen2.5-Coder-7B-Instruct across all
evaluation tasks. On the tasks central to our re-
search objectives, Test Output Prediction and Code
Execution, the method improves accuracy from
49.55% to 60.41% and 44.68% to 58.25%. Re-
markably, AC-RS slightly outperforms larger mod-
els like Qwen2.5-Coder-32B-Instruct and GPT-4o-
20240806 in Code Execution results.

We analyze contributions from both AC and
RS stages. During AC implementation, models
show significant gains in Test Output Prediction
and Code Execution by avoiding attention traps
in LeetCode data. However, this comes with a
0.65% decrease in general Code Generation ability
comparing to LC-Base. This trade-off stems from
using Fetch Query outputs as training data, which
introduces misalignment issues between queries
and outputs, causing distortion in data probability
distributions. The Rejection Sampling (RS) stage
addresses two critical challenges: It resolves query-
output alignment issues through self-generated
training data from AC-trained models, while si-
multaneously reducing model adaptation complex-
ity. This stage further improves performance in
Test Output Prediction and Code Execution, while
maintaining Code Generation performance without
degradation.

Experimental results from HumanEval (HE)
and MBPP benchmarks (Table 2) further validate
method robustness. During the AC stage alone,
we observe performance declines of 0.86% on HE
and 7.67% on MBPP, confirming the risks of data
distribution disruption from single-stage optimiza-
tion. However, the RS stage successfully mitigates
these declines, with AC-RS ultimately matching
LC-Base performance on both benchmarks.

4.3 Ablations & Discussions

This section systematically analyzes two core
questions: (1) the necessity of introducing Fetch
Queries, and (2) different implementations of the
AC method.

ACnR vs. AC: How Output Refetch Amplifies
Attention Shifting Figure 3 presents experimen-
tal results for ACnR (Attention Cracking with no
Refetch). This approach modifies queries while
retaining original outputs. Results show that ACnR
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Figure 3: Model performance differences on Live-
CodeBench in the ablation study. (ACnR refers to AC
with no Refetch, ACnE refers to AC with no Example).

improves Test Output Prediction and Code Ex-
ecution performance, but achieves weaker gains
(2.72% and 0.62% improvements over LC-Base)
compared to the Refetch-enhanced AC method.
The limited improvement stems from insufficient
example coverage in original outputs. Statistical
analysis reveals that only 43.1% of LC-Base out-
puts contain examples. By introducing specially
designed Fetch Queries, we increase the example-
containing output ratio to 99.9%, significantly im-
proving data collection efficiency.

ACnE vs. AC: Trade-offs Between Difficulty
and Generalization A comparable approach to
AC, termed ACnE (Attention Cracking with no
Examples), eliminates entire example sections
from LeetCode queries. ACnE shows compara-
ble performance to AC-RS in Figure 3 but with
increased learning demands: Models must not only
predict execution results but also autonomously
generate test cases. High learning demands incurs
two substantial costs: (1) Reduced generalization
capability: Table 2 shows ACnE underperforms
AC on both HE and MBPP benchmarks. (2) Lim-
ited multi-dataset compatibility: When trained with
10,000 CodeAlpaca samples (ACnE_Helper), per-
formance declines significantly due to gradient sig-
nal dilution from other training data.

5 Conclusion

Our study proposes AC-RS method. The AC stage
eliminates attention traps in training data through
data restructuring. The RS stage addresses perfor-
mance degradation by training models with self-
generated outputs. Experimental results demon-
strate that our 7B model trained with AC-RS
achieves superior performance on LiveCodeBench.
Notably, it matches the Code Execution accuracy
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of 32B parameter model and performs comparably
to GPT-4o.

6 Limitations

While AC-RS effectively eliminate attention traps
in Code Execution training data, two limitations
persist: First, our validation remains constrained
by the scarcity of high-quality open-source code
instruction data and computational resource limi-
tations. Second, AC-RS specifically targets Code
Execution tasks. Systematically identifying diverse
attention traps across massive training data and de-
veloping universal solutions remains an unresolved
research challenge.
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A Examples for attention trap

Figure 4 and Figure 5 compare attention weight dis-
tributions between the LC-Base model and AC-RS
model. The attention values represent the aver-
age attention across all heads in the final layer of
the model. We specifically focused on the final
layer because it better captures long-range atten-
tion dependencies. The LC-Base model demon-
strates clear attention trap patterns when process-
ing LeetCode training data. During output learning,
the model disproportionately focuses on reference
answers in input queries rather than problem de-
scriptions or code logic. Visual analysis reveals
two dominant attention patterns in the LC-Base
model: (1) Strong focus on sequence-initial to-
kens (2) Heightened attention to recent colon sym-
bols (:) and space character. Beyond these com-
mon high-attention elements, tokens corresponding
to example answers in queries receive maximum
attention weights, followed by other example an-
swers and their explanatory components. The AC
method eliminates this trap through targeted train-
ing data modifications. These modifications enable
proper attention allocation to critical elements like
problem statements, input parameters, and program
code. This improvement allows effective capture

of abstract reasoning patterns in Code Execution
tasks. The approach better utilizes the performance
potential inherent in training data.
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Figure 4: Attention weights of the LC-Base model trapped in attention traps.
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Figure 5: Attention weights of AC-RS on training data.
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B Qwen2.5-Coder-7B-Instruct Prediction
Example

Figure 6: Generation result of Qwen2.5-Coder-7B-
Instruct on the example illustrated in Figure 4.

C AC-RS Method Pseudocode

Algorithm 1 AC-RS Algorithm

Require: LeetCode queries QL, Pre-trained in-
struct model Θ

Ensure: Prediction model ΘAC-RS

// Training LC-Base
1: RInst ← GENERATERESPONSES(Θ,QL)
2: R̃Inst ← FILTERBYEXECUTION(RInst)
3: ΘLC-Base ← FINETUNE(Θ,QL, R̃Inst)

// AC (Attention Cracking) Stage
4: QF ← APPENDTEXT(QL, "Please give all

the examples in the answer.")
5: RLC-Base ← GENERATERESPONSES

(ΘLC-Base,QF)
6: R̃LC-Base ← FILTERBYEXAMPLENUM

&EXECUTION(RLC-Base,QF)
7: QAC ← Remove target outputs from exam-

ples in QL (i.e., "Output: 5" and "Output: 8"
in Figure 1)

8: ΘAC ← FINETUNE(Θ,QAC, R̃LC-Base)

// RS (Rejection Sampling) Stage
9: RAC ← GENERATERESPONSES(ΘAC,

QAC)
10: R̃AC ← FILTERBYEXAMPLENUM

&EXECUTION(RAC,QAC)
11: ΘAC-RS ← FINETUNE(Θ,QAC, R̃AC)
12: return ΘAC-RS

function FILTERBYEXAMPLENUM

&EXECUTION(R,Q)
13: return Filtered responses with same exam-

ples as Q, prioritizing test-passing ones
end function

D Experiment Settings

LiveCodeBench Version LiveCodeBench serves
as a continuously updated benchmark where each
category of tasks contains multiple versions. To en-
sure clear experimental variables and reproducibil-
ity, we specify the exact versions and sample in-
formation used. For Code Generation tasks, we
employ the latest version v3 available at experi-
ment initiation, containing 612 test samples from
May 1, 2023 to September 1, 2024. Self Repair
tasks rely on error outputs from Code Generation
tasks, but their test sets differ in this study. This
occurs because the Self Repair test set only updated
to version v1 during our experiments, containing
400 test samples from May 1, 2023 to April 1,
2024. Test Output Prediction uses version v1 with
442 samples from May 1, 2023 to April 1, 2024.
Code Execution employs version v2 containing
479 test samples from May 1, 2023 to December
1, 2023. We note that LiveCodeBench leaderboard
data changes cause slight sample count mismatches
within identical time ranges. For example, the Self
Repair tasks actually contain 439 samples (May
1, 2023 to April 1, 2024) on the leaderboard, ex-
ceeding our reported 400 samples. This difference
stems from subsequent updates adding 39 new sam-
ples from March 1, 2024 to April 1, 2024.

Hyperparameter Settings We maintain con-
sistent parameter configurations for both model
training and inference. The training process uses
full-parameter bf16 precision mode with sequence
length 4096 and batch size 32. To optimize memory
usage, we enable Deepspeed framework’s O2 opti-
mization level. This configuration allows complete
training on a server with 4 NVIDIA A800 80G
GPUs. Models undergo 5 full training epochs with
initial learning rate 1 ∗ 10−5 using a cosine learn-
ing rate scheduler. During inference, we follow
LiveCodeBench’s standard test script configuration:
topp=0.95 and temperature=0.2. For cost control,
we request single outputs from GPT-4o during data
collection. For local models performing Rejection
Sampling, we consistently execute 20 output pre-
dictions with topp=0.8 and temperature=0.95 to
ensure sampled data quality. In addition, we incor-
porated 30 extra samples with the same format as
test data to ensure instruction following.
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