
Findings of the Association for Computational Linguistics: EMNLP 2025, pages 1092–1110
November 4-9, 2025 ©2025 Association for Computational Linguistics

SPFT-SQL: Enhancing Large Language Model for Text-to-SQL Parsing by
Self-Play Fine-Tuning

Yuhao Zhang1,3, Shaoming Duan†2, Jinhang Su1, Chuanyi Liu†1,2,
Peiyi Han1,2,

1Harbin Institute of Technology, Shenzhen, 2Pengcheng Laboratory,
3Mindflow.ai,

Correspondence: shaomingduan@gmail.com, liuchuanyi@hit.edu.cn

Abstract

Despite the significant advancements of self-
play fine-tuning (SPIN), which can transform a
weak large language model (LLM) into a strong
one through competitive interactions between
models of varying capabilities, it still faces chal-
lenges in the Text-to-SQL task. SPIN does not
generate new information, and the large num-
ber of correct SQL queries produced by the
opponent model during self-play reduces the
main model’s ability to generate accurate SQL
queries. To address this challenge, we propose
a new self-play fine-tuning method tailored for
the Text-to-SQL task, called SPFT-SQL. Prior
to self-play, we introduce a verification-based
iterative fine-tuning approach, which synthe-
sizes high-quality fine-tuning data iteratively
based on the database schema and validation
feedback to enhance model performance, while
building a model base with varying capabili-
ties. During the self-play fine-tuning phase,
we propose an error-driven loss method that in-
centivizes incorrect outputs from the opponent
model, enabling the main model to distinguish
between correct SQL and erroneous SQL gener-
ated by the opponent model, thereby improving
its ability to generate correct SQL. Extensive
experiments and in-depth analyses on six open-
source LLMs and five widely used benchmarks
demonstrate that our approach outperforms ex-
isting state-of-the-art (SOTA) methods.

1 Introduction

Text-to-SQL (Qin et al., 2022; Li et al., 2024b) aims
to automatically convert natural language questions
into SQL queries, enabling non-expert users to eas-
ily retrieve information from databases. Recent
studies (Sun et al., 2024; Li et al., 2024a; Pour-
reza and Rafiei, 2024b) have demonstrated that
supervised fine-tuning (SFT) (Ouyang et al., 2022)

† Corresponding authors

70

75

80

85

A
cc

ur
ac

y
(%

)

79.0

81.5

83.5 83.5 83.7 83.7

87.4

SPIDER-Test

30

35

40

45

50

55

60

34.8

51.5 51.8

54.4
55.9

57.2

61.0

BIRD-Dev

SPIN
Qwen2.5 Coder-7B

CodeS-7B
SENSE-7B

ROUTE-7B
SFT

SPFT-SQL-7B

Figure 1: Comparison results on the Spider (Yu et al.,
2018) and BIRD(Li et al., 2024b) dataset, the base
model of SFT, SPIN (Chen et al., 2024b), and SPFT-
SQL is Qwen2.5-Coder 7B.

can significantly enhance performance on Text-to-
SQL tasks by transforming a general-purpose open-
source LLM into a specialized one. Additionally,
SFT-based approaches have gained widespread re-
search attention due to their potential to address
privacy risks and reduce overhead associated with
closed-source LLMs (e.g., GPT-4 (Achiam et al.,
2023)) (Gao et al., 2024a; Pourreza and Rafiei,
2024a; Lee et al., 2024). However, a major chal-
lenge for SFT-based methods is the high cost of ac-
quiring Text-to-SQL data, which typically requires
manual expert annotation.

To address this issue, recent efforts (Yang et al.,
2024; Li et al., 2024a; Zhang et al., 2024b) have
proposed data synthesis strategies for generating
Text-to-SQL data and fine-tuning open-source mod-
els, yielding significant performance improvements
(see Figure 1). However, these methods still rely on
closed-source LLMs, such as GPT-3.5/4 (Achiam
et al., 2023), for data synthesis, raising privacy
concerns. In response, ROUTE (Qin et al., 2025)
introduced a method for synthesizing fine-tuning
data for tasks like Text-to-SQL and Schema Link-
ing using open-source models, improving model
generalization through multi-task supervised fine-

1092

mailto:email@domain

tuning and achieving a new state-of-the-art (SOTA)
performance. However, the limited generation ca-
pacity of open-source models restricts the quality
of synthetic data, which in turn limits model per-
formance.

An alternative approach involves iteratively syn-
thesizing data through self-play fine-tuning (SPIN)
(Chen et al., 2024b; Cheng et al., 2025; Wu et al.,
2024) to transform a weak LLM into a stronger one.
Self-play, which has been successfully applied in
domains such as reasoning (Cheng et al., 2025),
AlphaGo (Silver et al., 2016), and AlphaZero (Sil-
ver et al., 2017), enables models to compete with
themselves at various stages, enhancing both per-
formance and data synthesis capabilities while over-
coming the limitations of open-source model gen-
eration. In the context of the Text-to-SQL task,
the only prior work (Liu et al., 2022) applied self-
play to multi-turn Text-to-SQL, generating multiple
rounds of intermediate questions and answers for
data augmentation. While this method improved
performance in multi-turn tasks, it is not applica-
ble to single-turn Text-to-SQL, as it only generates
intermediate data based on existing annotated pairs.

This motivates us to conduct a thorough evalua-
tion of SPIN in the Text-to-SQL task, assessing its
potential as an alternative approach. As shown in
Figure 1, applying the existing SPIN method (Chen
et al., 2024b) to Text-to-SQL results in a significant
performance drop, which is much lower than that
of SFT-based methods utilizing existing data syn-
thesis techniques (Qin et al., 2025; Li et al., 2024a;
Yang et al., 2024). A subsequent analysis of failure
cases reveals two key challenges for SPIN in the
Text-to-SQL domain. First, SPIN only synthesizes
SQL queries from existing natural language ques-
tions, without generating new information. This
limitation restricts the model’s ability to improve,
and repeated training leads to overfitting. Second,
the self-play mechanism in SPIN treats all data gen-
erated by the opponent model as incorrect, which
results in many valid SQL queries being discarded
as erroneous, thus hindering the model’s ability to
learn from errors.

To address these challenges, we propose a self-
play fine-tuning method for Text-to-SQL tasks,
called SPFT-SQL. Specifically, prior to self-play,
we introduce a verification-based iterative super-
vised fine-tuning approach that iteratively synthe-
sizes high-quality data for fine-tuning the LLM.
This method randomly selects schemas (e.g., tables
and columns) from the database and combines them

with SQL templates to generate executable SQL
queries. Corresponding natural language questions
(NLQs) are then synthesized using a SQL-to-Text
model. The synthesized NLQ-SQL pairs are used
to fine-tune the Text-to-SQL model, enhancing
its performance. The SQL-to-Text model is sub-
sequently updated with the synthesized data that
passes a verification strategy. During self-play fine-
tuning, the strongest model from the previous stage
serves as the main model, while the weakest model
acts as the opponent. We introduce an error-driven
loss function that penalizes correct SQL queries
generated by the opponent model and incentivizes
the generation of incorrect queries. This mecha-
nism enables the main model to better distinguish
between correct and incorrect results, thus improv-
ing its ability to generate correct SQL queries. In
the next iteration, the newly acquired main model
is incorporated into the next round of supervised
fine-tuning.

The main contributions of this work are as fol-
lows:

• We first evaluated the performance of the
SPIN method on the Text-to-SQL task and
found that the existing SPIN method per-
forms poorly in this context. This prompted
us to propose a new self-play fine-tuning
method specifically designed for the Text-to-
SQL task.

• We propose a verification-based iterative fine-
tuning framework that synthesizes data itera-
tively based on the database schema and im-
proves data quality through verification feed-
back, thereby continuously enhancing model
performance.

• We introduce an error-driven loss that penal-
izes the generation of incorrect outputs by
the opponent model during the self-play fine-
tuning phase. This enables the main model
to distinguish between correct SQL and erro-
neous SQL generated by the opponent model,
ultimately improving the main model’s ability
to generate accurate SQL queries.

• Extensive experiments on five datasets and six
open-source LLMs of varying types and pa-
rameter sizes. The results demonstrate that
our approach not only effectively improves
model performance but also outperforms other
SOTA methods based on open-source mod-
els. Furthermore, after fine-tuning with our

1093

Right
Case

Error
Case

Text-to-SQL Data Synthesis

Stage 1: Verification-based Iterative Fine-Tuning Stage 2: Self-Play Fine-Tuning

SFT Text-to-SQL
LLM

Database

SFT SQL-to-Text
LLM

Schema

SQL Template

SQL Synthesis NLQ
Generation

Opponent LLM Main LLM

Candidate Text-to-SQL LLMs

StrongestWeakest

Error-Driven
Self-Play Fine-TuningEvaluation

Feedback

Schema Processing

Figure 2: An overview of SPFT-SQL framework.

method, small-parameter open-source models
outperform methods based on large-parameter,
closed-source LLM.

2 Related Works

Self-Play Fine-Tuning Self-play (Zhang et al.,
2024a; DiGiovanni and Zell, 2021), where the al-
gorithm learns by competing against itself, has
gained significant attention due to its success in
AlphaGo (Silver et al., 2016) and AlphaZero (Sil-
ver et al., 2017). To transform a weak LLM into a
stronger one, existing studies (Chen et al., 2024b;
Alami et al., 2024; Yin et al., 2024; Wu et al., 2025)
have proposed introducing self-play mechanisms
into LLMs without requiring additional human-
annotated data. In the text-to-SQL task, there is
only one prior work (Liu et al., 2022) that applies
self-play to text-to-SQL. However, this method
only uses self-play to generate multiple rounds of
intermediate data based on existing annotated data,
which makes it inapplicable to single-turn text-to-
SQL tasks. In contrast to previous studies, our
SPFT-SQL introduces self-play fine-tuning into the
text-to-SQL task by iteratively synthesizing new
text-to-SQL pairs for data augmentation. Further-
more, we propose an error-incentive loss that en-
courages the generation of erroneous outputs by
the opponent model, thereby enhancing the main
model’s ability to generate correct SQL queries.

SFT-based Text-to-SQL To improve the perfor-
mance of open-source LLMs on text-to-SQL tasks,
existing research (Sun et al., 2024; Chen et al.,
2024a; Pourreza and Rafiei, 2024b) has applied su-
pervised fine-tuning on annotated data. However,
a key challenge remains the high cost of human-

annotated data. To reduce this cost, some efforts
(Li et al., 2024a; Yang et al., 2024) have employed
various data synthesis strategies, using LLMs to
generate data for fine-tuning. However, these meth-
ods rely on the general capabilities of closed-source
LLMs, such as GPT-4, which raises privacy con-
cerns. To address this issue, Route (Qin et al., 2025)
proposed a data augmentation approach to improve
generalization using open-source LLMs. In con-
trast to previous work, our SPFT-SQL method it-
eratively synthesizes high-quality data through the
self-play mechanism.

3 Methodology

The SPFT-SQL framework consists of two stages:
Verification-Based Iterative Fine-Tuning and Self-
Play Fine-Tuning, as illustrated in Figure 2. In the
first stage, verification-based iterative fine-tuning
continuously generates high-quality data for fine-
tuning, producing various candidate text-to-SQL
models for the subsequent self-play phase. During
self-play fine-tuning, the strongest model from the
previous stage serves as the main model, while the
weakest model functions as the opponent. Using
the proposed error-driven loss, self-play fine-tuning
is applied between the opponent model and the
main model to enhance the main model’s ability
to generate correct SQL queries from a NLQ. This
process is iterated until the model converges.

3.1 Verification-Based Iterative Fine-Tuning

Verification-based iterative fine-tuning generates
high-quality data and diverse candidate models for
self-play. As shown in Figure 2, synthetic data fine-
tunes the Text-to-SQL model, which then verifies
validation data. Verified samples improve the SQL-

1094

to-Text model, while failed cases provide templates
for the next iteration, jointly enhancing data quality
and model performance.

3.1.1 Text-to-SQL Data Synthesis

The Text-to-SQL fine-tuning data synthesis process
begins by generating the SQL query, followed by
the synthesis of the corresponding NLQ.

SQL Synthesis To generate new SQL queries
based on training data schemas, we employ a
template-based approach as outlined by (Hu et al.,
2023). First, a pool of SQL templates is created
by normalizing schema-related mentions (columns
and values) and removing JOIN phrases. A tem-
plate is then sampled according to the training dis-
tribution, and tables and columns are selected with
constraints to fill the normalized slots within the
template.

To accurately extract the SQL template while
preserving key relationships, we leverage the gen-
eral understanding capabilities of the LLM. The
prompt used for this extraction is defined in Ap-
pendix A.1. The final template maintains the query
structure and data types, allowing it to adapt to
various query scenarios. By omitting the FROM
and JOIN clauses, the template becomes indepen-
dent of specific table names, yet it retains essential
query structures (e.g., SELECT, WHERE, GROUP BY,
HAVING) to ensure consistency. Foreign key rela-
tionships are denoted using a special format (e.g.,
col_number_key_fk).

Once the template is generated, the method takes
as input the database d and the SQL template
t = (q, c, v), where t consists of the query struc-
ture q, the set of columns c, and the set of values
v. For columns c1 to cm in the template, a col-
umn is randomly selected and replaced from those
that match the data types in the database. Dur-
ing the column selection process, if a column z
comes from an already selected table, it is assigned
a weight p = 1; otherwise, the weight is adjusted
based on schema distance and accumulated through
iterations, ensuring that the final column selection
adheres to database schema consistency. After fill-
ing in the columns, corresponding values v1 to vn
are retrieved and randomly filled from the database.
This process leverages the database schema infor-
mation to ensure that both column selection and
value filling respect logical constraints and data
type matching, thereby generating structurally con-
sistent and logically sound SQL statements.

NLQ Synthesis To ensure that the synthesized
NLQ aligns with the intent of the SQL query, we
iteratively fine-tune a SQL-to-Text model to gener-
ate the corresponding NLQ based on a given SQL
query. The fine-tuning SQL-NLQ pairs are derived
from the correct data synthesized in the previous
iteration. As self-play progresses, the model’s per-
formance improves, leading to higher-quality syn-
thetic data and, in turn, enhanced performance of
the SQL-to-Text model.

3.1.2 Schema Processing and SFT
To effectively utilize the Text-to-SQL synthetic
data for fine-tuning LLMs, we address the chal-
lenge of capturing implicit patterns between
database schemas and NLQs, which is complicated
by the complexity of database structures. Inspired
by (Li et al., 2024a), we introduce schema process-
ing during SFT, employing three strategies: Struc-
tured Schema Extraction, Context-Aware Value
Matching, and Database Metadata Augmentation.

Structured Schema Extraction filters irrelevant
information by selecting the most relevant tables
and columns, improving the model’s focus on the
database structure. Context-Aware Value Matching
enhances the query-database association by align-
ing query columns with their corresponding val-
ues, ensuring more accurate SQL conditions. Fi-
nally, Database Metadata Augmentation incorpo-
rates metadata such as key relationships, data types,
and annotations, providing richer context for un-
derstanding table relationships and field semantics.
These strategies work together to progressively en-
hance the model’s SQL generation capabilities.

3.1.3 Evaluation Feedback
The fine-tuned Text-to-SQL model is evaluated on
the synthesized validation set Dval using an SQL
executor E, and samples are classified based on
execution results:

{
y+ = y′, if E(y′) = E(y)

y− = y′, if E(y′) ̸= E(y)
(1)

where y′ represents the generated results of the
fine-tuned Text-to-SQL model on Dval, while y
refers to the ground truth SQL in Dval. To enhance
the generalization ability of SQL-to-Text, y+ is
used as training data for the next iteration. This
serves as positive feedback, boosting the model’s
ability to generate diverse question-answer pairs.
For incorrect samples (y−), the SQL templates

1095

from these queries are selected for the next itera-
tion to generate new SQL-question pairs, allowing
the model to correct errors. By combining these
two strategies, a collaborative optimization mech-
anism is established, progressively reducing the
proportion of incorrect samples while improving
the quality of the training data. As the iterative fine-
tuning continues, both the quantity and diversity of
synthetic data increase, leading to improved model
performance.

3.2 Self-Play Fine-Tuning
Based on the evaluation accuracy on the synthetic
validation data Dval, the model with the highest ac-
curacy is selected as the main model pθm , and the
model with the lowest accuracy is chosen as the op-
ponent model pθo . The self-play fine-tuning aims
to train the main model to distinguish between cor-
rect and incorrect SQL generated by the opponent,
thereby enhancing its ability to generate accurate
SQL, as outlined in Algorithm 1. To achieve this,
we propose an error-driven loss function that pe-
nalizes incorrect SQL generated by the opponent,
using a defined reward signal:

R(y′, x) =
{
1, if E(y′) ̸= E(y)

0, if E(y′) = E(y)
(2)

Based on this reward signal, we formulate the
error-driven loss as:

LSelf-Play = E
[
ℓ

(
λR(y′, x) ∗ log pθm(y+|x)

pθo(y+|x)

− λR(y′, x) ∗ log pθm(y−|x)
pθo(y−|x)

)]
(3)

where x is the natural language question, λ is the
regularization parameter, and ℓ represents a convex
and decreasing loss function, for which we adopt
the logistic loss function following SPIN.

This loss function reinforces the main model’s
ability to generate correct SQL by comparing the
weighted probability differences between pθm and
pθo for correct SQL (y+) and incorrect SQL (y−),
modulated by the reward signal R(y′, x) and regu-
larization parameter λ. The first term encourages
the main model to assign higher probability to cor-
rect SQL than the opponent model. The second
term penalizes the main model for behaving simi-
larly to the opponent model on incorrect SQL. This
approach enables the main model to learn and avoid
the error patterns exhibited by the opponent model
in SQL generation.

Algorithm 1 Self-Play Fine-Tuning

Input: Candidate model set M =
{pθ0 , pθ1 , ..., pθn}, validation dataset Dval,
preference scaling β, max iterations T
Output: Optimized model pθm
for t = 1 to T do

Model Selection:
pθm = argmaxpθ∈M Acc(pθ,Dval)
pθo = argminpθ∈M Acc(pθ,Dval)
Preference Data Generation:
Use pθo to generate pairs (y+, y−) on Dval

Model Optimization:
Update pθm using Equation (3)
Add optimized pθm toM

end for
Return: pθm

Compared with Direct Preference Optimization
(DPO) (Rafailov et al., 2024), which defines an im-
plicit reward r∗(x, y) = β log πθ(y|x)

πref(y|x) based on the
Bradley-Terry model, our method provides clearer
and more actionable optimization signals. DPO
estimates the relative advantage of a policy over a
fixed reference model, but its reward vanishes when
their outputs are similar—a common scenario in
Text-to-SQL tasks due to semantically equivalent
SQL queries—thus limiting learning. In contrast,
our execution-based reward R(y′, x) directly penal-
izes incorrect outputs, encouraging effective error
correction. Additionally, DPO adopts a single-step
training paradigm with a static reference, restrict-
ing its adaptability. Our method introduces an it-
erative self-play strategy with a dynamically up-
dated opponent, continuously increasing the train-
ing challenge. This progressive optimization drives
the main policy toward the optimal distribution,
mitigating local optima and enhancing robustness.
More details refer to Appendix A.2 and A.3.

4 Experiments

4.1 Experiment Setup

Benchmarks To evaluate the effectiveness of
our approach, we conduct experiments on five
Text-to-SQL benchmarks, including the widely
used cross-domain datasets SPIDER (Yu et al.,
2018) and BIRD (Li et al., 2024b), along with
three SPIDER-derived versions: SPIDER-SYN
(Gan et al., 2021a), SPIDER-Realistic (Deng
et al., 2021), and SPIDER-DK (Gan et al.,
2021b).SPIDER contains 7,000 training samples,

1096

SPIDER BIRD SPIDER-Variants

Methods Dev Test Dev Syn Realistic DK

EX TS EX EX VES EX TS EX TS EX

Prompting Closed-Source LLMs(As a reference)
GPT-4 (Achiam et al., 2023) 72.9 64.9 76.1 46.4 49.8 64.0 54.7 65.7 54.9 59.3
DIN-SQL + GPT4 (Pourreza and Rafiei, 2024a) 82.8 74.2 85.3 50.7 58.8 68.3 61.9 71.3 64.8 66.7
MAC-SQL + GPT4 (Wang et al., 2025) 86.8 - 82.8 59.4 66.2 72.5 61.5 79.9 65.4 71.4
DAIL-SQL + GPT4 (Gao et al., 2024a) 83.5 76.2 86.6 54.8 56.1 68.7 60.7 77.2 68.5 66.5
MCS-SQL + GPT4 (Lee et al., 2024) 89.5 - 89.6 63.4 64.8 - - - - -

Fine-Tuning Open-Source LLMs(1.5B)
Qwen2.5 Coder-1.5B (Hui et al., 2024) 72.4 62.5 72.3 40.6 43.3 55.7 45.4 60.4 46.5 62.0
SFT + Qwen2.5 Coder-1.5B (Hui et al., 2024) 76.8 70.2 78.0 44.3 45.6 59.0 51.6 64.8 56.3 60.9
SFT + CodeS-1B (Li et al., 2024a) 77.9 72.2 - 50.4 51.0 66.5 59.3 70.9 61.8 64.7
SPIN + Qwen2.5 Coder-1.5B (Chen et al., 2024b) 67.6 60.5 68.5 21.0 22.1 55.0 46.4 57.2 45.5 54.0
SPFT-SQL + Qwen2.5 Coder-1.5B 79.7 73.5 82.3 54.0 59.9 66.7 59.4 75.4 67.3 67.3

Fine-Tuning Open-Source LLMs(7B)
Llama3-8B (Touvron et al., 2023) 72.3 63.9 69.6 39.2 43.3 60.3 51.2 62.0 50.4 57.4
Deepseek-7B (Guo et al., 2024) 67.0 57.7 69.4 40.1 44.5 55.3 46.0 57.7 45.9 55.3
Qwen2.5 Coder-7B (Hui et al., 2024) 83.5 79.2 81.5 51.5 55.3 69.8 64.2 75.4 70.9 68.0
SFT + Llama3-8B (Touvron et al., 2023) 79.5 73.6 80.9 51.8 55.3 66.4 60.1 71.1 62.8 61.7
SFT + Deepseek-7B (Guo et al., 2024) 78.6 71.9 81.5 53.9 57.1 64.8 57.5 69.3 61.4 60.7
SFT + Qwen2.5 Coder-7B (Hui et al., 2024) 82.9 79.0 83.7 54.4 56.1 68.3 62.3 75.2 69.5 66.5
SENSE-7B (Yang et al., 2024) 83.2 81.7 83.5 51.8 - 72.6 64.9 82.7 75.6 77.9
DTS-SQL-7B (Pourreza and Rafiei, 2024b) 85.5 - 84.4 55.8 60.3 - - - - -
SFT + CodeS-7B (Li et al., 2024a) 85.4 80.3 83.5 57.2 58.8 76.9 70.0 82.9 77.2 72.0
ROUTE + Llama3-8B (Qin et al., 2025) 86.0 80.3 83.9 57.3 60.1 77.4 70.2 80.9 72.6 74.6
ROUTE + Qwen2.5-7B (Qin et al., 2025) 83.6 77.5 83.7 55.9 57.4 - - - - -
SPIN + Deepseek-7B (Chen et al., 2024b) 61.8 51.5 63.9 27.0 29.1 45.6 35.8 52.2 37.6 48.2
SPIN + Llama3-8B (Chen et al., 2024b) 79.8 73.6 80.2 32.4 37.3 66.8 60.2 69.3 60.0 61.9
SPIN + Qwen2.5 Coder-7B (Chen et al., 2024b) 78.0 73.1 79.0 34.8 37.7 71.2 57.5 63.6 65.9 61.8
SPFT-SQL + Llama3-8B 83.0 75.4 86.4 60.6 65.4 76.1 69.1 85.0 77.6 74.2
SPFT-SQL + Deepseek-7B 82.3 78.0 86.0 58.3 64.0 76.5 70.0 80.3 74.8 72.5
SPFT-SQL + Qwen2.5 Coder-7B 87.2 81.3 87.4 61.0 67.0 75.1 67.6 83.3 75.6 75.5

Fine-Tuning Open-Source LLMs(14B)
Qwen2.5 Coder-14B (Hui et al., 2024) 83.8 78.0 84.9 58.0 62.8 74.3 66.8 76.4 69.1 69.7
SFT + Qwen2.5 Coder-14B (Hui et al., 2024) 84.8 79.6 84.4 58.5 63.9 68.4 62.1 74.4 66.7 70.3
SENSE-13B (Yang et al., 2024) 84.1 83.5 86.6 55.5 - 77.6 70.2 84.1 76.6 80.2
SFT + CodeS-15B (Li et al., 2024a) 84.9 79.4 85.0 58.5 56.7 77.0 67.4 83.1 75.6 70.7
ROUTE + Qwen2.5-14B (Qin et al., 2025) 87.3 80.9 87.1 60.9 65.2 - - - - -
SPIN + Qwen2.5 Coder-14B (Chen et al., 2024b) 82.3 76.9 81.4 36.8 41.2 72.8 62.0 68.1 66.1 67.8
SPFT-SQL + Qwen2.5 Coder-14B 87.7 81.9 89.0 63.6 68.9 78.4 71.3 84.6 77.6 77.0

Fine-Tuning Open-Source LLMs(32B)
Qwen2.5 Coder-32B (Hui et al., 2024) 79.6 73.9 82.3 58.1 61.7 73.7 67.6 75.6 68.3 71.0
SFT + Qwen2.5 Coder-32B (Hui et al., 2024) 85.2 79.5 86.4 61.2 66.6 77.2 71.1 76.0 70.1 72.5
OmniSQL-32B (Li et al., 2025) 80.9 - 87.6 64.5 - 69.7 - 78.1 - 76.1
SPIN + Qwen2.5 Coder-32B (Chen et al., 2024b) 79.2 72.8 80.8 40.1 44.3 72.9 64.2 67.5 64.1 69.3
SPFT-SQL + Qwen2.5 Coder-32B 87.8 83.2 89.1 65.2 70.5 81.7 72.3 86.2 76.8 75.5

Table 1: Performance of different methods on SPIDER, BIRD, and SPIDER-variants Datasets.

1,034 development samples, and 2,147 test sam-
ples, covering 206 databases across 138 do-
mains.BIRD introduces more complex domain-
specific queries, comprising 12,751 question-
SQL pairs from 37 domains, including finance,
healthcare, and education.SPIDER-SYN augments
20 SPIDER validation databases via synonym
substitution,SPIDER-Realistic generates natural
questions from 19 databases for realism, and
SPIDER-DK introduces 535 knowledge-intensive

queries over six databases to enhance domain rea-
soning.More experimental designs can be found in
the Appendix A.4.

Evaluation Metrics We evaluate model perfor-
mance using execution accuracy (EX)(Yu et al.,
2018) and test-suite accuracy (TS)(Zhong et al.,
2020) on SPIDER and its variants. EX measures
if the generated SQL matches the gold SQL ex-
ecution, while TS verifies its performance across
multiple test cases with database augmentation. For

1097

BIRD, following its official settings, we report EX
and Valid Efficiency Score (VES)(Li et al., 2024b),
which measures SQL execution efficiency.

Models We evaluate the generalizability of our
method using six open-source LLMs, includ-
ing Llama3-8B-Instruct (Touvron et al., 2023),
Deepseek-Coder-7B-Instruct (Guo et al., 2024),
and Qwen2.5-Coder (Hui et al., 2024) in sizes 1.5B,
7B, 14B, and 32B.

Baselines We compare SPFT-SQL with a broad
range of baselines, including both closed-source
and open-source methods.Closed-source baselines
include direct prompting with GPT-4 (Achiam
et al., 2023), as well as enhanced prompting tech-
niques such as DIN-SQL (Pourreza and Rafiei,
2024a), MAC-SQL (Wang et al., 2025), DAIL-
SQL (Gao et al., 2024a), and MCS-SQL (Lee et al.,
2024). For the open-source LLM baselines, we
use the six LLMs mentioned earlier in a zero-shot
setting. The fine-tuning-based baselines are repre-
sented by specialized LLMs, including CodeS (Li
et al., 2024a), ROUTE (Qin et al., 2025), DTS-SQL
(Pourreza and Rafiei, 2024b), SENSE (Yang et al.,
2024), OmniSQL (Li et al., 2025), as well as the six
base LLMs fine-tuned on five training sets using
the Llama-Factory (Zheng et al., 2024) framework.
Finally, for the self-play-based methods, we com-
pare with SPIN (Chen et al., 2024b). For fairness,
we reproduce several baselines using open-source
repositories and conduct rigorous evaluations.

4.2 Comparison Results
Table 1 presents the performance of our method
and baselines across various datasets, including the
SPIDER development and test sets, BIRD devel-
opment set, SPIDER-SYN, SPIDER-Realistic, and
SPIDER-DK. Due to time constraints, we were
unable to provide results for our SPFT-SQL on
the BIRD test set. In nearly all cases, our SPFT-
SQL achieves the best performance. From the
results, it is evident that fine-tuning-based meth-
ods significantly improve the performance of open-
source LLMs. Notably, specialized LLMs (e.g.,
ROUTE, SENSE, CodeS) fine-tuned on synthetic
data outperform those fine-tuned on the original
training set but still do not match the performance
of closed-source LLMs (e.g., GPT-4). This indi-
cates that the quality of synthetic data remains a
limiting factor. The accuracy of the existing self-
play method, SPIN, is not only lower than fine-
tuning-based methods but also below that of the

1 2 3 4 5 6
Iterations

70

75

80

85

Ex
ec

ut
io

n
A

cc
.(%

)

76.9
78.0

76.7
75.3

76.9
75.5

85.5 86.1 86.4 86.6 87.0 87.2

(a) SPIDER-Dev

SPIN
SPFT-SQL

1 2 3 4 5 6
Iterations

10

20

30

40

50

60

Ex
ec

ut
io

n
A

cc
.(%

)

34.8 34.5 32.5 32.2 30.9 31.9

60.0 60.1 60.2 60.3 61.0 60.3

(b) BIRD-Dev

SPIN
SPFT-SQL

Figure 3: Comparison of Different Iteration

original model. This is due to SPIN’s failure to
generate new data for the text-to-SQL task, leading
to overfitting from repeated fine-tuning. In contrast,
our SPFT-SQL iteratively synthesizes new data dur-
ing fine-tuning and enhances data quality through a
verification feedback mechanism, thereby improv-
ing model performance. As a result, our method
not only improves the performance of self-play on
text-to-SQL tasks but also surpasses specialized
LLMs fine-tuned on synthetic data. Particularly
on the SPIDER test set, our SPFT-SQL outper-
forms several existing prompting-based methods
(e.g., MAC-SQL), achieving an EX score of 89.1%,
significantly narrowing the gap with GPT-4-based
methods.We also present results of our method un-
der different hardness (Appendix A.5), with larger
model sizes (Appendix A.8), and across more com-
parison settings (Appendix A.9 and A.11).

4.3 Parameter Study
Figure 3 shows the performance of SPIN and
SPFT-SQL across different iteration rounds on the
SPIDER and BIRD development sets, using the
Qwen2.5 Coder-7B model as the base model. Our
findings reveal that as the number of training it-
erations increases, the accuracy of SPIN continu-
ously decreases, indicating that SPIN suffers from
overfitting with more iterations. In contrast, our
method shows a steady improvement in accuracy
as iterations progress, suggesting that it continues
to generate high-quality data, enhancing model per-
formance and gradually converging. Detailed ex-
perimental results can be found in Appendix A.6.

4.4 Synthetic Data Study
Synthetic Data Quantity As shown in Figure
4, we evaluated the impact of varying amounts of
synthetic data on model performance at each round
during the Verification-Based Iterative Fine-Tuning
phase, using the Qwen2.5 Coder-7B model. The
results indicate that generating 3,000 data records
yields the best performance. This suggests that

1098

0 1000 3000 5000 7000 10000
80

85

90

81.5

86.9 87.4 86.7 86.6 86.5

SPIDER-Test

0 1000 3000 5000 7000 10000
50

55

60

A
cc

ur
ac

y
(%

)

51.5

59.3
61.0 60.5

59.2 59.7

BIRD-Dev

0 1000 3000 5000 7000 10000
Synthetic Data Quantity

70

75

68.0

73.3

75.5
73.8 73.6 72.9

SPIDER-DK

Figure 4: Performance on varing number of synthetic
data each round.

selecting the appropriate amount of synthetic data
during training involves a trade-off: too little data
may result in undertraining, while generating ex-
cessive data could incur unnecessary time costs.

Synthetic Data Quality Figure 5 compares
LLMs fine-tuned with our Verification-Based Itera-
tive Fine-Tuning (VBI-FT) synthetic data against
CodeS, ROUTE, SENSE, and DTS-SQL on SPI-
DER test and BIRD dev sets.The results demon-
strate that SPFT-SQL significantly improves model
performance by synthesizing higher-quality data.
Using the same base model, SPFT-SQL boosts per-
formance by 3.1% and 0.9% on the SPIDER test
set compared to ROUTE and DTS-SQL, and by
4.4% and 2% on the BIRD development set. Com-
pared to SENSE and CodeS, SPFT-SQL shows
notable improvements ranging from 3.3% to 8.4%.
This improvement can be attributed to the fact that
methods like ROUTE and DTS-SQL rely on ba-
sic open-source models for data synthesis, which
limits the quality of generated data due to the mod-
els’ inherent capabilities. In contrast, SPFT-SQL
overcomes these limitations by leveraging an iter-
ative evaluation feedback mechanism, enhancing
the quality of synthetic data and the performance
of the model.Appendix A.10 presents a semantic
consistency analysis of the synthetic data.

4.5 Ablation Study

As shown in Table 2, we conducted an ablation
study on the SPIDER and BIRD datasets using
Qwen2.5 Coder-7B as the base LLM. The results
reveal two key findings. First, Verification-Based

80

82

84

86

88

A
cc

ur
ac

y
(%

)

83.5 83.5 83.7
84.4

85.3

86.8

SPIDER-Test
50

52

54

56

58

60

51.8

55.8 55.9

57.2
57.8

60.3

BIRD-Dev

SENSE-7B
Codes-7B+SFT

ROUTE+Qwen2.5-7B
DTS-SQL+DeepSeek Coder 6.7B

VBI-FT+DeepSeek Coder 6.7B
VBI-FT+Qwen2.5 Coder 7B

Figure 5: Performance of LLMs fine-tuned on synthetic
data generated by SPFT-SQL and baselines.

SPIDER Bird-Dev

Dev-EX Dev-TS Test-EX EX VES

Qwen2.5 Coder-7B 83.5 79.2 81.5 51.5 55.3
SPFT-SQL 87.2 81.3 87.4 61.0 67.0
w/o VBI-FT 83.9 79.3 83.6 54.2 57.5
w/o Self-Play 86.6 80.4 86.8 60.3 65.3

Table 2: The ablation study results on the SPIDER and
the BIRD datasets.

Iterative Fine-Tuning (VBI-FT) improved perfor-
mance by 3.3% to 3.8% in EX on the SPIDER
dataset and by 6.8% on the BIRD dataset, high-
lighting its significance in enhancing core SQL
synthesis abilities. Additionally, the self-play fine-
tuning process resulted in an accuracy boost of
0.6% to 0.8% on both datasets, demonstrating that
self-play enables the model to leverage its intrinsic
capabilities without external supervision. Together,
these findings underscore the effectiveness of both
Verification-Based Iterative Fine-Tuning and self-
play fine-tuning in improving model performance
on text-to-SQL tasks. Additional results for the
SPIDER-variant can be found in Appendix A.7.

5 Conclusion

In this paper, we propose a novel self-play fine-
tuning framework for text-to-SQL tasks, called
SPFT-SQL. SPFT-SQL enhances the capabilities
of open-source models through verification-based
iterative fine-tuning to generate high-quality data
augmentation, while further improving the models’
ability to generate accurate SQL via error-driven
adversarial training in self-play scenarios. Our
work represents the first effective implementation
of the self-play method in text-to-SQL tasks, sig-
nificantly narrowing the performance gap between
open-source and closed-source models. Future re-
search will focus on exploring cross-domain gen-
eralization capabilities and developing efficient ad-
versarial architectures.

1099

Limitations

Although our method has shown promising per-
formance and significant progress across various
aspects, there are several limitations and areas for
further improvement. Firstly, the introduction of
data synthesis and additional evaluation steps in-
evitably introduces some extra computational over-
head during training. Secondly, while our current
data generation and filtering strategies have proven
effective, there is still room for further exploration
in data selection techniques, which may lead to
improvements in the overall quality and relevance
of the generated data.

Acknowledgments

This study is supported by the National Key Re-
search and Development Program of China un-
der Grant 2023YFB3106504, Guangdong Provin-
cial Key Laboratory of Novel Security Intelligence
Technologies under Grant 2022B1212010005,
the China Postdoctoral Science Foundation un-
der Grant Number 2024M751555, the Major
Key Project of PCL under Grant PCL2024A04,
Shenzhen Science and Technology Program
under Grant ZDSYS20210623091809029 and
RCBS20221008093131089.

References
Josh Achiam, Steven Adler, Sandhini Agarwal, Lama

Ahmad, Ilge Akkaya, Florencia Leoni Aleman,
Diogo Almeida, Janko Altenschmidt, Sam Altman,
Shyamal Anadkat, et al. 2023. Gpt-4 technical report.
arXiv preprint arXiv:2303.08774.

Reda Alami, Abdalgader Abubaker, Mastane Achab,
Mohamed El Amine Seddik, and Salem Lahlou. 2024.
Investigating regularization of self-play language
models. arXiv preprint arXiv:2404.04291.

Xiaojun Chen, Tianle Wang, Tianhao Qiu, Jianbin Qin,
and Min Yang. 2024a. Open-sql framework: Enhanc-
ing text-to-sql on open-source large language models.
arXiv preprint arXiv:2405.06674.

Zixiang Chen, Yihe Deng, Huizhuo Yuan, Kaixuan Ji,
and Quanquan Gu. 2024b. Self-play fine-tuning con-
verts weak language models to strong language mod-
els. In Forty-first International Conference on Ma-
chine Learning.

Pengyu Cheng, Tianhao Hu, Han Xu, Zhisong Zhang,
Yong Dai, Lei Han, Xiaolong Li, et al. 2025. Self-
playing adversarial language game enhances llm rea-
soning. Advances in Neural Information Processing
Systems, 37:126515–126543.

Xiang Deng, Ahmed Hassan, Christopher Meek, Olek-
sandr Polozov, Huan Sun, and Matthew Richardson.
2021. Structure-grounded pretraining for text-to-sql.
In Proceedings of the 2021 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
pages 1337–1350.

Anthony DiGiovanni and Ethan C Zell. 2021. Survey of
self-play in reinforcement learning. arXiv preprint
arXiv:2107.02850.

Yujian Gan, Xinyun Chen, Qiuping Huang, Matthew
Purver, John R Woodward, Jinxia Xie, and Peng-
sheng Huang. 2021a. Towards robustness of text-to-
sql models against synonym substitution. In Proceed-
ings of the 59th Annual Meeting of the Association for
Computational Linguistics and the 11th International
Joint Conference on Natural Language Processing
(Volume 1: Long Papers), pages 2505–2515.

Yujian Gan, Xinyun Chen, and Matthew Purver. 2021b.
Exploring underexplored limitations of cross-domain
text-to-sql generalization. In Proceedings of the 2021
Conference on Empirical Methods in Natural Lan-
guage Processing, pages 8926–8931.

Dawei Gao, Haibin Wang, Yaliang Li, Xiuyu Sun,
Yichen Qian, Bolin Ding, and Jingren Zhou. 2024a.
Text-to-sql empowered by large language models: A
benchmark evaluation. Proceedings of the VLDB
Endowment, 17(5):1132–1145.

Yingqi Gao, Yifu Liu, Xiaoxia Li, Xiaorong Shi, Yin
Zhu, Yiming Wang, Shiqi Li, Wei Li, Yuntao Hong,
Zhiling Luo, et al. 2024b. Xiyan-sql: A multi-
generator ensemble framework for text-to-sql. arXiv
preprint arXiv:2411.08599.

Daya Guo, Qihao Zhu, Dejian Yang, Zhenda Xie,
Kai Dong, Wentao Zhang, Guanting Chen, Xiao
Bi, Yu Wu, YK Li, et al. 2024. Deepseek-coder:
When the large language model meets programming–
the rise of code intelligence. arXiv preprint
arXiv:2401.14196.

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan
Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
Weizhu Chen, et al. 2022. Lora: Low-rank adap-
tation of large language models. ICLR, 1(2):3.

Yiqun Hu, Yiyun Zhao, Jiarong Jiang, Wuwei Lan,
Henghui Zhu, Anuj Chauhan, Alexander Hanbo Li,
Lin Pan, Jun Wang, Chung-Wei Hang, et al. 2023.
Importance of synthesizing high-quality data for text-
to-sql parsing. In Findings of the Association for
Computational Linguistics: ACL 2023, pages 1327–
1343.

Binyuan Hui, Jian Yang, Zeyu Cui, Jiaxi Yang, Day-
iheng Liu, Lei Zhang, Tianyu Liu, Jiajun Zhang,
Bowen Yu, Keming Lu, et al. 2024. Qwen2. 5-coder
technical report. arXiv preprint arXiv:2409.12186.

Dongjun Lee, Choongwon Park, Jaehyuk Kim, and
Heesoo Park. 2024. Mcs-sql: Leveraging multiple

1100

https://openreview.net/forum?id=O4cHTxW9BS
https://openreview.net/forum?id=O4cHTxW9BS
https://openreview.net/forum?id=O4cHTxW9BS

prompts and multiple-choice selection for text-to-sql
generation. arXiv preprint arXiv:2405.07467.

Haoyang Li, Shang Wu, Xiaokang Zhang, Xinmei
Huang, Jing Zhang, Fuxin Jiang, Shuai Wang, Tiey-
ing Zhang, Jianjun Chen, Rui Shi, et al. 2025. Om-
nisql: Synthesizing high-quality text-to-sql data at
scale. arXiv preprint arXiv:2503.02240.

Haoyang Li, Jing Zhang, Hanbing Liu, Ju Fan, Xi-
aokang Zhang, Jun Zhu, Renjie Wei, Hongyan Pan,
Cuiping Li, and Hong Chen. 2024a. Codes: Towards
building open-source language models for text-to-sql.
Proceedings of the ACM on Management of Data,
2(3):1–28.

Jinyang Li, Binyuan Hui, Ge Qu, Jiaxi Yang, Binhua
Li, Bowen Li, Bailin Wang, Bowen Qin, Ruiying
Geng, Nan Huo, et al. 2024b. Can llm already serve
as a database interface? a big bench for large-scale
database grounded text-to-sqls. Advances in Neural
Information Processing Systems, 36.

Qi Liu, Zihuiwen Ye, Tao Yu, Phil Blunsom, and Lin-
feng Song. 2022. Augmenting multi-turn text-to-sql
datasets with self-play. In The 2022 Conference on
Empirical Methods in Natural Language Processing.

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida,
Carroll Wainwright, Pamela Mishkin, Chong Zhang,
Sandhini Agarwal, Katarina Slama, Alex Ray, et al.
2022. Training language models to follow instruc-
tions with human feedback. Advances in neural in-
formation processing systems, 35:27730–27744.

Mohammadreza Pourreza, Hailong Li, Ruoxi Sun,
Yeounoh Chung, Shayan Talaei, Gaurav Tarlok
Kakkar, Yu Gan, Amin Saberi, Fatma Ozcan, and
Sercan O Arik. 2024. Chase-sql: Multi-path reason-
ing and preference optimized candidate selection in
text-to-sql. arXiv preprint arXiv:2410.01943.

Mohammadreza Pourreza and Davood Rafiei. 2024a.
Din-sql: Decomposed in-context learning of text-to-
sql with self-correction. Advances in Neural Infor-
mation Processing Systems, 36.

Mohammadreza Pourreza and Davood Rafiei. 2024b.
Dts-sql: Decomposed text-to-sql with small large
language models. In EMNLP (Findings), pages 8212–
8220.

Bowen Qin, Binyuan Hui, Lihan Wang, Min Yang,
Jinyang Li, Binhua Li, Ruiying Geng, Rongyu Cao,
Jian Sun, Luo Si, et al. 2022. A survey on text-to-sql
parsing: Concepts, methods, and future directions.
arXiv preprint arXiv:2208.13629.

Yang Qin, Chao Chen, Zhihang Fu, Ze Chen, Dezhong
Peng, Peng Hu, and Jieping Ye. 2025. ROUTE: Ro-
bust multitask tuning and collaboration for text-to-
SQL. In The Thirteenth International Conference on
Learning Representations.

Rafael Rafailov, Archit Sharma, Eric Mitchell, Christo-
pher D Manning, Stefano Ermon, and Chelsea Finn.
2024. Direct preference optimization: Your language
model is secretly a reward model. Advances in Neu-
ral Information Processing Systems, 36.

John Schulman, Filip Wolski, Prafulla Dhariwal,
Alec Radford, and Oleg Klimov. 2017. Proxi-
mal policy optimization algorithms. arXiv preprint
arXiv:1707.06347.

David Silver, Aja Huang, Chris J Maddison, Arthur
Guez, Laurent Sifre, George Van Den Driessche, Ju-
lian Schrittwieser, Ioannis Antonoglou, Veda Pan-
neershelvam, Marc Lanctot, et al. 2016. Mastering
the game of go with deep neural networks and tree
search. nature, 529(7587):484–489.

David Silver, Thomas Hubert, Julian Schrittwieser, Ioan-
nis Antonoglou, Matthew Lai, Arthur Guez, Marc
Lanctot, Laurent Sifre, Dharshan Kumaran, Thore
Graepel, et al. 2017. Mastering chess and shogi by
self-play with a general reinforcement learning algo-
rithm. arXiv preprint arXiv:1712.01815.

Ruoxi Sun, Sercan O Arik, Alexandre Muzio, Lesly
Miculicich, Satya Kesav Gundabathula, Pengcheng
Yin, Hanjun Dai, Hootan Nakhost, Rajarishi Sinha,
Zifeng Wang, and Tomas Pfister. 2024. SQL-paLM:
Improved large language model adaptation for text-to-
SQL. Transactions on Machine Learning Research.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier
Martinet, Marie-Anne Lachaux, Timothée Lacroix,
Baptiste Rozière, Naman Goyal, Eric Hambro,
Faisal Azhar, et al. 2023. Llama: Open and effi-
cient foundation language models. arXiv preprint
arXiv:2302.13971.

Bing Wang, Changyu Ren, Jian Yang, Xinnian Liang, Ji-
aqi Bai, Linzheng Chai, Zhao Yan, Qian-Wen Zhang,
Di Yin, Xing Sun, et al. 2025. Mac-sql: A multi-
agent collaborative framework for text-to-sql. In
Proceedings of the 31st International Conference on
Computational Linguistics, pages 540–557.

Yue Wu, Zhiqing Sun, Huizhuo Yuan, Kaixuan Ji, Yim-
ing Yang, and Quanquan Gu. 2024. Self-play pref-
erence optimization for language model alignment.
arXiv preprint arXiv:2405.00675.

Yue Wu, Zhiqing Sun, Huizhuo Yuan, Kaixuan Ji, Yim-
ing Yang, and Quanquan Gu. 2025. Self-play prefer-
ence optimization for language model alignment. In
The Thirteenth International Conference on Learning
Representations.

Jiaxi Yang, Binyuan Hui, Min Yang, Jian Yang, Junyang
Lin, and Chang Zhou. 2024. Synthesizing text-to-
sql data from weak and strong llms. In Proceedings
of the 62nd Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers),
pages 7864–7875.

Yueqin Yin, Zhendong Wang, Yujia Xie, Weizhu
Chen, and Mingyuan Zhou. 2024. Self-augmented

1101

https://aclanthology.org/2024.findings-emnlp.481
https://aclanthology.org/2024.findings-emnlp.481
https://openreview.net/forum?id=BAglD6NGy0
https://openreview.net/forum?id=BAglD6NGy0
https://openreview.net/forum?id=BAglD6NGy0
https://openreview.net/forum?id=rlloVZoKrX
https://openreview.net/forum?id=rlloVZoKrX
https://openreview.net/forum?id=rlloVZoKrX
https://openreview.net/forum?id=a3PmRgAB5T
https://openreview.net/forum?id=a3PmRgAB5T

preference optimization: Off-policy paradigms
for language model alignment. arXiv preprint
arXiv:2405.20830.

Tao Yu, Rui Zhang, Kai Yang, Michihiro Yasunaga,
Dongxu Wang, Zifan Li, James Ma, Irene Li, Qingn-
ing Yao, Shanelle Roman, et al. 2018. Spider: A
large-scale human-labeled dataset for complex and
cross-domain semantic parsing and text-to-sql task.
In 2018 Conference on Empirical Methods in Natu-
ral Language Processing, EMNLP 2018, pages 3911–
3921. Association for Computational Linguistics.

Ruize Zhang, Zelai Xu, Chengdong Ma, Chao Yu, Wei-
Wei Tu, Shiyu Huang, Deheng Ye, Wenbo Ding,
Yaodong Yang, and Yu Wang. 2024a. A survey on
self-play methods in reinforcement learning. arXiv
preprint arXiv:2408.01072.

Yi Zhang, Jan Milan Deriu, George Katsogiannis-
Meimarakis, Catherine Kosten, Georgia Koutrika,
and Kurt Stockinger. 2024b. Sciencebenchmark: a
complex real-world benchmark for evaluating natural
language to sql systems. Proceedings of the VLDB
Endowment, 17(4):685–698.

Yaowei Zheng, Richong Zhang, Junhao Zhang, Yanhan
Ye, Zheyan Luo, Zhangchi Feng, and Yongqiang Ma.
2024. Llamafactory: Unified efficient fine-tuning
of 100+ language models. In Proceedings of the
62nd Annual Meeting of the Association for Compu-
tational Linguistics (Volume 3: System Demonstra-
tions), Bangkok, Thailand. Association for Computa-
tional Linguistics.

Ruiqi Zhong, Tao Yu, and Dan Klein. 2020. Semantic
evaluation for text-to-sql with distilled test suites. In
Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing (EMNLP),
pages 396–411.

A Appendix

A.1 Prompt

In this section, we provide the prompts employed
for the methodology described under Template Ex-
traction, which are depicted in Figure 6.

A.2 Theoretical Analysis and Comparison
with DPO

To clarify the theoretical distinctions and advan-
tages of our SPFT-SQL method relative to Direct
Preference Optimization (DPO) (Rafailov et al.,
2024), we provide a detailed mathematical expla-
nation below.

Error-driven Reward Signal The standard DPO
loss function is defined as follows:

LDPO(πθ;πref) = −E
[
log σ

(
β log

πθ(yw|x)
πref(yw|x)

− β log
πθ(yl|x)
πref(yl|x)

, (4)

where yw denotes the preferred query and yl de-
notes the less preferred query. This formulation
uses relative log-probabilities and assumes a clear
preference signal based solely on output compari-
son, without incorporating task-specific execution
feedback.However, the Text-to-SQL task presents
unique challenges:

1.Semantic Equivalence: SQL queries differing
significantly in syntax can produce identical exe-
cution results, resulting in negligible probability
differences and weakening gradient signals.

2.Local Optima: When model outputs closely
approximate those of a reference model, the gra-
dient signal diminishes, trapping optimization in
local optima.

To address these limitations, we introduce an
error-driven reward signal based explicitly on SQL
execution results in Equation (2), and our self-play
loss function is defined as Equation (3).This modi-
fied loss provides two primary theoretical enhance-
ments:

1. Amplified Error Signals By incorporating
execution-based rewards, we explicitly amplify gra-
dient updates for incorrect SQL predictions, provid-
ing a strong corrective signal, even when queries
are semantically similar.

2. Improved Gradient Stability For DPO, when
preferred and non-preferred outputs become nearly
indistinguishable, the gradient difference (∆r)
tends toward zero:

∆r = β log
πθ(yw|x)
πref(yw|x)

− β log
πθ(yl|x)
πref(yl|x)

≈ 0,

resulting in weak updates. Our error-driven ap-
proach prevents gradient vanishing by introducing
the binary execution-based reward R(y′, x), result-
ing in the following gradient update:

∇θLSelf-Play ∝ −λR(y′, x)σ(∆r)

[

∇θ log pθm(y+|x)−∇θ log pθm(y−|x)
]

(5)

1102

http://arxiv.org/abs/2403.13372
http://arxiv.org/abs/2403.13372

Task
Given the following SQL query, generate an SQL template by removing the "FROM" and "JOIN" sections,
ensuring that no table names appear in the template. All other parts of the query, including SELECT, WHERE,
GROUP BY, and HAVING, should remain unchanged. For placeholders, use the following formats:
• col_number_key# for numeric columns,
• col_text_key# for textual columns, and
• cell_value for constant values.
Important Note
If two columns in the SQL query satisfy a foreign key relationship (i.e., one column is a foreign key
referencing another table's primary key), explicitly indicate this relationship in the template using the
placeholder format col_number_key#_fk#, where fk# represents the foreign key reference. For example, if
column_A is a foreign key referencing column_B, replace column_A with col_number_key0_fk1.
Now, apply the same transformation to the SQL query below and please keep FROM and JOIN sections
removed:
Input:
{"sql": "{Input SQL}"}
Schema:
{Database Schema}
Output:

Figure 6: Prompt for extracting standardized SQL templates.

Thus, even small probability differences between
queries yield meaningful updates if they differ in
execution correctness.

Dynamic Reference Model Update Standard
DPO employs a static reference model, causing
stagnation as the optimized model nears the ref-
erence. To avoid local optima, we dynamically
update our reference (opponent) model pθo itera-
tively:

p
(t+1)
θo

← arg min
pθ∈M ′

Acc(pθ, Dval)

where M ′ excludes the previously used opponent.
This ensures continual competitive pressure, pro-
gressively guiding the policy model away from lo-
cal optima and toward improved global solutions.

From a theoretical perspective, our dynamic ap-
proach aligns closely with DPO principles. Specifi-
cally, under KL-constraints, the optimal policy for
DPO is defined as:

π∗(y|x) = 1

Z(x)
πref(y|x) exp

(
1

β
r(x, y)

)

In our dynamic setting, iterative refinement leads
toward a similarly defined global optimum:

π∗(y|x) = 1

Z(x)
pθo(y|x) exp

(
1

β
R(y, x)

)

achieved through successive improvements in ref-
erence models and execution-based feedback.

In summary, our SPFT-SQL method provides
the following theoretical and practical advantages
over DPO:

• Explicit Execution-based Rewards: Directly
penalize SQL execution errors, ensuring ro-
bust gradient signals.

• Dynamic Opponent Update: Iteratively im-
prove the reference model, preventing opti-
mization stagnation.

• Theoretical Alignment: Maintain consis-
tency with DPO theory while addressing prac-
tical challenges inherent to Text-to-SQL tasks.

These theoretical considerations, supported by
empirical results (Table 3), clearly demonstrate
the advantages of our proposed methodology com-
pared to conventional DPO-based approaches.

A.3 Ablation Study with DPO and PPO

To further analyze the effectiveness of our SPFT-
SQL method, we conducted an ablation study
comparing our method with alternative fine-tuning

1103

strategies, including Direct Preference Optimiza-
tion (DPO) (Rafailov et al., 2024) and Proximal
Policy Optimization (PPO) (Schulman et al., 2017).
Although our approach does not directly utilize
DPO, this comparison clarifies the advantages of
our design, particularly our error-driven feedback
mechanism.

We evaluated various optimization strategies on
the SPIDER dataset using the Qwen2.5 Coder-
7B model. The performance comparison, sum-
marized in Table 3, includes the baseline model,
standard implementations of DPO and PPO, as
well as combined approaches incorporating VBI-
FT (Verification-Based Iterative Fine-Tuning).

Method SPIDER Dev SPIDER Test

Qwen2.5 Coder-7B 83.5 81.5
+ DPO 79.4 78.2
+ PPO 81.8 83.7
+ VBI-FT + DPO 84.7 84.6
+ VBI-FT + PPO 85.1 86.6
+ SPFT-SQL 87.2 87.4

Table 3: Ablation Study Comparing SPFT-SQL with
DPO and PPO Methods on SPIDER dataset (EX)

Experimental results clearly indicate the superi-
ority of SPFT-SQL over both DPO- and PPO-based
approaches. The primary advantage of SPFT-SQL
originates from its explicit error-driven loss func-
tion, which penalizes SQL samples leading to in-
correct predictions by main model and reinforces
correctly executed SQL queries. In contrast:

• DPO, lacking direct SQL execution feedback,
mistakenly penalizes correctly predicted SQL
queries when treated as negative samples, thus
negatively affecting overall performance.

• PPO depends heavily on reward or value
models to evaluate generated SQL statements
during policy updates. However, accurately
assessing the quality of SQL queries solely
through natural language evaluation (without
direct execution) remains significantly chal-
lenging.

This ablation study highlights the crucial role
played by our error-driven loss function, enabling
SPFT-SQL to effectively leverage direct execution-
based evaluations, leading to enhanced perfor-
mance on text-to-SQL tasks.

A.4 Experimental Design and Dataset Details
In order to comprehensively evaluate the robust-
ness and generalization capabilities of the pro-

posed SPFT-SQL method, experiments are con-
ducted across five distinct and challenging cross-
domain datasets. These datasets are commonly
employed benchmarks within Text-to-SQL re-
search: SPIDER (Yu et al., 2018), BIRD (Li et al.,
2024b), SPIDER-Syn (Gan et al., 2021a), SPIDER-
Realistic (Deng et al., 2021), and SPIDER-
DK (Gan et al., 2021b). The complexity and di-
versity of these datasets facilitate a rigorous assess-
ment of model generalization performance.

Dataset Statistics The SPIDER dataset is recog-
nized for its diversity, encompassing 206 databases
spanning 138 distinct domains, with a total of 876
tables and 4,669 columns. BIRD, on the other hand,
is noted for its emphasis on domain-specific com-
plexity, consisting of 597 tables and 4,417 columns
across 80 databases from 37 unique domains. Ad-
ditional SPIDER-based datasets (SPIDER-Syn,
SPIDER-Realistic, and SPIDER-DK) are created
through transformations aimed at evaluating ro-
bustness under variations such as synonym substi-
tution, more realistic question formulations, and
knowledge-augmented queries. Table 4 provides
detailed statistics for each benchmark.

Fine-Tuning Setup For fine-tuning-based ap-
proaches utilizing open-source large language
models (LLMs), models such as CodeS (Li
et al., 2024a), ROUTE (Qin et al., 2025),
DTS-SQL (Pourreza and Rafiei, 2024b), and
SENSE (Yang et al., 2024) followed their orig-
inally proposed methodologies. The additional
models, namely Llama3-8B, DeepSeek-7B, and
various sizes of Qwen2.5 Coder (1.5B, 7B, 14B,
and 32B), were fine-tuned using supervised fine-
tuning (SFT) protocols with Low-Rank Adapta-
tion (Hu et al., 2022) through the Llama-Factory
framework (Zheng et al., 2024). The specific hyper-
parameters included the AdamW optimizer, a batch
size of 64, a learning rate of 2 × 10−4, and fine-
tuning for three epochs on each training set. This
consistent LoRA-based approach ensures compu-
tational efficiency as well as fair and reproducible
comparisons across models and datasets.

Overall, these comprehensive experiments and
clearly defined fine-tuning strategies reinforce the
evaluation rigor and robustness of our SPFT-SQL
methodology, demonstrating its superior general-
ization performance across diverse and challenging
benchmarks.

1104

Dataset Databases Domains Tables Columns Metric

Spider 166 train + 40 test 138 876 4,669 EX
Spider-Syn 20 20 85 452 EX+TS
Spider-Realistic 19 19 81 435 EX+TS
Spider-DK 6 6 49 272 EX
Bird 69 train + 11 dev 37 597 4,417 EX+VES

Table 4: Summary of Benchmark Dataset Statistics

A.5 Comparison with different hardness

To comprehensively evaluate the model perfor-
mance, we adopted methodologies from pertinent
studies (Pourreza and Rafiei, 2024a; Gao et al.,
2024a; Qin et al., 2025) and computed the EX score
on the development sets of SPIDER and BIRD. The
results presented in Table 5 and Table 6 demon-
strate that the SPFT-SQL approach excels both in
overall performance and across various difficulty
levels, thereby further validating the efficacy of our
proposed method.

A.6 Comparison of Synthetic Data Quantity

Table 7 presents the experimental results across all
datasets for different amounts of synthetic data.The
experimental results show that the model achieves
the best performance when generating 3,000 syn-
thetic data records. Specifically, it achieves an
accuracy of 87.4% on the SPIDER-Test dataset,
87.2% on the SPIDER-Dev dataset, 61.0% on the
BIRD-Dev dataset. These results indicate that gen-
erating an appropriate amount of synthetic data is
crucial for improving model performance.

When the amount of generated data is relatively
small, the model’s performance improves but does
not reach its optimal state. For example, the ac-
curacy on the SPIDER-Realistic dataset is 82.1%,
on the SPIDER-DK dataset is 73.3%, and on the
BIRD-Dev dataset is 59.3%. This suggests that
insufficient data may prevent the model from learn-
ing enough information, thereby limiting its perfor-
mance.

On the other hand, when the amount of generated
data is excessive, the model’s performance declines.
For instance, when generating 5,000 records, the ac-
curacy on the SPIDER-Test dataset drops to 86.7%,
on the SPIDER-Syn dataset to 72.1%, and on the
BIRD-Dev dataset to 60.5%. This could incur un-
necessary time costs.

In conclusion, generating 3,000 synthetic data
records is an ideal choice, as it ensures data qual-
ity while maximizing model performance improve-
ment. This finding emphasizes the importance of

selecting an appropriate amount of synthetic data
during training to avoid compromising the model’s
final performance due to insufficient or excessive
data.

A.7 Ablation Study Results

Table 8 delineates the ablation study results across
all datasets, shedding light on the individual contri-
butions of various components to the overall system
performance. The implementation of Verification-
Based Iterative Fine-Tuning (VBI-FT) significantly
enhanced the model’s performance, with improve-
ments ranging from 5.2% to 8.3% in EX on the
SPIDER-Variants, highlighting its critical role in
advancing core SQL synthesis capabilities. Fur-
thermore, the self-play fine-tuning process con-
tributed to an accuracy increase of 0.3% to 1.7%
on the SPIDER-Variants, illustrating how self-play
allows the model to optimize its inherent poten-
tial without relying on external supervision. Col-
lectively, these results underscore the efficacy of
both Verification-Based Iterative Fine-Tuning and
self-play fine-tuning in boosting the model’s per-
formance on SQL synthesis tasks.

A.8 Scalability Analysis for Larger LLMs

To assess the scalability and robustness of our
SPFT-SQL method beyond previously evaluated
model sizes, we conducted further experiments em-
ploying a significantly larger model, Llama3-70B-
Instruct, on the widely-used SPIDER dataset (Yu
et al., 2018). Previously evaluated models included
parameter scales of 1.5B, 7B, 14B, and 32B. Ex-
tending our analysis to the 70B scale allows us to
better understand the performance trends and po-
tential convergence at increased parameter scales.

Table 9 summarizes the comparative perfor-
mance of SPFT-SQL using the 70B-scale model
alongside previously tested approaches such as
SFT and SPIN. These experiments demonstrate
that SPFT-SQL continues to outperform the base-
line methods at larger model scales, maintaining
its relative advantage. Notably, the results indi-

1105

Method Easy Medium Hard Extra All

Prompting with GPT
DIN-SQL+GPT4(Pourreza and Rafiei, 2024a) 92.3 87.4 76.4 62.7 82.8
DAIL-SQL+GPT4(Gao et al., 2024a) 91.5 90.1 75.3 62.7 83.6
MCS-SQL+GPT4(Lee et al., 2024) 94.0 93.5 88.5 72.9 89.5

Fine-Tuning with Open-Source LLMs
Codes-7B+SFT(Li et al., 2024a) 94.8 91.0 75.3 66.9 85.4
Codes-15B+SFT(Li et al., 2024a) 95.6 90.4 78.2 61.4 84.9
SENSE-7B(Yang et al., 2024) 95.2 88.6 75.9 60.3 83.5
ROUTE+Qwen2.5-7B(Qin et al., 2025) 92.8 89.7 77.0 60.2 83.6
ROUTE+Qwen2.5-14B(Qin et al., 2025) 94.0 93.0 81.6 68.1 87.3

Self-Play Method
SPIN+Qwen2.5 Coder-14B(Chen et al., 2024b) 91.5 87.7 74.7 63.3 82.3
SPFT-SQL+Qwen2.5 Coder-1.5B 92.3 83.4 72.4 58.4 79.7
SPFT-SQL+Qwen2.5 Coder-7B 96.4 91.9 85.1 62.7 87.2
SPFT-SQL+Qwen2.5 Coder-14B 95.6 94.4 81.6 64.5 87.7
SPFT-SQL+Qwen2.5 Coder-32B 96.4 93.5 80.5 67.5 87.8

Table 5: The performance (EX) comparison with different hardness on the SPIDER-Dev

Method Simple Moderate Challenging All

Prompting with GPT
MAC-SQL+GPT4(Wang et al., 2025) 65.7 52.7 40.3 59.4
MCS-SQL+GPT4(Lee et al., 2024) 70.4 53.1 51.4 63.4

Fine-Tuning with Open-Source LLMs
Codes-7B+SFT(Li et al., 2024a) 64.6 46.9 40.3 57.2
Codes-15B+SFT(Li et al., 2024a) 65.8 48.8 42.4 58.5
ROUTE+Qwen2.5-7B(Qin et al., 2025) 63.8 45.4 39.6 55.9
ROUTE+Qwen2.5-14B(Qin et al., 2025) 67.7 53.1 42.4 60.9

Self-Play Method
SPIN+Qwen2.5 Coder-14B(Chen et al., 2024b) 45.8 24.1 20.1 36.8
SPFT-SQL+Qwen2.5 Coder-1.5B 61.1 46.5 33.3 54.0
SPFT-SQL+Qwen2.5 Coder-7B 68.7 51.6 41.7 61.0
SPFT-SQL+Qwen2.5 Coder-14B 68.8 57.6 49.3 63.6
SPFT-SQL+Qwen2.5 Coder-32B 71.2 57.4 51.4 65.2

Table 6: The performance (EX) comparison with different hardness on the BIRD-Dev

SPIDER SPIDER-Variants BIRD

Quantity Dev Test Syn Realistic DK Dev

EX TS EX EX TS EX TS EX EX VES

0 83.5 79.2 81.5 69.8 64.2 75.4 70.9 68.0 51.5 55.3
1000 86.5 80.9 86.9 76.8 69.6 82.1 76.6 73.3 59.3 62.7
3000 87.2 81.3 87.4 75.1 67.6 83.3 75.6 75.5 61.0 67.0
5000 86.3 79.6 86.7 72.1 64.3 82.8 75.6 73.8 60.5 66.2
7000 86.6 80.9 86.6 71.8 64.1 82.1 73.6 73.6 59.2 65.8
10000 86.0 80.4 86.5 72.4 64.6 82.5 73.6 72.9 59.7 62.9

Table 7: Comparison of Synthetic Data Quantity

SPIDER SPIDER-Variants BIRD

Dev Test Syn Realistic DK Dev

EX TS EX EX TS EX TS EX EX VES

Qwen2.5 Coder-7B 83.5 79.2 81.5 69.8 64.2 75.4 70.9 68.0 51.5 55.3
SPFT-SQL 87.2 81.3 87.4 75.1 67.6 83.3 75.6 75.5 61.0 67.0
w/o VBI-FT 83.9 79.3 83.6 69.9 64.6 75.0 70.5 70.3 54.2 57.5
w/o self-play 86.6 80.4 86.8 74.8 66.8 82.7 74.4 73.8 60.3 65.3

Table 8: Ablation Study Results

1106

Method Dev Test

SPFT-SQL + Qwen2.5 Coder 32B 87.8 89.1
SFT + Llama3-70B-Instruct 82.1 84.6
SPIN + Llama3-70B-Instruct 81.6 83.2
SPFT-SQL + Llama3-70B-Instruct 85.4 88.7

Table 9: Scalability Analysis of SPFT-SQL on SPIDER
dataset (EX)

cate convergence tendencies in Text-to-SQL task
performance, as evidenced by the comparable out-
comes of the Qwen2.5 Coder 32B and Llama3-70B-
Instruct models.These results confirm the scalabil-
ity of our approach and suggest that improvements
obtained by scaling to substantially larger models,
beyond 32B parameters, may exhibit diminishing
returns. Nevertheless, our SPFT-SQL maintains
clear performance superiority, affirming its robust-
ness and effectiveness at scale.

A.9 Comparative Evaluation with Identical
Base Models

To further ensure a fair and rigorous evaluation
of our proposed SPFT-SQL method, we con-
ducted additional experiments comparing SPFT-
SQL directly against other representative meth-
ods—namely, SENSE (Yang et al., 2024) and
ROUTE (Qin et al., 2025)—using identical base
models. The results clarify the contributions of our
method beyond merely leveraging stronger open-
source base models.

Comparison with SENSE on CodeLlama-7B
We first evaluated our approach against SENSE
using the same foundational model, CodeLlama-
7B, across two widely used benchmarks, SPIDER
and BIRD. Unlike SENSE, which leverages closed-
source models for data generation and a single
round of Direct Preference Optimization (DPO),
SPFT-SQL employs iterative VBI-FT and a dy-
namic, error-driven self-play framework. The com-
parative results are shown in Table 10.

Method SPIDER Dev SPIDER Test BIRD Dev

CodeLlama-7B 61.1 48.3 17.9
+ SFT 71.5 72.3 40.2
+ SENSE 83.2 83.5 51.8
+ SPFT-SQL 83.4 84.1 53.4

Table 10: Performance Comparison with SENSE using
CodeLlama-7B

The results clearly demonstrate that SPFT-SQL
consistently outperforms SENSE, even under iden-
tical base-model conditions, affirming our frame-

work’s superior capability to enhance Text-to-SQL
performance without relying on closed-source mod-
els.

Comparison with ROUTE on Qwen 2.5-7B We
further compared SPFT-SQL with ROUTE using
Qwen 2.5-7B, addressing concerns regarding base-
model discrepancies (e.g., Qwen vs. Qwen-Coder
variants). ROUTE specifically leverages the open-
source Qwen model without specialized coding pre-
training. Therefore, to ensure fairness and trans-
parency, we replicated our SPFT-SQL evaluations
using exactly the same Qwen 2.5-7B base model.
The results, summarized in Table 11, clearly high-
light the relative improvement of our approach.

Method SPIDER Dev SPIDER Test BIRD Dev

Qwen 2.5-7B 72.5 75.9 41.1
+ SFT 80.9 82.8 51.4
+ ROUTE 83.6 83.7 55.9
+ SPFT-SQL 84.9 85.6 59.6

Table 11: Performance Comparison with ROUTE using
Qwen 2.5-7B

These experiments explicitly confirm that SPFT-
SQL’s superior performance does not merely result
from using stronger base models, but rather from
the intrinsic benefits of our iterative VBI-FT strat-
egy combined with the dynamic error-driven self-
play mechanism. Collectively, these fair-model
comparisons substantiate the general applicabil-
ity and effectiveness of our method across various
open-source base models, ensuring broader repro-
ducibility and clear insights for future research ap-
plications.

A.10 Semantic Consistency Analysis for
Question Generation

To quantify potential bias introduced during the
generation of synthetic validation data, we con-
ducted a semantic consistency experiment. Specifi-
cally, we evaluated the semantic alignment between
SQL-generated natural language questions (NLQs)
and original questions from the SPIDER Dev set.
The SQL-to-Text model used for this evaluation
was Qwen 2.5-Coder-7B, both before and after it-
erative optimization.

We randomly sampled 200 NLQ-SQL pairs from
the SPIDER Dev set and generated NLQs using the
Qwen 2.5-Coder-7B model based solely on SQL
queries. To assess semantic consistency, evalua-
tions were performed independently by GPT-4 and

1107

human annotators. Table 12 summarizes these re-
sults.

SQL-to-Text Model GPT-4 Eval Human Eval

Before optimization 112/200 (56.0%) 113/200 (56.5%)
After optimization 184/200 (92.0%) 187/200 (93.5%)

Table 12: Semantic Consistency of Generated NLQs

The significant improvement observed after
iterative optimization (from 56.5% to 93.5%
human-evaluated consistency) demonstrates our ap-
proach’s efficacy in minimizing semantic biases
introduced during synthetic validation set construc-
tion.

A.11 Comparison with More Methods

To further benchmark the effectiveness of our
SPFT-SQL method, we compared its performance
against two recently proposed state-of-the-art ap-
proaches: XiYan-SQL (Gao et al., 2024b) and
CHASE-SQL (Pourreza et al., 2024). Table 13
presents these comparative results on both the SPI-
DER and BIRD datasets.

Method SPIDER Test BIRD Dev

CHASE-SQL+Gemini 1.5 87.6 73.0
XiYan-SQL 89.6 73.3
SPFT-SQL+Qwen2.5 Coder-32B 89.1 65.2

Table 13: Comparison with Recent Methods (EX)

On the SPIDER dataset, SPFT-SQL demon-
strates competitive performance, surpassing
CHASE-SQL (Gemini 1.5) and approaching the
accuracy of XiYan-SQL. This indicates that our
method effectively synthesizes high-quality train-
ing data, enabling relatively smaller open-source
models to achieve performance closely rivaling
large-scale closed-source models.

However, on the more complex BIRD dataset,
there remains a performance gap of approximately
7.8% compared to CHASE-SQL and 8.1% com-
pared to XiYan-SQL. We attribute this difference
to the inherent methodological distinctions: both
CHASE-SQL and XiYan-SQL employ advanced
multi-agent frameworks, leveraging collaborative
interactions among multiple agents to enhance SQL
generation capabilities. In contrast, SPFT-SQL pri-
marily focuses on single-model fine-tuning through
iterative, adaptive learning without multi-agent col-
laboration.

These insights provide clear directions for fu-
ture research, suggesting potential enhancements

by integrating multi-agent collaboration within our
adaptive fine-tuning framework.

A.12 Computational Resource and Storage
Analysis

We analyzed the computational resource usage and
storage overhead of our SPFT-SQL method relative
to standard supervised fine-tuning (SFT) and the
self-play approach SPIN (Chen et al., 2024b). All
experiments used the Qwen2.5 Coder 7B model on
the SPIDER dataset. We utilized 8*NVIDIA A800
GPUs, each equipped with 80GB memory, for fair
comparisons.

Table 14 summarizes the computational time,
GPU usage, storage requirements, and final execu-
tion accuracy (EX). Compared to SFT, SPFT-SQL
roughly doubles computational time per iteration,
mainly due to two sequential fine-tuning stages:
(1) the Verification-Based Iterative Fine-Tuning
(VBI-FT), which simultaneously optimizes both
the Text-to-SQL and SQL-to-Text models, and (2)
the subsequent Self-Play Fine-Tuning stage. De-
spite this increased overhead, SPFT-SQL achieves
a significant improvement of 3.7% in execution
accuracy compared to SFT, which justifies the ad-
ditional computational cost.

In terms of GPU resources, our approach
matches the GPU usage of standard SFT, utiliz-
ing only two GPUs. This efficiency arises because
the SQL-to-Text and Text-to-SQL models are alter-
nately fine-tuned, incurring no additional parallel
GPU usage. Conversely, SPIN requires twice as
many GPUs due to its fine-tuning strategy.

Regarding storage, SPFT-SQL increases storage
usage by only approximately 19% compared to
SFT across five iterations. This modest increase
results from our efficient strategy of storing only
model weights rather than entire models. In con-
trast, SPIN’s storage requirements are approxi-
mately five times greater than those of SFT, as
it saves full models at every iteration.

Thus, despite moderate increases in compu-
tational time and storage, SPFT-SQL provides
substantial accuracy gains over conventional ap-
proaches, offering a balanced trade-off suitable for
practical research environments.

A.13 Comparison of Generated SQLs from
Different Methods

To better illustrate the improvements of our method
over others, we selected two examples from the
SPIDER and BIRD datasets, as shown in Tables

1108

Method Time per Iter. GPUs Storage (5 iters) Train Data SPIDER Test (EX)

SFT 58 min 2 15.5 GB 7,000 83.7%
SPIN 6 hr 15 min 4 75.0 GB 7,000 79.0%
SPFT-SQL 1 hr 45 min 2 18.5 GB 7,000 real + 3,000 syn 87.4%

Table 14: Resource Consumption and Performance Comparison (Qwen2.5 Coder-7B)

15 and 16. In the first example, both the models
fine-tuned with SFT and SPIN lost the ability to
compute ratios, while our method was able to cor-
rectly calculate the formula and select the correct
fields. This is attributed to our VBI-FT method,
which generates high-quality training data during
the iterative process, and the guidance provided
during the Self-Play phase, helping the model se-
lect the correct fields and generate accurate SQL
queries. In the second example, both SFT and
SPFT achieved the correct results, while SPIN pro-
duced incorrect values, further demonstrating the
issue with the SPIN self-play mechanism, where
the model’s historical outputs are treated as nega-
tive samples.

1109

Stage Details

Data Question: What is the eligible free or reduced price meal rate for the top 5 schools in grades 1-12
with the highest free or reduced price meal count of the schools with the ownership code 66?
Gold SQL: SELECT CAST(T1.‘FRPM Count (K-12)‘ AS REAL) / T1.‘Enrollment (K-12)‘ FROM
frpm AS T1 INNER JOIN schools AS T2 ON T1.CDSCode = T2.CDSCode WHERE T2.SOC = 66
ORDER BY T1.‘FRPM Count (K-12)‘ DESC LIMIT 5

Original Model Pred SQL: SELECT frpm.CDSCode, frpm.School Name, frpm.FRPM Count (K-12),
frpm.Enrollment (K-12), (frpm.FRPM Count (K-12) / frpm.Enrollment (K-12)) AS Eligi-
ble_FRPM_Rate FROM frpm JOIN schools ON frpm.CDSCode = schools.CDSCode WHERE
schools.OwnershipCode = 66 ORDER BY frpm.FRPM Count (K-12) DESC LIMIT 5;
Result: Wrong

SFT Pred SQL: SELECT T2.‘Percent (%) Eligible Free (K-12)‘, T2.‘Percent (%) Eligible FRPM (K-12)‘
FROM schools AS T1 INNER JOIN frpm AS T2 ON T1.CDSCode = T2.CDSCode WHERE T1.SOC
= 66 ORDER BY T2.‘FRPM Count (K-12)‘ DESC LIMIT 5;
Result: Wrong

SPIN Pred SQL: SELECT "Percent (%) Eligible Free (K-12)", "Percent (%) Eligible FRPM (K-12)"
FROM frpm WHERE "2013-14 CALPADS Fall 1 Certification Status" = 66 ORDER BY "FRPM
Count (K-12)" DESC LIMIT 5;
Result: Wrong

SPFT-SQL Pred SQL: SELECT cast(frpm.‘frpm count (k-12)‘ AS REAL) / frpm.‘enrollment (k-12)‘ FROM
frpm INNER JOIN schools ON frpm.cdscode = schools.cdscode WHERE schools.soc = 66 ORDER
BY frpm.‘frpm count (k-12)‘ DESC LIMIT 5;
Result: Right

Table 15: Comparison of Generated SQLs from Different Methods on the BIRD Dataset

Stage Details

Data Question: Count the number of searches made by buyers.
Gold SQL: SELECT count(*) FROM Users AS T1 JOIN User_Searches AS T2 ON T1.user_id =
T2.user_id WHERE T1.is_buyer = 1;

Original Model Pred SQL: SELECT COUNT(us.search_seq) FROM Users u JOIN User_Searches us ON u.user_id
= us.user_id WHERE u.is_buyer = ’Yes’;
Result: Wrong

SFT Pred SQL: SELECT count(*) FROM users AS T1 JOIN user_searches AS T2 ON T1.user_id =
T2.user_id WHERE T1.is_buyer = ’1’
Result: Right

SPIN Pred SQL: SELECT count(*) FROM users AS t1 JOIN user_searches AS t2 ON t1.user_id =
t2.user_id WHERE t1.is_buyer = ’t’
Result: Wrong

SPFT-SQL Pred SQL: SELECT count(*) FROM users JOIN user_searches ON users.user_id =
user_searches.user_id WHERE users.is_buyer = 1;
Result: Right

Table 16: Comparison of Generated SQLs from Different Methods on the SPIDER Dataset

1110

