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Abstract

Large Language Models (LLMs) have demon-
strated strong performance in open-ended gen-
eration tasks. However, they often struggle
to adapt content to users with differing cog-
nitive capacities, leading to a phenomenon
we term cognitive misalignment. This issue
arises in two forms: knowledge-level mis-
alignment, where content is too complex or
too simplistic relative to user understanding,
and presentation style misalignment, where the
structure or tone hinders effective comprehen-
sion. To address these challenges, we pro-
pose the Cognitive-Level Alignment Frame-
work (CLAF), a general-purpose generation
framework that aligns both knowledge com-
plexity and presentation style with user cogni-
tion. CLAF integrates a capability-aware re-
trieval module based on a hierarchical knowl-
edge graph and a style optimization mod-
ule guided by Bloom’s taxonomy and pref-
erence learning. Additionally, a knowledge-
controllable generation component ensures con-
sistency and relevance throughout the output.
To support training and evaluation, we con-
struct Scale, a cognitively annotated dataset
containing responses at multiple comprehen-
sion levels per query. Empirical results show
that CLAF enhances the adaptability and in-
formativeness of LLM outputs across a range
of user profiles, offering a robust solution to
cognitive-level alignment in real-world appli-
cations. Code and dataset are available at:
https://github.com/APTX574/lg

1 Introduction

Large Language Models (LLMs) have shown re-
markable capabilities in the field of education (Lin
et al., 2025; Wang et al., 2025; Huang et al., 2025).
Building upon these strengths, LLMs also enable
personalized education by adapting their responses
to individual learners’ needs and communication
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Knowledge-level Misalignment

Figure 1: Comparison of Cognitive Misalignment and
Alignment in LLMs. The left side illustrates cognitive
misalignment, making the content difficult to under-
stand or boring. In contrast, the right side demonstrates
correct cognitive alignment, where everyone receives a
suitable response.

styles across diverse educational and professional
scenarios (Han et al., 2025; Wu et al., 2025a; Kwon
et al., 2024; Feng et al., 2024b). Central to the
effectiveness of these models is their capacity to
adapt responses to users’ varying levels of cog-
nitive ability—ensuring that generated content is
not only accurate but also aligned with the users’
capacity for comprehension (Poole-Dayan et al.,
2024; Wu et al., 2025b). However, current LLMs
frequently fail to achieve this alignment, resulting
in a phenomenon we term cognitive misalignment,
which impairs the instructional efficacy of model
outputs (Liu et al., 2024a; Rooein et al., 2023).

Cognitive misalignment manifests in two pri-
mary forms, as illustrated in Figure 1. The first
is knowledge-level misalignment (He-Yueya et al.,
2024), where the complexity of the content exceeds
or underestimates users’ cognitive capacity. For
instance, a novice user may receive explanations
embedded with technical jargon, while an expert
user may be presented with overly simplistic con-
tent, leading to disengagement or frustration. The
second is presentation style misalignment (Sonkar
et al., 2024), which arises when the communica-
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tive approach fails to align with users’ instructional
needs. Similar to how educators tailor pedagogi-
cal strategies to users, LLMs should ideally adapt
their rhetorical style, explanatory granularity, and
instructional scaffolding accordingly. However,
many models default to rigid stylistic patterns, re-
sulting in suboptimal educational interaction for
users across varied cognitive levels.

While recent efforts in personalized text gen-
eration have made notable progress (Liu et al.,
2024c; Singh et al., 2024), they generally fall short
of addressing these two dimensions of cognitive
misalignment. Most approaches focus on user
interests or interaction history, with limited con-
sideration of users’ cognitive ability. As a re-
sult, such approaches often capture what users
are curious about, but not how that information
should be structured for effective comprehen-
sion. Similarly, presentation style adaptation ef-
forts typically depend on extensive personalization
data, which is unavailable in many real-world con-
texts where users are represented by coarse-grained
profiles (e.g., “middle school student” or “domain
expert”) (Liu et al., 2024b). These abstractions
provide insufficient granularity for pedagogically
appropriate adaptation, resulting in uniform outputs
that inadequately serve diverse cognitive needs.

To address these limitations, we propose the
Cognitive-Level Alignment Framework (CLAF), a
novel architecture designed to jointly align both
content complexity and instructional style with
users’ cognitive level. Grounded in principles from
educational psychology, particularly Vygotsky’s
Zone of Proximal Development (ZPD) (Nogueira,
2001) and Bloom’s Taxonomy of Educational Ob-
jectives (Huitt, 2011), CLAF integrates cognitive
theory with LLM capabilities to systematically
address both dimensions of cognitive misalign-
ment. Figure 4 illustrates the overall architecture
of CLAF.

To mitigate knowledge-level misalignment,
CLAF employs a capability-aware retrieval mod-
ule inspired by ZPD. This module constructs a hi-
erarchical knowledge graph organized by cognitive
complexity, allowing for the retrieval of content
that is optimally challenging yet comprehensible
for the user’s developmental stage. To address
presentation style misalignment, we introduce an
adaptive language style optimization module in-
formed by Bloom’s taxonomy and reinforced via
human preference optimization. This module ad-
justs the explanatory tone, rhetorical structure, and
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Figure 2: Construction Pipeline of Scale. Scale is
built from encyclopedia question-answer pairs, forming
a dataset where each question is associated with three
responses, each customized for a different knowledge
level.

pedagogical strategies based on the user’s cognitive
capabilities (e.g., remembering, understanding, and
applying), thereby supporting the the generation of
content that is both personalized and instruction-
ally coherent. Moreover, to ensure alignment be-
tween retrieved instructional content and generated
text, CLAF incorporates a knowledge controllable
generation mechanism that constrains latent rep-
resentations during decoding, thereby preserving
coherence and pedagogical relevance.

To support empirical validation, we construct a
novel dataset, Scale, comprising responses at three
distinct cognitive levels per question—designed to
reflect Bloom’s taxonomy and instructional design
principles. This dataset functions as both a training
signal and an evaluation benchmark for cognitive-
level adaptive generation.

Our contributions are summarized as follows:
• We identify and formally define cognitive mis-

alignment as a core limitation in current LLM-
based systems, framed through cognitive devel-
opment theory.

• We propose CLAF, a cognitively grounded gen-
eration framework that jointly optimizes content
retrieval, linguistic adaptation, and instructional
fidelity.

• We construct Scale, a cognitively annotated
dataset that enables systematic training and eval-
uation of cognitive-level alignment in LLMs.

2 Related Work

2.1 Personalized Large Language Model

The capabilities of LLMs can be leveraged for per-
sonalized teaching. (Park et al., 2024; Neshaei
et al., 2024; Tang et al., 2024) utilize students’ his-
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torical conversations and personal information to
model students. (Hu and Wang, 2024) integrates
knowledge graphs and prompt engineering into
LLMs. (Deng et al., 2023; Chen et al., 2023; Li
et al., 2024) select the next learning goal for stu-
dents based on analysis by LLMs. All these works
use students’ historical information to model them,
aiming to achieve personalized education.

While personalized education excels at model-
ing individual students, it struggles with group.
They continuously analyzes individual learning
trajectories, such as knowledge retention patterns
and thinking path deviations. In contrast, model-
ing group cognitive level focuses on group cross-
sectional data, categorizing students into homo-
geneous groups based on predefined proficiency
indicators like learning stages. It then designs stan-
dardized teaching programs by identifying com-
mon features at each cognitive level.

2.2 Controlled text generation

Significant advancements have been made in
controllable text generation methods now. Dis-
Cup (Zhang and Song, 2022) enhances control by
introducing attribute discriminators during training
and optimizing control cues through anti-likelihood
training. RMT (Zhang et al., 2023) adopts residual
learning and cross-attention mechanisms to achieve
text generation control and seamlessly integrates
with existing LLMs to enable continuous control.
REI (Zheng et al., 2023) uses instructions inspired
by regular expressions to control text generation
through linguistic constraints. In addition to the
above methods that require training, ICV (Liu et al.,
2023) learns control-related vectors through con-
textual example text, effectively enhancing control-
lable text generation (CTG). MacLaSa (Ding et al.,
2023) uses variational autoencoders (VAE) to map
text to a compact latent space and applies ordinary
differential equation (ODE) sampling methods to
control multiple attributes.

3 Dataset Curation

Effective research on cognitively aligned text gen-
eration needs datasets with two key features: (1)
clearly defined cognitive levels, and (2) responses
that share the same meaning but vary in depth
of explanation and language complexity. Exist-
ing datasets on personalization (Liu et al., 2024d;
Zheng et al., 2020; Shen et al., 2024) often focus
on user traits or history, but they lack structured

cognitive levels and controlled variation in how
the answers are written. To address this, we in-
troduce the Scale, designed to support controlled
generation across different cognitive levels. Each
item in Scale includes a question and three aligned
answers: one each at the basic, intermediate, and
advanced levels. These levels are based on cog-
nitive development theory (see Appendix A), and
differ in how ideas are explained while keeping
the core meaning intact. To check the quality of
the answers, we use a multi-step human evaluation.
Further information about human evaluation can
be found in Appendix B.

3.1 Metadata Collection and Domain Scope
We build the core QA pairs using reliable and infor-
mative encyclopedic sources, covering topics like
science, nature, biology, and cosmology. These
areas are chosen for their broad appeal and their
suitability for explaining topics at multiple levels of
detail. The questions include types like definitions,
explanations, and cause-effect reasoning, offering
a range of reasoning modes. To test generalization,
we also create a separate test-only set based on
Chinese classical poetry, taken from national col-
lege entrance exam materials. These expert-written
questions help evaluate performance across both
domain and language. This part is only used in
testing and not seen during training.

3.2 Data Construction Pipeline
As shown in Figure 2, we build the “Scale” in three
steps to adapt it to users at different levels:

Step 1: Terminology Adaptation. Since word
choice is key to abstraction, we extract important
terms from each original answer. Using LLMs,
we generate versions of these terms for each level
(basic, intermediate, advanced). Experts then
review and confirm these mappings, which are
used to create different wordings for each answer:
R1 = {r1b, ri1, ra1}.

Step 2: Syntactic Adaptation. Beyond words,
sentence structure also affects comprehension. We
define templates based on Backus-Naur Form
(BNF) (McCracken and Reilly, 2003) and teaching
guidelines. Basic answers use short, direct sen-
tences. Intermediate ones use compound clauses
and general ideas. Advanced answers include ab-
stract sentence patterns and more layered grammar.
We apply these rules using prompts to generate syn-
tactically distinct versions: R2 = {rb2, ri2, ra2}.We
also match the responses with typical learning pat-
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Figure 3: Overview of the CLAF Framework. The framework consists of three modules: Capability-Aware
Retrieval, Adaptive Language Style Optimization, and Knowledge Controllable Generation.

terns: basic answers use familiar examples and sur-
face facts; intermediate ones add general explana-
tions and causes; advanced ones include inferential
thinking and disciplinary concepts.

Step 3: Semantic Coherence Verification. To
ensure all answers still mean the same thing, we
use vector-based similarity checks. If a rewritten
answer is too different in meaning, it is revised.
This yields the final triple-set: R3 = {rb3, ri3, ra3},
preserving meaning while varying complexity.

3.3 Dataset Summary
The final Scale contains 593 question-and-answer
entries, each with three levels of response. In ad-
dition to enabling controlled text generation, Scale
supports consistent evaluation of language models’
ability to change abstraction and tone while keep-
ing meaning stable. Our modular pipeline allows
future extensions to new topics and levels. The ex-
tra test set in classical Chinese literature provides a
challenge for models in cross-lingual and content-
rich understanding tasks.

4 Methodology

This paper presents an innovative framework by
aligning generated content with distinct cogni-
tive levels. The framework adapts the scope of
knowledge, language styles, and teaching strate-
gies in response to the user’s cognitive boundaries.
The proposed Cognitive Level Alignment Frame-
work (CLAF) consists of three components: 1)
Capability-Aware Retrieval, which delivers rele-

vant knowledge tailored to various cognitive lev-
els by retrieving content situated within the user’s
proximal development zone, as inspired by ZPD;
2) Adaptive Language Style Optimization (ALSO),
which allows the model to employ language styles
appropriate for different users by adapting tone and
pedagogical strategy based on Bloom’s taxonomy;
and 3) KCG, which dynamically adjusts the scope
of knowledge and ensures the output remains faith-
ful to the retrieved content. The overview of the
framework is illustrated in Figure 3.

4.1 Capability-Aware Retrieval

The first step toward cognitive alignment is ensur-
ing the knowledge matches the user’s cognitive
level. Inspired by (Jin et al., 2025; Feng et al.,
2024a; Wang et al., 2023) ,CAR achieves it by
building a hierarchical knowledge graph derived
from educational materials, where each node rep-
resents an atomic concept labeled with a cogni-
tive tier l ∈ {0, 1, 2}, corresponding to basic, in-
termediate, and advanced levels, roughly aligned
with Bloom’s taxonomy (e.g., Remember/Under-
stand, Apply/Analyze, Evaluate/Create). Relations
among nodes encode prerequisite chains, logical
dependencies, and topic proximity.

This structure enables CLAF to perform Bloom-
informed, ZPD-aware retrieval. For a user at level
c, CAR traverses the graph to extract a subgraph
K

(k)
c , constrained to nodes with l ≤ c, and a depth

d that increases with c . As such, beginners are

11057



Model
Flesch Kin Gunning Fog SMOG Match Level

Bas.↓ Adv. ↑ Bas.↓ Adv. ↑ Bas.↓ Adv.↑ Bas. ↑ Int. ↑ Adv. ↑ Avg. ↑
Closed-source LLMs

GPT-4o 6.97 14.19 8.31 16.13 8.38 15.94 79.85 85.30 84.74 83.30
GPT-4o-FS 6.55 14.97 7.89 17.10 7.85 16.19 89.72 85.69 90.52 88.65
Gemini-1.5 6.77 13.10 8.07 14.19 8.54 14.48 83.57 74.50 82.73 80.27
Gemini-1.5-FS 6.17 13.21 7.49 14.10 8.08 14.47 80.07 84.36 82.70 82.38
Claude-3.5 7.36 15.66 8.54 16.53 9.21 16.43 73.75 85.48 73.86 77.70
Claude-3.5-FS 7.15 15.88 8.39 16.85 8.69 16.60 78.33 84.90 77.15 80.13
Qwen-Plus 6.60 13.79 7.87 14.56 8.06 15.14 67.91 89.07 70.40 75.79
Qwen-Plus-FS 6.47 13.80 7.91 14.98 8.34 15.21 77.17 87.85 79.45 81.49

Qwen-2.5-3B-Instruct
Few-Shot 7.17 12.99 8.44 14.45 8.13 14.24 65.79 87.54 68.47 73.93
SFT 6.91 13.29 8.26 14.69 8.32 14.38 78.33 82.80 79.37 80.17
CLAF(ours) 6.69 12.80 8.10 14.06 8.17 14.43 76.43 85.94 81.15 81.17

Qwen-2.5-7B-Instruct
Few-Shot 6.80 13.01 8.08 13.85 8.74 14.71 76.01 86.93 75.07 79.34
SFT 6.37 13.64 7.72 14.58 8.06 15.23 79.00 81.15 77.55 79.23
CLAF(ours) 5.81 13.47 7.16 14.50 8.02 15.04 78.01 87.63 81.63 82.42

Llama-3.1-8B-Instruct
Few-Shot 7.17 13.32 8.51 13.70 9.09 14.84 26.35 92.80 28.90 49.35
SFT 6.60 13.92 8.30 16.21 8.37 12.90 85.53 78.15 78.78 80.82
CLAF(ours) 6.25 13.78 8.19 16.38 8.14 14.22 90.75 86.30 90.87 89.31

Table 1: Experimental Comparison of CLAF Against Other Baseline Models. The results validate the effective-
ness of the proposed framework.

exposed to foundational content, while advanced
users receive broader and deeper knowledge. The
retrieved concepts serve as inputs for downstream
modules. Full retrieval procedures are detailed in
Algorithm C.2 and Appendix C.3.

4.2 Adaptive Language Style Optimization

To further refine the alignment of content with the
user’s cognitive level, we introduce the ALSO mod-
ule. This module leverages Direct Preference Op-
timization (DPO) (Rafailov et al., 2023) to tailor
the language style and complexity according to the
user’s stage. By using Scale, ALSO adapts the
style of large language models (LLMs) to match
cognitive requirements, dynamically adjusting as-
pects such as term difficulty, sentence structure,
and pedagogical approach.

Unlike static prompt-based strategies, our ap-
proach continuously adapts to the user’s needs. The
DPO framework fine-tunes the model by maximiz-
ing the expected reward of the output style while
minimizing its divergence from a reference model.
The optimization is expressed as:

max
πθ

Ex∼D, y∼πθ(y|x) [rϕ(x, y)]

− βDKL (πθ(y|x) ∥πref(y|x)) (1)

where πθ(y|x) represents the model’s output distri-
bution, rϕ(x, y) is the reward function, β controls
the trade-off between reward and divergence, and
DKL is the Kullback-Leibler divergence between
the model and the reference model.
Cognitive-level Adaptation The module tailors
responses to user’ capabilities through three-tier
adaptation inspired by Bloom’s taxonomy of cogni-
tive objectives: For basic-level users, it simplifies
concepts using fundamental terminology, analo-
gies, and clear explanations aimed at fostering
lower-order cognitive processes such as remem-
bering and understanding. The output distribution
πθ(y|x) is optimized via reward modeling to pri-
oritize accessibility. Intermediate-level users re-
ceive balanced explanations that integrate founda-
tional knowledge with logical reasoning and con-
textual examples, supporting mid-level cognitive
goals such as applying and analyzing. Advanced-
level users obtain domain-specific terminology and
deductive reasoning aligned with expert-level cog-
nition, aligning with higher-order objectives such
as evaluating and creating. The preference mecha-
nism follows:

P (yw ≻ yl|x) = σ(r(x, yw)− r(x, yl)), (2)

where P (yw ≻ yl|x) denotes the probability of
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output yw being preferred over yl, σ is the logistic
function, and r(·) represents the reward model that
evaluates cognitive alignment.

4.3 Knowledge Controllable Generation
To enhance the consistency between LLMs out-
put and CAR’s retrieval content, we incorporate a
Knowledge Controllable Generation(KCG) mod-
ule that enables precise control over the output.
This approach, based on prior work (Feng et al.,
2024c; Hu et al., 2021; Feng et al., 2024d), allows
for adaptive management of output’s content by
adjusting the weights of vectors in the Feedforward
Network (FFN) layers. The module constructs a
control center for each token in the model’s vocabu-
lary, influencing the generation of domain-specific
content by modifying the FFN vector weights.

The generation process consists of four stages:
initialization, monitoring, adaptation, and filtering.
In the initialization stage, relevant keywords from
the CAR module are collected, and their corre-
sponding FFN vectors are identified. The monitor-
ing stage evaluates the relevance of each token gen-
erated, dynamically adjusting weights to optimize
domain-specific alignment. During the adaptation
stage, the weights of the control centers are modi-
fied to guide the model towards generating content
that aligns with the desired knowledge scope. The
weight adjustment is given by:

ωt+1
ai = λ · σ

(
−(µω − µ̂t

ai) · lt
)
, (3)

where σ is the sigmoid function, µω is a prede-
fined threshold, and µ̂t

ai represents the cumulative
alignment. This dynamic weight adjustment pre-
vents over-specialization by resetting weights when
alignment exceeds thresholds. Finally, in the fil-
tering stage, thresholds are applied to ensure the
quality and relevance of the generated content.

The KCG enables precise control over the gen-
eration process, enhancing the relevance of output
content to knowledge retrieved by the CAR.

5 Experiments

5.1 Experimental Setups
Baselines. We compare CLAF with the open-
source models LLaMA 3.1-8B-Instruct (Touvron
et al., 2023) and Qwen-2.5-7B-Instruct (Bai et al.,
2023),Qwen-2.5-3B-Instruct, as well as the closed-
source models ChatGPT-4o (Achiam et al., 2023),
Gemini 1.5 (Team et al., 2023), Qwen-Plus (Bai
et al., 2023), and Claude 3.5 (Anthropic, 2024).

Figure 4: (a) Number of retrievals in the CAR across
different knowledge levels and question types. (b) Re-
sults of the Scale-size experiment, indicating that the
current dataset volume is sufficient.

Model
Flesch Kin Level Match

Bas. ↓ Adv. ↑ Bas. ↑ Int. ↑ Adv. ↑
CLAF 8.19 16.38 90.75 86.30 90.87
- w/o KCG 8.24 16.36 89.99 85.75 90.22
- w/o CAR 8.51 13.70 84.78 78.35 78.83
- w/o ALSO 9.79 14.06 57.17 76.67 59.11

Table 2: Ablation Study of the CLAF Framework.
Results demonstrating the effectiveness of each compo-
nent model within the CLAF framework.

Metrics. We assess text readability and complexity
using Flesch-Kincaid Grade Level(FK) (Solnyshk-
ina et al., 2017), Gunning Fog Index (Gunning,
1969), and SMOG Index (Mc Laughlin, 1969).
Cognitive hierarchical alignment is evaluated using
GPT-o1. See prompts in Appendix E.

5.2 Results

We evaluated various models, including our pro-
posed one, across different cognitive levels, with re-
sults in Table 1. The models’ outputs were assessed
using the Flesch-Kincaid Grade Level, Gunning
Fog Index, SMOG, and Level Match to measure
precision and appropriateness. "FS" refers to few-
shot prompts, and "Supervised Fine-Tuning (SFT)"
involves fine-tuning with CLAF.

The Flesch-Kincaid, Gunning Fog, and SMOG
indices assess sentence complexity, with higher
scores indicating more difficulty. Basic-level users
benefit from lower indices for better comprehen-
sion, while Advanced-level users benefit from
higher indices. Intermediate-level users require
a balance between the two for optimal learning.
Overall Performance.The results in Table 1 show
that CLAF significantly enhances cognitive align-
ment in text generation. By integrating ALSO with
CAR, CLAF improves readability and hierarchi-
cal matching rates. It reduces the Flesch-Kincaid
score by 5.3% for basic-level outputs on Llama-3.1-
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Hydrogen balloons rise due to buoyancy, as explained by Archimedes' 

principle, which states that the buoyant force on an object is equal to the 

weight of the fluid it displaces. Hydrogen gas, with a density of about 

0.0899 kg/m³, is much less dense than air, which has a density of about 

1.225 kg/m³. This density difference means the balloon displaces a 

heavier volume of air than the weight of the hydrogen and the balloon 

itself, resulting in an upward buoyant force that causes the balloon to rise.

Hydrogen balloons float up into the sky because they are filled with a

special gas called hydrogen, which is lighter than the air around us.

This difference in weight creates a buoyant force, similar to how a

rubber duck floats a on water. The buoyant force pushes the balloon

upwards, allowing it to rise into the sky.

Imagine a hydrogen balloon as a little sky dancer! When you fill it with

hydrogen gas, it‘s lighter than the air around it, just like when you wear a

feather coat that floats. The balloon loves to rise up into the sky because

it’s like a bubble in a fizzy drink. It to get to the top. It's a fun game of 'up,

up, and away!

Gen balloons fly into the sky because they are filled with hydrogen

gas, which is lighter than air. When you release the balloon, the

buoyancy force, which is the upward force caused by the difference

in density between the hydrogen and the surrounding air, propels the

balloon upwards.

Hydrogen balloons ascend due to the Archimedes’ buoyancy law. When a

balloon is filled with hydrogen, the density of the gas mixture (hydrogen

0.08988 kg/m³and air) is less than that of the ambient air 1.225 kg/m³.

According to the law of buoyancy, an object will float if it is less dense

than the fluid it is immersed in. The buoyant force (𝐹𝑏) is given by the

formula:𝐹𝑏 = 𝝆𝑉𝑔 , where 𝝆 is the density of the fluid displaced, 𝑉 is the

volume of the fluid displaced, and 𝑔 is the acceleration due to gravity…

Hydrogen balloons fly into the sky because of a principle called buoyancy,

which is based on the concept of density. When a balloon is filled with

hydrogen gas, it becomes less dense than the surrounding air. According

to Archimedes' Principle, an object less dense than its surroundings will

experience an upward buoyant force, causing it to rise.

Basic

moderate

Advanced

Question: Why do hydrogen balloons fly into the sky?
CLAF ChatGPT-4o

Figure 5: Case Study. The results indicate that our CLAF achieves better cognitive level alignment.

Model
Level Match

Bas. ↑ Int. ↑ Adv. ↑
Closed-source LLMs

GPT-4o-FS 50.01 87.81 55.96
Gemini-1.5-FS 51.05 86.61 57.30
Claude-3.5-FS 51.27 83.63 61.19
Qwen-Plus-FS 56.78 88.01 61.85

Open-source LLMs
QwQ-32B-Preview-FS 35.00 71.51 58.94
Llama-3.1-8B 22.05 84.32 38.26
Llama-3.1-8B-SFT 55.46 79.04 57.71
CLAF(ours) 60.55 80.07 64.97

Table 3: Experimental Results on the Chinese Classi-
cal Poetry Appreciation Dataset. Results demonstrat-
ing the strong generalization ability of CLAF across
different domains and languages.

8B and increases the Gunning Fog score by 1.05
points for advanced-level outputs, indicating effec-
tive complexity management. The SMOG scores
(Bas.=8.02, Int.=12.81, Adv.=15.04) on Qwen-7B
surpass Gemini-1.5-FS, validating KCG’s role in
academic depth modulation. CLAF enables Qwen-
7B to achieve an 81.63 advanced matching rate, out-
performing Qwen-Plus (70.40). For open-source
models, it achieves an 89.31% average match-
ing rate on Llama-3.1-8B, surpassing Few-Shot
and SFT baselines by 40.96 and 8.49 percentage
points, respectively. The CAR mechanism boosts
advanced generation to a 90.87% matching rate,
outperforming state-of-the-art closed models.
Effectiveness of the Scale. The Scale demon-
strates effectiveness in three ways: (1) In closed-
source models, few-shot prompting with Scale im-
proves performance, with GPT-4o-FS achieving a
90.52% advanced-level match (+5.78% over zero-
shot); (2) For open-source models, full-parameter
SFT training with Scale significantly enhances ca-
pabilities, with Llama-8B-SFT reaching an 80.82%
average match rate (+63.8% over the few-shot

CLAF FK-Bas.↓ FK-Adv.↑ LM-Bas.↑ LM-Int.↑ LM-Adv.↑
0-25% 8.34 14.32 87.69 84.31 86.76
w/o KCG 0-25% 8.45 13.82 84.34 84.39 80.14

25-50% 8.29 15.97 88.41 85.12 88.09
w/o KCG 25-50% 8.33 14.88 85.43 82.46 85.35

Table 4: Ablation Study of the KCG Under Poor Re-
trieval Conditions. The results show that KCG brings
more significant performance gains when the quality of
retrieved results is limited.

baseline) and improving basic-level performance
from 26.35% to 85.53%; (3) Scale identifies catas-
trophic failure patterns in unadapted models, such
as Llama-FewShot’s low basic (26.35%) and ad-
vanced (28.90%) matching rates, and highlights
the bias toward intermediate content (92.80% Int.
match), effectively diagnosing LLM bias through
contrastive evaluation.
Impact of Model Scaling. Model scaling ex-
periments show framework adaptability: Qwen-
7B improves the average matching rate by 1.25
points (82.42 vs 81.17) over Qwen-3B, with SMOG
scores rising from 14.43 to 15.04, indicating larger
models better utilize KCG signals. Notably, our
method surpasses most closed-source models in
advanced matching using only 10-25% of the pa-
rameters of commercial models (Llama-3.1-8B
vs Claude-3.5), demonstrating effectiveness un-
der limited computation. These results validate
the tripartite mechanism: 1) ALSO creates gran-
ular linguistic representations via DPO; 2) CAR
dynamically constrains knowledge boundaries dur-
ing generation; 3) KCG ensures output content
relevance to the question. The framework’s multi-
objective optimization enables new applications in
educational content generation and personalized
information delivery with hierarchical adaptation.
Result on Poetry Appreciation. As shown in
Table 3, our method demonstrates effectiveness
on Chinese classical poetry appreciation. When
built upon the Llama-3.1-8B-Instruct base model,
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our framework achieves 60.55% basic-level match-
ing (+38.5 points over vanilla Llama-3.1-8B)
and 64.97% advanced-level accuracy, surpassing
all closed-source models in basic-level adapta-
tion (vs Qwen-Plus-FS=56.78) while maintain-
ing competitive intermediate-level performance
(80.07 vs 88.01). Notably, the advanced-level re-
sult (64.97%) approaches closed-source models’
upper bound (Claude-3.5-FS=61.19, Qwen-Plus-
FS=61.85), proving our CLAF effectively handles
cultural domain-specific complexity despite the
base model’s limited Chinese poetry training data.

5.3 Ablation Study

Ablation Study in CLAF. We conducted an abla-
tion study on FK scores and Level Match accuracy.
As shown in Table 2, removing any component sig-
nificantly reduces performance. Excluding CAR
results in a 16.4% drop in advanced complexity
metrics, emphasizing its importance in maintain-
ing professional depth. Disabling ALSO leads to
a 37% reduction in Basic level match accuracy,
highlighting its crucial role in cognitive alignment.

The KCG module strengthens our framework
by guiding generation through keywords from re-
trieved content. Its impact is most notable when
retrieval quality is low. As shown in Table 4, KCG
significantly boosts performance in the 0–25% re-
trieval quality range (e.g., LM-Bas. +3.35, LM-
Adv. +6.62) and shows consistent gains in the
25–50% range (e.g., FK-Adv. +1.09, LM-Bas.
+2.98). These results highlight KCG’s compen-
satory role, helping maintain generation quality by
extracting key concepts from suboptimal retrievals,
thereby enhancing the CLAF’s robustness across
varying retrieval conditions.

The Figure 4 (a) shows the number of knowledge
retrieved by CAR at different levels, demonstrating
the wider range of knowledge that our CAR can
provide as the user’s cognition improves.
Ablation Study in Scale. The scaling experiment
in Figure 4 (b) reveals two phases. As training data
increases from 10% to 70% (52→364 samples), ac-
curacy jumps 32.5 points (53.1%→85.62%), reach-
ing 95.3% of full-data performance. Beyond 70%,
gains taper off (70%→90%: +3.4; 90%→100%:
+0.28), indicating performance saturation. This
non-linear trend shows our method effectively cap-
tures core stylistic features with limited data, while
the rest mainly refines edge cases. The plateau af-
ter 90% confirms our 593-sample dataset achieves
near-optimal utility via the CAR and KCG.

Model Flu. Align. Guid. Bas. Adv.

CLAF(our) 4.41 3.89 4.58 53.47% 60.34%
ChatGPT-4o 4.52 3.51 4.23 32.15% 21.52%
SFT 4.23 3.47 4.31 14.38% 18.14%

Table 5: Human Evaluation Results. Human evalua-
tion indicate that outputs from CLAF are more preferred
compared to other open-source models, demonstrating
both the model quality and the effectiveness of Scale.

5.4 Human Evaluation

To complement automatic evaluation metrics, we
conducted comprehensive human evaluations in-
volving expert assessments and user preference:
• Expert Evaluation: Three graduate-level educa-

tion specialists assessed 100 tri-level responses
using a 5-point Likert scale. Evaluation criteria
included fluency (Flu.), cognitive-level alignment
(Align.), and pedagogical effectiveness (Guid.).

• User Preference Evaluation: We recruited three
elementary school students (Bas.) and three grad-
uate students (Adv.) in biochemistry to represent
novice and advanced users. Participants com-
pared answers generated by CLAF, ChatGPT-4o,
and a supervised fine-tuned (SFT) model, and
selected their preferred responses.
The results are shown in Table 5, and the re-

sults show that CLAF has better results than other
models in manual evaluation.

5.5 Case Study

Figure 5 showcases CLAF’s hierarchical advan-
tages across three comparative levels. At the
basic level, our CLAF module enables vivid
metaphors and anthropomorphic language (e.g.,
“sky dancers”), outperforming GPT-4o’s more tech-
nical phrasing (e.g., “buoyancy”). At the intermedi-
ate level, both models explain density differences,
but ours adds clarity with a structured three-step
logic: “Archimedes” law → density comparison →
force chain.” At the advanced level, both give ac-
curate answers, but our CAR module distinguishes
itself with precise mathematical expressions (e.g.,
Fb = ρV g, H2 = 0.08988 kg/m3), offering a solid
foundation for academic research.

6 Conclusions
We address the challenge of cognitive-level mis-
alignment in LLM-based generation by introducing
Scale, a dataset with tri-level cognitively aligned
answers. Building on Scale, we propose CLAF, a
modular framework that adapts content and style to
users’ cognitive capacity. Experiments show that
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CLAF significantly improves cognitive alignment
and controllability. This work lays the groundwork
for cognitively adaptive generation across educa-
tion and other user-facing domains.
Acknowledge:This research was supported by
grants from the “Pioneer” and “Leading Goose”
R&D Program of Zhejiang (2025C02022), Na-
tional Natural Science Foundation of China
(No.62307032) and the Key Research and
Development Program of Zhejiang Province
(No.2024C03270).

Limitations

In this section, we discuss the limitations of our
work as below:

• Currently, CLAF categorizes users into three
levels. While this approach provides a gen-
eral framework, a more refined categorization
might lead to better adaptive responses and
more accurate modeling of student learning
needs. We will leave this as future work.

• Our work focuses on cognitive alignment and
acknowledges the limits of a three-level cat-
egorization; however, it does not account for
motivational, affective, or individual user dif-
ferences, which may affect its practical appli-
cability in real-world settings. Future exten-
sions will explore incorporating these factors
into the framework.
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A Detail of Cognitive Level

In our study, we construct a dataset by carefully
selecting a diverse set of questions q from each
source, along with their corresponding answers a.
To capture cognitive adaptability, we generate three
distinct responses for each answer, each tailored
to a specific cognitive level: basic, intermediate,
and advanced. These levels correspond to key
learning stages, ensuring that the responses are both
educationally relevant and cognitively engaging:
• Basic level: This level targets early childhood to

elementary school users. It focuses on providing
simplified explanations and structured guidance
to support foundational understanding and cogni-
tive growth.

• Intermediate level: Geared towards middle and
high school students, this level introduces more
complex concepts and encourages moderate rea-
soning. It aims to bridge the gap between basic
comprehension and advanced analytical skills,
fostering critical thinking and problem-solving
abilities.

• Advanced level: Designed for undergraduate stu-
dents and beyond, this level explores complex,
abstract concepts that require strong analytical
skills. It challenges users to engage with sophis-
ticated ideas, promoting deep understanding and
intellectual development.

B Dataset Curation Detail

B.1 Dataset Matadata

Category Quantity
science 153
nature 140
biology 192
cosmology 35
poetry 73
total 593

B.2 Detail about Terminology Adaptation

This appendix documents the prompt design and
methodological details for terminology processing
in our tiered knowledge adaptation framework.
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B.2.1 Terminology Extraction

We ultimately obtained 1985 pairs belonging to the
mapping using the following prompts.

Identify domain-specific terms requiring adapta-
tion. Prompt Template:

You are a linguistics expert analyzing
educational content. Carefully extract all
key technical terms from the following
text that require complexity adjustment
for different learner levels. Consider:

↪→
↪→
↪→
↪→

1. Specialized vocabulary beyond daily usage
2. Abstract conceptual terminology
3. Domain-specific jargon
4. Terms with complexity variations across

cognitive levels↪→
Return a JSON list without commentary:
{
"terms": ["term1", "term2", ...]

}
Text: {insert_content}

B.2.2 Cognitive-Level Mapping Prompt

Generate tiered synonyms aligned with educational
stages:

Prompt Template:

As an expert lexicographer with pedagogical
training, generate three cognitive-level
appropriate synonyms for the term "{term}"
using these guidelines:

↪→
↪→
↪→

Basic ({target_age}):
- Simple concrete language
- Maximum 2 syllables preferred
- Use everyday analogues
Example: "Photosynthesis" → "Plant

food-making"↪→
Intermediate ({target_age}):
- Introduce conceptual components
- Allow 3-4 syllables
- Maintain precision while improving

accessibility↪→
Example: "Mitochondria" → "Cell energy

factories"↪→
Advanced ({target_age}):
- Technical precision prioritized
- Permit specialized jargon
- Match academic literature usage
Example: "Catalyst" → "Chemical reaction

mediator"↪→

Provide JSON output:
{
"term": "{term}",
"cognitive_mapping": {

"basic": "...",
"intermediate": "...",
"advanced": "..."

}
}

B.3 Detail about Syntactic Adaptation
B.3.1 BNF Constraints for Cognitive Levels
We formalize syntactic complexity control through
BNF grammars:
Basic Level Grammar

<S> ::= <SimpleNounPhrase> <PresentTenseVerb>
<Object>↪→

<SimpleNounPhrase> ::= [Determiner]
[Adjective] Noun↪→

<Object> ::= Noun | "that" <SimpleClause>
<SimpleClause> ::= <SimpleNounPhrase> Verb

Features: Only simple present tense Maximum 1
subordinate clause Prohibited structures: passives,
modals, gerunds
Intermediate Level Grammar

<S> ::= <ComplexNounPhrase> <VerbPhrase>
[Conjunction <S>]↪→

<VerbPhrase> ::= [Modal] [Adverb] Verb
[PrepositionalPhrase]↪→

<ComplexNounPhrase> ::= [Determiner]
[Adjective+] Noun [RelativeClause]↪→

<RelativeClause> ::= "that" <VerbPhrase> |
"which" <VerbPhrase>↪→

Features: Allows past/future tenses Permits 2-level
clause nesting Limited modals (can/may/will)
Advanced Level Grammar

<S> ::= <Nominalization> | <PassiveVoice> |
<Conditional>↪→

<PassiveVoice> ::= <NounPhrase> "is"
VerbPastParticiple [PrepositionalPhrase]↪→

<Conditional> ::= "If" <S> "," ("then" <S> |
<ModalVerb> <S>)↪→

<Nominalization> ::= <GerundPhrase> Verb
<ComplexNounPhrase>↪→

Features: Supports all verb forms (gerunds, par-
ticiples) Allows multi-clause embeddings Permits
abstract syntactic constructions

B.3.2 Syntax Adjustment Prompt
Transform text to match target cognitive level’s
BNF grammar:
Prompt Template:

As a linguistic editor, rewrite the following
text strictly adhering to these BNF
constraints for {cognitive_level}:

↪→
↪→
{insert_relevant_BNF_rules}
Key requirements:
1. Sentence structure must validate against BNF
2. Lexical complexity matches

{cognitive_level} terminology↪→
3. Preserve original semantic content

Input: {text}
Output (JSON):
{
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"original": "...",
"restructured": "...",
"validation": {"pass": bool, "issues": []}

}

B.3.3 Consistency Revision Pipeline
Embeddings are generated using Sentence-BERT
(all-mpnet-base-v2) with cosine similarity measure-
ment.
Prompt Template:

Input:
```json
{
"basic": "[simple sentence]",
"intermediate": "[mid-level sentence]",
"advanced": "[complex sentence]"

}
Instruction:
"Detect factual conflicts across three

cognitive-level sentences. Revise only
conflicting parts using
strikethrough→correction while preserving
original complexity:

↪→
↪→
↪→
↪→
Cross-check scientific accuracy
Modify contradictions only
Maintain sentence structure
Output:
{
"revisions": {

"basic": "[revised]",
"intermediate": "[revised]",
"advanced": "[revised]"

},
}

C Construction of Adaptive Knowledge
Graph

C.1 Extraction of Concepts
Extracting surrogate cognitive-level entities and
relations from text
Prompt Template:

Given a text document that is potentially
relevant to this activity and a list of
entity types, identify all entities of
those types from the text and all
relationships among the identified
entities. Use {language} as output
language.

↪→
↪→
↪→
↪→
↪→
↪→
-Steps-
1. Identify all entities. For each identified

entity, extract the following information:↪→
- entity_name: Name of the entity, use same

language as input text. If English,
capitalized the name.

↪→
↪→
- entity_type: One of the following types:

[{entity_types}]↪→
- entity_description: Comprehensive

description of the entity's attributes and
activities

↪→
↪→

- entity_cognitiev_level: One of the following
cognitive levels:↪→
Basic level: This level targets early

childhood to elementary school
learners. It focuses on providing
simplified explanations and structured
guidance to support foundational
understanding and cognitive growth.

↪→
↪→
↪→
↪→
↪→
Intermediate level: Geared towards middle

and high school students, this level
introduces more complex concepts and
encourages moderate reasoning. It aims
to bridge the gap between basic
comprehension and advanced analytical
skills, fostering critical thinking
and problem-solving abilities.

↪→
↪→
↪→
↪→
↪→
↪→
↪→
Advanced level: Designed for undergraduate

students and beyond, this level
explores complex, abstract concepts
that require strong analytical skills.
It challenges learners to engage with
sophisticated ideas, promoting deep
understanding and intellectual
development.

↪→
↪→
↪→
↪→
↪→
↪→
↪→

\end{itemize}
Format each entity as ("entity"〈entity_name〉

〈entity_type〉 〈entity_description〉
〈entity_cognitiev_level〉)

↪→
↪→
2. From the entities identified in step 1,

identify all pairs of (source_entity,
target_entity) that are *clearly related*
to each other.

↪→
↪→
↪→
For each pair of related entities, extract the

following information:↪→
- source_entity: name of the source entity, as

identified in step 1↪→
- target_entity: name of the target entity, as

identified in step 1↪→
- relationship_description: explanation as to

why you think the source entity and the
target entity are related to each other

↪→
↪→
- relationship_strength: a numeric score

indicating strength of the relationship
between the source entity and target entity

↪→
↪→
- relationship_keywords: one or more

high-level key words that summarize the
overarching nature of the relationship,
focusing on concepts or themes rather than
specific details

↪→
↪→
↪→
↪→
- relationship_cognitiev_level: A cognitive

level indicating the cognitiev_level
required to understand the relationship.
This should be calculated by considering
both the complexity of the relationship
itself and the average cognitiev_level of
the source and target entities. Use the
following guideline:

↪→
↪→
↪→
↪→
↪→
↪→
↪→

- Calculate the average cognitiev_level of
the source and target entities.↪→

- Consider the inherent complexity of the
relationship.↪→

- Assign a cognitiev_level level from the
three cognitive levels.↪→

Format each relationship as ("relationship"
〈source_entity〉 〈target_entity〉
〈relationship_description〉
〈relationship_keywords〉
〈relationship_strength〉
〈relationship_cognitiev_level〉)

↪→
↪→
↪→
↪→
↪→
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3. Identify high-level key words that summarize
the main concepts, themes, or topics of
the entire text. These should capture the
overarching ideas present in the document.

↪→
↪→
↪→
Format the content-level key words as

("content_keywords"〈high_level_keywords〉)↪→
4. Return output in {language} as a single

list of all the entities and relationships
identified in steps 1 and 2. Use
**{record_delimiter}** as the list
delimiter.

↪→
↪→
↪→
↪→
5. When finished, output

{completion_delimiter}↪→

C.2 Multi-layer Knowledge Graph
Construction Algorithm

Algorithm 1 Adaptive Retrieval Graph Construc-
tion
Require: Text corpus D, maximum level L
Ensure: Adaptive Retrieval Graph Gtotal

1: E ,R ← Extration(D)
2: for each ei ∈ E do
3: li ← HierarchyAssigner(ei)
4: end for
5: for each (ei, r, ej) ∈ (E ,R) do
6: if li = lj then
7: Gtotal.add_edge(ei, ej , r)
8: end if
9: if |li − lj | ≤ 1 and li ̸= lj then

10: Gtotal.add_crosslink(ei, ej)
11: end if
12: end for
13: return Gtotal

C.3 Hierarchical Knowledge Retrieval

D Implementation Details.

The experiments were conducted on a cluster with
8×NVIDIA A100 80GB GPUs, utilizing BF16
mixed precision and FlashAttention-2 for compu-
tational efficiency. The specific configurations are
as follows: (1) Hierarchical Retrieval-Augmented
Generation: We extracted a knowledge graph com-
prising 6,244 entities and 6,364 relations by set-
ting the chunk token size to 600 and the chunk
overlap token size to 100; (2) DPO Training: Us-
ing Llama3.1-8B-Instruct as the base model, we
first performed 1 epoch of Supervised Fine-Tuning
(SFT) with a global batch size of 64 (micro batch
size of 16) and a learning rate of 5e-6, followed
by 1 epoch of DPO with a learning rate of 5e-7

Algorithm 2 Hierarchical Knowledge Retrieval

Require: Query q, cognitive level c ∈ {0, 1, 2},
graph Gtotal, parameters top-k k, depth d

Ensure: Knowledge subset K(k)
c

1: Set maximum level based on cognitive level:
2: lmax ← c
3: Gc ← {e ∈ Gtotal | le ≤ lmax}
4: ϕq ← QueryRewriter(q, c)
5: Initialize result set K(k)

c ← ∅
6: Perform initial query traversal:
7: Sk ← TopK(Neighbor(ϕq, Gc), k)

8: Add results to K
(k)
c : K(k)

c ← K
(k)
c ∪ Sk

9: for each ei ∈ Sk do
10: Retrieve neighbors at depth d + 1: Ni ←

NeighborDepth(ei, Gc, d+ 1)

11: Add neighbors to K
(k)
c : K(k)

c ← K
(k)
c ∪Ni

12: end for
13: return K

(k)
c

and beta=0.1, maintaining the same batch configu-
ration as in SFT; (3) KCG: We extracted Control
Center features from the DPO-trained model and
implemented dynamic parameter control.

E Metrics

Prompt Template:

You are tasked with evaluating how well a
given response matches the intended
audience level. Consider the following
audience types and their criteria:

↪→
↪→
↪→

Basic level: This level targets early
childhood to elementary school learners.
It focuses on providing simplified
explanations and structured guidance to
support foundational understanding and
cognitive growth.

↪→
↪→
↪→
↪→
↪→
Intermediate level: Geared towards middle and

high school students, this level
introduces more complex concepts and
encourages moderate reasoning. It aims to
bridge the gap between basic comprehension
and advanced analytical skills, fostering
critical thinking and problem-solving
abilities.

↪→
↪→
↪→
↪→
↪→
↪→
↪→
Advanced level: Designed for undergraduate

students and beyond, this level explores
complex, abstract concepts that require
strong analytical skills. It challenges
learners to engage with sophisticated
ideas, promoting deep understanding and
intellectual development.

↪→
↪→
↪→
↪→
↪→
↪→

Audience Type 0 (Basic level):
Is the response fun and engaging?
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Does it use simple knowledge points and avoid
complex vocabulary?↪→

Are analogies and metaphors used
appropriately?↪→

Is any difficult content explained in simple
terms?↪→

Audience Type 1 (Intermediate level):
Does the response provide normal knowledge

points?↪→
Is it based on common sense and easily

understandable?↪→
Audience Type 2 (Advanced level):
Is the response professional and detailed?
Does it use technical language appropriate for

experts in the field?↪→
Question: {question}

Answer for Audience Type 0: {answer_type_0}

Answer for Audience Type 1: {answer_type_1}

Answer for Audience Type 2: {answer_type_2}

Evaluate each response based on how well it
aligns with the specified audience type
and provide a score out of 100 for each.
Output only the scores as numbers.

↪→
↪→
↪→

F Dataset Construction Validation

F.1 Terminology Mapping Validation

• Expert Panel: Three biochemistry graduate re-
searchers assessed the conceptual accuracy and
complexity of mapped terms.

• Consensus Mechanism: Terms were refined col-
laboratively if inconsistencies were flagged.

• User Testing: Clarity and accessibility were val-
idated through user feedback.

F.2 Educational Suitability Review

• Panel: Five education specialists in curriculum
design assessed responses across basic, interme-
diate, and advanced tiers.

• Criteria: Each response was graded for age-
appropriateness and conceptual clarity.

• Revision: 278 out of 593 samples were itera-
tively improved (46.8% revision rate).

G Details of Human Assessment

G.1 Expert Evaluation

Three graduate-level education specialists evalu-
ated responses across all three difficulty levels us-
ing a 5-point Likert scale, where a higher score
indicates better performance. They assessed:
• Fluency: Language clarity and logical structure.
• Cognitive Level Alignment: Appropriateness

for target users.

• Pedagogical Guidance: Educational effective-
ness.

A total of 100 questions were evaluated.

G.2 Users Evaluation

To assess real-world effectiveness, we recruited:
• Basic Level Three elementary school students.
• Advanced Level Three graduate students.
Participants compared responses from three sys-
tems (CLAF, ChatGPT-4o, and an SFT-tuned
model) and selected their preferred answers.

H Detail of Personnel and Computational
Cost

H.1 Human Resource Compensation

To support the evaluation and dataset construction
processes, we involved several participants from
both education and biochemistry domains. All par-
ticipants were compensated accordingly. For inter-
national clarity, compensation amounts are approx-
imated in U.S. dollars.

During the expert evaluation phase, we recruited
three graduate-level education specialists. Each
specialist was compensated approximately $60 for
one and a half days of participation.

In the users evaluation stage, we involved three
elementary school students and three graduate stu-
dents in biochemistry. The graduate students re-
ceived approximately $30 each, while the elemen-
tary students were compensated about $20 per par-
ticipant, all for one day of participation.

During the dataset construction process, three
biochemistry graduate students helped validate the
terminology mapping. Each received around $40
for two days of work.

Finally, five graduate students specializing in
education were recruited for the final dataset review.
Each participant was compensated approximately
$40 for two days of evaluation work.

H.2 Computational Efficiency

Despite the layered architecture of our framework,
the system remains computationally efficient and
scalable.

The construction of the entire domain-specific
knowledge graph, consisting of over 6,000 enti-
ties and relations, took less than ten minutes and
cost approximately $1 using a commercially avail-
able API. This demonstrates the feasibility of rapid
knowledge graph generation.
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CLAF operates with computational requirements
similar to those of the LLaMA-3.1-8B model, re-
quiring around 20GB of VRAM. Further optimiza-
tion through quantization can reduce these require-
ments, enabling deployment on standard hardware.

The CAR multi-step retrieval module is highly
efficient, achieving an average retrieval time of
approximately 2 seconds per query, which supports
real-time interactive use without noticeable latency
for end-users.

These cost and performance metrics confirm that
our framework can be practically adopted in large-
scale educational settings without significant hu-
man or computational overhead.
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