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Abstract

Due to the widespread dissemination of rumors
on social media platforms, detecting rumors
has been a long-standing concern for various
communities. However, existing rumor detec-
tion methods rarely consider the fairness issue
inherent in the model, which can lead to bi-
ased predictions across different stakeholder
groups (e.g., domains and originating platforms
of the detected content), also undermining their
detection effectiveness. In this work, we pro-
pose a two-step framework to address this issue.
First, we perform unsupervised partitioning to
dynamically identify potential unfair data pat-
terns without requiring sensitive attribute anno-
tations. Then, we apply invariant learning to
these partitions to extract fair and informative
feature representations that enhance rumor de-
tection. Extensive experiments show that our
method outperforms strong baselines regard-
ing detection and fairness performance, and
also demonstrate robust performance on out-of-
distribution samples. Further empirical results
indicate that our learned features remain in-
formative and fair across stakeholder groups
and can correct errors when applied to existing
baselines.

1 Introduction

Social media has reshaped the convenience of how
people exchange their daily information, but it has
also facilitated the spread of rumors via the internet.
A rumor, defined as a piece of fabricated informa-
tion, aims to mislead the public and generate illegal
profits. Therefore, detecting rumors accurately and
promptly has become a shared goal in society.

Previously, most rumor detectors (Devlin et al.,
2019; Nan et al., 2021; Wang et al., 2018; Azri
et al., 2021; Zhang et al., 2021) utilize data-driven
methods to learn news content representations for
rumor classification. This follows an ideal causal
pathway x → y, where x denotes news content
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Figure 1: Preliminary findings on a recent benchmark
(Zhou et al., 2024). Left: rumor ratio (y-axis) across
domains and platforms (x-axis). Right: t-SNE visualiza-
tion of content features obtained by BERT (Devlin et al.,
2019), illustrating clear distinctions across domains and
platforms.

and y represents the classification label. However,
they often neglect the unseen confounding effect
modeled as x ← s → y, where a sensitive at-
tribute s indicates stakeholder group membership
(e.g., domain) of the content. Taking domain-based
groups as an example, x← s manifests as domain-
specific linguistic patterns shape the content (e.g.,
science versus politics). The path s→ y manifests
through data collection biases, i.e., the disparate
class distribution across domains (Zhou et al., 2024;
Nan et al., 2021; Li et al., 2024c). This extends
to other sensitive attributes (e.g., platform), where
news from major agencies (e.g., CNN news) differs
linguistically from social media streams (e.g., Twit-
ter/Reddit) and is stereotyped as more trustworthy.
We derive empirical findings in Fig. 1 to support the
above causal analysis. It is evident that non-causal
shortcuts can be learned due to discrepancies in
feature and class distributions across groups. As
shortcuts allow the model to infer group identity
and characteristics of the content, data-driven ru-
mor detection methods are prone to making biased
and unfair decisions, often classifying content from
high-rumor-ratio groups as rumors without rigor-
ously verifying authenticity.

Current studies in rumor detection have only
examined the bias issue in training datasets. Specif-
ically, while certain types of bias (e.g., entity (Zhu
et al., 2022a) and psycholinguistic bias (Chen et al.,
2023)) have been partially addressed, these mitiga-
tion approaches can hardly be quantitatively mea-
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sured in terms of fairness for stakeholders from
diverse groups (e.g., across different content do-
mains and platforms). To enhance rumor detection
from a group fairness perspective, we identify two
critical challenges. 1. Limited annotated but di-
verse sensitive attributes. Privacy constraints and
massive media data prevent comprehensive sen-
sitive attribute annotation related to the detected
content (e.g., domains, platforms, authors’ certifica-
tion status, political leaning, etc.), yet each attribute
defines its own set of groups. 2. Variant feature
learning. Limited sensitive attribute supervision
produces features that remain unfairly variant to
unknown sets of groups, compromising generaliza-
tion of fairness and detection effectiveness.

Ideally, the model should accurately detect ru-
mors while avoiding disproportionate predictions
within each identifiable set of stakeholder groups
to ensure fairness. To approach this, we develop
FIRM, which stands for Fair and Invariant Rumor
detection Model for multiple sets of groups. This
majorly takes two steps. Initially, we split the train-
ing data into different subsets using a parameter-
ized neural network to identify a potential unfair
data partition. Subsequently, we leverage invariant
learning to improve and balance the model’s per-
formance across each subset within the partition.
The above two challenges are effectively addressed
by our method: 1. it does not require any sensitive
attribute annotations to perform data partitioning,
and 2. it can account for a wide range of stake-
holder groups, as the discovered unfair partition
dynamically evolves with the framework’s param-
eter updates during training. Hence, the learned
feature representations should be invariant and gen-
eralizable across diverse stakeholder groups.

During experimental evaluation, we assess both
detection effectiveness—using metrics such as ac-
curacy and F1 score—and fairness, measured by
maximum demographic disparity (Barocas et al.,
2023), which captures whether predictions are
disproportionately distributed within each set of
group defined by ground-truth sensitive attributes.
Results demonstrate that our method performs
strongly on both fronts compared to strong base-
lines. Our key contributions are summarized as
follows:

• We study rumor detection from a fairness per-
spective regarding multiple sets of groups, a
novel angle largely overlooked in previous
research.

Base model Classifier
𝑚 training instances

…
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Figure 2: Overview of our proposed method.

• We propose a unified fairness framework that
works for various sets of groups without re-
quiring sensitive attribute annotations.

• Extensive experiments show that our method
consistently surpasses state-of-the-art rumor
detection baselines in both effectiveness and
fairness, while also exhibiting superior robust-
ness and plug-and-play adaptability.

It is important to acknowledge that while fairness
considerations and sensitive attributes were tradi-
tionally associated with legally protected character-
istics (Chen et al., 2019; Liu et al., 2020) and de-
mographic categories (e.g., gender, age, and race),
recent studies in online social application systems
(e.g., recommender systems (Fu et al., 2020; Naghi-
aei et al., 2022; Wang et al., 2022)) have expanded
these concepts to encompass stakeholders from di-
verse groups, which constitute a significant com-
ponent of online social information communities.
Hence, in this study, we also loosely use the term
"sensitive attributes", based on which we can link
to different stakeholder groups relevant to the ben-
efits of the rumor detector’s outcome.

2 Method

Problem Formulation Let c = {x, y,S} repre-
sent a rumor detection instance, where x denotes
the initial embedded feature, y denotes the classi-
fication label, and S = {s1, . . . , sn} denotes the
sensitive attribute vectors indicating group member-
ship of different sets (e.g., s1 indicates the domain,
s2 indicates the platform). Given a rumor detector
with a base model Φ(·)1 for feature extraction and
a classifier f(·), we aim to optimize both for ac-
curate binary prediction y ∈ {rumor, non-rumor}
while ensuring fairness across groups from all po-

1Unless otherwise specified, all experiments in this study
utilize the ’bert-base’ (Devlin et al., 2019) as our base model.
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tential sets. S serves only for fairness evaluation.
We omit the subscript when the context is clear.

Overview The overall framework of our method
is shown in Fig. 2. Our method starts with standard
training, then iteratively performs two steps: (1)
Unfair Partition, which discovers data partitions
that degrade the performance of the base model,
and (2) Invariant Learning, which aims to improve
and balance performance in these partitions.

2.1 Unfair Partition
The concept of backdoor adjustment (Pearl et al.,
2016; Zhang et al., 2022) suggests partitioning data
by sensitive attributes to identify unfair distribu-
tions for learning fair representations. However,
this approach demands comprehensive attribute an-
notations - impractical for social media data and
risks overlooking unidentified sets of groups.

Inspired by invariant learning (Li et al., 2024a;
Zhu et al., 2024; Arjovsky et al., 2019), we propose
dynamic data partitioning to consider multiple sets
of groups during training, without requiring sen-
sitive attribute annotations. Our method identifies
"unfair partitions" where the frozen base model
performs worst. Recalling the ideal causal pathway
x → y, if the base model learns to extract causal
features and is unaffected by confounding sensi-
tive attributes, it should generally produce well-
separated features based on contrastive labels y
within each subset given a partition. Otherwise, it
may be influenced by confounding attributes via the
pathway x ← s → y, where the confounding ef-
fect of s varies across instances within and between
subsets, leading to non-causal, non-generalizable
features and thus, the worst performance within a
partition. In this context, subsets in the partition
can be interpreted as a set of groups conditioned on
the specific type of confounding sensitive attribute
(e.g., content from the domain of science versus
politics).

Based on the discussion above, for an instance c
with its initial embedded feature x, we first deduce
the partition:

ŝ = FC(Φ(x)), (1)

where FC(·) is a fully-connected layer with train-
able parameters and ŝ ∈ R1×k indicates which
subset the instance belongs to and k is a hyperpa-
rameter that defines the number of the split subsets.

By applying this operation across m training
instances, we construct a partition matrix A ∈

{0, 1}m×k, which we want to potentially reflect
data distribution under a specific set of groups. A
is parameterized by FC(·), enabling backpropaga-
tion. Based on the objective of invariant risk mini-
mization (Arjovsky et al., 2019), we identify unfair
partitions where the base model performs worst,
helping reveal confounding sensitive attributes:

Lpar = argmax
A

∑

k

Lcon(A, k,Φ(x), y)+

λVar
(
{Lcon(·)}ki=1

)
,

(2)

Lcon=
∑

(x,x+)∈A{∗,k}

−log eΦ(x)⊤Φ(x+)

∑
eΦ(x)⊤Φ(x∗)

(3)

where Lcon denotes the supervised contrastive loss
for each subset given a partition, Var(·) measures
performance variance across subsets and λ is a
trade-off factor. In implementation, we treat the
items within the same subset that share the same
label y as positive pairs, while the remaining items
within the same subset are treated as negative pairs.
A higher value of Lcon indicates the base model’s
reliance on a potential confounding sensitive at-
tribute - a non-causal correlation that limits detec-
tion performance. A higher value of Var(·) indi-
cates performance disparity across subsets. Using
supervised contrastive loss directly help us mea-
sure the feature variance and thus reveal potential
confounding sensitive attributes.

At this stage, we freeze the base model. Each
epoch’s partition matrix A is added to set A, en-
abling continuous discovering of unfair partitions
caused by different confounding attributes and
thus, different sets of groups. However, this ap-
proach introduces substantial computational com-
plexity in the second step, and not all partitions
contribute equally to improving detection perfor-
mance and fairness. To address this, we implement
a parameter-free elbow point detection method de-
rived from information theory (Baptista et al., 2021;
Antunes et al., 2018) to adaptively identify distinct
data patterns—specifically, to determine which un-
fair partitions are both meaningful and distinct.
Given n partitions, we proceed as follows:

1. Sort the partition losses Lpar in descending
order to obtain L1, L2, ..., Ln where L1 ≥
L2 ≥ ... ≥ Ln, with corresponding ordered
partitions A1,A2, ...,An ∈ A, and compute
normalized losses L̃i =

Li
L1

.
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2. Calculate the first and second-order differ-
ences: ∆i = L̃i− L̃i+1 for i ∈ {1, 2, . . . , n−
1} and κi = ∆i−∆i+1 for i ∈ {1, 2, . . . , n−
2}.

3. Identify the elbow point i∗ = argmax
i∈{1,2,...,n−2}

κi

and select the optimal partition set A =
{A1,A2, . . . ,Ai∗+1}.

The elbow point serves as a threshold indicating
where additional partitions cease to provide signifi-
cant new information.

2.2 Invariant Learning

The invariant learning step eliminates non-causal
correlations potentially induced by confounding
sensitive attributes within each partition. On one
hand, it drives both the base model and classifier to
improve detection performance, and on the other
hand, it promotes balanced performance across
groups for ∀A ∈ A, to learn more invariant fea-
tures. Hence, for a specific partition, the goal in the
second step is to flip the objective to minimize it:

Liinv = min
Φ,f

∑

k

Lcls(Ai, k, f,Φ(x), y)

+λVar
(
{Lcls(·)}ki=1

)
,Ai ∈ A

(4)

where Lcls is the cross-entropy loss used for classi-
fication. However, treating all partitions with equal
weight is suboptimal, as this approach fails to re-
flect real-world scenarios where certain group par-
titions may experience more severe fairness issues
and consequently constrain detection performance
more significantly. To address this limitation, we
propose calculating an importance score for each
partition A∗. The importance score is formulated
as:

αi =
eL

i
inv

∑|A|
j=1 e

Lj
inv

(5)

whereLiinv represents the invariant loss correspond-
ing to partition i. This formulation enables our
method to allocate greater attention to partitions
exhibiting higher loss values, which is captured by
the following weighted objective function:

Linv =

|A|∑

i=1

αiLiinv (6)

Chinese English

Total samples 23,969 16,909
Rumor 17,895 (74.7%) 9,407 (55.6%)
Non-rumor 6,074 (25.3%) 7,502 (44.4%)
# Domains 12 7
# Platforms 17 7
# Author cerification status 2 2

Table 1: Statistics of rumor detection datasets.

3 Experimental Evaluation

3.1 Setup

Datasets. We conduct experiments using four pub-
lic datasets spanning English and Chinese texts,
including: 1. FineFake (Zhou et al., 2024), 2.
Weibo21 (Nan et al., 2021), and 3. MCFEND (Li
et al., 2024c). To facilitate presentation and demon-
strate the group fairness and detection effectiveness
we aim to improve, following common practices
in existing literature (Zhu et al., 2022a; Bu et al.,
2024; Li et al., 2024b), we refer the first dataset as
the English dataset and the latter two as the Chi-
nese dataset. Both datasets include three sensitive
attributes defining distinct groups: Domain (7 in
English, 12 in Chinese), Platform (7 in English, 17
in Chinese), and Author Certification Status (binary
in both datasets). We’ve summarized the statistical
distribution of the datasets in Table 1, and a more
detailed version in Appendix A.4.
Baselines. We select a set of state-of-the-art base-
lines for comparison, categorized as follows: 1.
Purely content-based methods: BERT; 2. Multi-
domain methods: EANN (Wang et al., 2018), MD-
FEND (Nan et al., 2021), and M3FEND (Zhu et al.,
2022b); 3. Comment-based methods: DualEmo
(Zhang et al., 2021), dFEND (Shu et al., 2019); 4.
Debiasing methods: ENDEF (Zhu et al., 2022a),
CDD (Chen et al., 2023), DTDBD (Li et al.,
2024b); 5. Large Language Model (LLM)-based
methods: Fine-tuned DeepSeek (Liu et al., 2024)
and GPT-4o (Achiam et al., 2023) on respective
datasets. Detailed descriptions and implementa-
tions are in Appendix A.1.
Evaluation Protocol. We split all datasets into
training, validation, and test sets with ratios of 3:1:1
and remove all duplicate entries to prevent data
leakage. The best checkpoint on the validation set
is used for testing, and results are averaged over
10 runs. For evaluation, we use accuracy (Acc.)
and F1 score to measure detection effectiveness,
and Maximum Demographic Parity (Barocas et al.,
2023), ∆ = maxs,s′

∣∣P (y = 1 | s) − P (y =
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Model English Chinese

Acc ↑ F1 ↑ ∆d ↓ ∆p ↓ ∆a ↓ Acc ↑ F1 ↑ ∆d ↓ ∆p ↓ ∆a ↓
BERT 77.1 76.9 42.3 86.7 37.2 82.3 76.9 55.6 49.9 18.3

EANN 77.2 76.4 34.2 88.6 41.4 83.2 77.3 40.3 54.1 15.4
MDFEND 77.9 77.6 44.1 92.1 34.6 84.2 78.2 58.3 53.6 14.2
M3FEND 78.1 77.7 44.4 86.4 37.3 84.0 77.5 60.4 51.3 16.3

DualEmo 78.5 78.0 39.2 86.9 30.3 83.9 76.5 54.3 56.8 17.9
dFEND 77.9 76.6 40.2 85.4 37.8 82.1 76.2 53.6 52.3 15.4

ENDEF 77.1 76.2 34.9 88.6 38.1 83.4 77.7 48.6 55.8 13.9
CDD 78.5 78.1 35.3 91.6 35.5 83.8 77.3 51.1 53.4 14.8
DTDBD 79.6 77.9 33.1 89.2 36.3 82.6 76.8 49.8 56.2 16.3

DeepSeek 78.2 77.8 39.7 82.1 30.1 80.5 73.4 50.2 51.3 14.6
GPT-4o 77.7 77.0 43.3 79.6 29.8 82.1 75.6 51.9 53.1 18.6

FIRM (Ours) 81.1 80.5 27.3 77.3 27.2 88.2 82.9 45.5 46.6 11.3

Table 2: Performance comparison. The best value is in bold while the runner-up is underlined

1 | s′)
∣∣, where (s, s′) denotes any pair of distinct

groups within a set, to assess algorithmic fairness.
The metric ∆d/p/a denotes this measure within
groups defined by domains, platforms, and authors.
We set k = {2, 3} and λ = {0.6, 5} for the English
and Chinese datasets respectively, supported by
observations from the hyperparameter analysis in
Section 3.8.

3.2 Performance Comparison

We provide the results in Table 2, which summa-
rizes key insights: 1. BERT, purely content-based,
performs worst in detection and fairness, reflecting
its difficulty in handling diverse sources and bias.
2. Multi-domain methods improve detection but in-
crease unfairness, as domain-specific information
may reinforce stereotypes. 3. Debiasing methods
often improve detection and domain-specific fair-
ness but may degrade fairness across other group
sets, likely due to their focus on domain-related
biases. 4. Comment-based approaches enhance
detection but introduce unfairness, likely due to
differing user interaction habits. 5. LLM-based
methods show promise but still face fairness is-
sues, despite strong detection performance. 6. Our
method outperforms others in both detection and
fairness, thanks to a two-step process that identifies
and optimizes unfair partitions, promoting diversity
and generalizability.

3.3 Ablative Study

We conduct a comprehensive ablative study to ver-
ify our design motivations, deriving the follow-

ing variants: (1) w/ SP: using static partitioning
on training data with all ground truth sensitive at-
tribute labels instead of our dynamic strategy; (2)
w/o Lsup: replacing the supervised contrastive loss
with cross-entropy in the unfair partition step; (3)
w/o Var: removing the variance loss between par-
titioned subsets for both stages; (4) w/o elbow:
without using the elbow point detection to deter-
mine partitions, instead fixing four partitions with
the highest loss, an optimal choice based on hy-
perparameter analysis; (5) w/o imp: removing the
importance-weighted loss, treating all partitions
equally; (6) w/o Record: not recording every parti-
tion during training, only using the latest one.

Results in Table 3 reveal that w/ SP achieves
comparable fairness but poorer detection, as static
partitioning struggles to find informative invari-
ant features due to confounding effects that are
highly elusive in rumor detection. Replacing Lsup
with cross-entropy results in worse performance,
indicating supervised contrastive loss better cap-
tures variant feature patterns caused by sensitive at-
tributes. Dropping the variance loss hampers learn-
ing of generalizable features. Using a fixed number
of high-loss partitions is suboptimal compared to
adaptive elbow point detection, which avoids redun-
dancy and finds more informative patterns across
distributions. The importance score ensures that
severely impaired partitions receive more focus. Fi-
nally, the w/o Record variant shows that optimizing
all discovered partitions throughout training, rather
than only the latest, is essential for robustness.
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Variants
English Chinese

Acc ∆d/p/a ↓ Acc ∆d/p/a ↓
FIRM 81.1 27.3/77.3/27.2 88.2 45.5/46.6/11.3

w/ SP 78.8 25.8/78.6/25.2 84.9 44.2/48.8/13.3
w/o Lsup 79.4 27.5/81.4/33.7 85.4 45.7/48.5/13.9
w/o Variance 78.7 31.2/85.0/39.5 83.6 51.9/56.9/17.1
w/o elbow 79.3 29.2/81.6/28.5 86.1 47.0/47.9/13.1
w/o imp 79.3 28.1/80.6/29.4 86.8 46.5/50.9/13.8
w/o Record 78.5 23.3/86.3/33.7 86.4 46.5/54.4/15.2

Table 3: Ablative study on model variants.

1/4 1/2
Ablation Proportion

60

65

70

75

80

Ac
cu

ra
cy

 (
%

)

Domain

1/4 1/2
Ablation Proportion

60

65

70

75

80 Platform

MDFEND DualEmo CDD GPT-4o FIRM

(a) English dataset

1/4 1/2
Ablation Proportion

65

70

75

80

85

90

Ac
cu

ra
cy

 (
%

)

Domain

1/4 1/2
Ablation Proportion

65

70

75

80

85 Platform

MDFEND DualEmo CDD GPT-4o FIRM

(b) Chinese dataset

Figure 3: OOD test results for baselines and our method
on English and Chinese datasets.

3.4 Robustness to OOD samples

In real-world scenarios, collecting comprehen-
sive training data is impractical, making out-
of-distribution (OOD) samples inevitable post-
deployment. To evaluate robustness, we conduct a
group category ablation experiment across three
groups: domains, platforms, and author certifi-
cation status. For each group, we remove a per-
centage of categories from the training set, leaving
them only in the test set, covering all possible abla-
tions to report mean performance. Since the author
group has only two categories, we do not perform
experiments on it due to data sparsity.

Results on OOD test sets in Fig. 3 show that all
methods perform worse than in the normal setting,
highlighting the importance of group diversity for
robustness. Ablating platform categories causes
the most significant performance decline, indicat-
ing that platform-specific content contains valuable
patterns for rumor detection and that models trained
on a single platform are vulnerable in real-world
scenarios. For domain ablation, the performance
drop in multi-domain and debiasing methods is
more pronounced, reflecting their reliance on do-

Baselines
English Chinese

Acc ∆d/p/a ↓ Acc ∆d/p/a ↓
EANN 77.2 34.2/88.6/41.4 83.2 40.3/54.1/15.4
w/ours 80.5 31.3/82.3/30.4 87.9 40.5/45.1/10.1

MDFEND 77.9 44.1/92.1/34.6 84.2 58.3/53.6/14.2
w/ours 81.9 30.1/80.6/24.3 89.1 49.7/43.4/12.5

M3FEND 78.1 44.4/86.4/37.3 84.0 60.4/51.3/16.3
w/ours 81.5 33.7/79.6/29.8 88.9 50.2/46.7/12.5

Table 4: Baseline integration study.

main information. Our method remains more ro-
bust than baselines, thanks to its automatic partition
strategy, which does not depend on ground-truth
labels and can discover multiple data patterns, help-
ing the model learn more general, invariant features
and improving OOD robustness. We also provide
more detailed performance results, including mean
and standard deviation values, in table form in Ap-
pendix A.3.

3.5 Baseline Integration and Enhancement

The proposed framework is flexible and can be
adapted to different baselines by changing the fea-
ture extractor. In the above experiments, we only
used BERT. In this experiment, we integrate our
framework with existing state-of-the-art baselines.
Since our method is primarily designed for content-
based rumor detection, and the multi-domain-based
methods have demonstrated strong performance,
we incorporate our method into these baselines.

We present the experimental results in Table
4. We observe that: 1. By integrating our pro-
posed framework, the detection effectiveness and
fairness of all baseline methods are improved. This
indicates that the proposed method is a general
framework that can readily refine the predictions
of content-based rumor detection models. 2. More
specifically, with stronger baseline models (as re-
flected in the overall performance comparison), the
improvements become more noticeable and signifi-
cant.

3.6 Visualization and Intervention

To further demonstrate that our method enhances
rumor detection while mitigating unfairness from
confounding sensitive attributes, we visualize
learned features from the multi-domain-based
method MDFEND and our approach integrated
with it. Points are color-coded by ground-truth
rumor labels, domain, platform, and author certifi-
cation status on the English test set. Visualizations
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(a) Rumors/non-rumors (b) Domains

(c) Platforms (d) Authors

Figure 4: Visualization of learned features. Left: MD-
FEND w/ our method. Right: MDFEND. Colors denote
different groups.

on the Chinese test set, with consistent observa-
tions, are provided in Appendix A.2.

As shown in Fig. 4, the learned representations
from our method, compared to MDFEND, exhibit:
(1) stronger discriminative power for distinguishing
rumors from non-rumors, and (2) reduced vulnera-
bility to confounding sensitive attributes. In MD-
FEND, points often cluster by group, with scattered
inter-group distributions that encourage shortcut
learning. In contrast, our method produces uni-
formly mixed and tightly clustered representations
across groups, with diverse feature patterns even
for the same group, mitigating bias. Consistent ob-
servations across subfigures confirm our method’s
effectiveness in addressing fairness across different
group sets during training.

To examine how our method conducts effective
intervention on the base model regarding different
groups, we provide further evidence in Fig. 5. It
is evident that in most cases where the base model
makes incorrect predictions, our method helps cor-
rect them, while there is minimal chance that our
method will mislead the base model’s already cor-
rect predictions. We further visualize the distribu-
tion of correctly rectified rumors and non-rumors
in Fig. 6, showing that our method achieves bal-
anced corrections on the English dataset and pri-
marily corrects false rumors on the Chinese dataset,
thereby mitigating over-policing and enhancing
fairness. Notably, the correction patterns align with
the original rumor/non-rumor distributions in the
English (balanced) and Chinese (rumor-dominant)
datasets.

3.7 Case Study
We conduct a case study to demonstrate our
model’s effectiveness in real-world scenarios. We
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Figure 5: Intervention effects of our method on the base
model, MDFEND. W->C: proportion of base model’s
wrong predictions corrected by our method; C->W: pro-
portion of correct predictions made incorrect.
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Figure 6: Corrections distribution after integrating our
method into MDFEND. R: Rumor; NR: Non-rumor.

demonstrate one challenging sample from each
dataset, where the sample’s belonging group is
characterized by a high rumor ratio. As shown
in Fig. 7, multi-domain-based methods often make
incorrect judgments due to learned biases, and cur-
rent debiasing methods also struggle when multiple
confounding sensitive attributes are present. In con-
trast, our approach effectively removes such biases
by learning invariant features across partitions, pro-
moting fairer decisions.

3.8 Hyperparameter and Efficiency Analysis
We investigate the influence of different λ and k
on the model’s performance in Fig. 8. The re-
sults indicate that, across a wide range of λ and k
combinations, our method remains generally stable.
Increasing k and the trade-off factor λ up to certain
thresholds enhances both detection and fairness
performance. However, further increases in these
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Figure 7: Case study on challenge samples: Left — En-
glish dataset; Right — Chinese dataset (translated). The
numbers in parentheses denote the rumor ratio for each
group of the selected sample. The classification thresh-
old is 0.5, and correct classifications are highlighted.
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Figure 8: Hyperparameter analysis. In each sub-figure,
the left shows accuracy variation, and the right displays
maximum demographic parity (DP↓) with respect to
different combinations of λ and k.

parameters lead to a decline in detection accuracy,
as the model sacrifices classification performance
to achieve more fair decisions between partitions.
We also compare the training efficiency in Fig. 9,
which demonstrate our method is generally training
efficient.

4 Related Work

Our work is closely related to content-based ru-
mor detection. Earlier research in this domain
employed hand-crafted features with traditional
machine learning models (Castillo et al., 2011;
Kwon et al., 2013) to determine content authentic-
ity. With the advancement of deep learning, most
studies have shifted toward pre-trained language
models, such as BERT (Devlin et al., 2019) and
TextCNN (Zhang and Wallace, 2017), to learn con-
tent feature representations. Furthermore, follow-
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Figure 9: Training efficiency analysis.

ing the success of LLMs (Liu et al., 2024; Achiam
et al., 2023), several works (Chen et al., 2025; Hu
et al., 2024; Nan et al., 2024; Wang et al., 2024)
have leveraged them as feature enhancers or rea-
soners to augment detection effectiveness. Given
that news content frequently emerges from diverse
domains, multi-domain approaches (Wang et al.,
2018; Nan et al., 2021; Zhu et al., 2022b) have be-
come a prevalent paradigm in this area, employing
techniques such as adversarial training, mixture of
experts, and memory banks. Additionally, similar
to many deep learning-based models, rumor detec-
tion systems remain vulnerable to biases inherent
in training data. Consequently, some debiasing
methods (Chen et al., 2023; Zhang et al., 2022;
Zhu et al., 2022a; Li et al., 2024b) have been pro-
posed to mitigate entity bias, psychological bias,
and domain bias in the content. However, the biases
they address cannot be quantifiably linked to fair-
ness regarding stakeholders from different groups,
resulting in limited studies addressing rumor de-
tection from a fairness perspective. In this work,
we adopt concepts from invariant learning (Wang
et al., 2022; Arjovsky et al., 2019; Zhu et al., 2024;
Li et al., 2024a), which is originally designed for
OOD generalization—to examine rumor detection
from a multi-group fairness perspective.

5 Conclusion

In this work, we propose FIRM, which addresses
the task of rumor detection from a multi-group
fairness perspective, supported by extensive experi-
ments that yield insightful findings. We specifically
summarize that: (1) current rumor detection meth-
ods exhibit inferior detection effectiveness and fair-
ness across different stakeholder groups, primarily
due to confounding sensitive attributes present in
real-world data; (2) the confounding sensitive at-
tributes are not limited to a single type, making
it important to consider the fairness of multiple
group sets during training; (3) jointly leveraging
unsupervised partition learning and invariant learn-
ing benefits the debiasing of potential confounding
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attributes, thereby enhancing both detection effec-
tiveness and fairness.

Limitation

While this study proposes an effective group fair-
ness framework for rumor detection, it has two
limitations. First, concerning the dataset used, al-
though we define contextually sensitive attributes,
these attributes are not protected by laws (which
are not available and defined in current widely used
rumor/fake news detection datasets), despite they
are still important for developing fair and ethical
deep learning algorithms. To broaden the scope and
utility of this research, future work could consider
developing a more comprehensive fair rumor de-
tection benchmark dataset that includes annotated
legally protected attributes for fairness evaluation
and yields more insightful empirical findings re-
lated to rumor detection on social media platforms.
Second, regarding the proposed methodology, we
assume that there are no available sensitive attribute
annotations for supervised training, which is a very
strict condition in real-world scenarios. Future re-
search could explore incorporating sparse supervi-
sion signals, where sensitive attribute annotations
are used infrequently to perform weakly supervised
training, potentially leading to improved empirical
performance.
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A Appendix

A.1 Baselines and Implementations
Baselines The detailed baseline descriptions are
as follows:

• BERT (Devlin et al., 2019): Utilizes trans-
former encoders to learn bidirectional text rep-
resentations.

• EANN: Employs adversarial learning to re-
move event-specific information, enabling
generalization to rumors from different events.

• MDFEND (Nan et al., 2021): Uses a mixture-
of-experts architecture to explicitly lever-
age domain information for assisting multi-
domain rumor detection.

• M3FEND (Zhu et al., 2022b): Utilizes a mem-
ory bank to store rumors with similar textual
characteristics and domains, and incorporates
three different views to learn robust textual
representations of rumors.

• DualEmo (Zhang et al., 2021): Detects fake
news by identifying the consistency of emo-
tions between source news content and corre-
sponding comments.

• dFEND (Shu et al., 2019): Leverages informa-
tive comments associated with a news content
for rumor detection.

• ENDEF (Zhu et al., 2022a): Aims to remove
entity bias observed in rumor detection train-
ing datasets to improve model robustness.

• CDD (Chen et al., 2023): Seeks to eliminate
psycholinguistic bias in training data using
predefined categories of emotional words.

• DTDBD (Li et al., 2024b): Utilizes a dual
knowledge distillation architecture to learn
informative representations of multi-domain
rumors and applies adversarial training to mit-
igate domain bias.

(a) Rumors/non-rumors (b) Domains

(c) Platforms (d) Authors

Figure 10: Visualization of learned features on Chinese
dataset. Left: MDFEND w/ our method. Right: MD-
FEND. Colors denote different groups.

• DeepSeek (Liu et al., 2024): The current state-
of-the-art open-source LLM; we use the 7B
version.

• GPT-4o (Achiam et al., 2023): The current
state-of-the-art closed-source LLM.

Implementation Details Our method is imple-
mented using the PyTorch framework. Unless
otherwise specified in the main paper, we adopt
’bert-base-uncased’ as the base model. To retain
pre-trained knowledge, we freeze the first five lay-
ers of BERT. We use AdamW as the optimizer
to update the weights of the entire framework. A
pseudo algorithm of our framework is summarized
in Algorithm 1, and hyperparameter settings not
described in the main paper are provided in Table
5. For baseline implementations, we follow the re-
leased public code to replicate each framework and
carefully tune the hyperparameters to achieve opti-
mal performance. For fine-tuning LLMs, we apply
the efficient parameter tuning technique LoRA for
DeepSeek, while for GPT-4o, we utilize its official
API service. All experiments are conducted on a
single NVIDIA A100 GPU with 80GB of memory.

Hyperparameter English Chinese
Learning Rate 3.08× 10−5 8.67× 10−6

Weight Decay 3.94× 10−6 3.55× 10−6

Embedding Size 512 768
Batch Size 8 8
Early Stopping Patience 3 4

Table 5: Hyperparameter settings for English and Chi-
nese datasets

A.2 Visualized Features on Chinese Dataset
The visualized features using the original MD-
FEND and our method on the Chinese dataset are
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Algorithm 1 Training Algorithm

Require: Training data {(xi, yi)}mi=1, base model
Φ, classifier f , hyperparameters k, λ

1: Initialize Φ, f ; A← ∅
2: for each epoch do
3: // Unfair partition discovery
4: Freeze Φ; build partition A ∈ {0, 1}m×k

via ŝ = FC(Φ(x))
5: Compute partition loss Lpar (Eq. 2); store

(A,Lpar)
6: Apply elbow method on {Lpar} to retain

optimal partitions A
7: // Invariant learning
8: Unfreeze Φ; for each Ai ∈ A compute in-

variant loss Liinv (Eq. 3)
9: Compute weights αi =

exp(Liinv)/
∑

j exp(L
j
inv)

10: Update Φ, f by minimizing
∑

i αiLiinv
11: end for
12: return Φ, f

depicted in Fig. 10, where similar observations to
those in the English dataset can be readily drawn.

A.3 Detailed OOD test results
We provide the detailed OOD test results in Table
6, from which it can be seen that our method is gen-
erally more robust and exhibits less performance
variance across multiple experimental runs.

A.4 Dataset Statistics
We list the detailed dataset statistics in Table 7.
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Setting Lang. MDFEND DualEmo CDD GPT–4o FIRM

Domain OOD (25% held out) EN 74.20± 1.67 75.40± 2.31 74.80± 2.32 76.00± 1.12 77.20± 0.65
ZH 81.40± 2.56 82.30± 1.79 81.40± 2.30 81.90± 1.11 84.60± 0.93

Domain OOD (50% held out) EN 65.62± 1.26 69.13± 2.34 66.13± 2.12 68.65± 1.28 72.80± 0.73
ZH 80.50± 2.43 79.60± 2.14 80.00± 1.68 80.80± 1.24 82.50± 0.84

Platform OOD (25% held out) EN 68.71± 20.66 69.54± 15.40 65.34± 16.80 71.30± 14.50 75.40± 10.20
ZH 79.20± 9.80 76.40± 10.30 78.30± 11.60 75.40± 9.70 81.40± 6.80

Platform OOD (50% held out) EN 67.65± 18.54 64.34± 19.52 65.53± 18.80 65.55± 16.40 71.23± 12.30
ZH 69.06± 1.42 71.34± 2.34 73.12± 2.56 72.49± 1.21 77.63± 0.86

Table 6: Out-of-distribution (OOD) accuracy (%) on English (EN) and Chinese (ZH) datasets. Each entry shows
mean ± standard deviation.
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Dataset Chinese English
Rumors (Fake News) 17,895 9,407
Non-rumors (True News) 6,074 7,502
Total 23,969 16,909
Rumor Ratio by Topic
Health 0.850 0.428
International/Conflict 0.962 0.497
Lifestyle/Society 0.883 0.637
Politics 0.870 0.519
Technology 0.660 -
Environment/Energy 0.864 -
Disasters/Accidents 0.817 -
Entertainment/Sports 0.561 0.589
Social Life 0.642 -
Military 0.867 -
Education/Exams 0.579 -
Finance/Business 0.437 0.521
Uncategorized - 0.602
Rumor Ratio by Platform
Taiwan FactCheck Center 0.928 -
Weibo 0.492 -
China Internet Joint Rumor Refutation Platform 0.977 -
Tencent News Fact-check Platform 0.926 -
China Daily 1.000 -
Mygopen 0.933 -
HKBU Fact Check 0.961 -
HKU Annie Lab 0.951 -
AFP Fact Check 1.000 -
Factcheck Lab 0.903 -
NetEase 0.846 -
Phoenix 0.849 -
Tencent 0.865 -
Sohu 0.843 -
Baijiahao 0.856 -
Sina 0.862 -
Interface News 0.875 -
CDC.gov - 0.011
AP News - 0.093
CNN - 0.103
Reddit - 0.763
Twitter - 0.621
Washington Post - 0.323
Snopes - 0.673
Rumor Ratio by Author
Unknown 0.730 0.632
Known 0.872 0.486

Table 7: Dataset Statistics for Chinese and English News
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