KaeDe: Progressive Generation of Logical Forms via Knowledge-Aware
Question Decomposition for Improved KBQA

Ranran Bu!, Jian Cao"*, Jianqi Gao', Shiyou Qian'!, Hongming Cai'
'Shanghai Jiao Tong University
{buranran, cao-jian, 193139, gshiyou,hmcai}@sjtu.edu.cn

Abstract

Knowledge base question answering (KBQA)
refers to the task of answering natural language
questions using large-scale structured knowl-
edge bases (KBs). Existing semantic parsing-
based (SP-based) methods achieve superior
performance by directly converting questions
into structured logical form (LF) queries us-
ing fine-tuned large language models (LLMs).
However, these methods face the key chal-
lenge of difficulty in directly generating LFs
for complex graph structures, which often
leads to non-executable LFs that negatively
impact overall KBQA performance. To ad-
dress this challenge, we propose KaeDe, a
novel generate-then-retrieve method for KBQA.
This approach integrates Knowledge-aware
question Decomposition and subsequent pro-
gressive LF generation within the generation
phase, followed by an unsupervised retrieval
phase. Specifically, the original question is de-
composed into simplified, topic entity-centric
sub-questions and explanations within the KB
context. Path-level LFs are derived from these
intermediate expressions and then combined
into a comprehensive graph-level LF. Finally,
the LF is refined through unsupervised entity
and relation retrieval. Experimental results
demonstrate that our method achieves state-
of-the-art (SOTA) performance on WebQues-
tionSP (WebQSP) and ComplexWebQuestions
(CWQ) benchmarks, particularly with fewer
model parameters. The code is available at
https://github.com/pvfeldt/KaeDe.

1 Introduction

Knowledge base question answering (KBQA)
refers to the task of retrieving answers to natural
language questions leveraging factural information
from large-scale knowledge bases (KBs). In KBs
such as Freebase (Bollacker et al., 2008) and Wiki-
data (Vrandeci¢ and Krotzsch, 2014), entities are

*Corresponding author.

connected through relations, forming structured
knowledge graphs (KGs).

Building on graph structures, most KBQA meth-
ods, including both information retrieval-based (IR-
based) (Shi et al., 2021; Zhang et al., 2022; He et al.,
2021; Chen et al., 2019) and semantic parsing-
based (SP-based) (Chen et al., 2021; Ye et al., 2022;
Gu and Su, 2022) approaches, emphasize graph-
based retrieval to obtain answers. Specifically, SP-
based approaches generate concise structured ex-
pressions, such as logical forms (LFs), which can
be transformed into SPARQL queries for further
execution in KBs. These LFs represent the retrieval
subgraphs, which are composed of reasoning paths
originating from each topic entity mentioned in the
question. As a result, errors in the subgraph de-
scription lead to non-execution, which signifies the
failure to derive any answer after execution, posing
a significant challenge for SP-based methods.

Most existing SP-based methods adopt retrieve-
then-generate strategies, where relevant informa-
tion is first retrieved from KBs and then used to
construct the LFs (Shu et al., 2022; Zhang et al.,
2023b; Tian et al., 2024; Xiong et al., 2024; Feng
and He, 2025). However, the retrieval complexity
introduces additional computational overhead and
distracting noise, with the performance of subse-
quent generation being heavily dependent on this
prior process.

Apart from these traditional methods, novel
generate-then-retrieve strategies (Luo et al., 2024a;
Wang and Qin, 2024) for direct LF generation
have been proposed and demonstrated to be ef-
fective, leveraging the remarkable reasoning ca-
pabilities of large language models (LLMs) (Wei
et al., 2022b; Huang and Chang, 2023). In this
context, high-quality LFs are directly generated
using instruction-tuned (Wei et al., 2022a) LLMs,
which are equipped with knowledge from specific
domains, and refined with minimal retrieval, pri-
marily for entity linking or additional relation align-

10958

Findings of the Association for Computational Linguistics: EMNLP 2025, pages 10958-10973
November 4-9, 2025 ©2025 Association for Computational Linguistics

https://github.com/pvfeldt/KaeDe

Overall Hop=3 Hop=4
Hits@l F1 Hits@l F1 Hits@l Fl1

Llama2 7B 81.37 76.82 81.58 76.56 72.22 68.81
Llama 2 13B 8527 81.55 85.15 79.49 73.70 69.20

Model

Table 1: Limitations of direct LF generation for complex
questions from CWQ dataset.

ment. Yet, (1) these LLMs often fail to focus on
all the details in complex questions. To statisti-
cally illustrate the problem, we reproduce experi-
ments on direct LF generation followed by retrieval
with a beam size of 8, using Llama 2 (Touvron et al.,
2023) 7B and 13B models on the ComplexWe-
bQuestions (CWQ) dataset (Talmor and Berant,
2018), as shown in Table 1. A significant drop
is observed in more complex questions involving
multiple hops, based on the same models. Further-
more, the reduction in model parameters leads to a
3.90% decline in Hits@1 and a 4.73% decrease in
F1 scores, indicating the performance reliance on
the model sizes.

To alleviate the performance decline in com-
plex questions, prior research in question answer-
ing (QA) suggests simplifying the process by de-
composing the questions into more manageable
sub-questions and addressing each one separately
(Zhang et al., 2024; Yixing et al., 2024). Specif-
ically, the original questions are initially decom-
posed using tree-based (Zhang et al., 2023a; Huang
et al., 2023), rule-based (Hu et al., 2021) and other
strategies (Zhang et al., 2019), followed by IR-
based or SP-based processes applied individually
to each sub-question. However, (2) these decom-
position processes often prioritize the original
question itself, with less emphasis on grounding
in the knowledge from KBs, which may introduce
potential inaccuracies in the subsequent procedures
due to the semantic gap between the original ques-
tion and the specific knowledge. Under the condi-
tion of following SP-based processes, errors in the
sub-questions may lead to schema errors during the
generation of intermediate LFs and, further, result
in the non-executability of the final LF.

Therefore, we propose KaeDe, a novel generate-
then-retrieve approach for KBQA. The method inte-
grates Knowledge-aware question Decomposition
and subsequent progressive LF generation within
the generation phase, followed by an unsupervised
retrieval phase. Specifically, to address Issue (1),
we break down the complex LF generation into sim-

pler tasks through question decomposition. In this
approach, sub-questions and explanations, starting
from each potential topic entity, are generated by a
fine-tuned LLM within the KB context to tackle Is-
sue (2). Guided by these intermediate expressions,
path-level LFs are generated and assembled into
a complete graph-level LF using the same LLM.
Finally, the graph-level LF is refined during the re-
trieval phase and executed within the KBs to obtain
answers.

Our contributions can be summarized as follows:

* We propose KaeDe framework, which splits
LF generation into knowledge-aware question
decomposition and progressive LF generation.
This approach effectively reduces the com-
plexity of generating an LF at once by break-
ing it into simpler tasks.

* We innovatively decompose the original ques-
tion into simpler sub-questions and explana-
tions grounded in the KB context. These inter-
mediate expressions narrow the semantic gap
between the original question and knowledge
from the KBs, serving as effective guidance
for the subsequent procedures.

* We conduct experiments on WebQuestionSP
(WebQSP) and CWQ datasets. KaeDe out-
performs strong baseline methods, achieving
state-of-the-art (SOTA) performance, particu-
larly with fewer model parameters.

2 Related Works

2.1 Semantic Parsing-Based Methods

SP-based methods interpret questions into struc-
tured expressions including LFs and S-expressions.
Traditional SP-based methods employ a retrieve-
then-generate strategy (Chen et al., 2022; Hu et al.,
2022b; Xie et al., 2022; Das et al., 2021; Yih et al.,
2016a; Patidar et al., 2024; Nie et al., 2024; Li
et al., 2024; Faldu et al., 2024), where relevant
information is first retrieved from KBs and then
organized to construct the final LF. Early RnG-
KBQA method (Ye et al., 2022) first enumerates
and ranks retrieval candidates, then performs LF
generation using a T5-based (Raffel et al., 2020)
sequence-to-sequence (seq2seq) model. To further
optimize performance, TIARA (Shu et al., 2022)
and FC-KBQA (Zhang et al., 2023b) divide the
retrieval into multiple grains, handling entities, re-
lations, and logical skeletons separately. Recently,

10959

the LF generator has been replaced by training-
free in-context learning using closed-source LLMs
(e.g., GPT). ARG-KBQA (Tian et al., 2024) com-
pletes the generation task using few-shot learn-
ing, based on reference reasoning paths retrieved
from KBs, while Interactive-KBQA (Xiong et al.,
2024) follows a step-wise generation approach, re-
trieving relevant information for intermediate steps
and gradually forming the final query. However,
these retrieve-then-generate methods suffer from
significant computational overhead during retrieval.
To address this, novel generate-then-retrieve ap-
proaches (Luo et al., 2024a; Wang and Qin, 2024)
have been proposed, adapting open-source LLMs
to specific knowledge via fine-tuning. TFS-KBQA
(Wang and Qin, 2024) and ChatKBQA (Luo et al.,
2024a) directly generate LFs based on input ques-
tions, followed by minimal entity or relation re-
trieval. While remarkable performance has been
achieved, particularly by ChatKBQA, LLMs still
fail to focus on all the details in complex ques-
tions. To alleviate this problem, there is significant
reliance on larger model parameters for complex
questions. This results in a substantial increase
in both training and inference costs compared to
smaller models. The solution for handling complex
questions with smaller models is the key focus of
our study.

2.2 Question Decomposition Methods

Question decomposition methods aim to reduce the
complexity of the original question by breaking it
down into simpler sub-questions and addressing
them individually using IR-based or SP-based ap-
proaches to derive the final answers (Zhang et al.,
2024, 2023a, 2019). Earlier methods such as Sim-
PQA (Talmor and Berant, 2018) and DecompRC
(Min et al., 2019) split original questions into two
sub-questions using pointer network. To further
generalize the decomposition for various types of
questions, EDG (Hu et al., 2021) constructs entity-
centric graph structures based on rules to repre-
sent complex questions. Since rule-based methods
suffer from limited coverage and a lack of global
awareness, the recent QDT (Huang et al., 2023) op-
timizes graph structure construction by preserving
the original question’s contents and employing a
concise, linearized representation to enable flexi-
ble, neural-based generation. However, for these
methods, question decomposition serves as the ini-
tial step, focusing more on the original expression
and lacking knowledge alignment with the KB,

which may lead to failures in the subsequent pro-
cesses. Thus, the recent CoQ (Yixing et al., 2024)
adopts a joint framework that integrates answer
prediction and LF generation, where the predic-
tion is based on chain-of-thought-prompted (CoT-
prompted) step-wise question decomposition. The
method is closely grounded in KBs due to the re-
trieval process in LF generation, but the retrieve-
then-generate sequence introduces additional com-
putational overhead and noise. Hence, combin-
ing question decomposition with knowledge from
KBs under the generate-then-retrieve strategy is the
primary objective of our study to reduce question
complexity.

3 Preliminaries

3.1 Knowledge Bases

A KB K is composed of large-scale resource de-
scription framework (RDF) KGs G where knowl-
edge is stored in the form of subject-predicate-
object triplets G = {(s,r,0)|s € E,7 € R,0 €
€ UT}, with € standing for the set of entities, R
representing the set of relations and Z denoting the
set of literal. Within KBs, each entity e € £ is
stored as an ID starting with "m." or "g.”. Each re-
lation r € R is hierarchically classified with meta
descriptions in KBs, typically presented as "a.b.c",
where a, b and ¢ denote label, domain and range,
respectively.

3.2 Logical Forms and SPARQL Queries

LFs are structured expressions that are closer to
natural language than SPARQL queries and, as
such, are commonly used as intermediate gener-
ation targets for SP-based KBQA. We define a
convert(-) function that transforms a SPARQL
query S into the corresponding LF L consisting
of three main procedures: entity-centric per-hop
projection, operator arrangement, and entity sub-
stitution. Through projection, SPARQL lines can
be mapped to JOIN clauses for each hop. After
forming the path-level LFs for each entity, oper-
ators such as AND and ARGM AX are applied
to combine these LFs into the final graph-level
LF. Finally, the entity IDs are replaced by the cor-
responding labels in the expression. Details are
presented in Appendix A.

4 Methods

In this section, we provide a detailed overview
of our proposed KaeDe method. Following the

10960

Input Question:

What educational institution with men's sports team named Wisconsin Badgers did Russell Wilson go to?

input
question

@ perform Task 1

Final Answer:
University of
Wisconsin-Madison

Knowledge Base

execute

E Refined
i Logical Form

(&)
Fine-tuned LLM

AND (JOIN [

' (i , sports teams] [Wisconsin Badgers men's basketball])
1 (AND (JOIN [common, toplc notable types] [College/Umversuty 1) (JOIN (R [education , education,
i

v

]
H
£l
°
®
[
T
m
o
(]
a
8
:
®
a
c
H
o
=
5
3
»
g
a
a
o
z
o
3
-
o
=
5
o

Entity & Relation Retrieval

]
Relation Retrieval!

N
Generated Relation

Relations . Set
b retrleve

;
'
i
]
Entity Retrieval 3
]
i
;
]

-v'"'"""".Sl CS|

ﬁ” Generated
i Entities g FACCL
¢ : Annotation

- - siretrieve

Figure 1: Overview of KaeDe. (1) Knowledge-aware question decomposition and progressive LF generation:
Leveraging fine-tuned LLM, the original question is first decomposed into entity-centric simple expressions within
the KB context. Following this, path-level LFs are generated through the same LLM based on these expressions and
then assembled into the complete graph-level LF. (2) Entity and relation retrieval: The LF undergoes refinement
through retrieval and is executed within the KBs for answers.

generate-then-retrieve strategy, KaeDe consists of
two main phases: (1) the LLM-based generation
phase, which includes Task 1: knowledge-aware
question decomposition, and Task 2: progressive
LF generation, and (2) the unsupervised retrieval
phase, which focuses on entity and relation re-
trieval.

4.1 Data Preparation

Throughout the generation phase, the same LLM
is equipped with the capabilities to handle three
sequential sub-tasks: question decomposition for
Task 1, and path-level LF generation and graph-
level assembly for Task 2.

To achieve this, we reorganize the original
datasets into Dy, D, and D, for the decompo-
sition, generation, and assembly tasks, respec-
tively. Specifically, the training sets can be ex-
pressed as Dy rain = {(Pd, X)| ¢ € pa}s Dg train =
{(Pe,)| ¢, X € pe} and Dy grain = {(pa; L)| ¢, €
Pa}, where p is the prompt, ¢ denotes the original
question, X = {z| e € x} represents the set of
entity-centric sub-questions and explanations x for
each topic entities e € E (F is the set of all topic
entities from ¢), ¢ = {I| e € [} signifies the set of
corresponding path-level LFs [, and L stands for
the final graph-level LF.

For the LFs, we process the original SPARQL

query S by splitting into reasoning paths Z, each
starting with topic entity e. Each z € Z is con-
verted to its corresponding path-level LF [€ /,
and S is transformed to the graph-level LF L using
function convert(-) mentioned in the Preliminary
section, as shown in Figure 2. The details of the
conversion are provided in Appendix A.

In terms of intermediate expressions X decom-
posed from ¢, we apply a rule-based arrangement
to each z, specifically using hop-wise lineariza-
tion to prevent potential hop error accumulation in
subsequent processes. Rather than performing a
rough linearization by directly concatenating per-
hop information into a subject-predict-object se-
quence as in (Oguz et al., 2022; Yu et al., 2022),
we leverage the semantics of triplets to generate
intermediate expressions that are closer to compre-
hensible natural language. As triplet "(eg,7,e1)"
expresses the statement "The r of eg is e1.", we
define the rules as demonstrated in Figure 2. The
expression of a question or statement depends on
the direction of retrieval, in other words, whether
the required entity is the object or the subject. Then,
the hierarchical relation r = r1.r.73 can be recon-
structed into the phrase "the r3 of r2" to preserve
and clearly convey the underlying semantic struc-
ture. Finally, the given entity is integrated with the
relation phrase into the intermediate expression. If

10961

Question: What was Tupac name in Juice?
SPARQL

o ns:m.07pzc ns:film.actor.film ?y .
?y ns:film.performance.character ?x .

@ | ?y ns:film.performance.film ns:m.08w51z .

.o (lOIN(R[flIm performance, character]) (JOIN
I (R[fllm actor, film]) [Tupac Shakur]))

erformance, film] [Juice])

i i JOIN (Rr) e -> question
! ! JOINr e ->statement

: Hierarchical Relation Reconstructlonol Hop 1: the film of actor, Hop2: the

i

i .
i

! . r=rl.r2.r3->ther3 of ther2 | | character of the performance i

i

! i

i Hop 1: What is the film of actor !
! Tupac Shakur? Hop2: What is the]

b ;
i Logical Form (Hop1, Hop2) -> ! character of the performance?

| Expression 1, Expression 2
L

i Hop 1: Juice is the film of the E
! performance.]

Figure 2: Preparation of training set data for path-level
LFs and decomposed intermediate expressions.

multiple hops exist, the given entity only appears
in the initial hop.

These contents mentioned above are incorpo-
rated into the prompts based on the templates in
Appendix B to generate the dataset. Notably, the
expressions and path-level LFs for each topic entity
are combined in a single prompt to avoid additional
computational overhead during further beam search
in each process.

4.2 Instruction Tuning

BUIldlng on Dtrain = Dd,train U Dg,train U Da,train’
we perform instruction tuning (Wei et al., 2022a)
with low-rank adaption (LoRA) (Hu et al., 2022a)
parameter-efficient fine-tuning (PEFT) to equip
LLM with task-specific abilities grounded in the
target KBs.

Since the three tasks are sequential processes,
each with entity-centric contents combined in a
single prompt, the probability can be expressed as:

Po(Llg,K) = Po(LIf) Po(f|X) Po(X|g,),
—_——— N —

assembly generation decomposition

(1
where O signifies the parameters of the LLM and
K denotes the KB. Pg (X |q, K) expresses that orig-
inal question ¢ is decomposed into expressions X
grounded in K. Pg(¢|X) and Pg(L|¢) describe
that the path-level LFs ¢ are generated based on X
and then assembled into graph-level LF L.

We formulate the tasks into an optimization prob-

Algorithm 1 Generation and Retrieval

Require: KB /C, original question ¢
I X LM(g|K) (X e X, 2 € X,é€d)
2: for each X in X do .)
3 Z’HLLM(X) (Zef/lef,éel)
4 for each Zin E’ do
5 L+ LLM(¢) (€rL)

6 end for

7: end for

8 A0

9: for each L in £ do .

10 Ae + retrieve_entity(L|K)

11: A+ = Ae
12: end for

13: if A == () then

14 for each L in £ do)

15 A; < retrieve_relation(L|K)

17: end for

18: end if

19: return A

lem, aiming to maximize the probability. When
combined with LoRA (Hu et al., 2022a), the objec-
tive can be described as:

|o]
Z Z log(Pypy+aa () (0t|p; 0<t)),

(pvo)eDtrain t=1
2

where o summarizes for the output corresponding
to each prompt (with o being either X, £ or L), ®q
signifies the pre-trained weight of LLLM, 6 repre-
sents the set of trainable parameters updated during
fine-tuning (which is small amount for LoRA), and
AP (0) expresses the task-specific parameter ad-
justment after PEFT.

max
0

4.3 Logical Form Generation

After the LLM has been fine-tuned, we adopt beam
search to perform the multiple tasks.

As shown in Algorithm 1, a series of grouped
expressions X are initially generated by the LLM
based on the original question ¢ as a result of the
multiple beams, where each X € X contains indi-
vidual expressions & for each possible topic entity é.
Utilizing the same LLM, each X is mapped to the
set of path-level LFs " where each { € ' is com-
posed of corresponding path-level LF [for each
expression Z. Finally, the candidate graph-level
LFs £ are assembled with each /, where operators
are arranged, including intersections for different
paths and constraints for values.

4.4 Unsupervised Retrieval and Execution

Following previous work (Luo et al., 2024a), we
implement the unsupervised retrieval process with

10962

off-the-shelf SImCSE (Gao et al., 2021) retriever
to refine the generated LFs, as also illustrated in
Algorithm 1.

The function entity_retrieve(:) summarizes
the entity linking and execution procedures. We
compare the similarity with s¢ = sim(é, e), where
é is the possible entity predicted and e denotes
the entity in entity set £. Candidates with top-
k scores, constrained by a certain threshold, are
substituted into the generated LF L, resulting in the
refined L.,. FACC1 annotation (Gabrilovich et al.,
2013) is primarily used for entity linking. Based
on this, two scenarios are considered: one with
oracle entity linking and the other without. ig is
then transformed back into a SPARQL query and
executed in KB K for answers Ae, which can be
expressed as:

A = execute(convert ! (L/|K)). 3)

Each A, is added to answer set A. If A = 0,
indicating that none of the refined LFs are ex-
ecutable after entity retrieval, relation retrieval
relation_retrieval(-) is then performed for fur-
ther alignment. We compute the similarity with
sy = sim(7,r), where 7 is the generated relation,
and r indicates the relation in relation set R. Specif-
ically, we adopt the neighboring relations for topic
entity ¢ as R. The subsequent processes mirror
those of entity retrieval, where the top-k candidates,
contrained by a threshold, are used to update the
LFs and the corresponding f/; are executed with
Equation 3 to retrieve answers A;, which are then
added to A. Finally, A is returned as the set of final
answers.

5 Experiments

5.1 Experiment Setup

Datasets. We use WebQSP (Yih et al., 2016b)
and CWQ (Talmor and Berant, 2018) as representa-
tive KBQA benchmarks. Both datasets can be rea-
soned on the Freebase KB (Bollacker et al., 2008),
with each question paired with a SPARQL query.
WebQSP contains 4,737 simple natural language
questions, while CWQ includes 34,689 more com-
plex questions with higher hop and entity number.
Detailed statistics of the datasets are provided in
Appendix C.

Baselines. We adopt both IR-based and SP-
based methods as baselines, with each category
further subdivided into non-LLM and LLM-based
methods. For IR-based methods, we select NSM

(He et al., 2021), Rigel (Sen et al., 2021), UniK-
QA (Oguz et al., 2022) and UniKGQA (Jiang et al.,
2023) as non-LLM IR methods, and RoG (Luo
et al., 2024b), ToG (Sun et al., 2024) and FiDeLis
(Sui et al., 2024) as LLM-based IR methods. For
SP-based methods, we select HGNet (Chen et al.,
2022), TIARA (Shu et al., 2022) and FC-KBQA
(Zhang et al., 2023b) as non-LLM SP methods, as
well as DecAF (Yu et al., 2022), ARG-KBQA (Tian
et al., 2024), TFS-KBQA (Wang and Qin, 2024)
and ChatKBQA (Luo et al., 2024a) as LLM-based
SP methods. Most of the baseline data are directly
sourced from the corresponding works.
Evaluation Metrics. Following previous works
(Luo et al., 2024b; Jiang et al., 2023; Sui et al.,
2024), we use F1 score and Hits @ 1 metric to eval-
uate the coverage of all answers and the accuracy of
the top-ranked answer, respectively. Furthermore,
following prior work (Luo et al., 2024a), we also
apply the beam match (BM), which checks whether
the ground truth LF exists within the generated
beams to assess the quality of LLM generation.
Models. We employ LLMs for LF generation
and pre-trained language models (PLMs) for re-
trieval. For LLLMs, we use the Llama 2 (Touvron
et al., 2023) 7B model as the primary backbone
throughout the experiments. Additionally, we in-
clude Llama 2 13B model for parameter compar-
ison, along with DeepSeek LLM (Bi et al., 2024)
7B (DeepSeek 7B) and DeepSeek R1 (Guo et al.,
2025) Distill Llama 8B (DeepSeek R1 8B) mod-
els for validation across different backbones. For
similarity comparison during retrieval, we adopt
off-the-shelf unsupervised RoOBERTa-based (Liu
et al., 2019) SimCSE (Gao et al., 2021).
Hyperparameters and Environment. Hyperpa-
rameters are involved in LLM fine-tuning and beam
search. For LLM fine-tuning, we adopt a training
batch size of 4 and a learning rate of 5e-5 based on
the Llama 2 7B backbone for the main experiments.
For model comparison, we retain the hyperparam-
eters for both DeepSeek 7B and DeepSeek R1 8B
models, while increasing the learning rate to 7e-5
for the Llama 2 13B backbone. The LLMs are
trained for 50 epochs on WebQSP dataset, and for
5 epochs on CWQ dataset. Regarding PEFT, we
employ all linear layers (all), as well as query and
value projection layers (q_proj, v_proj) for target
modules and a LoRA (Hu et al., 2022a) rank of
8. For beam search, the beam sizes range from {3,
5, 8}. All experiments are performed on a single
NVIDIA A40 GPU. More details are presented in

10963

Appendix D.

5.2 Experiment Results

We explore the following research questions (RQs)
and provide the corresponding results and analyses.
RQ1: Does the performance of KaeDe outperform
that of other baseline methods? RQ2: What are
the impacts of models and parameters? RQ3: How
does each part of KaeDe function? RQ4: How
does the hyperparameter impact the performance?
RQ5: How does the method operate in detail? Ad-
ditional experiments and analyses are provided in
Appendix E-G.

5.2.1 Overall Comparison (RQ1)

The overall comparison is shown in Table 2. We
present the results of KaeDe fine-tuned on the
Llama 2 7B model, with a beam size of 8 on We-
bQSP and 5 on CWQ, respectively, along with
oracle entity linking annotation. In general, our
proposed method outperforms other baseline meth-
ods. When using Hits@1 as the metric, KaeDe sur-
passes the previous optimal ChatKBQA by 5.73%
on WebQSP and 6.91% on CWQ. In terms of F1
score, KaeDe shows a slight decline of 0.26% on
WebQSP but an improvement of 3.33% on CWQ.
The comparison with other methods and the rel-
atively higher performance increment on CWQ
demonstrate the overall effectiveness of KaeDe in
representing complex subgraph structures. This is
attributed to the decomposed task accomplishment,
guided by knowledge-aware question decomposi-
tion, which provides benefits even with models
that have smaller parameters. However, the beam
search involved in intermediate LLM operations
and relation retrieval introduces additional noise,
leading to a relatively lower F1 score.

5.2.2 Model and Parameter Analysis (RQ2)

To demonstrate the impacts of models and parame-
ters, we conduct experiments using varying param-
eters (including total LLLM parameters and those
involved in PEFT) and different backbone models,
as depicted in Table 3. When the model parameters
increase from 7B to 13B with the same Llama back-
bone, as reflected in the overall performance, there
is even a slight decline of Hits@1 by 0.88% under
the condition that all target modules are trained.
The presence of simpler questions with fewer hops
in CWQ likely explains this, as noted in the work
(Xu et al., 2025), where larger models may overfit
and be less effective on simpler decomposed tasks.

Method WebQSP CWQ

Hits@1 Fl1 Hits@l Fl
Non-LLM Information Retrieval

NSM (He et al., 2021) 743 674 488 440

Rigel (Sen et al., 2021) 73.3 - 48.7 -

UniK-QA (Oguz et al., 2022) 79.1 - - -

UniKGQA (Jiang et al., 2023) 772 722 512 49.0

Non-LLM Semantic Parsing

HGNet (Chen et al., 2022) 769 76.6 689 68.5

TIARA (Shu et al., 2022) 752 789 - -

FC-KBQA (Zhang et al., 2023b) - 76.9 - 56.4

LLM-Based Information Retrieval

RoG (Luo et al., 2024b) 857 708 626 562

ToG (Sun et al., 2024) 82.6 - 72.5 -

FiDeLiS (Sui et al., 2024) 8439 7832 7147 6432

LLM-Based Semantic Parsing

DecAF (Yu et al., 2022) 82.1 788 704 -

ARG-KBQA (Tian et al., 2024) - 75.6 - -

TFS-KBQA (Wang and Qin, 2024) 79.8 79.9 - 63.6

ChatKBQA* (Luo et al., 2024a) 85.36 81.20 81.37 76.82

KaeDe 91.09 80.94 88.28 80.15

Table 2: Comparison results with baseline methods.*
denotes the experiments being reproduced on our device,
both with Llama 2 7B model and a beam size of 8, along
with oracle entity linking annotation.

Overall Hop=3 Hop=4
Hits@1 F1 Hits@l Fl Hits@1 F1

Model Target

Parameter Comparison

Llama27B q_proj,v_proj 87.10 76.76 83.74 71.25 75.85 60.09
Llama 2 7B all 83.28 80.15 88.47 78.15 78.87 64.41
Llama 2 13B all 87.40 80.17 88.66 79.29 80.38 71.03

Backbone Comparison

DeepSeek 7B all 87.89 80.17 86.83 78.16 79.14 66.07
DeepSeek R1 8B all 87.37 80.66 86.01 78.89 78.87 69.88

Table 3: The impacts of models and parameters. All
results are based on a beam size of 5 using CWQ dataset.

On the other hand, when separately considering the
complex questions with different hops, a greater
improvement is observed in questions with higher
hops, particularly a 1.51% increase in Hits@1 and
a 6.62% increase in F1 for 4-hop questions. This is
consistent with the model size reliance, as the task
of parsing decomposed expressions into path-level
LFs for higher hops is more complex. In terms
of the PEFT parameters, when target modules ex-
tend to all linear layers, Hits@1 and F1 increase by
1.18% and 3.39%, respectively. This indicates that
larger trained parameters primarily optimize perfor-
mance by reducing noise during each intermediate
beam search. Futhermore, slight differences are
observed between the Llama-based and DeepSeek-
based models, both with similar total parameters

10964

Phase Method &
Hits@l F1 BM

KaeDe 88.28 80.15 70.63

Generation w/o decomposition 87.75 79.21 69.99
w/o decomposition+generation 85.23 79.26 65.58

Retrieval w/o oracle entity linking 87.49 179.35 70.63
etneva w/o relation retrieval 83.91 77.06 70.63
w/o all retrieval 80.15 72.86 70.63

Other w/o all 76.18 71.16 65.58

Table 4: Ablation studies on CWQ dataset conducted
using the same Llama 2 7B model with a beam size
of 5, trained with all PEFT target modules. "w/o all"
represents the direct LF generation result without any
retrieval.

(7B or 8B), highlighting the generalization of the
proposed method across different backbones.

5.2.3 Ablation Studies (RQ3)

To explore the function of each section, we con-
duct ablation studies on the generation and retrieval
phases, as presented in Table 4. Regarding the
generation, when question decomposition is re-
moved and path-level LFs are directly generated
based on the original question, Hits@1, F1, and
BM drop by 0.53%, 0.94%, and 0.64%, respec-
tively. This demonstrates the positive guidance pro-
vided by the sub-questions and explanations. While
the question decomposition, path-level LF genera-
tion, and graph-level LF assembly are all removed,
indicating a direct LF generation followed by re-
trieval, there is a relatively large decline of 3.05%
in Hits@1, 0.89% in F1, and 5.05% in BM. Since
BM directly reflects the quality of LF generation,
this decline underscores the significant role of de-
composed tasks. For the retrieval, the results reveal
limited reliance on golden entity linking from ora-
cle annotation. However, without relation retrieval,
the Hits@1 and F1 decrease by 4.37% and 3.09%,
respectively. Furthermore, removing the entire re-
trieval phase results in a significant performance
drop, with the impact being more pronounced for
direct LF generation. This highlights the critical
importance of grounding LLM generation to KBs.

5.2.4 Hyperparameter Analysis (RQ4)

The impact of beam size, the main hyperparameter,
is shown in Figure 3. On both datasets, as the beam
size increases, Hits@ 1 continues to rise, while F1
slightly improves initially but declines after a beam
size of 5, with the reduction being more severe for
CWAQ. This reflects that larger beam sizes provide

Hits@1 Comparison F1 Comparison

92 WebQSP 84 WebQSP
== CWQ =@= CWQ
5 90 82
3
= S
88 <
9 T 80
T
86
78
84
76
3 5 8 3 5 8
beam size beam size

Figure 3: The impact of hyperparameters on WebQSP
and CWQ. The beam size ranges from 3, 5, and 8.

Question: William Morris is religions head in which region that is part
of the United Kingdom?

Ground Truth LF: (AND (JOIN [religion , religious leadership
jurisdiction , leader] (JOIN [religion , religious organization leadership
, leader] [William Morris])) (JOIN (R [base , aareas , schema ,
administrative area , administrative children]) [United Kingdom]))
Answer: Wales

Direct LF Generation: (AND (...?) (JOIN [religion , religion ,
founding figures] [William Morris]) (AND (JOIN [common , topic ,
notable types] [Country]) (JOIN (R [location , location , contains])
[United Kingdom]))) — entity error, relation error, hop error (x)—
non-executable

Question Decomposition:

(1) Who is the administrative children of administrative area United
Kingdom?

(2) William Morris is the leader of the religious organization leadership.
He/She is the leader of the religious leadership jurisdiction.

" Path-Level LF Generation:
(1) (JOIN (R [base , aareas , schema , administrative area , administra-
tive children]) [United Kingdom])

(2) (JOIN [religion , religious leadership jurisdiction , leader] (JOIN [
religion , religious organization leadership , leader] [William Morris])
" Graph-Level LF Assembly: (AND (JOIN [religion , religious lead-
ership jurisdiction , leader] (JOIN [religion , religious organization
leadership , leader | [William Morris])) (JOIN (R [base , aareas ,
schema , administrative area , administrative children]) [United King-

dom1]))
Executed Result: Wales

Table 5: Case study for questions with multiple topic
entities.

more candidates that might hit the expected LF,
but noise is introduced as well, especially during
the retrieval process, which turns non-executable
LFs into executable ones, while also bringing in
executable but incorrect LFs. Therefore, we select
a beam size of 8 for WebQSP and 5 for CWQ
as the best performing results, balancing answer
accessibility and noise.

5.2.5 Case Study (RQ5)

We provide an example of how KaeDe operates
in Table 5. Given the original question, the di-
rect LF generation exhibits errors in entity, rela-
tion, and hop, as well as a redundant entity-centric
reasoning path, which leads to failure in execu-
tion. For KaeDe, the question is decomposed into

10965

a sub-question z; for "United Kingdom" and two
sentences of explanation xo for "William Morris",
implying a one-hop forward retrieval for the first
entity and a two-hop retrieval, both backward, for
the second. Then, path-level LFs [; and ls are gen-
erated according to x; and x, respectively and
assembled into the complete graph-level LF L. Fi-
nally, the correct answer "Wales" is retrieved based
on the accurate LF.

6 Conclusion

In this paper, we propose KaeDe, a novel LLM-
based generate-then-retrieve approach for KBQA
that optimizes complex LF generation through
knowledge-aware question decomposition and the
subsequent progressive LF generation. Specifi-
cally, by using a fine-tuned LLM, the original
question is decomposed into simpler entity-centric
sub-questions or explanations grounded in KB.
Path-level LFs are then mapped from these inter-
mediate expressions and assembled into the final
graph-level LF using the same LLM. In conclu-
sion, KaeDe reduces the complexity of LF genera-
tion by breaking it down into simpler decomposed
tasks, achieving SOTA performance on WebQSP
and CWQ datasets, particularly with fewer model
parameters.

Limitations

Additional Computational Overhead. We uti-
lize beam search during question decomposition,
path-level LF generation, and graph-level assem-
bly. In contrast to the single process in direct LF
generation, KaeDe employs three sequential pro-
cesses, where each subsequent process is generated
based on the beam search results of the previous
one. This intermediate beam search introduces ad-
ditional computational overhead. In future work,
we plan to address this issue by implementing prun-
ing strategies during intermediate steps to reduce
the complexity.

Noise from beam search and retrieval phase.
Another issue stemming from beam search is the in-
troduction of noise. During the retrieval phase, non-
executable LFs are transformed into executable
ones based on the skeleton by replacing the se-
mantically similar entities and relations within the
generated LFs. However, some irrelevant LFs pro-
duced during beam search may also be calibrated
into executable forms, leading to inaccurate re-
sults. In future work, we aim to mitigate this issue

through specific intermediate determination strate-
gies.

Acknowledgments

This work is supported by the Interdisciplinary Pro-
gram of Shanghai Jiao Tong University (project
number YG2024QNBO0Y).

References

Xiao Bi, Deli Chen, Guanting Chen, Shanhuang Chen,
Damai Dai, Chengqi Deng, Honghui Ding, Kai Dong,
Qiushi Du, Zhe Fu, et al. 2024. Deepseek 1lm: Scal-
ing open-source language models with longtermism.
arXiv preprint arXiv:2401.02954.

Kurt Bollacker, Colin Evans, Praveen Paritosh, Tim
Sturge, and Jamie Taylor. 2008. Freebase: a collabo-
ratively created graph database for structuring human
knowledge. In Proceedings of the 2008 ACM SIG-
MOD international conference on Management of
data, pages 1247-1250.

Shuang Chen, Qian Liu, Zhiwei Yu, Chin-Yew Lin,
Jian-Guang Lou, and Feng Jiang. 2021. Retrack:
A flexible and efficient framework for knowledge
base question answering. In Proceedings of the 59th
annual meeting of the association for computational
linguistics and the 11th international joint conference
on natural language processing: system demonstra-
tions, pages 325-336.

Yongrui Chen, Huiying Li, Guilin Qi, Tianxing Wu,
and Tenggou Wang. 2022. Outlining and filling:
hierarchical query graph generation for answering
complex questions over knowledge graphs. IEEE

Transactions on Knowledge and Data Engineering,
35(8):8343-8357.

Zi-Yuan Chen, Chih-Hung Chang, Yi-Pei Chen, Jij-
nasa Nayak, and Lun-Wei Ku. 2019. Uhop: An
unrestricted-hop relation extraction framework for
knowledge-based question answering. In Proceed-
ings of the 2019 Conference of the North American
Chapter of the Association for Computational Lin-
guistics: Human Language Technologies, Volume 1

(Long and Short Papers), pages 345-356.

Rajarshi Das, Manzil Zaheer, Dung Thai, Ameya
Godbole, Ethan Perez, Jay-Yoon Lee, Lizhen Tan,
Lazaros Polymenakos, and Andrew Mccallum. 2021.
Case-based reasoning for natural language queries
over knowledge bases. In Proceedings of the 2021
Conference on Empirical Methods in Natural Lan-
guage Processing, pages 9594-9611.

Prayushi Faldu, Indrajit Bhattacharya, et al. 2024. Reti-
naqa: A robust knowledge base question answering
model for both answerable and unanswerable ques-
tions. In Proceedings of the 62nd Annual Meeting of
the Association for Computational Linguistics (Vol-
ume 1: Long Papers), pages 6643—6656.

10966

Tengfei Feng and Liang He. 2025. Rgr-kbqa: Gen-
erating logical forms for question answering using
knowledge-graph-enhanced large language model. In
Proceedings of the 31st International Conference on
Computational Linguistics, pages 3057-3070.

Evgeniy Gabrilovich, Michael Ringgaard, Amarnag
Subramanya, et al. 2013. Faccl: Freebase annotation
of clueweb corpora.

Tianyu Gao, Xingcheng Yao, and Dangi Chen. 2021.
Simcse: Simple contrastive learning of sentence em-
beddings. In Proceedings of the 2021 Conference on
Empirical Methods in Natural Language Processing,
pages 6894-6910.

Yu Gu and Yu Su. 2022. Arcaneqa: Dynamic program
induction and contextualized encoding for knowl-
edge base question answering. In Proceedings of
the 29th International Conference on Computational
Linguistics, pages 1718-1731.

Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song,
Ruoyu Zhang, Runxin Xu, Qihao Zhu, Shirong Ma,
Peiyi Wang, Xiao Bi, et al. 2025. Deepseek-rl: In-
centivizing reasoning capability in llms via reinforce-
ment learning. arXiv preprint arXiv:2501.12948.

Gaole He, Yunshi Lan, Jing Jiang, Wayne Xin Zhao, and
Ji-Rong Wen. 2021. Improving multi-hop knowledge
base question answering by learning intermediate
supervision signals. In Proceedings of the 14th ACM
international conference on web search and data
mining, pages 553-561.

Edward J Hu, Phillip Wallis, Zeyuan Allen-Zhu,
Yuanzhi Li, Shean Wang, Lu Wang, Weizhu Chen,
et al. 2022a. Lora: Low-rank adaptation of large
language models. In International Conference on
Learning Representations.

Xixin Hu, Yiheng Shu, Xiang Huang, and Yuzhong
Qu. 2021. Edg-based question decomposition for
complex question answering over knowledge bases.
In The Semantic Web—ISWC 2021: 20th International
Semantic Web Conference, ISWC 2021, Virtual Event,
October 24-28, 2021, Proceedings 20, pages 128—
145. Springer.

Xixin Hu, Xuan Wu, Yiheng Shu, and Yuzhong Qu.
2022b. Logical form generation via multi-task learn-
ing for complex question answering over knowledge
bases. In Proceedings of the 29th International Con-

ference on Computational Linguistics, pages 1687—
1696.

Jie Huang and Kevin Chen-Chuan Chang. 2023. To-
wards reasoning in large language models: A survey.
In Findings of the Association for Computational
Linguistics: ACL 2023, pages 1049-1065.

Xiang Huang, Sitao Cheng, Yiheng Shu, Yuheng Bao,
and Yuzhong Qu. 2023. Question decomposition tree
for answering complex questions over knowledge
bases. In Proceedings of the AAAI Conference on Ar-
tificial Intelligence, volume 37, pages 12924-12932.

Jinhao Jiang, Kun Zhou, Xin Zhao, and Ji-Rong Wen.
2023. Unikgqga: Unified retrieval and reasoning for
solving multi-hop question answering over knowl-
edge graph. In The Eleventh International Confer-
ence on Learning Representations.

Zhenyu Li, Sunqgi Fan, Yu Gu, Xiuxing Li, Zhichao
Duan, Bowen Dong, Ning Liu, and Jianyong Wang.
2024. Flexkbqa: A flexible llm-powered framework
for few-shot knowledge base question answering. In
Proceedings of the AAAI Conference on Artificial
Intelligence, volume 38, pages 18608—18616.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Dangi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
Roberta: A robustly optimized bert pretraining ap-
proach. arXiv preprint arXiv:1907.11692.

Haoran Luo, Haihong E, Zichen Tang, Shiyao Peng,
Yikai Guo, Wentai Zhang, Chenghao Ma, Guant-
ing Dong, Meina Song, Wei Lin, Yifan Zhu, and
Anh Tuan Luu. 2024a. ChatKBQA: A generate-then-
retrieve framework for knowledge base question an-
swering with fine-tuned large language models. In
Findings of the Association for Computational Lin-
guistics ACL 2024, pages 2039-2056. Association
for Computational Linguistics.

Linhao Luo, Yuan-Fang Li, Reza Haf, and Shirui Pan.
2024b. Reasoning on graphs: Faithful and inter-
pretable large language model reasoning. In The
Twelfth International Conference on Learning Repre-
sentations.

Sewon Min, Victor Zhong, Luke Zettlemoyer, and Han-
naneh Hajishirzi. 2019. Multi-hop reading compre-
hension through question decomposition and rescor-
ing. In Proceedings of the 57th Annual Meeting of
the Association for Computational Linguistics, pages
6097-6109.

Zhijie Nie, Richong Zhang, Zhongyuan Wang, and
Xudong Liu. 2024. Code-style in-context learning for
knowledge-based question answering. In Proceed-
ings of the AAAI Conference on Artificial Intelligence,
volume 38, pages 18833-18841.

Barlas Oguz, Xilun Chen, Vladimir Karpukhin, Stan
Peshterliev, Dmytro Okhonko, Michael Schlichtkrull,
Sonal Gupta, Yashar Mehdad, and Scott Yih. 2022.
Unik-qa: Unified representations of structured and
unstructured knowledge for open-domain question
answering. In Findings of the Association for Com-
putational Linguistics: NAACL 2022, pages 1535-
1546.

Mayur Patidar, Riya Sawhney, Avinash Singh, Biswajit
Chatterjee, Indrajit Bhattacharya, et al. 2024. Few-
shot transfer learning for knowledge base question
answering: Fusing supervised models with in-context
learning. In Proceedings of the 62nd Annual Meet-
ing of the Association for Computational Linguistics
(Volume 1: Long Papers), pages 9147-9165.

10967

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine
Lee, Sharan Narang, Michael Matena, Yanqi Zhou,
Wei Li, and Peter J Liu. 2020. Exploring the lim-
its of transfer learning with a unified text-to-text

transformer. Journal of machine learning research,
21(140):1-67.

Priyanka Sen, Armin Oliya, and Amir Saffari. 2021.
Expanding end-to-end question answering on differ-
entiable knowledge graphs with intersection. In Pro-
ceedings of the 2021 Conference on Empirical Meth-
ods in Natural Language Processing, pages 8805—
8812.

Jiaxin Shi, Shulin Cao, Lei Hou, Juanzi Li, and Han-
wang Zhang. 2021. Transfernet: An effective and
transparent framework for multi-hop question an-
swering over relation graph. In Proceedings of the
2021 Conference on Empirical Methods in Natural
Language Processing, pages 4149-4158.

Yiheng Shu, Zhiwei Yu, Yuhan Li, Borje Karlsson,
Tingting Ma, Yuzhong Qu, and Chin-Yew Lin. 2022.
Tiara: Multi-grained retrieval for robust question an-
swering over large knowledge base. In Proceedings
of the 2022 Conference on Empirical Methods in
Natural Language Processing, pages 8108-8121.

Yuan Sui, Yufei He, Nian Liu, Xiaoxin He, Kun Wang,
and Bryan Hooi. 2024. Fidelis: Faithful reasoning in
large language model for knowledge graph question
answering. arXiv preprint arXiv:2405.13873.

Jiashuo Sun, Chengjin Xu, Lumingyuan Tang, Saizhuo
Wang, Chen Lin, Yeyun Gong, Lionel Ni, Heung-
Yeung Shum, and Jian Guo. 2024. Think-on-graph:
Deep and responsible reasoning of large language
model on knowledge graph. In The Twelfth Interna-
tional Conference on Learning Representations.

Alon Talmor and Jonathan Berant. 2018. The web as
a knowledge-base for answering complex questions.
In Proceedings of the 2018 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
Volume 1 (Long Papers), pages 641-651.

Yuhang Tian, Dandan Song, Zhijing Wu, Changzhi
Zhou, Hao Wang, Jun Yang, Jing Xu, Ruanmin Cao,
and Haoyu Wang. 2024. Augmenting reasoning ca-
pabilities of llms with graph structures in knowledge
base question answering. In Findings of the Associ-
ation for Computational Linguistics: EMNLP 2024,
pages 11967-11977.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Al-
bert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti
Bhosale, et al. 2023. Llama 2: Open founda-
tion and fine-tuned chat models. arXiv preprint
arXiv:2307.09288.

Denny Vrandeci¢ and Markus Krotzsch. 2014. Wiki-
data: a free collaborative knowledgebase. Communi-
cations of the ACM, 57(10):78-85.

Shouhui Wang and Biao Qin. 2024. No need for large-
scale search: Exploring large language models in
complex knowledge base question answering. In Pro-
ceedings of the 2024 Joint International Conference
on Computational Linguistics, Language Resources
and Evaluation (LREC-COLING 2024), pages 12288—
12299.

Jason Wei, Maarten Bosma, Vincent Zhao, Kelvin Guu,
Adams Wei Yu, Brian Lester, Nan Du, Andrew M
Dai, and Quoc V Le. 2022a. Finetuned language
models are zero-shot learners. In International Con-
ference on Learning Representations.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten
Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny Zhou,
et al. 2022b. Chain-of-thought prompting elicits rea-
soning in large language models. Advances in neural
information processing systems, 35:24824-24837.

Tianbao Xie, Chen Henry Wu, Peng Shi, Ruiqi Zhong,
Torsten Scholak, Michihiro Yasunaga, Chien-Sheng
Wu, Ming Zhong, Pengcheng Yin, Sida I Wang,
et al. 2022. Unifiedskg: Unifying and multi-tasking
structured knowledge grounding with text-to-text lan-
guage models. In Proceedings of the 2022 Confer-
ence on Empirical Methods in Natural Language
Processing, pages 602-631.

Guanming Xiong, Junwei Bao, and Wen Zhao. 2024.
Interactive-KBQA: Multi-turn interactions for knowl-
edge base question answering with large language
models. In Proceedings of the 62nd Annual Meet-
ing of the Association for Computational Linguistics
(Volume 1: Long Papers), pages 10561-10582. Asso-
ciation for Computational Linguistics.

Derong Xu, Xinhang Li, Ziheng Zhang, Zhenxi Lin, Zhi-
hong Zhu, Zhi Zheng, Xian Wu, Xiangyu Zhao, Tong
Xu, and Enhong Chen. 2025. Harnessing large lan-
guage models for knowledge graph question answer-
ing via adaptive multi-aspect retrieval-augmentation.
In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 39, pages 25570-25578.

Xi Ye, Semih Yavuz, Kazuma Hashimoto, Yingbo Zhou,
and Caiming Xiong. 2022. Rng-kbqa: Generation
augmented iterative ranking for knowledge base ques-
tion answering. In Proceedings of the 60th Annual
Meeting of the Association for Computational Lin-
guistics (Volume 1: Long Papers), pages 6032-6043.

Wen-tau Yih, Matthew Richardson, Christopher Meek,
Ming-Wei Chang, and Jina Suh. 2016a. The value of
semantic parse labeling for knowledge base question
answering. In Proceedings of the 54th Annual Meet-
ing of the Association for Computational Linguistics
(Volume 2: Short Papers), pages 201-206.

Wen-tau Yih, Matthew Richardson, Christopher Meek,
Ming-Wei Chang, and Jina Suh. 2016b. The value of
semantic parse labeling for knowledge base question
answering. In Proceedings of the 54th Annual Meet-
ing of the Association for Computational Linguistics
(Volume 2: Short Papers), pages 201-206.

10968

Peng Yixing, Quan Wang, Licheng Zhang, Yi Liu, and
Zhendong Mao. 2024. Chain-of-question: A progres-
sive question decomposition approach for complex
knowledge base question answering. In Findings of
the Association for Computational Linguistics ACL
2024, pages 4763-4776.

Donghan Yu, Sheng Zhang, Patrick Ng, Henghui
Zhu, Alexander Hanbo Li, Jun Wang, Yiqun Hu,
William Yang Wang, Zhiguo Wang, and Bing Xiang.
2022. Decaf: Joint decoding of answers and log-
ical forms for question answering over knowledge
bases. In The Eleventh International Conference on
Learning Representations.

Haoyu Zhang, Jingjing Cai, Jianjun Xu, and Ji Wang.
2019. Complex question decomposition for semantic
parsing. In Proceedings of the 57th Annual Meet-
ing of the Association for Computational Linguistics,
pages 4477-4486.

Jiajie Zhang, Shulin Cao, Tingjian Zhang, Xin Lv,
Juanzi Li, Lei Hou, Jiaxin Shi, and Qi Tian. 2023a.
Reasoning over hierarchical question decomposition
tree for explainable question answering. In Proceed-
ings of the 61st Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers),
pages 14556-14570.

Jing Zhang, Xiaokang Zhang, Jifan Yu, Jian Tang, Jie
Tang, Cuiping Li, and Hong Chen. 2022. Subgraph
retrieval enhanced model for multi-hop knowledge
base question answering. In Proceedings of the 60th
Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 5773—
5784.

Kun Zhang, Jiali Zeng, Fandong Meng, Yuanzhuo
Wang, Shiqi Sun, Long Bai, Huawei Shen, and Jie
Zhou. 2024. Tree-of-reasoning question decompo-
sition for complex question answering with large
language models. In Proceedings of the AAAI Con-
ference on artificial intelligence, volume 38, pages
19560-19568.

Lingxi Zhang, Jing Zhang, Yanling Wang, Shulin Cao,
Xinmei Huang, Cuiping Li, Hong Chen, and Juanzi
Li. 2023b. Fc-kbga: A fine-to-coarse composition
framework for knowledge base question answering.
In Proceedings of the 61st Annual Meeting of the
Association for Computational Linguistics (Volume
1: Long Papers), pages 1002-1017.

Yaowei Zheng, Richong Zhang, Junhao Zhang, YeYan-
han YeYanhan, and Zheyan Luo. 2024. Llamafactory:
Unified efficient fine-tuning of 100+ language mod-
els. In Proceedings of the 62nd Annual Meeting of
the Association for Computational Linguistics (Vol-
ume 3: System Demonstrations), pages 400—410.

10969

A Conversion of Logical Forms

In this section, we provide a detailed description
of convert(-) function, composed of entity-centric
per-hop projection, operator arrangement, and en-
tity substitution.

A.1 Entity-Centric Per-Hop Projection

The main SPARQL lines are split into reasoning
paths depending on the topic entities involved.
Then, for each reasoning path, the projection for
a single hop follows the expressions in Table 6.
For instance, a single SPARQL line "7z r ¢ ." can
be mapped to (JOIN r e). If a second hop
exists for the topic entity e, it can be iteratively
converted based on the projection from the previ-
ous hop. When the iteration terminates, it forms
a path-level LF that represents a reasoning path
originating from e.

LF Projection Direction SPARQL Triplet
(JOIN re) backward 7zre. (?x,r,€)
(JOIN (Rr)e) forward er?z. (e 7x)

Table 6: Single Hop Projection.

A.2 Operator Arrangement

Once the path-level LFs are constructed for each
topic entity e mentioned in the SPARQL, the graph-
level LF is organized based on the operators, with
some commonly used ones shown as examples in
Table 7. For example, AN D is utilized to repre-
sent the intersection between different reasoning
paths, and ARG M AX describes the constraints of
values.

A.3 Entity Substitution

After the graph structure is arranged, the entity
IDs starting with "m." or "g.", which are in the
format stored in Freebase, are replaced by their
corresponding labels in the original SPARQL for
improved comprehension.

A4 Specific Example

We provide a specific example to explain the con-
version.

Main Lines in SPARQL:
ns:m.0913p ns:film.actor.film ?y .

?y ns:film.performance.character ?x .
7y ns:film.performance.film ns:m.0ddt_ .

The first two lines can be grouped into reasoning
path z; for entity "m.09[3p", while the last line cor-
responds to reasoning path zo for entity "m.0ddt_".

Operator Definition
Operator for Entity
(AND (& &)) denotes intersecting between
AND .
entity sets £ and &
COUNT (COUNT (&)) denotes counting the size of entity
set &
Operator for Value
,, (ARGMAX & r) denotes obtaining the maximum
ARGMAX literal after the projection {(JOIN ¢)|e € £}
) (ARGMIN €& r) denotes obtaining the minimum
ARGMIN literal after the projection {(JOIN r e)|e € £}
(GT & i) denotes the subset of £ which is greater
GT .)
than literal ¢
(GE € i) denotes the subset of £ which is greater
GE . .
than or equal to literal ¢
T (LT & i) denotes the subset of £ which is less than
literal ¢
LE (LE & i) denotes the subset of £ which is less than
or equal to literal ¢
TC (TC € i) denotes the subset of £ which is con-

strained by temporal literal ¢

Note: GT, GE, LT, LE are abbreviations for the operators
GREATERTHAN, GREATER EQUAL, LESS THAN,
LESS EQU AL, respectively.

Table 7: Main Operators.

The first line of z; can be mapped to e;; =
(JOIN (R] film, actor, film])[m.09I3p]).
For the second hop, a nested expression is con-
structed based on eq; (the 7y in z1), represented as
(JOIN (R][film, per formance, character]
) e11). 22 can be generated with the same method.
Then, the path-level LFs can be expressed as
follows. (Notably, the path-level LFs in the paper
are represented with entity labels instead of entity
IDs. Here, we refer to the expressions as path-level
LFs simply to illustrate the intermediate steps.)

Path-Level LFs /; for entity m.0913p:

(JOIN (R [film, performance , character]) (JOIN (R
[film, actor, film]) [m.0913p]))

Path-Level LFs /- for entity m.0ddt_:

(JOIN [film , performance , film] [m.0ddt_])

According to the SPARQL description, the inter-
section of z; and 29 occurs at "7y", which is at the
first hop of z; and the last hop of z». Therefore, the
graph-level LF can be formulated as the expression
below. (It’s worth noting that the graph-level LF
here is the same as the path-level LF mentioned
above, shown only to display the intermediate pro-
cess.)

Graph-Level LFs L:

(JOIN (R [film, performance , character |) (AND (
JOIN [film , performance , film] [m.0ddt_]) (JOIN (
R [film, actor, film]) [m.0913p 1)))

Finally, the entity IDs in the graph-level LF are
replaced with the corresponding labels to form the

10970

final LF.

Final LF:

(JOIN (R [film , performance , character]) (AND (
JOIN [film , performance , film] [Star Wars Episode I:
The Phantom Menace]) (JOIN (R [film , actor , film]
) [Natalie Portman])))

B Prompt Template

In this section, we provide prompt templates for
both training and inference. The LLMs are fine-
tuned for two primary tasks: (1) Task 1, knowledge-
aware question decomposition and (2) Task 2, pro-
gressive LF generation. These tasks can be further
broken down into three sub-tasks: question decom-
position for Task 1, path-level LF generation, and
graph-level LF assembly for Task 2.

For question decomposition, the prompt tem-
plate pq is presented as follows.

Template pg for Question Decomposition

You are an expert in KBQA. Given an original ques-
tion {**original question**}. Please parse the origi-
nal question into the corresponding simple questions
or explanations based on each topic entity.

Then, the prompt template for path-level LF gen-
eration py is illustrated below.

Template p, for Path-Level LF Generation

You are an expert in KBQA. Given an original ques-
tion {**original question**} and the corresponding
simple questions or explanations { **simple questions
or explanations**}. Please generate the correspond-
ing path-level logical forms.

Finally, in terms of the prompt template for
graph-level LF assembly p, is shown in the box.

Template p, for Graph-Level LF Assembly

You are an expert in KBQA. Given an original ques-
tion {**original question**} and all path-level logi-
cal forms {**path-level LFs**}. Please generate the
final complete logical form for the original question.

The expressions in the prompt template, marked
with "**" serve as placeholders for the correspond-
ing content to be filled in. To avoid the additional
computational overhead and noise induced by beam
search, the placeholders are replaced with the com-
bined intermediate results before proceeding to the
next step. For instance, simple questions g, 2
and explanation z}_ are generated from the ques-

tion decomposition task. Then, the path-level LF

generation task will include all of these expressions
in a single prompt, represented as g, &3, Tex € Pg.

C Details of Datasets

In this section, we provide details about the datasets
utilized in this paper.

We employ the WebQSP (Yih et al., 2016b) and
CWQ (Talmor and Berant, 2018) datasets as rep-
resentative benchmarks for simple and complex
questions, respectively. Both datasets can be refer-
enced against the Freebase (Bollacker et al., 2008)
KB. The statistics are provided in Table 8. Since
both datasets include questions with multiple enti-
ties, we define the hop number of a question as the
maximum hop count across all topic entity-centric
reasoning paths.

WebQSP dataset is composed of 4,737 sim-
ple questions. In terms of hop number, most of
these questions are single-hop. Regarding the an-
swers, the distribution between single-answer and
multiple-answer questions is approximately equal.

CWQ dataset contains 34,689 more complex
questions generated from WebQSP, encompassing
four types: conjunction, composition, comparative,
and superlative. Regarding the hop number, two-
hop questions make up the majority, while single-
hop and multi-hop questions (those with more than
two hops) exhibit a relatively balanced distribu-
tion.As for the answers, single-answer questions
constitute the largest proportion in the dataset.

Dataset Split Proportion(%) Hop Answers
(%) 2(%) >2(%) 1(%) >1 (%)

Train 6540 62093791 0 5322 4678
WebQSP it 3460 63813619 0 50.86 49.14
Train 79.68 19.0956.11 24.80 70.59 29.41

CWQ Val 1014 2347 50.12 2641 73.12 26.88
Test 1018 21475529 2324 7431 25.69

Table 8: Statistics of WebQSP and CWQ datasets.

D Details of Experiments

In this section, we present the details of the hy-
perparameter settings and model information used
throughout the experiments.

We demonstrate the detailed experiment settings
in Table 10. The parameters in bold represent the
settings corresponding to the best-performing re-
sults, if other parameter options exist.

Furthermore, we provide the details of the mod-
els in Table 9, including the model size, the train-

10971

Model Name Backbone Model Size (B) Params for All (%) Params for q, v (%) Training Time (h)
Llama 2 7B Llama-2-7b-chat 6.7426 0.2958 0.0622 {17 (WebQSP), 18 (CWQ)}
Llama 2 13B Llama-2-13b-chat 13.0472 0.2398 0.0503 {31 (WebQSP), 33 (CWQ)}
DeepSeek 7B DeepSeek-1lm-7b-chat 6.9291 0.2704 / {25 (CWQ)}
DeepSeeK R1 8B DeepSeek-R1-Distill-Llama-8B 8.0512 0.2605 / {26 (CWQ)}

Table 9: Details of Models.

Parameter WebQSP CWQ
Model Size {7B, 8B, 13B} {7B, 8B, 13B}
PEFT LoRA LoRA
LoRA Rank 8 8

Target Modules {all, q_proj v_proj} {all, q_proj v_proj}
Learning Rate {5e-5 (7B, 8B), 7e-5 (13B)} {5e-5 (7B, 8B), 7e-5 (13B)}

Batch Size 4 4
Beam Size {3,5, 8} {3,5,8}
Epoch 50 5
Retriever SimCSE SimCSE
Top-k Entity 50 50
Top-k Relation 15 15

Table 10: Details of Hyperparameters.

able parameters for different target modules (such
as all linear layers, as well as the q_proj and v_proj
layers), and the approximate training time. Notably,
all linear layers include {q_proj, v_proj, k_proj,
o_proj} for the attention matrix, and {gate_proj,
up_proj, down_proj} for the multilayer perceptron
(MLP) layers in PEFT. The {q_proj, v_proj} set-
ting is a regular configuration for Llama models.
As we have observed in the experiments, there is
no significant training time increment due to the pa-
rameter addition when the trained layers are added
to all linear layers.

Throughout this work, we leverage Llama Fac-
tory framework (Zheng et al., 2024) to perform the
LLM fine-tuning.

E Efficiency Analysis

Method Beam Size Generation (s) Retrieval (s)
3 1.94 9.18
direct 5 2.15 9.34
8 2.65 7.56
3 6.29 13.16
KaeDe 5 8.99 8.93
8 20.64 29.40

Table 11: Average running time per question on CWQ
dataset, with direct LF generation and KaeDe, both
based on the Llama 2 7B model, with beam sizes rang-
ing from 3, 5, and 8.

In this section, we analyze the efficiency compari-
son between KaeDe and direct LF generation, both
of which are generate-then-retrieve approaches for

semantic parsing.

We randomly sample 200 questions from the
CWAQ dataset and separately calculate the average
running time per question for LLM generation and
retrieval. The results are shown in Table 11. In
terms of the generation phase, based on LLM beam
search, the direct LF generation has O(n) com-
plexity for a single operation, while KaeDe follows
O(n?) complexity due to the three iterative sequen-
tial tasks. While for the retrieval phase, the time
is highly dependent on the LF quality and number.
Thus, a decline is observed in beam size 8 for direct
LF generation and in beam size 5 for KaeDe, at-
tributed to the increase in LF quality. However, as
the beam size continues to rise in KaeDe, the num-
ber of generated LFs begins to dominate, leading
to an increase in time.

F Failure Analysis

Failure Type Failure Rate (%)
Entity Error 32.08
Relation Error 71.18
Hop Error 49.62
Constraint Error 8.02
Graph Structure Error 41.60
Execution Error 5.76
Non-Executable 42.61

Table 12: Failure analysis on CWQ dataset, based on
the Llama 2 7B model with a beam size of 5.

In section, we demonstrate the failure analysis for
the proposed method.

The statistics are presented in Table 12, where
failures encompass errors in entity, relation, hop,
constraint, graph structure, and execution. Specif-
ically, graph structure errors refer to cases where
reasoning paths are missing or redundant, or where
intersections between different paths are misplaced.
Execution errors occur when the generated LF
matches the ground truth exactly, but either fails
to produce any answer or generates an incorrect
answer. This issue often arises when a literal is
involved. These errors often overlap; for instance,
hop errors are frequently related to relation errors.

10972

Relation errors account for the majority of the
failures, but the non-executable rate is much lower.
This indicates that the retrieval process significantly
helps in calibrating non-executable LFs into exe-
cutable ones, based on the correct predicted LF
skeletons. However, it also introduces noise by
producing incorrect yet executable LFs. Hop errors
and graph structure errors are major contributors
to unrecoverable failures due to changes in the LF
skeleton, with their proportions aligned with the
non-executable rate.

G Additional Case Study

Question: Before the Euro, what was the currency where Louis-Eugene
Cavaignac was appointed to governmental position?

Ground Truth LF: (JOIN (R [location , country , currency formerly
used]) (JOIN [government , governmental jurisdiction , governing
officials] (JOIN [government , government position held , appointed by
] [Louis-Eugene Cavaignac])))

Answer: French franc, Assignat

Direct LF Generation: (....7) (AND (JOIN [government , governmen-
tal jurisdiction , governing officials] (JOIN [government , government
position held , appointed by] [Louis-Eugene Cavaignac])) (JOIN (R
[finance , currency , countries used |) [Euro])) — entity error, relation
error, hop error (x)

» non-executable

Question Decomposition:

(1) Louis-Eugene Cavaignac is the appointed by of the government
position held. He/She is the governing officials of the governmental
jurisdiction. What is the currency formerly used of the country?

" Path-Level LF Generation:
(1) (JOIN (R [location , country , currency formerly used]) (JOIN [
government , governmental jurisdiction , governing officials] (JOIN [
government , government position held , appointed by] [Louis-Eugene
Cavaignac])))

" Graph-Level LF Assembly:
(JOIN (R [location , country , currency formerly used]) (JOIN [
government , governmental jurisdiction , governing officials] (JOIN [
government , government position held , appointed by] [Louis-Eugene
Cavaignac])))

Executed Result: French franc, Assignat

Table 13: Additional case study for a three-hop complex
question.

In the Experiment section, we aim to illustrate the
full process through a case study. Therefore, we
provide the case study with multiple topic enti-
ties to show how the method works for generating
multiple path-level LFs and their final assembly to
produce the graph-level LF. However, the hop num-
ber is relatively low, with a maximum of two, due
to the constraint of the dataset where multiple hops
and multiple answers do not occur simultaneously
in one question. In this section, we supplement a
case study with a three-hop question.

For direct LF generation, two possible enti-
ties are predicted. However, "Euro" is redundant,
leading to the failure of intersection between the
paths starting from "Louis-Eugene Cavaignac" and

"Euro," respectively. Additionally, the "Louis-
Eugene Cavaignac" path misses a hop.

In terms of KaeDe, expressions involving two
explanations and one question are generated for
the entity "Louis-Eugene Cavaignac". The first
two hops represent backward retrieval, while the
last hop denotes forward retrieval. With fine-tuned
LLMs, the combined explanation is mapped to a
path-level LF. Since no other entity or constraints
exist, it is directly output as the graph-level LF. The
final executed answer turns out to be correct.

10973

