LEAF: Large Language Diffusion Model for Time Series Forecasting
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Abstract

This paper studies the problem of time series
forecasting, which aims to generate future pre-
dictions given historical trajectories. Recent
researchers have applied large language mod-
els (LLMs) into time series forecasting, which
usually align the time series space with textual
space and output future predictions with strong
autoregressive reasoning abilities. Despite their
remarkable progress, these approaches usually
lack an understanding of holistic temporal pat-
terns with potential error accumulation. To-
wards this end, this paper proposes a simple
yet effective framework that marries Large
Language Diffusion Model with time series
forecasting (LEAF). The core of our framework
is to generate future predictions with a diffusion
model from a holistic view. In particular, we
first introduce a tokenization module to convert
time series into tokens and then adopt the lan-
guage diffusion models to capture the temporal
dependencies. In this way, we can transform
masked time series into all the predictions with
the remasking strategy. Extensive experiments
on various benchmark datasets validate the ef-
fectiveness of the proposed LEAF in comparison
to various baselines.

1 Introduction

Time series forecasting (TSF) assumes a critical
role in various domains, including finance (Deb
et al., 2017), healthcare (Chimmula and Zhang,
2020), climate science (Pathak et al., 2022), and
traffic prediction (Cirstea et al., 2022; Zhao et al.,
2023). To achieve effective TSF, traditional meth-
ods like ARIMA (Box and Pierce, 1970) and expo-
nential smoothing (ETS) (Gardner Jr, 1985) have
been widely adopted for capturing temporal de-
pendencies and trend patterns in time series data.
Thanks to recent advances in deep learning, models
such as recurrent neural networks (RNNs) (Sali-
nas et al., 2020), convolutional neural networks
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(CNNs) (Wu et al., 2023), and Transformers (Wu
et al., 2021) are highly effective in identifying intri-
cate dynamics and long-range persistence in high-
dimensional time series data. In practice, these TSF
methods often rely on extensive domain expertise
and task-specific designs. Meanwhile, real-world
applications such as weather and financial forecast-
ing require extrapolation from sparse observations,
further complicating the task of making accurate
predictions (Dooley et al., 2023).

Recently, large language models (LLMs), such
as GPT (Brown et al., 2020) and Llama (Touvron
et al., 2023a), have shown remarkable capabilities
in capturing contextual dependencies in natural lan-
guage. Since both language and time series data
involve sequential structures and rely on learned to-
ken transitions, there is a growing interest in adapt-
ing off-the-shelf LLMs for time series forecasting,
especially under few-shot and zero-shot settings.
For example, LLMTime encodes time series data
into sequences of numerical tokens and formulates
TSF as a next-token prediction task (Gruver et al.,
2023). AutoTimes projects time series data into
the latent space of language tokens and generates
future predictions in an autoregressive manner (Liu
et al., 2024c). LSTPrompt further decomposes
TSF into short- and long-term subtasks and for-
malizes the prediction into the Chain-of-Thought
process (Liu et al., 2024b).

Despite the success of these LLM-based meth-
ods for TSF, we argue that the autoregressive gen-
eration framework is not inherently aligned with
the nature of time series data, primarily due to two
major challenges. @ Limited understanding of the
holistic temporal patterns. Future intervals in time
series often exhibit coherent global patterns, such
as seasonality, trends, and periodic behaviors (Cao
et al., 2024), which cannot be effectively captured
through token-by-token prediction. @ Error prop-
agation and lack of internal consistency. The au-
toregressive generation always suffers from error
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accumulation as each prediction relies on previous
ones, leading to increasingly distorted forecasts.
This disrupts the internal consistency of the pre-
dicted sequence and further hinders the ability to
capture global temporal patterns accurately. These
limitations naturally prompt the question: Can we
design a TSF framework that captures the entire
future trajectory, rather than predicting it step-by-
step in an autoregressive manner?

Diffusion models have emerged as an alternative
to traditional autoregressive generative frameworks.
Originally introduced for image generation (Ho
et al., 2020; Song et al., 2021), diffusion models
iteratively transform random noise into structured
data via injecting noise in a forward process and
learning to reverse it to recover the original dis-
tribution. In TSF tasks, diffusion models provide
a key advantage over autoregressive methods by
learning and predicting the entire trajectory simul-
taneously (Tashiro et al., 2021; Yuan and Qiao,
2024; Nie et al., 2025). LLaDA provides an ini-
tial attempt at the large language diffusion model,
though it still remains limited to TSF (Nie et al.,
2025). Therefore, the use of diffusion models for
zero-shot TSF with LLMs presents a promising yet
largely unexplored direction.

Towards this end, we propose a simple yet ef-
fective approach Large Language Diffusion Model
for time series forecasting (LEAF), which leverages
a masked diffusion model incorporating a discrete
random masking process along with a mask predic-
tor to approximate the reverse process. Specifically,
given the time series input, a dedicated tokenization
module is first employed to transform the raw data
into a sequence of discrete tokens, thereby enabling
effective interaction with the LLMs. Then, a dif-
fusion framework is employed to guide the LLMs’
distribution, constructing a forward masking and a
subsequent reverse process to capture temporal de-
pendencies. For the inference phase, starting with
the fully masked time series input, we discretize
the reverse process and apply a confidence-based
remasking strategy for the iterative TSF.

The contributions of this paper are as follows:
@ New Perspective. We are the first to introduce the
large language diffusion framework for TSF task,
which captures the entire temporal trajectory and
dependencies of time series data without relying
on traditional autoregressive methods.

O In-depth Analysis. We formalize the model distri-
bution through a forward masking process followed
by a reverse process, and provide an in-depth analy-

sis for the inference phase initialized from the fully
masked input in TSE.

® State-of-the-art Performance. We conduct ex-
tensive experiments on several publicly available
time series datasets and experimental results show
that our LEAF significantly outperforms existing
comparative methods.

2 Related Work

2.1 Time Series Forecasting

Time series forecasting has progressed from classi-
cal models like ARIMA (Box and Pierce, 1970) and
ETS (Gardner Jr, 1985)—valued for interpretabil-
ity but limited with complex, high-dimensional
data—to deep learning approaches (Oord et al.,
2016; Bai et al., 2018; Salinas et al., 2020; Wu
et al., 2021, 2023) that capture hierarchical and
non-linear temporal patterns. Transformer-based
models such as Informer (Zhou et al., 2021), Aut-
oformer (Wu et al., 2021), and PatchTST (Nie
et al., 2023) leverage self-attention to model long-
range dependencies efficiently. However, the emer-
gence of simple linear models such as LTSF-
Linear (Zeng et al., 2023) highlights the under-
utilization of Transformers in TSF, thereby moti-
vating researchers to explore enhancements across
multiple dimensions, including cross-dimension
attention (Zhang and Yan, 2023), patching tech-
niques (Nie et al., 2023), integration of exogenous
variables (Wang et al., 2024), and improvements
in generalization and multi-scale modeling (Ilbert
et al., 2024; Shabani et al., 2022). Meanwhile,
diffusion models (Yuan and Qiao, 2024; Tashiro
et al., 2021; Nie et al., 2025; Gao et al., 2025) have
shown promise in capturing complex distributions
for high-quality forecasts.

Despite their success, these models often re-
quire large labeled datasets and struggle with cross-
domain generalization. Pre-trained models like
Timer (Liu et al., 2024d) offer more generalizable
representations, but enhancing data efficiency and
domain adaptability remains an open challenge.

2.2 Large Models for Time Series Data

The success of foundation models in vision and
language (Touvron et al., 2023b; Liu et al., 2024a;
Liet al., 2023; Achiam et al., 2023; Radford et al.,
2021) motivates extending their capabilities to time
series. However, time series data present chal-
lenges due to domain variability and difficulties
in large-scale collection arising from privacy and
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Figure 1: Overview of the proposed LEAF framework. Historical time series data (orange) is first rescaled and
concatenated with a masked segment representing the prediction horizon (blue). Through iterative denoising, the
masked tokens are progressively generated and rescaled back to the original scale to produce the final forecast.

cost constraints. These challenges have led to two
primary research directions: 1) adapting LLMs
to time series tasks, including fine-tuning (Zhou
et al., 2023; Chang et al., 2025), reformulating
numerical sequences as textual prompts (Xue and
Salim, 2023), employing string-encoded sequences
for zero-shot forecasting (Gruver et al., 2023),
and using patch-based modality alignment (Jin
et al., 2023); and 2) developing foundation models
trained directly on time series data, such as con-
structing large-scale corpora for general-purpose
forecasting (Rasul et al., 2023; Das et al., 2024)
or using NLP-inspired tokenization to parse time
series into semantic units (Ansari et al., 2024).

Nevertheless, current methods largely depend on
autoregressive models. This approach is inherently
constrained by the "reversal curse", limiting them
to modeling forward temporal dependencies and
struggling with bidirectional or global temporal pat-
terns, thus restricting full exploitation of temporal
structure. We introduce a novel Diffusion LLM
framework for TSF. By leveraging a denoising dif-
fusion process, our approach facilitates iterative
prediction refinement and the capture of complex,
bidirectional temporal dependencies.

3 The Proposed LEAF

In this paper, we first formalize the problem set-
ting and then introduce the details of our proposed
LEAF, which investigates the large language diffu-
sion framework for zero-shot TSF. In particular, our
framework consists of three components. Given the
time series data, it is recognised as a string of nu-
merical digits, and each digit is viewed as a discrete

token. Then, we define a diffusion framework via a
model distribution with forward masking and sub-
sequent reverse process. Finally, for the inference
phase, we employ a confidence-based remasking
strategy for iteratively TSFE. The overview of the
framework is shown in Figure 1, with the details of
each component presented as follows.

3.1 Problem Definition

Time series forecasting task aims to predict fu-
ture values of a given time series based on its
historical data. Formally, given a time series in-
put Xi.;, = [z1,%2,...,z1], where L denotes
the length of the look-back window, the objec-
tive is to forecast the future values Xy 1.+ =
(€141, %142, - -, YL+H] Over a prediction horizon
of length H. In the zero-shot setting, we leverage
the generalization abilities of pretrained LLMs and
build a foundation model F*(-) to directly map the
look-back window with horizon:

Xrt1:0+0 = F(X1.1). €))

3.2 Times Series Tokenization

To enable LLLMs to process numerical time series
data, we first transform the continuous input se-
quence into a discrete tokenized format. Standard
tokenization methods, such as Byte Pair Encod-
ing (BPE), often fragment numerical values into
tokens inconsistent with the digit (Sennrich et al.,
2016). Inspired by the tokenization strategy of
LLaMA (Touvron et al., 2023a), LLMTime adopts
a digit-level tokenization, where individual digit
is separated by spaces and commas are utilized to
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demarcate distinct time steps within the time series
input (Gruver et al., 2023). For example:

0.345, 3.45, 345 —“34,345,3450".

In our LEAF, we implement a percentile-based
rescaling strategy (Gruver et al., 2023) to reduce
the token consumption caused by large magnitudes.
Specifically, each time series value is first offset
by subtracting the S-percentile of the original se-
ries, and then scaled such that the a-percentile of
the adjusted values is normalized to 1. So in this
way, the majority of values fall within a manage-
able range while retaining statistical properties for
accurate TSF. The details of the scaling strategy
are in Appendix C.

3.3 Large Language Diffusion Model

In contrast to conventional autoregressive forecast-
ing approaches, diffusion models (Ho et al., 2020;
Tashiro et al., 2021; Ou et al., 2025) provide a
probabilistic framework that models the data gen-
eration process via a forward noising process and
its corresponding trained reverse denoising pro-
cess, which could capture the complex nonlinear
trajectory inherent in time series data. To integrate
diffusion guidance into LLMs for TSF, discrete
masking (Austin et al., 2021) is employed with the
random masking ratio ¢ sampled uniformly from
[0, 1] in a large language diffusion model (Nie et al.,
2025). The iterative process for each token x; € X
from ¢t = 0 (original input) to ¢ = 1 (fully masked)
can be defined as:

g(afl2}) = Cat(z};td(2f) + (1 — 1)6(M)), ()

where Cat(-) is a categorical distribution with
Dirac function §(a) = I(z! = a), denoting the
probability ¢ of the token being masked, and M de-
note the special [MASK] token. Based on this, the
reverse process inverts the noising process defined
by ¢, where the denoising process can be:
t
plallet) = {1’ oy T
p(zileym), 2 =M.

3)

where ), denotes the collection of unmasked
tokens in the forward noising process.

3.4 Remarking Inference for Time Series
Forecasting

We evaluate the zero-shot ability of a large lan-
guage diffusion model on TSF. Starting from the in-
put X7.7, and fully masked X 1.7, we predict

the masked token and employ a remasking strategy
for the reverse process. Specifically, we leverage
a pretrained model (Nie et al., 2025) by feeding
both X.7, and fully masked X7 1.1+ to predict
all the masked token simultaneously. Then, we
iteratively remask the X7 1.7+ by transitioning
from an intermediate step ¢ € (0, 1] to a lower step
s € [0, 1), ensuring that the reverse inference pro-
cess remains consistent with the formalized prob-
abilistic model. Instead of random masking for
step ¢, the predicted probability of each token is
regarded as a confidence score and we remask out
s/t of tokens with the lowest confidence in large
language diffusion model (Nie et al., 2025). The
masking ratio progressively decreases over itera-
tions until all tokens are generated within 7" steps.

4 Experiments

4.1 Experimental Setup

Datasets and Baselines. To assess LEAF’s perfor-
mance, we evaluate it on three benchmark datasets:
Darts, Monash, and Informer, which are widely
used in time-series forecasting and span diverse
domains and frequencies. A summary of these
datasets is provided in Appendix A, with detailed
descriptions presented below.

e Darts Collection (Herzen et al., 2022). For
the Darts datasets, we evaluate LEAF against a
comprehensive set of supervised and zero-shot
baselines. The supervised methods include clas-
sical statistical models such as SM-GP (Wil-
son and Adams, 2013) and ARIMA (Box and
Pierce, 1970), as well as modern deep learning
approaches: Temporal Convolutional Networks
(TCN) (Bai et al., 2018), N-BEATS (Oreshkin
et al., 2019), N-HiTS (Challu et al., 2023), and
PatchTST (Nie et al., 2023). For zero-shot fore-
casting, we include results from LLMTime (Gru-
ver et al., 2023) and TimesFM (Das et al., 2024).
This diverse set of baselines enables a thorough
evaluation of LEAF’s performance.

¢ Monash Archive (Godahewa et al., 2021). After
filtering out datasets affected by missing values,
14 collections are retained for our evaluation. We
benchmark our approach against classical statisti-
cal methods including ARIMA (Box and Pierce,
1970) and ETS (Gardner Jr, 1985), deep learn-
ing baselines including WaveNet (Oord et al.,
2016), N-BEATS (Oreshkin et al., 2019), and
DeepAR (Salinas et al., 2020). For zero-shot
models, we use the same baselines as in the Darts
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Figure 2: Average performance of LEAF across the three dataset groups. The lower the scaled MAE the better. Error

bars denote the standard error across all datasets.

Table 1: MAE on the Darts collection. We also report a naive baseline that repeatedly predicts the last observed
value. The best zero-shot and supervised results are highlighted in bold and underlined, respectively.

Supervised Zero-Shot
Dataset NAIVE GP ARIMA TCN N-BEATS N-HiTS PatchTST LLMTime TimesFM LEAF
AirPassengersDataset 81.45 34.67 24.03 54.96 97.89 59.16 44.65 34.37 62.51 23.01
AusBeerDataset 96.35 102.05 17.13 30.90 10.39 34.23 21.97 ‘ 24.52 11.94 22.25
GasRateCO2Dataset 2.29 221 2.37 2.64 2.63 3.85 2.67 3.50 2.50 3.03
MonthlyMilkDataset 85.71 30.33 37.19 70.86 33.64 32.73 42.60 ‘ 12.53 28.09 8.00
SunspotsDataset 48.24 53.74 43.56 51.82 73.15 49.93 62.33 47.34 41.40 44.83
WineDataset 4075.28 | 4552.06 2306.70 3287.14 4562.02 3909.51  2498.69 ‘ 1632.79  2871.33 2505.76
WoolyDataset 1210.33 | 649.98  588.78 1158.79 903.01  382.09 542.28 812.07 728.92  880.63
HeartRateDataset 5.92 5.65 5.56 5.49 6.57 6.10 6.74 ‘ 6.21 5.85 6.83
MSAE (AM) 1.00 0.82 0.60 0.84 0.92 0.81 0.74 0.68 0.68 0.67
MSAE (GM) 1.00 0.75 0.52 0.79 0.73 0.69 0.64 ‘ 0.53 0.58 0.50

experiments, with PatchTST (Nie et al., 2023) ad-
ditionally included as a zero-shot baseline.
Informer Collection (Zhou et al., 2021). We
employ a context window of 512 time steps and
evaluate prediction horizons of 96 and 192 steps.
We benchmark LEAF against a set of strong su-
pervised and zero-shot baselines. The super-
vised methods include PatchTST (Nie et al.,
2023), FEDFormer (Zhou et al., 2022), Auto-
Former (Wu et al., 2021), and Informer (Zhou
et al., 2021), which represent state-of-the-art
deep learning approaches for long sequence time
series forecasting. For zero-shot forecasting, the
baselines from the Monash experiments are em-
ployed, including PatchTST, LLMTime (Gruver
et al., 2023), and TimesFM (Das et al., 2024).

Metrics. Following standard evaluation practices,
we report Mean Scaled Absolute Error (MSAE)
metrics on Darts and Monash, normalized by a
naive baseline that propagates the last observed
value of each context window. Both Arithmetic
Mean (AM) and Geometric Mean (GM) are used
to aggregate MSAE across datasets, ensuring ro-
bust and equitable comparisons for time series with
heterogeneous scales. For Informer, we report the

Mean Absolute Error (MAE) averaged across all
eight tasks (four datasets x two horizons). Further
details are provided in Appendix D.1.

Implementation Details. We initialize LEAF
with the publicly available pretrained LLaDA-base
model weights (Nie et al., 2025), which correspond
to an 8B-parameter diffusion LLM. For all datasets,
we adopt a unified inference configuration: the
low-confidence remask strategy is employed; the
block length is set to 1.2 times the estimated token
count of the target sequence to mitigate incomplete
generation due to underestimated sequence length;
the denoising steps are configured to be half of
the block size, resulting in approximately 2 tokens
being generated per step; and the classifier-free
guidance (CFQG) scale (Ho and Salimans, 2022) is
set to 2.5 to strengthen the influence of the condi-
tional context on the generated outputs. The nu-
merical time-series data are directly tokenized and
subsequently fed into the model without adding
any extra prompts or instructions. The detail of the
CFG scale is provided in the appendix D.4.

4.2 Zero-Shot Time Series Forecasting

We first report the performance of LEAF on the
datasets without any task-specific training. Figure.
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Table 2: MAE for Monash collection. The best results for zero-shot and supervised methods are indicated in bold
and underlined, respectively.

Supervised Zero-Shot
Dataset NAIVE ETS ARIMA DeepAR  N-BEATS WaveNet PatchTST LLMTime TimesFM LEAF
bitcoin 7.77el17 1.10e18 3.62e18 1.95e18 1.06e18 2.46e18 1.11e18 1.75e18 1.3e18 1.18e18
pedestrian counts 170.88 216.50 635.16 44.78 66.84 46.46 51.27 70.20 40.71 47.45
nnS daily 8.26 3.72 441 3.94 4.92 3.97 3.71 9.39 3.54 5.56
nn5 weekly 16.71 15.70 15.38 14.69 14.19 19.34 17.00 15.91 14.67 17.80
tourism yearly 99456.05 | 94818.89  95033.24 71471.29  70951.80 69905.47 | 224411.89 140081.78 109977.29  99293.90
tourism quarterly ~ 15845.10 8925.52  10475.47 9511.37 8640.56 9137.12 2127698  14121.09  12102.04  10424.06
tourism monthly 5636.83 2004.51 2536.77 1871.69 2003.02 2095.13 4596.21 4724.94 3183.77 2923.24
cif 2016 386526.37 | 642421.42 469059.49 3200418.00 679034.80 5998224.62 | 8374813.14 715086.33 773980.44 566806.36
covid deaths 353.71 85.59 85.77 201.98 158.81 1049.48 348.60 304.68 209.80 124.36
traffic weekly 1.19 1.14 1.22 1.18 1.11 1.20 1.23 1.17 1.12 0.96
saugeenday 21.50 30.69 22.38 23.51 27.92 22.17 22.33 28.63 24.63 22.51
us births 1152.67 419.73 526.33 424.93 422.00 504.40 1193.28 459.43 437.27 408.03
hospital 24.07 17.97 19.60 18.25 20.18 19.35 20.87 24.62 19.41 28.09
solar weekly 1729.41 1131.01 839.88 721.59 1172.64 1996.89 1093.46 2049.09 1258.27 1480.23
MSAE (AM) 1.0000 0.86 1.23 1.30 0.80 2.12 2.49 1.11 0.87 0.84
MSAE (GM) 1.0000 0.74 0.87 0.77 0.70 1.02 1.14 1.00 0.76 0.74

2 shows the average performance of LEAF in three
groups of datasets. The detailed results on the three
groups of datasets are shown in Table 1, Table 2,
and Table 3. From the results, we can obtain the
following observations:

Observation 1. LEAF demonstrates highly com-
petitive performance in TSF. Analysis of the ex-
perimental results shown in Figure 2 reveals that
LEAF consistently achieves state-of-the-art or near
state-of-the-art results among zero-shot approaches.
Notably, its performance frequently surpasses that
of established supervised methods, highlighting its
strong generalization capability without requiring
any task-specific fine-tuning.

Observation 2. Diffusion-based model enables ef-
fective global pattern modeling in seasonal time
series. Examining performance on datasets known
for distinct seasonality within the Darts collection,
such as AirPassengers and MonthlyMilk, LEAF
achieves excellent results. This suggests that the
underlying diffusion model, which generates the
entire forecast horizon potentially simultaneously
rather than step-by-step, is adept at modeling and
extrapolating the holistic, repeating patterns char-
acteristic of seasonal data.

Observation 3. LEAF maintains robust perfor-
mance and mitigates error accumulation in long-
term forecasting. On the ETT datasets, it achieves
results comparable to the leading methods across
all prediction horizons. Although it is not always
the top performer, its average MAE remains highly
competitive. This indicates that the diffusion-based
generation process is less prone to the compound-
ing errors that typically affect autoregressive mod-
els over longer horizons, enabling LEAF to generate

(a) v and B (b) Steps and Block Length

Figure 3: Parameter sensitivity analysis of LEAF on the
Darts datasets. The left plot shows the sensitivity of
« and 3, while the right plot shows the sensitivity of
denoising steps and block length.

coherent and accurate long-term forecasts.

4.3 Ablation Study

We further conduct an ablation study on Darts to an-
alyze the impact of different components of LEAF.
We consider the following components: (1) LEAF
w/o rescaling strategy, which uses the minmax
scaler to scale the time series data; (2) LEAF w/o
offset, which does not use the offset strategy; (3)
LEAF w/ semi-autoregressive (See Appendix D.3),
which uses the semi-autoregressive strategy to pre-
dict the time series data; (4) LEAF w/o CFG scale,
which uses the original logit as the final probability
distribution. The results presented in Table 4 lead
to the following observations.

Observation 4. Percentile-based rescaling with
offset is essential for robust zero-shot general-
ization. Time series datasets exhibit significant
heterogeneity in terms of scale, periodicity, and un-
derlying patterns. Removing the specific percentile-
based rescaling strategy and offset component leads
to a worse overall performance. While the removal
might coincidentally yield better results on a few
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Table 3: MAE for Informer collection with prediction horizons 96 and 192. For consistency with LLMTime and
TimesFM, we report results on the last window of the original test split. For each dataset, MAE is computed by
aggregating the results from separate predictions for each column.

Supervised Zero-Shot
Dataset PatchTST FEDFormer AutoFormer Informer | LLMTime PatchTST TimesFM LEAF
ETThl (h=96) 041 0.58 0.55 0.76 0.42 0.39 0.45 0.41
ETTh1 (h=192) 0.49 0.64 0.64 0.78 0.50 0.50 0.53 0.61
ETTh2 (h=96) 0.28 0.67 0.65 1.94 0.33 0.37 0.35 0.32
ETTh2 (h=192) 0.68 0.82 0.82 2.02 0.70 0.59 0.62 0.59
ETTml (h=96) 0.33 0.41 0.54 0.71 0.37 0.24 0.19 0.17
ETTm1 (h=192) 0.31 0.49 0.46 0.68 0.71 0.26 0.26 0.38
ETTm2 (h=96) 0.23 0.36 0.29 0.48 0.29 0.22 0.24 0.23
ETTm2 (h=192) 0.25 0.25 0.30 0.51 0.31 0.22 0.27 0.27
Avg 0.37 0.53 0.53 0.99 0.45 0.35 0.36 0.37

Table 4: Ablation study on the Darts datasets. The red and blue numbers indicate the performance drop and
improvement compared to LEAF, respectively. We bold the best results.

Dataset NAIVE LEAF  w/o rescaling strategy w/o offset w/ semi-autoregressive ~ w/o CFG scale
AirPassengersDataset 81.45 23.01 39.45:16.44 26.97+5 95 57.77+34.76 30.79+7 78
AusBeerDataset 96.35 22.25 32.88110.63 23.92:1 47 13.98 5 o7 14.27 793
GasRateCO2Dataset 2.29 3.03 5.3849.35 4.8611 33 3.37+0.34 5.2549.99
MonthlyMilkDataset 85.71 8.00 13.9345. 93 13.10+5 19 68.08+¢0.05 58.50+50.50
SunspotsDataset 48.24 44.83 55.69+10.86 57.61412.78 37117 79 72.234197 40
WineDataset 4075.28 | 2505.76 2475.92 99 84 3140.314634.55 2107.07 308 69 2223.58 982,18
WoolyDataset 1210.33 | 880.63 670.21,510.42 749.19 131 44 910.36/59 73 859.3521.28
HeartRateDataset 5.92 6.83 6.380.45 9.689 55 533,150 5.84 099
MSAE (AM) 1.00 0.67 0.841.17 0.88 (.21 0.76:0.09 0.91+ 24
MSAE (GM) 1.00 0.50 0.6340.13 0.63+0.13 0.6510.15 0.69+0.19

specific datasets, the degradation in the overall geo-
metric mean MAE clearly demonstrates the neces-
sity of this combined strategy for robust general-
ization. It ensures the model receives consistently
normalized inputs regardless of the original data’s
scale or distribution, which is crucial for a zero-
shot setting where the model must perform reliably
without dataset-specific tuning.

Observation 5. The synergy of low-confidence
remasking and CFG forms a powerful denois-
ing mechanism for TSF. First, semi-autoregressive
generation, which predicts time series data step by
step, leads to a notable performance drop. This
indicates that the diffusion model’s ability to gen-
erate and refine the entire future trajectory as a
whole is more effective in capturing global tempo-
ral patterns and dependencies. Second, removing
the CFG scale, which uses raw model logits instead
of the weighted difference between conditional and
unconditional predictions, also causes a clear de-
cline in performance. This highlights CFG’s crucial
role in reinforcing the influence of the conditional
input X7.7, helping the model generate future se-

quences Xy 11.74p that are more coherent with
the historical context.

4.4 Parameter Sensitivity

A systematic sensitivity study is carried out to
quantify the influence of individual parameters on
LEAF’s predictive accuracy. We consider the fol-
lowing parameters: (1) o and g, which are the
percentile values used in the rescaling strategy; (2)
denoising steps and block length, which are the
parameters used in the diffusion model to control
the denoising process. Intuitively, it can be posited
that the smaller the block length, the closer the de-
noising process is to the autoregressive process. As
depicted in Figure 3, the results lead to the follow-
ing observations.

Observation 6. LEAF exhibits relative robustness
to the choice of rescaling percentiles o and 5. Fig-
ure 3a shows that LEAF maintains stable forecast-
ing results across a broad range of « and [ values,
indicating a degree of insensitivity to precise hy-
perparameter selection. Nevertheless, the original
trend remains: higher 3 values generally pair best
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Figure 4: Visualization of the denoising steps performed by the LEAF model on the AirPassengersDataset. The
digits are arranged in a grid, from top to bottom, with the first digit (thousands) at the top and the separators (",") at
the bottom. Each digit (token) is colored according to the order in which it is denoised during the LEAF.

with lower «, while lower 3 values are more effec-
tive with higher a. This interaction likely arises
because a larger offset (higher 3) shifts the data dis-
tribution, requiring a less extreme upper percentile
for scaling, whereas a smaller offset (lower 3) pre-
serves larger values and thus benefits from scaling
based on a higher percentile to avoid excessively
long token sequences.

Observation 7. LEAF exhibits sensitivity to the
hyperparameters controlling the denoising pro-
cess. Diffusion LLMs are sensitive to the inference
hyperparameters (Nie et al., 2025), and results in-
dicate that LEAF is the same. A larger block length
allows the model to analyze and leverage correla-
tions across a wider span of the predicted sequence,
potentially enabling better inference from future
context. Conversely, a smaller block length limits
this contextual view. However, an exception might
arise if the block length aligns well with the inher-
ent periodicity of the time series data, which could
lead to improved performance. Regarding the de-
noising steps, processing more steps (i.e., fewer
tokens per step) generally leads to a more refined
and detailed output. When dealing with a large
block length, an increased number of steps might
struggle to effectively denoise the entire block. It
will invariably lead to higher computational costs
due to the increased number of iterations.

4.5 Case Study

In the end, we conduct a case study to visually
analyze the prediction process of the LEAF model.
Specifically, we focus on visualizing the denoising
steps performed by the model on the AirPassengers-
Dataset. As illustrated in Figure 4, we represent
the predicted time series where each token is col-
ored according to the order in which it is denoised
during the diffusion model’s reverse process. We
derive the following observation:

Observation 8. LEAF demonstrates an intrinsic
understanding of numerical structure and range
control. Denoising visualizations show that LEAF

consistently prioritizes the reconstruction of separa-
tors (e.g., commas), which define numerical bound-
aries. This early identification of structural markers
implicitly constrains the length and approximate
range of the target value before detailed digits are
generated. By first establishing separators, LEAF
anchors the positional layout, enabling a coarse
approximation of numerical scale (e.g., thousands
vs. hundreds) ahead of precise refinement. This
behavior reflects a human-like strategy: understand-
ing numerical form and scope through structural
cues before attending to fine-grained digits. Unlike
traditional methods that rely on rule-based length
constraints, LEAF achieves this implicitly through
its diffusion dynamics.

Observation 9. LEAF implicitly performs coarse-
to-fine hierarchical decomposition of numerical
values. Further analysis reveals that LEAF denoises
digit sequences in a structured order aligned with
numerical significance. After resolving separators,
it stabilizes higher-order digits (e.g., thousands)
first, then progressively refines lower-order digits
(e.g., tens, ones). This coarse-to-fine gradient mir-
rors the logic of hierarchical decomposition meth-
ods in time series modeling, such as first extracting
the overall trend, then identifying seasonal patterns,
and finally modeling the residuals. In contrast to
autoregressive models—where early-stage errors in
low-order digits can propagate—LEAF’s parallel de-
noising establishes a stable scaffold with high-level
semantics first. This reduces positional dependen-
cies and enhances robustness in TSE.

5 Conclusion

In this paper, we present LEAF, a large language
diffusion framework for zero-shot time series fore-
casting. By integrating a denoising diffusion pro-
cess with digit-level tokenization, LEAF effectively
captures global and holistic temporal trajectory
and dependencies that are challenging for tradi-
tional autoregressive LLMs. Extensive experi-
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ments across diverse benchmarks demonstrate that
LEAF achieves highly competitive performance, fre-
quently surpassing both zero-shot and supervised
baselines, particularly on datasets with strong peri-
odicity. Ablation and case studies further highlight
the significance of percentile-based rescaling, the
effectiveness of the diffusion mechanism, and the
model’s ability to prioritize structural and high-
order information during generation.

Limitations

While our work presents a novel application of
diffusion models to TSF, several constraints merit
consideration. The digit-level tokenization may
struggle with high-precision or large numerical
values, potentially affecting fine-grained accuracy.
The method shows a performance gap on certain
datasets compared to state-of-the-art supervised ap-
proaches, and its iterative denoising steps result in
slower inference. Our future work will focus on
addressing these limitations, including enhancing
the model’s ability to handle high-precision data
and improving computational efficiency.
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A Datasets

Table 5 summarizes the datasets used in our ex-
periments. The datasets are categorized into three
collections:

Darts Collection. This collection comprises
eight univariate time series datasets, characterized
by diverse seasonal patterns coupled with both ad-
ditive and multiplicative trends.

Monash Archive. The Monash Time Series
Forecasting Archive initially includes 30 datasets
spanning multiple domains (e.g., finance, traffic,
weather) and various temporal granularities (rang-
ing from minutes to years).

Informer Collection. For evaluating long-
horizon forecasting capabilities, we utilize datasets
from the Informer benchmark, specifically exclud-
ing those potentially used during the pretraining
phase of compared models. Our focus centers on
the Electricity Transformer Temperature (ETT) se-
ries (ETTml1, ETTm2, ETTh1, ETTh2), which con-
tains two years of electricity transformer tempera-
ture recordings captured at 15-minute and 1-hour
intervals, respectively.

Table 5: Summary of datasets used in our experiments.

Collection | Dataset Horizon | Frequency
AirPassengersDataset 29 Seasonal
AusBeerDataset 43 Seasonal
GasRateCO2Dataset 60 Monthly

Darts MonthlyMilkDataset 34 Monthly
SunspotsDataset 141 Monthly
WineDataset 36 Monthly
WoolyDataset 24 Seasonal
HeartRateDataset 180 0.5s
bitcoin 30 1D
pedestrian counts 48 1H
nn5 daily 56 1D
nn5 weekly 8 1W-MON
tourism yearly 4 1Y
tourism quarterly 8 1Q-JAN

. tourism monthly 24 M

Monash ' ¢ 2016 12 M
covid deaths 30 1D
traffic weekly 8 1W-WED
saugeenday 30 1D
us births 30 1D
hospital 12 M
solar weekly 5 1W-SUN
ETTml 96/192 15min

Informer ETTm2 96/192 15min
ETTh1 96/192 1H
ETTh2 96/192 1H

B Ethics and Data Usage

Artifact Licensing and Usage. We initial-
ize LEAF with the publicly available pretrained
LLaDA-base model weights (Nie et al., 2025),
which are released under the MIT License, per-
mitting unrestricted use for both research and com-
mercial applications. Our use of the pretrained
LLaDA model is consistent with its intended use.
The model was specifically designed for NLP ap-
plications, and our LEAF framework extends its
capabilities while maintaining the original architec-
tural principles.

Data Privacy and Content. All datasets used in
our experiments are well-established public bench-
marks in the time series forecasting community.
These datasets do not contain any personally iden-
tifiable information (PII) or offensive content. All
benchmark datasets are used for their intended
evaluation purposes in time series forecasting re-
search, ensuring compliance with their original us-
age terms.

The model was trained on data without personal
information, ensuring privacy compliance in our
framework. No additional data collection or human
annotation was required for this work, as we rely
entirely on existing public datasets and pretrained
models. This approach ensures that our research
adheres to ethical standards while maintaining re-
producibility and transparency.

C Details of the Rescaling Strategy

In classical MinMaxScale, each original data x; is
rescaled to a bounded range by computing
’ Ty — m
7= o “)
where m = min(X) and M = max(X). This
ensures that the smallest value maps to 0 and the
largest to 1.

Starting from this affine-shift viewpoint, we
introduce a two-step modification (Gruver et al.,
2023). First, all observations are translated by an
offset 6 = B (M —m), with 3 € [0, 1] a hyperpa-
rameter, so that each x; becomes x; + . After this
shift, we subtract the original minimum m to re-
anchor to zero, yielding a numerator (z; + §) — m.
Rather than dividing by the full range M — m, we
use g, the a-percentile of the unshifted set X, as
a more robust scale factor. Consequently, the final
scaled quantity is

/ (xt + 5) —-m

Ty = —, (5)
¢ Go
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where q,, represents the threshold below which a of
the original data lie. By shifting first and then nor-
malizing with a percentile-based divisor instead of
the absolute maximum, this formulation diminishes
the influence of extreme outliers while preserving
the relative ordering of values above the chosen
percentile.

D Experimental Details

D.1 Experimental Setup

Following the experimental setup in LLM-
Time (Gruver et al., 2023), we only consider the
univariate time series forecasting task. We use the
same data splitting method as LLMTime, where
the last 20% of the series in the Darts dataset is
used as the prediction sequence. For the Monash
dataset, we adopt the official splitting method. In
the ETT dataset, the prediction sequences are set
to lengths of 96 and 192 based on the last test data.
We use a single NVIDIA A100 GPU with 80GB of
memory for all experiments.

D.2 Metrics

We evaluate the performance of LEAF using the
following metrics:

¢ MAE (Mean Absolute Error): it calculates
the average absolute difference between the
predicted values ¢; and the ground truth values

Yt

N
1 .
MAE:N;|yt_yt|~ (6)

* MSAE (Mean Scaled Absolute Error): for
each time series k we first compute

MAE} (LEAF)

MSAEy, = — "0
SAE MAE;(Naive)’

(7

where the naive forecast is the last observed
value. Two aggregation strategies over the K
datasets are reported.

Arithmetic Mean:

K
1
MSAEaith = 2 > MSAE;, (8)
k=1

Geometric Mean:

K
MSAE = (]] MSAEk)l/ o
k=1

Table 6: Zero-shot imputation results (MAE) of LEAF
on the Darts datasets.

Missing Rate 12.5% 25% 37.5% 50%
AirPassengersDataset | 10.44 21.67 16.92 33.98
AusBeerDataset 7.55 13.71 17.11 19.59
MonthlyMilkDataset 9.25 8.74 13.97 102.29
WineDataset 1313.58 1863.02 2114.25 2179.67

D.3 Semi-autoregressive Strategy

The semi-autoregressive strategy divides the output
sequence into multiple contiguous blocks and gen-
erates each block in a left-to-right order (Nie et al.,
2025). For each block, the diffusion reverse pro-
cess is applied to iteratively refine its predictions,
while keeping the previously generated blocks fixed
as context. This approach enables parallel gener-
ation within blocks while maintaining an overall
autoregressive structure across blocks, balancing
efficiency and temporal dependency modeling.

D.4 Classifier-free Guidance Scale

Classifier-Free Guidance (CFQG) is a technique used
in diffusion models to enhance conditional genera-
tion without the need for an external classifier. In
our diffusion-based time series forecasting frame-
work, CFG is employed to strengthen the model’s
adherence to the conditioning context (i.e., the his-
torical time series X7.7,).

At each denoising step, the model predicts the
noise under both the conditional input (€.ong) and
an unconditional input (€ypcond, typically using a
special mask or empty prompt). The final guided
prediction is computed as:

(10)

€CFG = €uncond + W - (fcond - 6uncond)

where w is the guidance scale hyperparameter. Set-
ting w > 1 amplifies the influence of the condi-
tional context, encouraging the model to generate
outputs more consistent with the provided history.
In our experiments, we set w = 2.5 by default.
This mechanism effectively improves the quality
and relevance of zero-shot time series forecasts
by leveraging both conditional and unconditional
predictions in the diffusion process.

E Additional Experiment

E.1 Zero-Shot Time Series Imputation

Unlike autoregressive LLMs that operate via se-
quential token generation, LEAF leverages the prin-
ciples of diffusion models. This allows it to itera-
tively refine sequences by progressively denoising
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Figure 5: Synthetic data forecasting results of LEAF. The orange line represents the ground truth, while the blue line

represents the prediction.

masked portions while potentially considering the
entire available context (both preceding and suc-
ceeding information) within its prediction mech-
anism at each step. This inherent capability to
condition on bidirectional context makes LEAF par-
ticularly well-suited for imputation tasks where
filling missing values requires understanding the
surrounding data points.

Consequently, we evaluated the zero-shot time
series imputation capabilities of LEAF on the
DARTS dataset. A challenge in applying the mask
to numerical time series data is the variable number
of tokens generated for different numerical val-
ues during tokenization. To ensure consistent and
controllable mask lengths, we preprocessed the
data by scaling time series using the transformation
Xscated = 0.1 + 0.9MinMaxzScale(X). This
scaling normalizes the values to a specific range,
thereby promoting a uniform token representation
length for each numerical entry after tokenization,
which is crucial for applying masks of a predefined
size. The experimental results of this evaluation
are presented in Table 6. Based on these results,
we derive the following key observations:

Observation 10. LEAF can effectively implement
the imputation task, but still struggles with a high
rate of missing data. LEAF maintains relatively
low MAE errors under 12.5-25% missing rates,
indicating its ability to capture local and global
temporal dependencies without fine-tuning. How-

ever, at 50% missing rate, MAE surges dramatically
for certain datasets. This suggests that while LEAF
excels in sparse observation extrapolation, exces-
sive missing data disrupts contextual coherence,
likely due to insufficient bidirectional context and
tokenization limitations in preserving numerical
precision.

Observation 11. LEAF leverages bidirectional con-
text effectively, demonstrating superior contextual
understanding compared to autoregressive LLMs.
The imputation results (Table 4) reveal that LEAF
achieves comparable MAE in 50% missing-rate
scenarios to its forecasting performance on 20%
horizon tasks. This suggests that downstream infor-
mation plays a critical role in temporal modeling.
Unlike autoregressive LL.Ms constrained to unidi-
rectional generation, LEAF’s diffusion framework
inherently captures dependencies from both past
and future observations.

E.2 Synthetic Data Forecasting

We verity the effect of the method in common time
series patterns by conducting experiments on syn-
thetic data. We use some constructed data as in
LLMTime (Gruver et al., 2023). Specifically, we
test on the following synthetic patterns: linear, log,
sine, sinc, square, beat, and = x sin(x). These
patterns cover a range of typical temporal behav-
iors, allowing us to comprehensively evaluate the
forecasting ability of LEAF on diverse synthetic sig-
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Figure 6: Visualization of time series forecasting results of LEAF on the Darts datasets. The orange line represents
the ground truth, while the blue line represents the prediction.

nals.

The visualization of the synthetic data is shown
in Figure 5. From the figure, we can observe that
LEAF is capable of capturing the underlying pat-
terns of the synthetic data. The predictions align
closely with the ground truth, demonstrating its
effectiveness in modeling various temporal behav-
iors.

F Visualization

To provide a clearer understanding of the perfor-
mance of LEAF in time series forecasting tasks, we
present visualizations of the results on the Darts
datasets. Figure 6 illustrates the forecasting results,
where the orange line denotes the ground truth,
while the blue line denotes the predictions made by
LEAF.

To further illustrate the imputation capabilities
of LEAF, we visualize the imputation results on
the Darts datasets with varying missing rates. The
visualizations are shown in Figure 7.
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