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Abstract

Multimodal Machine Translation (MMT) en-
hances textual translation through auxiliary in-
puts such as images, which is particularly effec-
tive in resolving linguistic ambiguities. How-
ever, visual information often introduces re-
dundancy or noise, potentially impairing trans-
lation quality. To address this challenge, we
propose a balanced semantic-augmented frame-
work that integrates Imagination and Contem-
plation in multimodal understanding. Specifi-
cally, we first generate synthetic images from
the source text and align them with the au-
thentic images via an optimal transport (OT)
loss to enhance visual semantic consistency. A
CLIP-based similarity gating mechanism is in-
troduced to adaptively fuse visual features from
both authentic and synthetic images during vi-
sual representation learning. To strengthen se-
mantic grounding, a neural machine translation
(NMT) branch is incorporated as a regulariza-
tion signal, and a Kullback-Leibler (KL) di-
vergence is applied between MMT and NMT
outputs to mitigate modality mismatch. Fur-
thermore, an image-text contrastive (ITC) loss
aligns the final translations with image repre-
sentations, reinforcing multimodal coherence.
Experiments on multiple translation datasets
with a diverse set of language pairs demon-
strate that our framework outperforms existing
baselines, particularly in cases with visually
ambiguous or weakly correlated content.

1 Introduction

Multimodal machine translation (MMT) refers
to methods that leverage information from vari-
ous modalities to improve translation performance
(Specia et al., 2016; Caglayan et al., 2019; Yao and
Wan, 2020; Caglayan et al., 2021; Fei et al., 2023;
Tayir et al., 2024; Tayir and Li, 2024a). A com-
mon approach integrates visual information into
translation using bilingual corpora annotated with
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Figure 1: An example of visual information resolving
the ambiguity of a word. The English word “bat” can
have different meanings depending on the context, such
as “a flying mammal” or “a baseball bat”. When trans-
lated into German, the meanings will result in “fleder-
maus” or “baseballschliger”.

corresponding images (Specia et al., 2016; Barrault
et al., 2018). As shown in Figure 1, visual context
can help resolve ambiguities and improve transla-
tion accuracy (Futeral et al., 2023; Vijayan et al.,
2024).

However, despite the intuitive benefits, visual
information does not always improve performance.
Misalignment between text and image, visual re-
dundancy, and inappropriate cross-modal fusion
strategies can even degrade results (Gronroos et al.,
2018; Lala et al., 2018; Li et al., 2022a; Vijayan
et al., 2024). Effectively leveraging visual input
and harmonizing semantics across modalities re-
mains a core challenge in MMT research.

Recently, the emergence of large-scale vision-
language models (VLMs), such as Flamingo
(Alayrac et al., 2022), CLIP (Radford et al., 2021)
and BLIP (Li et al., 2022b), have introduced a
new paradigm for advancing MMT. These mod-
els learn generalized cross-modal representations
from massive amounts of image-text pairs, of-
fering a stronger semantic foundation for vision-
enhanced translation. In parallel, the development
of diffusion-based (Ho et al., 2020; Rombach et al.,
2022) text-to-image generation models support con-
trollable image generation, offering a promising
way to enhance semantic alignment by synthesiz-
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ing visual scenes grounded in textual input.

Despite these advances, current MMT systems
have yet to fully integrate the capabilities of such
large models. On one hand, most approaches still
rely solely on raw image features, without explor-
ing the feasibility of semantic augmentation using
additional visual information. On the other hand,
even when large pre-trained models are incorpo-
rated, it remains challenging to integrate visual
signals in a controllable and flexible manner. More-
over, while incorporating visual enhancements, the
dominant role of the source text should not be com-
promised, which further increases the difficulty of
balancing vision and language in model design and
training.

To address these issues, we propose a semantic-
augmented MMT framework inspired by the dual
concepts of “Imagination” and “Contemplation”.
In Imagination, we employ a text-to-image gener-
ation model to synthesize images that are seman-
tically aligned with the source sentence. These
synthetic images are then aligned with authentic
images via optimal transport (OT) loss, and inte-
grated using a CLIP-guided vision gated fusion
(VGF) that adaptively regulates the visual contribu-
tion during fusion. In Contemplation, we introduce
a parallel NMT branch and apply the KL diver-
gence to regularize the output distribution between
MMT and NMT, encouraging textual grounding.
Additionally, an image-text contrastive (ITC) loss
is employed to reinforce the semantic alignment
between the generated translation and visual input.

Our contributions can be summarized as follows.

* We propose a novel semantic-augmented
MMT framework that integrates both syn-
thetic and authentic images to enrich visual
semantics while maintaining strong textual
grounding.

* We develop a controllable and semantically
aligned integration mechanism, combining
CLIP-guided VGF, OT loss to align visual rep-
resentation, and a parallel NMT branch with
KL divergence and contrastive loss to enforce
visual-textual consistency.

» Experiments show that our approach signifi-
cantly improves translation accuracy in MMT
tasks, particularly excelling in handling com-
plex semantics and text-image inconsistency.

2 Related Work

2.1 Multimodal Machine Translation

Since statistical machine translation, researchers
have applied multimodal information to enhance
machine translation systems (Afli et al., 2016;
Hitschler et al., 2016). From early RNN-based
encoder-decoder architectures (Zaremba et al.,
2014) to transformer-based architectures (Vaswani
et al., 2017), researchers have focused on leverag-
ing visual cues to support text translation. Calixto
et al. (2017) proposed a dual-attention mechanism
incorporating spatial visual features, while Gated
Fusion (Wu et al., 2021) introduced a gating mech-
anism for cross-modal fusion. Li et al. (2022a)
employed selective attention to integrate images
and text, and VALHALLA (Li et al., 2022c¢) in-
troduced visual hallucination for training. Recent
works such as Guo et al. (2023) and Chen et al.
(2025) attempted to integrate synthetic images into
the translation pipeline. However, few have ex-
plored how to actively enhance or regulate visual
semantics, leaving a gap in handling noisy or par-
tially aligned multimodal input.

Our work addresses this gap by introducing a
semantically controllable fusion mechanism that
combines synthetic images, optimal transport align-
ment, and CLIP-guided VGF to adaptively regulate
visual contributions during translation.

2.2 Vision-Language Models in MMT

The emergence of large-scale VLMs has signifi-
cantly advanced the development of multimodal
understanding. These models are trained on mas-
sive image-text pairs, enabling them to learn cross-
modal representations with strong generalization
capabilities. Several studies (Li et al., 2022a; Zuo
et al., 2023; Futeral et al., 2023; Zhu et al., 2023;
Chen et al., 2025) used CLIP embeddings as visual
features, while Wang et al. (2024) used BLIP for
image captioning to augment text data.

Moreover, large language models (LLMs) such
as GPT (Radford et al., 2018, 2019; Brown et al.,
2020; OpenAl et al., 2024), PaLM (Chowdhery
et al., 2023; Anil et al., 2023) and mT5 (Xue et al.,
2021a) have demonstrated remarkable generaliza-
tion and few-shot capabilities in translation tasks,
especially in low-resource and zero-shot settings.
These models implicitly encode rich linguistic and
world knowledge, providing strong priors that sig-
nificantly reduce the reliance on domain-specific
training data.
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Figure 2: Overview of the framework of the proposed ImCo-MMT. The blue box represents “Imagination” while
the red box represents “Contemplation”. The learned latent quries are a set of learnable embeddings to extract visual
representation most relevant to the text. For Transformer Encoder and Decoder, we set up two settings: training

from scratch and directly using the pre-trained model.

2.3 Text-to-Image Generation

Text-to-image generation has recently witnessed
remarkable progress with the development of
diffusion-based models such as DALL-E (Ramesh
et al., 2021, 2022) and Stable Diffusion (Rombach
et al., 2022). These models enable image synthesis
conditioned on textual prompts, effectively imagin-
ing visual scenes from linguistic descriptions.

In MMT tasks, text-to-image generation has
been used to produce images that semantically
align with the source text (Long et al., 2021; Li
et al., 2022c; Guo et al., 2023; Chen et al., 2025),
helping to address issues like missing authentic
images or discrepancies between text and image.
This approach leverages the generated visual infor-
mation to increase the semantic understanding of
the MMT model, thus improving the quality and
robustness of translation.

3 Method

3.1 Preliminaries

Neural Machine Translation. Given a parallel
corpus D = (X,Y), where X and Y denote the
source and target language, respectively, the transla-
tion model learns to generate Y from X (Bahdanau,
2014). The training objective is to minimize the

cross-entropy loss:

[y
LMt = — Zi:l logp(yily<i,x). (1)

Multimodal Machine Translation. MMT extends
NMT by incorporating an additional visual modal-
ity V¢, forming triplets D = (X,Y,V®). The
model conditions on both text and image to gener-
ate the target sentence. The loss function becomes:

ly]
Lyvr = — Zi:l log p(yily<i, z,v*).  (2)
3.2 Framework Overview

As shown in Figure 2, the framework comprises
three core components: i) a dual-image encoder
with authentic and synthetic images and a vision
gated fusion, ii) a vision-text fusion module built
upon a Perceiver Resampler (Vijayan et al., 2024),
and iii) a contemplation branch that regularizes
translation with text-only guidance.

Both authentic and synthetic images are encoded
by CLIP image encoders, and their features are
fused through a CLIP-guided vision gated fusion
that dynamically adjusts the contribution of each
image based on its similarity to the source text.

To capture and compress rich visual semantics
from both authentic and generated images, we em-
ploy a Perceiver Resampler, inspired by Flamingo
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(Alayrac et al., 2022) and BLIP-2 (Li et al., 2023).
The Resampler introduces a set of learnable latent
queries, which interact with the image features via
repeated cross-attention. Each latent queries act as
a semantic bottleneck that selectively attend to dis-
tinct regions or aspects of the visual input. This de-
sign distills high-dimensional visual features into a
compact latent representation, facilitating efficient
and stable fusion with the source text encoding.
The latent-based visual representation is then fused
with the source text features, yielding a joint repre-
sentation that is semantically enriched.

Finally, to preserve the dominance of the source
text, a parallel NMT branch is added. Through
KL divergence and contrastive losses, this branch
aligns the multimodal decoder with the text-only
baseline, promoting semantic consistency while
preserving the advantages of visual input.

3.3 Imagination

To enrich the visual semantics and alleviate vision-
text misalignment, we introduce the Imagination
module, which leverages synthetic images and en-
forces semantic alignment through optimal trans-
port (OT) and vision gated fusion (VGF).

Given a source sentence r, we generate a syn-
thetic image I using a text-to-image model (e.g.,
Stable Diffusion), and obtain visual features from
both I and the authentic image I, via a frozen
CLIP image encoder:

. ;U((ZN)] E RNXd7

R ,’U(N)] e RNXd,

S

3)

where N denotes the number of visual patches and
d the feature dimension.

Although both images are derived from the same
text, their representations can capture different vi-
sual semantics, leading to inconsistency or even
conflict in translation. To regularize the semantic
consistency between V, and V5, we adopt OT loss
(Guo et al., 2023), which softly aligns the patch-
level features by minimizing their total transport
cost under a transport mass T':

N N
Lor(Va, Vi) =D > Ty;-Cy, (4

i=1 j=1

S (@) ,(d)
where C;j = C(vl, vl) = —pats—.
= Ol %) = (i b,

We define the transport mass T as

N (7)
lva” |2
ZTij =M=
p PO s
iT‘, T [
el A @)
i=1 Zj [vs" ]2

Intuitively, OT loss finds an efficient way to
“transport mass” from one visual feature distribu-
tion to another while minimizing the overall cost.
By optimizing this objective, we encourage the
two visual feature sets to exhibit structural and se-
mantic alignment, leading to more coherent joint
representations when fused with the source text.

Next, to balance contributions from the two vi-
sual modality, we apply a CLIP-based VGF. First,
we compute the average cosine similarity between
the text and each image:

aq =sim (Vg,t), as=sim (Vg t), (6)

where ¢ denotes the source text  encoded by CLIP
text encoder ¢ (-).
Then, we compute the gate « as

— Qg — E)) ) @)

where o denotes the sigmoid function, and -, € are
hyperparameters that control the gating coefficient
and threshold.

The visual gated fusion is computed as

a=o(v-(as

Viused = - Vg + (1 - a) -V, €))

Finally, Viyseq is passed into the Perceiver Re-
sampler to extract compact visual tokens, allowing
the model to adaptively prefer the most relevant
visual content during translation.

3.4 Contemplation

While the Imagination module encourages visual
enhancement, it is equally crucial to ensure that the
model remains grounded in the source text.

Concretely, we maintain a parallel NMT branch
that encodes the source sentence x and produces
translation logits independently. Meanwhile, the
MMT branch receives the fused visual features
along with the same text input. To enforce output
consistency, we minimize their KL divergence that
serves as a semantic regularizer:

T
Lxy =Y KL (panar (e | 2, 1) [lpawer (4 | @)

=1
)
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where pyivr (ye | @, I) and pavr (y: | ) denote
the output distributions from the two branches.
This constraint regularizes the multimodal decoder
to stay close to the text-only distribution, reduc-
ing over-reliance on potentially noisy or redundant
visual signals.

Beyond distributional consistency, we further
introduce a semantic alignment loss that bridges
the generated target text with the visual features.
Specifically, we apply an image-text contrastive
loss (ITC) between the decoder output and the
fused vision representation:

B exp(cos(v;, t;)/T)

Lic=-5

pot S, exp(cos(vi, t5)/7)

exp(cos(t;, v;)/T)

= : , (10)
Zj:l exp(cos(t;, Vj)/T)]
where B represents the size of each Batch, v; repre-
sents the visual features after Perceiver Resampler,
t; represents the generated text features and 7 is
a temperature hyperparameter. This contrastive
supervision ensures that the translated sentence
preserves alignment with the grounded visual se-
mantics.

+ log

3.5 Training Objective

Our final training objective combines the standard
translation loss with the imagination and contem-
plation modules as

1
Liotal = §(£MMT + LnvT)

+ AorLot + AkLLkL + ArrcLite,
a1
where AoT, AKL, AiTc are the hyperparameters
that balance between vision-driven augmentation
and language-based grounding, resulting in more
accurate and robust MMT.

4 Experiments

4.1 Datasets and Training Setting

Datasets: We conduct experiments on four MMT
benchmarks: Multi30k (Section 4.4) (Elliott et al.,
2016), AmbigCaps (Section 4.5) (Li et al., 2021),
3AM (Section 4.6) (Ma et al., 2024) and CoM-
MuTE (Appendix C.1) (Futeral et al., 2023). De-
tails of them are in Appendix A.

Training Setting: For the image encoder, we
use the CLIP-ViT model !, where we freeze all its
parameters.

"https://huggingface.co/openai/clip-vit-large-patch14

For the text encoder and decoder, we conduct
experiments under two settings: traditional models
and pre-trained models. Details of them are in
Appendix B.

4.2 Comparing Systems

Similar to the training setting, we use two types of
baseline methods.

(i) Traditional MMT models, including Trans-
former (Vaswani et al., 2017), ImagiT (Long et al.,
2021), Selective Attention (Li et al., 2022a), VAL-
HALLA (Li et al., 2022¢), IVA-MMT (Ji et al.,
2022), SAMMT (Guo et al., 2023), RG-MMT-
EDC (Tayir and Li, 2024b) and VisTFC (Zhu et al.,
2024). All of them have no pre-trained models and
their specific configurations and tokenization rules
are in Appendix B.1.

(i) Pre-trained MMT models, including
VGAMT (Futeral et al., 2023) and CLIPTrans
(Gupta et al., 2023), which use pre-trained text
encoder and decoder. There are also text-based
LLMs like Qwen2.5 (Qwen et al., 2025), Llama3
(Grattafiori et al., 2024) and Alpaca-7B (Bom-
masani et al., 2022) and text-image-based LLMs
like IMAGE (Chen et al., 2025), GPT-40 (OpenAl
et al., 2024) and Qwen-VL (Bai et al., 2023).

4.3 Evaluation Metrics

We evaluate translation performance using three
widely adopted metrics: BLEU ? (Papineni et al.,
2002), METEOR (Banerjee and Lavie, 2005), and
COMET 3 (Rei et al., 2020). BLEU measures
n-gram overlap between the generated and refer-
ence translations, emphasizing surface-level flu-
ency. METEOR complements BLEU by consid-
ering synonymy, stemming, and word order, pro-
viding a more nuanced assessment of semantic
accuracy. COMET is a neural metric based on
pre-trained multilingual encoders and human judg-
ments, offering a stronger correlation with transla-
tion quality.

4.4 Results on Multi30k

Table 1 presents the main results on the Multi30k
dataset across three test sets in En-De and En-Fr
translation directions.We categorize the compared
models into two groups based on whether they em-
ploy pre-trained encoders or decoders. Among
traditional MMT models, our method consistently
outperforms previous approaches in most metrics

“https://github.com/mjpost/sacrebleu
3https://huggingface.co/Unbabel/wmt22-comet-da
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Traditional MMT Models

English-to-German English-to-French
Models Test2016 Test2017 MSCOCO Test2016 Test2017 MSCOCO
BLEU METEOR BLEU METEOR BLEU METEOR | BLEU METEOR BLEU METEOR BLEU METEOR
Transformert 41.02 68.22 33.36 62.05 29.88 56.64 61.80 81.08 53.46 75.62 44.52 69.43
ImagiT* 38.50 55.70 32.10 52.40 28.70 48.80 59.70 74.00 52.40 68.30 45.30 65.00
Selection Attention’ | 42.50 68.81 34.28 61.81 29.59 56.36 62.79 81.75 55.44 76.57 45.27 70.73
VALHALLA* 42.60 69.30 35.10 62.80 30.70 57.60 63.10 81.80 56.00 77.10 46.40 71.30
SAMMT* 42.50 - 36.04 - 31.95 - 63.71 - 56.17 - 46.63 -
RG-MMT-EDC* 42.00 60.20 33.40 53.70 30.00 49.60 62.90 77.20 55.80 72.00 45.10 64.90
VisTFC* 43.10 70.60 35.70 64.00 31.60 58.20 63.30 82.60 56.10 77.10 46.50 72.60
ImCo-MMT(Ours) | 43.34 70.16 36.08 63.69 32.30 58.67 63.81 82.13 56.75 71.50 47.28 71.86
Pre-trained MMT Models
English-to-German English-to-French
Models Test2016 Test2017 MSCOCO Test2016 Test2017 MSCOCO
BLEU COMET BLEU COMET BLEU COMET | BLEU COMET BLEU COMET BLEU COMET
VGAMT* 433 69.4 38.3 65.3 35.7 54.4 67.2 96.8 61.6 92.1 51.1 81.1
CLIP-Trans* 43.87 - 37.22 - 34.49 - 64.55 - 57.59 - 48.83 -
LLaMA3-8B° 30.1 69.5 24.2 66.4 21.9 62.6 50.2 77.8 404 72.8 34.5 70.7
Alpaca-7B® 38.5 772 34.3 76.5 30.9 724 59.2 82.5 51.4 79.4 42.6 77.2
IMAGE® 453 83.1 38.6 81.9 37.5 78.8 67.5 88.3 61.5 86.6 49.3 82.5
Qwen-VL* 25.21 71.44 23.62 70.07 19.67 66.00 30.45 74.22 29.11 72.35 26.87 69.87
GPT-40* 41.80 74.82 38.88 74.90 33.52 70.12 61.64 83.21 55.76 80.42 50.11 77.89
Qwen2.5-0.5B% 87.58 86.35 83.84 84.94 86.74 85.52 80.18 83.60 77.92 80.36 77.13 80.96
LLaMA3.2-1B* 87.89 86.64 84.05 85.06 86.78 85.57 79.95 84.15 78.24 81.14 77.65 80.88
ImCo-MMT(Ours) | 90.58 88.93 87.04 87.61 89.62 88.10 82.68 85.12 80.11 84.93 81.08 83.83

Table 1: Main translation results from the Multi30k, with BLEU, METEOR (for Traditional MMT) and COMET
(for Pre-trained MMT). We use underline and bold to indicate the best results in Traditional MMT and Pre-trained
MMT, respectively. T indicates results from Li et al. (2022a), ¢ from Chen et al. (2025), x from the corresponding
papers and # indicates the results are from our implementation. Among #, Qwen-VL and GPT-4o are no fine-tuning

in Multi30k while others are fine-funing.

Models Turkish-to-English Models English-to-Chinese
BLEU METEOR COMET BLEU METEOR COMET
Traditional MMT Models Traditional MMT Models
Transformer® 3629  66.97 33.92 Transformer™ 11.33 31.34 -
Gated Fusion® 41.81 70.74 42.83 Selective Attention™ | 13.33 33.47 -
IVA-MMA* 39.40 70.22 - ImCO-MMT(Ours) | 16.69 35.11 10.34
ImCO-MMT(Ours) | 42.45 71.11 44.62 Pre-trained MMT Models
Pre-trained MMT Models BARTY 31.47 55.62 -
ImCO-MMT(Ours) \ 98.13 99.06 94.33 VL-BARTY 33.27 55.84 -
sV 33.09  57.26 -
Table 2: Results on AmbigCaps of Tr-En translation. VL-T5VY 34.24 59.12 i
& indicates the results are from our implementation, ImCO-MMT(Ours) | 92.51 50.70 96.09

and « indicates the results come from the corresponding
published papers.

and test sets, demonstrating the effectiveness of
visual fusion strategy and the benefits of incorpo-
rating textual constraints for semantic alignment.

Compared with several strong pre-trained MMT
models, our pre-trained version of ImCo-MMT
yields substantial and consistent gains, achieving
the best BLEU on multiple benchmarks. These re-
sults highlight the scalability and robustness of our
approach even when built upon large pre-trained
language models. Notably, compared with strong
baselines such as Qwen2.5-0.5B and LLaMA3.2-
1B, ImCo-MMT shows marked improvements, es-
pecially in COMET scores, suggesting superior
semantic adequacy and alignment. Overall, the re-

Table 3: Results on 3AM of En-Zh translation. V indi-
cates the results are from Ma et al. (2024).

sults strongly validate the advantage of combining
learned visual representations with controlled fu-
sion mechanisms and textual constraints in MMT.

4.5 Results on AmbigCaps

Table 2 reports the Turkish-to-English transla-
tion results on the AmbigCaps dataset. Our pro-
posed ImCo-MMT consistently outperforms all
traditional MMT baselines, achieving the high-
est scores across BLEU, METEOR, and COMET.
Compared to the strong Gated Fusion, InCo-MMT
shows improvements of +0.64 BLEU and +1.79
COMET, indicating better lexical and semantic
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Tranditional MMT

Pre-trained MMT

Models Test2016 Test2017 MSCOCO Test2016 Tes2017 MSCOCO

ImCo-MMT 43.34/70.16/68.11  36.08/63.69/63.42 32.30/58.67/59.53 | 90.58/96.59/88.93 87.04/91.62/87.61 89.62/95.88/88.10
wlo Imagination | 43.09/69.80/66.77 35.65/63.51/62.11 31.91/57.93/58.03 | 89.45/9547/87.87 85.75/93.36/36.69 88.45/94.72/37.18
wlo Contemplation | 41.94/68.81/66.01 34.73/62.79/61.45 31.55/58.28/57.17 | 88.90/94.76/87.40 85.21/92.55/86.39 87.82/94.06/86.68
wlo both 41.26/68.05/65.34  34.34/62.13/60.78  31.34/57.56/56.77 | 88.24/94.12/86.89 84.37/91.59/85.79 87.54/93.61/86.38

Table 4: Results of the Imagination and Contemplation module on Multi30k of En-De translation, with

BLEU/METEOR/COMET metrics.

VGE OT Tranditional MMT Pre-trained MMT
Test2016 Test2017 MSCOCO Test2016 Test2017 MSCOCO
v v | 43.34/70.16/68.11 36.08/63.69/63.42 32.30/58.67/59.53 | 90.58/96.59/88.93 87.04/91.62/87.61 89.62/95.88/88.10
x v | 43.19/69.80/67.69 35.94/63.01/62.44 32.09/58.44/58.87 | 90.18/96.19/88.55 86.48/94.09/87.24 88.77/95.12/87.66
v X | 43.25/70.01/67.95 35.58/63.74/62.78 31.84/58.59/59.01 | 90.01/95.97/88.49 86.54/94.08/87.33 88.92/95.29/87.79

Table 5: Results of two core components within the Imagination module on Multi30k of En-De translation, with

BLEU/METEOR/COMET metrics.

alignment. When leveraging pre-trained encoders
and decoders, InCo-MMT reaches near-saturation
performance, significantly surpassing all baselines.
These results demonstrate the strong generalization
and robustness of the model in ambiguous and mor-
phologically rich source languages such as Turkish.

4.6 Results on 3AM

As shown in Table 3, our InCo-MMT significantly
outperforms all baselines in the En-Zh translation
task on the 3AM dataset, especially in the pre-
trained setting. In contrast, traditional MMT mod-
els perform poorly, likely due to the challenges of
Chinese tokenization. ImCo-MMT benefits from
both powerful pre-trained models and cross-modal
alignment, enabling robust handling distant lan-
guage pairs. Notably, the relatively low scores of
traditional models suggest that translating between
linguistically distant pairs like English and Chinese
poses a significant challenge for models trained
from scratch, underscoring the importance of lever-
aging pre-trained knowledge for such scenarios.

5 Analysis

5.1 Effect of Imagination and Contemplation

Table 4 shows the ablation results of the Imagina-
tion and Contemplation modules on the Multi30k.
Removing the Imagination module leads to a no-
ticeable performance drop across all metrics, indi-
cating that synthesized visual information brings
meaningful semantic enrichment to the transla-
tion process. Similarly, when Contemplation is
removed, the performance degradation is more sig-
nificant, suggesting its crucial role in grounding
and filtering visual features with textual guidance.
When both are removed, the performance decreases

further, confirming that the interplay between imag-
ination and contemplation, balancing vision-driven
enhancement and text-based regularization, is es-
sential for achieving optimal MMT quality.

5.2 Impact of Image Generation

Table 5 presents the results of the ablation study on
two key components within Imagination: VGF and
OT constraints. Disabling VGF leads to a consis-
tent drop across all metrics, indicating that adap-
tive integration of visual features through CLIP
similarity improves semantic alignment and rele-
vance. Similarly, removing the OT loss also causes
performance degradation, suggesting that enforc-
ing semantic consistency between authentic and
synthetic images helps the model focus on shared
visual semantics and reduce noise. When both
components are active, the model achieves the best
results, demonstrating their complementary roles
in building a coherent and informative visual con-
text. Additionally, we statistically analyze CLIP-
based cosine similarity between authentic and syn-
thetic images before and after applying OT on the
Multi30k training set in Appendix C.6.

5.3 Impact of Textual Constraint

As shown in Table 6, the KL constraint, which
is applied between MMT and NMT distributions,
plays the primary role in improving overall per-
formance. Removing the KL constraint leads to a
more significant performance drop than removing
ITC, indicating its central importance in enforcing
consistency with strong textual priors and guiding
the decoder towards more fluent and reliable lin-
guistic outputs. In contrast, the ITC loss provides
auxiliary but less substantial gains by encouraging
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KL ITC Tranditional MMT Pre-trained MMT
Test2016 Test2017 MSCOCO Test2016 Test2017 MSCOCO
v v | 43.34/70.16/68.11 36.08/63.69/63.42 32.30/58.67/59.53 | 90.58/96.59/88.93 87.04/91.62/87.61 89.62/95.88/88.10
X v | 42.57/69.48/67.25 35.02/62.62/62.04 31.34/57.32/58.46 | 89.43/95.29/87.77 85.80/93.16/86.59 88.40/94.59/87.08
v X | 43.01/69.97/67.69 35.86/63.18/62.82 32.03/58.25/59.03 | 89.72/96.11/88.03 86.17/94.08/86.40 88.73/95.47/87.03

Table 6: Results of two core components within the Contemplation module on Multi30k of En-De translation, with

BLEU/METEOR/COMET metrics.

SRC(EN): A man in a red shirt entering an establishment.
REF(DE): Ein mann in einem roten hemd betritt ein etablissement.
MMT-ONLY: Ein mann in einem roten hemd, der ein betrieb miert.
(A man in a red shirt who is painting a company.)
+Ima: Ein mann in einem roten hemd steigt in ein etablissement.
(A man in a red shirt enters a establishment.)
+Con: Ein mann in einem roten hemd
(A man in a red shirt is entering an establishment.)

SRC(EN): This lady has heard a funny joke and laughing.
REF(DE): Diese frau hat gerade einen lustigen witz gehért und lacht.
MMT-ONLY: Diese dame tragt ein lustiges namensschild und lacht.
(This lady is wearing a funny name tag and laughing.)
+Ima: Diese dame hat gerade eine lustige joke und lacht.
(This lady has heard a funny joke and laughs.)
+Con: Diese hat gerade und lacht.
(This lady has heard a funny joke and is laughing.)

SRC(EN): A dog playing fetch in the water, holding an orange ball in his mouth.
REF(DE): Ein hund im wasser apportiert einen orangefarbenen ball in seinem maul.

MMT-ONLY: Ein hund spielt mit einem gelben ball im maul ein spiel im wasser.
(A dog plays a game in the water with a yellow ball in its mouth.)

+Ima: Ein hund spielt im wasser und halt einen orangefarbenen ball im maul.

(A dog plays in the water and holds an orange ball in its mouth.)
+Con: Ein hund spielt im wasser
ball im maul.

(A dog plays fetch in the water and holds an orange ball in his mouth.)

und h&lt einen orangefarbenen

SRC(EN): A man with a hat rides his bike along the water.

REF(DE): Ein mann mit helm f&hrt am wasser entlang fahrrad.
MMT-ONLY: Ein mann mit helm fahrt mit einem fahrrad auf dem wasser.
(A man in a helmet rides a bike on the water.)
+Ima: Ein mann mit hut fahrt mit seinem fahrrad am wasser
entlang.
(A man with a hat rides his bike along the water.)
+Con: Ein mann mit féhrt mit dem fahrrad am wasser entlang.
(A man with a helmet rides his bike along the water.)

Figure 3: Case study on Test2016 dataset of En-De translation. MMT-ONLY refers to the output of our traditional
model without Imagination and Contemplation. The red and green words denote error and correct translations,

respectively.

better visual-textual alignment, especially in visu-
ally ambiguous scenarios. Together, they form a
complementary mechanism, but it is the KL reg-
ularization that mainly drives the substantial im-
provements within the Contemplation module.

5.4 Case Study

As shown in Figure 3, the first example describes
a man in a red shirt entering a store. However,
the MMT-ONLY output incorrectly translates it as
“painting a company”’, which is caused by the ex-
cessive and irrelevant visual information. Although
the translation is semantically correct with Imag-
ination, the generated words “steigt in”” does not
match the reference sentence “betritt”. For this
reason, we introduce the Contemplation module to
align it with the correct text.

In contrast, the baseline of the last example pro-
duces an incorrect translation, implying the man is
riding “on the water”. With Imagination, the model
corrects the context, but it mistakenly switches “hel-

met” to “hat”, indicating that hallucinated visual in-
formation may introduce factual errors. Even with
Contemplation, the hallucinated object persists, as
textual grounding alone cannot fully override pre-
viously introduced inaccuracies.

These cases show that while images provide
valuable contextual information, irrelevant or re-
dundant details can lead to mistranslations that are
difficult to correct even with textual constraints,
underscoring the necessity for effective regulation
and precise alignment between text and image.

6 Conclusion

In this work, we propose ImCo-MMT, a novel
MMT framework that balances imaginative visual
synthesis and grounded textual contemplation. By
introducing two complementary modules: Imagi-
nation and Contemplation, we achieve substantial
improvements across multiple benchmarks. Our re-
sults demonstrate that well-structured multimodal
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integration, rather than sheer reliance on large scale
backbones, plays a crucial role in advancing trans-
lation quality, providing a promising direction for
advancing MMT. Future work will explore end-to-
end integration of generation and translation.

Limitations

Despite the promising results achieved by ImCo-
MMT, several limitations remain. First, although
the imagination module introduces visually en-
hanced information through generated images, the
quality and semantic alignment of these synthetic
images are not always guaranteed, especially for
linguistically ambiguous or abstract source sen-
tences. Second, while our contemplation module
incorporates cross-modal alignment via ITC and
KL losses, it does not explicitly guide the image
generation process itself, resulting in a gap between
image-text alignment and the actual visual content
being synthesized. Third, due to the modular nature
of our framework and the reliance on external pre-
trained components (e.g., CLIP, diffusion models,
large language decoders), training and inference
can be computationally demanding, and integration
into a fully end-to-end pipeline remains a challenge.
In future work, we plan to address these limitations
by jointly optimizing image generation and transla-
tion, and by exploring lighter-weight yet effective
model alternatives.
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A Datasets Details

Multi30k (Elliott et al., 2016) mainly contains
two translation directions: English-German and
English-French, including 31014 images with En-
glish captions and German and French translations.
The training set and validation set contain 29,000
and 1,014 instances, respectively. We reported the
results on the Test2016, Test2017 and MSCOCO
test sets, which contain 1000, 1000 and 461 in-
stances, respectively.

AmbigCaps (Li et al., 2021) is an English-
Turkish dataset, in which the number of samples
in the training set, validation set, and test set are
89601, 1000, and 1000 respectively.

3AM (Ma et al., 2024) is an English-Chinese
MMT data set that contains a wide range of visual
concepts and fuzzy data. Its samples come from
some existing image + text data sets, and finally
form a training set containing 23,931 samples, a
validation set of 1,000 samples, and a test set of
1,000 samples.

CoMMuTE (Futeral et al., 2023) is a con-
trastive multilingual multimodal translation evalua-
tion dataset, which covers several translation direc-
tions: English-French, English-German, English-
Czech, etc. From above, we test test our model
in three translation directions: English-German,
English-French, and English-Chinese. It consists
of 155 lexically ambiguous English sentences, each
with two translations and two possible meanings,
and two pictures to determine which translation is
correct.

B Training Setting

For the Perceiver Resampler, we use six blocks,
that is, NV = 6 and set 32 queries where each query
has a dimension of 768. For the training objective,
we set Aot = 0.1, Ak, = 0.1, A;pc = 0.1.

B.1 Traditional MMT Models

We adopt the standard Transformer architecture as
a baseline, which follow Wu et al. (2021) to con-
duct experiments with Transformer-Tiny configura-
tion. This setup allows us to examine whether the
proposed multimodal components can effectively
learn from scratch without the support of external
knowledge. The model consists of 4 encoder and
decoder layers. The hidden size is 128 and the filter
size of FFN is 256. There are 4 heads in the multi-
head self-attention mechanism. We set the dropout
as 0.3 and the label smoothing as 0.1. Besides,
we learn a joint BPE code for 10,000 merging op-
erations for both the source and target languages,
resulting in vocabularies of 9,716 and 9,548 entries
for the En-De and En-Fr tasks, which is the same
as the baseline tradition MMT models in Section
4.2.

Our experiments were implemented using the
open-source Fairseq (Ott et al., 2019) framework.
During training, we set the dropout rate to 0.3 and
applied label smoothing with a factor of 0.1. Each
training batch consists of 2048 tokens, and the gra-
dient update frequency is set to 5. After experi-
mental analysis on the validation set, the hyper-
parameters are set as a = 0.1,8 = 3,7 = 0.4.
During decoding, the beam size is set to 5. For op-
timization, we used the Adam optimizer (Kingma
and Ba, 2017) with 8; = 0.9,85 = 0.98 and
¢ = 1078, In terms of learning rate scheduling,
we employed a warmup period of 2000 steps, start-
ing from le~7 and gradually increasing to 5e 3.
All models are trained and evaluated using two
4090 GPUs.

B.2 Pre-trained MMT Models

Yu et al. (2025) have revealed a modality-dependent
asymmetry: pre-trained decoders offer stable im-
provements in generation quality, while the benefit
of pre-trained encoders strongly depends on the
degree of visual-textual alignment. Thus, we in-
corporate several widely used pre-trained models
as encoders or decoders of our framework, such as
mBART (Liu et al., 2020), mT5 (Xue et al., 2021b),
Qwen (Qwen et al., 2025) and LLaMA (Grattafiori
et al., 2024).

We select mBART and mTS5 as our encoders, and
Qwen and LLaMA as our decoders. The specific
experimental results are Appendix C.3. In fact,
we found that different pre-trained encoders and
decoders have little impact on the final translation

10925


https://doi.org/10.18653/v1/2023.findings-acl.168
https://doi.org/10.18653/v1/2023.findings-acl.168
https://doi.org/10.18653/v1/2023.findings-acl.168
https://doi.org/10.18653/v1/2023.findings-emnlp.978
https://doi.org/10.18653/v1/2023.findings-emnlp.978
https://doi.org/10.18653/v1/2023.findings-emnlp.978

English-to-German ‘ English-to-French English-to-Chinese
Models Multi30k(train) 3AM(train)
BLEU/METEOR/COMET/Accuracy
Pre-trained MMT Models
VGAMT 293 430 184 59.0 | 322 485 362 67.1 - - - -
ImCo-MMT | 77.72 83.14 77.96 50.3 | 80.87 85.11 79.26 512 | 97.06 44.68 96.52 50.1

Table 7: Results on CoOMMUTE. Since this dataset does not have a training set, we have to train it on other datasets

and then test on it.

performance, so the model shown in the text is
a combination of mBART+Qwen. The model is
trained on two 4090 GPUs for 5 epochs with a
batch size of 8, a peak learning rate of le-5 with
0.1 warmup ratio.

B.3 Text2Image Generation Models

For the text-to-image generation, we choose Sta-
ble Diffusion XL (SDXL) (Podell et al., 2023) to
synthesize images on two 4090 GPUs, which in-
troduces a refiner module to improve the quality
of generated images. According to official recom-
mendations, the size of the image we generated is
1024 x 1024. During the generation process, we
set the number of inferences to 100, the proportion
of the high-frequency part of the noise to 0.5, and
the guidance scale to 7.5.

C Additional Results
C.1 Results on CoMMuTE

To evaluate the effectiveness of the framework in re-
solving translation ambiguities, we conduct experi-
ments within the COMMUuTE (Futeral et al., 2023)
benchmark, which requires high-quality annotated
images to resolve ambiguities in translation.

The Accuracy metric is a custom metric in the
CoMMUuUTE dataset. For each example, there are
correct translation results and incorrect translation
results. Its calculation is the ratio of the number of
samples where the perplexity of the correct transla-
tion result is greater than that of the incorrect result
to the total number of samples. However, in fact,
when we tested it, we found that the fluctuation
range of this metric was very large, so it is only of
reference significance.

Table 7 presents results on the CoMMUuTE test
set, using models trained on Multi30k and 3AM.
Our ImCo-MMT achieves substantial improve-
ments across all language pairs, with particularly
large margins in COMET and BLEU scores. This
indicates strong generalization to unseen multi-
modal contexts. While VGAMT shows higher ac-
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Figure 4: BLEU values under different pre-trained vi-
sion models.

curacy, its BLEU and COMET are much lower, sug-
gesting limited semantic alignment. ImCo-MMT
benefits from cross-modal contrastive learning and
powerful pre-trained components, enabling better
transfer performance despite domain shift.

C.2 Choice of Vision Model

Using stronger vision models as image encoders
can often extract better visual feature information
(Zuo et al., 2023). Li et al. (2022a) has demon-
strated that more robust pre-trained visual models
can significantly enhance MMT models. In order
to investigate which pre-trained vision models has
the greatest improvement effect on our model, we
conduct experiments with several widely used pre-
trained visual models, including BEiT (Bao et al.,
2022), BLIP (Li et al., 2022b), BLIP2 (Li et al.,
2023), DETR (Carion et al., 2020), ResNet (He
et al., 2016), SwinT (Liu et al., 2021), ViT (Doso-
vitskiy et al., 2021), ViT-MAE (He et al., 2022).
Figure 4 shows the BLEU values of different mod-
els on the three En-De test sets of Multi30k. We
can see that CLIP exhibits significant performance
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English-to-German
Models Test2016 Test2017 MSCOCO
BLEU/METEOR/COMET
mBART-Large + Qwen2.5-0.5B | 88.24 94.12 86.89 8437 91.59 8579 87.54 93.61 86.38
mT5-Base + Qwen2.5-0.5B 89.43 9529 87.77 8580 93.16 86.59 88.40 94.59 87.08
mBART-Large + Llama3.2-1B | 89.72 96.11 88.03 86.17 94.08 86.40 88.73 9547 87.03
mT5-Base + Llama3.2-1B 89.54 9552 88.06 8596 93.52 86.97 88.36 94.72 87.11

Table 8: Main translation results from the Multi30k benchmark with different pre-trained models. We use mT5-Base
with 580M parameters, mBART-Large with 610M parameters, Qwen2.5-0.5B and Llama-3.2-1B.

English-to-German

AUT IMG SYNIMG Test2016 Test2017 MSCOCO
BLEU/METEOR/COMET
v X 40.81 67.23 65.55 33.63 6046 59.24 31.08 5593 57.25
X v 40.15 6696 65.68 32.87 60.76 59.46 30.75 56.28 57.10
v v 41.88 68.75 65.95 3420 61.81 60.75 31.76 57.34 57.67

Table 9: Results of different visual modalities on translation. AUT IMG represents authentic images while SYN

IMG represents synthetic images.

improvement due to its powerful cross-modal mod-
eling knowledge, which is specifically optimized
for cross-modal understanding to maximize the
benefits in MMT tasks.

C.3 Impact of Different Pre-trained Models

Table 8 explores the impact of various combina-
tions of pre-trained encoder-decoder models on the
English-to-German translation task.

While there are slight performance variations
across different model pairs, the overall differ-
ences remain marginal, suggesting that the pro-
posed framework is relatively robust to the choice
of backbone models. This further suggests that
the gains in performance are primarily attributed
to our multimodal design and training strategies
rather than the specific pre-trained components em-
ployed. Moreover, given the relatively small size of
the Multi30k dataset and its predominantly simple
sentence structures, fine-tuning large pre-trained
models on this dataset can easily lead to perfor-
mance saturation. For consistency and efficiency,
we adopt mBART-Large + Qwen2.5-0.5B as our
default baseline in all experiments.

C.4 Impact of Different Text-to-Image Models

As shown in table 10, we have tested the image
generation quality of the Stable Diffusion series,
including SD1.4, SD1.5, and SDXL. Qualitatively,
SDXL generated higher-quality images than other
versions. And despite the visual improvements
in SDXL, performance differences across models

English-to-German
Models Test2016 Test2017 MSCOCO
BLEU/METEOR
SD1.4 | 43.20/69.64 35.58/63.74 32.39/58.31
SD1.5 | 43.39/69.80 35.81/63.30 32.03/58.66
SDXL | 43.34/70.16 36.08/63.69 32.30/58.67

Table 10: Main translation results from Multi30k bench-
mark with the Stable Diffusion series.

remained minor. Thus, we believe that fine-tuning
T2I models for this specific MMT task, rather than
merely switching to stronger generic generators, is
a more promising direction.

C.5 How Visual Modality Affect Translation?

To further investigate this aspect, we carried out
additional experiments comparing different image
modalities in the En-De direction, namely (1) using
only authentic images, (2) using only synthetic im-
ages, and (3) using both visual modalities. Results
are reported on table 9.

These experiments were conducted without in-
corporating the Contemplation module. Interest-
ingly, we observed that combining both visual
modalities yields better performance compared to
using either one alone. However, when considered
alongside the main results presented in the paper,
we found that introducing the KL constraint (Con-
templation) tends to attenuate this effect.
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Figure 5: Cosine similarity between authentic images and synthetic images.

C.6 Visual Semantic Consistency

As shown in Figure 5, to assess the effect of OT
constraints on aligning visual semantics between
authentic and synthetic images, we analyze the dis-
tribution of their CLIP-based cosine similarities on
the Multi30k training set. Without OT, the sim-
ilarity scores follow a Gaussian-like distribution
centered around 0.5, indicating frequent semantic
drift between the two modalities. After applying
the OT constraint, the distribution shifts toward a
higher mean of approximately 0.7, with reduced
variance. This suggests that OT effectively pulls
semantically corresponding image pairs closer in
the feature space, promoting better cross-modal
alignment. In practice, this enforces semantic con-
sistency while filtering out specific modality noise,
particularly from visually irrelevant or overly styl-
ized content in the synthetic images. These findings
validate the role of OT as a regularizer that refines
multimodal fusion by anchoring synthetic features
to authentic semantics.
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