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Abstract

Large language models (LLMs) based Multilin-
gual Knowledge Graph Completion (MKGC)
aim to predict missing facts by leveraging
LLMs’ multilingual understanding capabilities,
improving the completeness of multilingual
knowledge graphs (KGs). However, existing
MKGC research underutilizes the multilingual
capabilities of LLMs and ignores the share-
ability of cross-lingual knowledge. In this pa-
per, we propose a novel MKGC framework
that leverages multilingual shared knowledge
to significantly enhance performance through
two components: Knowledge-level Grouped
Mixture of Experts (KL-GMoE) and Iterative
Entity Reranking (IER). KL-GMOoE efficiently
models shared knowledge, while IER signif-
icantly enhances its utilization. To evaluate
our framework, we constructed a mKG dataset
containing 5 languages and conducted com-
prehensive comparative experiments with ex-
isting state-of-the-art (SOTA) MKGC method.
The experimental results demonstrate that our
framework achieves improvements of 5.47%,
3.27%, and 1.01% in the Hits@1, Hits@3, and
Hits @ 10 metrics, respectively, compared with
SOTA MKGC method. Further experimental
analysis revealed the properties of knowledge
sharing in settings of unseen and unbalanced
languages. We have released the dataset and
code for our work on https://github.com/
gaoxiaofei@7/KL-GMoE.

1 Introduction

Knowledge Graphs (KGs) (Weikum, 2021) are
structured semantic knowledge bases designed to
represent and organize knowledge about the real
world. Most KGs possess multilingual characteris-
tics, including Wikidata (Vrandeci¢ and Krotzsch,
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Figure 1: This figure depicts the problems encountered
when applying LLMs directly to the MKGC task. (a)
illustrates that existing PEFT is not suitable for the
MKGC task. (b) Indicates a discrepancy between the
task paradigms LLMs excel at and MKGC tasks.

2014) and DBpedia (Lehmann et al., 2015). Exist-
ing multilingual KGs are often incomplete, which
limits their effectiveness in practical applications
(Ji et al., 2022). Multilingual knowledge graph
completion (MKGC) aims to leverage known mul-
tilingual knowledge to complete missing triples and
improve the completeness of the KGs.

Studies have focused on embedding-based meth-
ods (Ge et al., 2024) for MKGC, mapping entities
and relations into a low-dimensional vector space
to achieve completion. Recent advances in lan-
guage models have shifted MKGC research toward
generation-based approaches (Chen et al., 2022;
Saxena et al., 2022) that reformulate KG comple-
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tion as text generation. Methods (Song et al., 2023;
Zhou et al., 2022) employ a single pretrained lan-
guage model (PLM) to consolidate multilingual
knowledge within a unified semantic space, achiev-
ing superior performance in MKGC. Furthermore,
recent work like DIFT (Liu et al., 2024) explores
task adaptation through LLMs fine-tuning, achiev-
ing strong performance on monolingual KGC tasks.
Modern LLMs, pretrained on diverse corpora, in-
herently possess multilingual capabilities (Huang
et al., 2024), enabling the representation and knowl-
edge sharing across languages (Hu et al., 2025)
within a unified model. Crucially, this capacity for
internal multilingual knowledge sharing is vital for
MKGOC, offering substantial potential to enhance
completion performance. Motivated by this recog-
nized potential, our research investigates effective
methods for harnessing LLMs’ inherent capabili-
ties to improve MKGC.

However, directly applying LLMs to MKGC
presents several challenges, primarily stemming
from two key aspects: model architecture and task
paradigm. 1) Architectural Mismatch: Existing
Parameter-Efficient Fine-Tuning (PEFT) methods
(Han et al., 2024) for LLMs are mainly designed
for text-centric tasks and exhibit significant gaps
when applied to knowledge-level tasks. Specif-
ically, single-channel methods struggle with the
complex multilingual nature of KGs. As shown in
Figure 1(a) top, processing numerous multilingual
queries through a single channel often results in
knowledge overload. This overload impacts the
model’s ability to understand similar knowledge
across languages, leading to incorrect predictions.
For example, queries in English, Chinese, and Ital-
ian concerning Einstein’s birthplace all yield in-
correct results. Conversely, multi-channel methods
tend to disrupt the atomicity of knowledge, thereby
causing knowledge fragmentation. As shown in
Figure 1(a) bottom, query tokens are processed by
disparate channels. Such fragmented processing
consequently leads to incorrect entity predictions.
2) Task Paradigm Discrepancy: The MKGC task
involves entity ranking, which presents a discrep-
ancy with the text generation paradigm. As shown
in Figure 1(b), for the query (Einstein, birthplace,
?), the LLM erroneously predicted Paris as the an-
swer. This selection failed to improve the ranking
of the correct entity Ulm.

To address the 1) Architectural Mismatch,
specifically knowledge overload, we propose in-
creasing the number of dedicated knowledge chan-

nels. This allows each channel to focus on pro-
cessing semantically similar information, thereby
enhancing the LLM’s capacity to understand and
leverage cross-lingual shared knowledge. Concur-
rently, by enabling each channel to independently
process complete knowledge, we can effectively
mitigate knowledge fragmentation and facilitate the
model’s comprehensive understanding of multilin-
gual information. To resolve the 2) Task Paradigm
Discrepancy, we propose adjusting the LLM’s
training objective to enable it to iteratively refine
the ranking of multiple entities. This approach
aims to enhance the ranking of correct entities by
increasing the frequency with which the LLM uti-
lizes cross-lingual shared knowledge.

In this paper, we propose a novel framework for
effectively leveraging multilingual shared knowl-
edge to enhance the performance of MKGC. This
proposed framework comprises two synergistic
components: Knowledge-level Grouped Mixture of
Experts (KL-GMOoE) and Iterative Entity Rerank-
ing (IER). KL-GMoE introduces a knowledge-
level expert routing mechanism and a group-based
Mixture-of-Experts (MoE) architecture. This de-
sign aims to mitigate knowledge fragmentation
while substantially enhancing LLMs’ capacity to
capture cross-lingual shared knowledge. IER mod-
ifies both the training objective and the decod-
ing strategy of LLMs. This enables the mod-
els to significantly improve their leveraging of
multilingual shared knowledge through multiple
iterative refinements. The experimental results
demonstrate that our framework achieves improve-
ments of 5.47%, 3.27%, and 1.01% in the Hits@1,
Hits@3, and Hits @ 10 metrics, respectively, com-
pared with SOTA MKGC method. Further exper-
imental analysis revealed the properties of knowl-
edge sharing in settings of unseen and unbalanced
languages.

In summary, our contributions are as follows:

* We propose KL-GMOoE to address the model
architecture mismatch, efficiently modeling
shared knowledge.

* We propose IER to address the discrepancy in
the task paradigm, enhancing the utilization
of shared knowledge.

* Experiments show that our framework signifi-
cantly outperforms the SOTA MKGC method,
with average improvements of 5.47%, 3.27%,
and 1.01% in Hits@1, Hits@3, and Hits@10.
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Language Entity Relation Training Validation Testing

EN 86,539 512 708,267 49,782 49,777
FR 89,754 478 839,623 49,908 30,000
IT 65,434 445 613,014 49,883 20,000
JA 46,294 432 321,237 49,939 10,000
ZH 63,278 397 546,626 49,969 10,000
SUM 351,299 2,264 3,028,767 249,481 119,777

Table 1: Statistics of the multilingual knowledge graph
completion dataset.

2 Datasets

2.1 Dataset Construction

We utilize WikidataS5M (Wang et al., 2021) as
the foundational seed library, which is a million-
scale English KG dataset integrating Wikidata and
Wikipedia. Based on this, we further expanded
the dataset to include French, Italian, Chinese, and
Japanese, by collecting data from Wikidata. As
shown in Table 1, we present statistics on the num-
ber of entities, relations, training, validation and
testing triples. The KG contains 351,299 entities
and 2,264 relations, with the total number of triples
exceeding 3 million.

Based on the characteristics of multilingual
knowledge distribution, the knowledge across dif-
ferent languages is not entirely aligned but exhibits
certain linguistic specificity (Song et al., 2025).
This asymmetry of knowledge across languages in-
dicates that some knowledge is confined to specific
languages. Therefore, the dataset we constructed
follows the natural distribution patterns of knowl-
edge. Some knowledge is shared across multiple
languages, reflecting the similarities between lan-
guages. Other knowledge is unique to each lan-
guage, reflecting the distinctive characteristics of
each language.

2.2 Prompt Construction

We adopt the prompt construction method proposed
by DIFT (Liu et al., 2024). Since the embedding-
based model has learned the training data, it tends
to rank the correct entity at the first in the candidate
entities for most training facts. Constructing the
prompt using these ranked candidates may cause
LLMs to develop a bias toward selecting the first
entity as the answer. Therefore, we partition a
subset from the validation set to construct prompts,
which are utilized as training data during the fine-
tuning phase of the LLM.

For the query ¢ = (h,r,7), the constructed
Prompt P consists of four parts: Query ), Descrip-

tion D, Neighbor facts IV, and Candidate entities
M.. This can be represented as:

P(q) = [Q; D; N; M,]. (1)

Description provides specific descriptive infor-
mation about entity h, enabling the model to
comprehend the entity’s meaning more accurately.
Neighbor facts are triples that include the entity
h, and these triples are randomly sampled from
the Knowledge Graph Embedding (KGE) model’s
training data. These neighboring facts are intended
to enhance the LLM’s comprehension of the en-
tity h. Candidate entities M, = [eq,ea, ..., €n]
are composed of the top-m entities selected from
the ranking results generated by the KGE model
(Bordes et al., 2013). To enable LLMs to adapt
to the task paradigm of MKGC, we processed the
number of entities m in the M, during training.
The specific processing method is detailed in Sec-
tion 3.3. We provide specific prompt examples in
Appendix A.1.

3 Methodology

3.1 Task Definition

In this paper, we integrate KGE model with LLM
to perform the MKGC task. First, for a query
q = (h,r,7), we use the KGE model to obtain
the top-m ranked entities, which form the candi-
date entities M.. Next, we leverage LLMs to select
the optimal entity from the candidate entities M,
to complete the query ¢g. The completion process
can be formulated as follows:

é¢ = argmax P(e; | h,r, M,.), )
e, €M,

where é denotes the optimal entity for completing
the query ¢, and P(e; | h,r, M.) represents the
probability of selecting entity e; given the head
entity h, relation r and candidate entities M.

3.2 KL-GMoE Architecture

KL-GMOoE is specifically tailored for MKGC task.
This architecture is designed with multiple expert
groups to alleviate the knowledge overload caused
by single-channel and enhance the ability of LLMs
to capture shared knowledge. Furthermore, KL-
GMOoE employs a knowledge-level expert routing
mechanism to ensure that each sample is processed
by a specific expert, rather than involving all ex-
perts collectively. As shown in Figure 2(a), for
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Figure 2: The figure illustrates our proposed framework. Figure (a) depicts the architecture and workflow of the
KL-GMOoE, where the matrices A; and B; ; highlighted in red represent the currently activated expert. Figure (b)
illustrates the workflow of the IER method. After [V, iterations, we can obtain a reranked list of entities.

each sample processed by KL-GMoE, only the ma-
trix A; and one matrix B; ; from the expert group
(; are activated. The KL-GMOoE is applied exclu-
sively to the Feed-Forward Network (FFN) layer
of the LLM. Specifically, the matrix operations in
the FFN layer during forward propagation can be
represented as follows:

y = WX +ye, (3)

where W € Rdouxdin represents the original FFN
layer parameter matrix, which is frozen during
training. X = [Xp, : Xy : X¢| represents the input of
the FEN layer. y. represents the output calculated
by KL-GMoE based on the input X .

The design of KL-GMOoE is inspired by the asym-
metric fine-tuning architecture proposed in Hy-
dralLoRA (Tian et al., 2024). We adopted a grouped
MokE design architecture, where each group can be
represented as follows:

Gi=(Ai{Bij i €{1,2,....No}}), 4

where i € {1,2,..., Ny}, N, denotes the total
number of expert groups. N, is the number of B
matrices in group G; . Within each group G;, the
pairing of the A; matrix with a B; ; matrix is con-
sidered an expert E; j = (A;, B; j). The A; matrix
is designed to capture a category of similar knowl-
edge. The different B; ; matrices within the group
(; are regarded as modules that capture subtle dif-
ferences in this category of knowledge. This design

aims to enhance LLMs’ ability to capture shared
knowledge across multiple languages.

Simultaneously, our proposed knowledge-level
expert routing mechanism includes three different
routes: Ry, Ry and R;. First, an expert group is
selected based on R,. Within this group, a specific
expert is then determined by combining Ry, and R;.
The following describes the process of selecting a
specific expert based on these three routes.

R, is the group routing selection module that
determines which expert group processes the X.
The group selection is formulated as follows:

G, = argmax (Ry(X))
i€{1721-~~’N9}
= argmax Softmax(Wyxp,) | ,
i€{1,2,..No} \ e {h,rt}
®)

where W, € RNoxdin jg the routing matrix for
group selection. G; represents the expert group
selected to process X.

R and R; represent expert routing selection
modules that operate within the group G;. These
modules comprehensively considers the input X
and the output from the A; matrix to perform ex-
pert selection. Specifically, R, generates expert
selection scores Sy based on X. The formula for
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calculating Sy, is as follows:

Sk =Ri(X) = Z Softmax (WX, ),
me{h,rt}

Q)

where S, € RM, and W), € RMxdin i5 the rout-
ing matrix that receives X as input. R; generates
expert selection scores S; based on the output A; X
of matrix A;. The calculation of S; can be ex-
pressed as follows:

S, =Ry(X)= > Softmax(W;(Aixm)),
me{h,rt}

(7
where S; € RM, and W; € RM*T is the routing
matrix that receives A;X as input. r represents the
size of the rank in LoRA (Hu et al., 2022). Then,
select the matrix B; ; from group G; based on the
scores of Sy, and S; to process X:

B;j = argmax

JE{1,2,, Ny}

(Sk+8Si). )

Finally, we determine that the expert F;; =
(A;, B; j) processes X based on the knowledge-
level expert routing mechanism.

After determining the expert E; ;, the output of
KL-GMGoE is expressed as follows:

Ve = E; j(X) = B; j(A: X). )

Then, the expert output y. is added to the original
FFN output, as shown in Equation 3.

3.3 Iterative Entity Reranking

We propose a method called Iterative Entity Rerank-
ing (IER), aimed at enhancing LLMs’ utilization
of cross-lingual shared knowledge. As shown
in Figure 2(b), the IER method fully leverages
shared knowledge through multiple iterations, sig-
nificantly improving the accuracy of correct entity
ranking. IER adjusts the training task and decod-
ing strategy of LLMs. In the training phase, we
randomly set the number of candidate entities m
to a variable value, to train the LLM to be capable
of iteratively adjusting the ranking of multiple enti-
ties. In the decoding stage, IER allows the LLMs
to perform multiple rounds of entity prediction to
adjust the ranking of multiple entities.

For the query ¢ = (h,,?), the initial set of can-
didate entities is generated by the KGE model and
denoted as Mc(l) = le1,€2,...,en]. The list of en-

tities to be sorted is initialized as L(1) = Mc(l). The
LLM performs N; rounds of entity prediction. In

the ¢-th round, where ¢t € {1,2, ..., N;}, the entity
prediction operation can be expressed as follows:

e = argmax P(e; | h,r, Mc(t))a
eiGMét)

(10)

where Mc(t) represents the candidate entity set in
round ¢. e is the entity predicted by the LLM
from M_.". Then, we update M® to obtain M (t+1)
for the next iteration:

M) = MO\ {eP}, (11)

where Mc(t) \ {e®} denotes removing the entity
e® from M. Finally,we update the ranking of
entity e® in L(®):

LD — Insert(L®) \ {e®},¢,e®),  (12)
where Insert(L(®") \ {¢®},t,e®) denotes first re-
moving e® from L(®), and then inserting e(*) into
the ¢-th position of L(). After iterating for N,
rounds, we obtain the final ranked list of entities
L(Ne+1) | The implementation of IER is detailed in
Appendix A.2.

4 Experiment

4.1 Implementation Details

In the experiment, we selected TransE (Bordes
et al., 2013) to obtain candidate entities. Addi-
tionally, we utilized Llama-2-7b-chat-hf' as the
base model for fine-tuning. The model training hy-
perparameters are set as follows: the learning rate
is 2e-5, the LoRA rank is 4, and the length of the
candidate entities M. is between 25 and 30. The
number of iterations /V; for the IER is 10.

4.2 Multilingual Knowledge Graph
Completion

We compared the performance of the proposed
framework with embedding-based and generation-
based methods on our constructed dataset. The
experimental results demonstrate that our method
achieves optimal performance on the average met-
rics across all languages. Specifically, as shown in
Table 2, the performance of our proposed frame-
work surpasses all the aforementioned methods in
the three languages: EN, FR, and IT. For JA and
ZH, our framework performed excellently on all
metrics except Hits@10. Our framework failed

"https://huggingface.co/meta-llama/Llama-2-7b-chat-hf
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MODEL EN FR IT JA ZH AVG

MODEL EN FR IT JA ZH AVG

TransE 852 9.07 936 800 11.77 934 H LoRAMoE 36.28 36.36 35.81 40.22 56.87 41.11
Analogy 1340 15.81 14.58 1511 6.43 13.07 @ HydraLoRA 35.68 35.60 35.05 40.49 57.92 40.95
ComplEx 1092 11.75 11.49 13.95 17.79 13.18 I — Ours 36,50 36.72 35.93 41.60 58.63 41.88
D}i“mu“ 689 773 793 8.16 5.66 7.27 H LoRAMOE 42.54 4274 41.40 48.75 64.96 48.08
otatE  24.08 24.61 25.57 29.49 31.36 27.02
@ HydraLoRA 42.49 42.58 41.22 48.68 64.99 47.99
HAKE  31.64 32.92 30.99 35.53 52.24 36.66 3 A S A To0 400 00 aea
ICL 179 107 126 193 227 1.66 87 43.08 41.70 43.94 65.06 43.
GC-PLM 3337 32.51 3038 36.65 49.13 36.41 H LoRAMOE 5227 5250 50.91 59.07 72.19 57.39
DIFT (Single) 36.05 35.75 34.22 3831 56.65 40.19 @ HydraLoRA 52.51 52.41 50.81 59.10 72.24 57.41
Ours  36.50 36.72 35.93 41.60 58.63 41.88 10— Ours  52.63 52.62 51.17 59.00 72.32 57.57
TransE  37.02 39.17 37.57 44.59 60.51 43.78 M LoRAMoE 41.15 41.13 4030 45.90 61.52 46.00
Analogy 2839 30.45 29.56 35.84 19.61 28.77 R HydraLoRA 40.80 40.62 39.81 46.06 62.18 45.89
ComplEx  23.05 23.92 23.05 29.68 41.12 28.17 R — Ours  41.42 41.44 4051 46.80 62.67 46,57
Distmult  14.59 14.82 15.79 19.16 17.94 16.46
RotatE 4073 42.13 41.68 49.78 62.36 47.34  mup1e 3. This table compares the KL-GMoE with the
HAKE 4330 43.27 41.88 47.52 6322 47.84

ICL 34.99 37.09 35.33 42.84 59.15 41.88
GC-PLM  40.99 42.21 40.47 50.95 63.67 47.66
DIFT (Single) 42.21 42.28 40.50 47.83 64.50 47.46

existing SOTA fine-tuning methods LoRAMOoE (Dou
et al., 2024) and HydraLoRA (Tian et al., 2024).

Ours 46.25 45.30 44.22 51.97 66.93 50.93
TransE 50.25 51.23 49.60 58.10 71.80 56.19
Analogy  39.17 41.73 40.30 48.78 64.45 46.89
ComplEx  34.84 37.51 35.70 45.02 59.97 42.61
Distmult  26.74 26.78 27.41 36.04 50.25 33.44
RotatE 52.66 53.17 51.50 61.68 74.58 58.72

10__ HAKE 53.37 52.06 50.49 57.85 70.04 56.76

ICL 49.99 51.05 49.30 57.99 71.71 56.01
GC-PLM  52.76 52.81 51.76 59.53 71.98 57.77
DIFT (Single) 52.48 52.35 50.30 58.74 72.08 57.19

Ours 54.71 53.45 52.31 60.85 72.56 58.78
TransE 24.85 25.97 25.46 28.38 37.51 28.43
Analogy  22.85 25.01 23.82 27.44 21.04 24.03
ComplEx  19.18 20.29 19.56 24.30 32.12 23.09
Distmult  13.33 13.80 14.28 16.86 16.69 14.99

Il\él RotatE 34.63 35.39 35.49 41.75 48.74 39.20
R HAKE 39.41 39.80 38.10 43.36 59.04 43.94

ICL 20.11 20.70 19.80 23.98 31.06 23.13
GC-PLM  36.66 37.21 37.18 42.21 55.39 41.73
DIFT (Single) 40.99 40.64 39.09 44.54 61.38 45.33
Ours 42.96 42.58 41.69 48.33 63.74 47.86

Table 2: This table presents the MKGC results across
five languages. The embedding-based methods TransE
(Bordes et al., 2013), Analogy (Liu et al., 2017), Com-
pIEx (Trouillon et al., 2016), DistMult (Yang et al.,
2014), and RotatE (Sun et al., 2019) are all implemented
using the OpenKE framework (Han et al., 2018). The re-
sults of HAKE (Zhang et al., 2020) were reproduced us-
ing its open-source code. ICL refers to evaluation using
the LLaMA-2-7b-chat model without fine-tuning. GC-
PLM (Song et al., 2023) represents the current SOTA
method for MKGC. DIFT (Liu et al., 2024) is a SOTA
LLM-based monolingual KGC method. The Single
refers to training a separate model for each language
independently. The numbers in bold represent the best
results among the methods and languages considered.

to surpass RotatE’s performance on Hits@ 10, pri-
marily attributed to our use of a relatively weaker-

Model Trainable Params Activated Params Lora Rank
TransE 106.1m 106.1m -
DIFT(LoRA) 159.9%5 m 159.9%5 m 64
LoRAMOoE 19.2m 19.2m 4
HydraLoRA 12.5m 12.5m 4
Ours 329 m 94 m 4

Table 4: This table shows the comparison of our method
with other methods in terms of parameter count.

performing TransE model for generating candidate
entities. We replaced TransE with RotatE in the
candidate entities retrieval and conducted experi-
ments. The corresponding results and analysis are
presented in Appendix A.3. Compared to the ex-
isting SOTA MKGC method GC-PLM, our frame-
work achieved significant performance advantages
in Hits@1, Hits@3, Hits@ 10, and MRR metrics,
with improvements of 5.47%, 3.27%, 1.01%, and
6.13%, respectively. Furthermore, our framework
achieves a substantial improvement in performance
compared with DIFT, the SOTA LLM-based mono-
lingual KGC method. Overall, the experimental
results clearly demonstrate the effectiveness and
superiority of our proposed framework.

4.3 Model Architecture Comparison and
Parameter Analysis

We compared the MKGC performance between
the KL-GMOoE architecture and existing SOTA
fine-tuning methods, including LoORAMOoE and Hy-
dralLoRA. These two SOTA methods both utilize
multiple channels to process a single query, which
can lead to the problem of knowledge fragmenta-
tion. As shown in Table 3, KL-GMOoE outperforms
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Model Avg Tokens Num TFLOPs
LoRAMOoE 353.89 2.37814
HydraLoRA 353.89 2.37580
DIFT(LoRA) 353.89 242721
Ours 353.89 2.37472

Table 5: This table compares the computational effi-
ciency of our method with that of other methods. The
data presented are average values calculated from 1,000
samples.

Multilingual Data Imbalance Analysis

55
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Figure 3: This figure shows the variation in Hits@1
scores of our framework under training data settings
with five different language proportions.

these methods on average metrics. This experimen-
tal result demonstrates that our method effectively
addresses knowledge fragmentation, thereby en-
hancing performance on the MKGC task.

We further analyzed the advantages of KL-
GMoE in terms of model parameters. As shown in
Table 4, compared to the embedding-based method
TransE, KL.-GMOoE has 3.2 times fewer trainable
parameters and 11.3 times fewer activated parame-
ters. Among LLLM-based methods, KL.-GMOoE has
significantly fewer activated parameters than all
other methods. In particular, compared to DIFT,
KL-GMoE has approximately 24.3 times fewer
trainable parameters and about 85.1 times fewer
activated parameters, which demonstrates its sig-
nificant advantages in terms of parameter count. At
the same time, we compared the proposed method
with other methods in terms of FLOPs during in-
ference. As shown in Table 5, our method reduces
the FLOPs by approximately 0.053 TFLOPs com-
pared to the current state-of-the-art LL.M-based
KGC method, DIFT, demonstrating superior com-
putational efficiency.

Analysis of Unseen Languages

unseen: it,ja,zh
unseen: it,ja
unseen: -

40
35 e / .// /

30

en fr it ja zh
Language

Figure 4: The figure illustrates the Hits@1 performance
of our method on five languages under three different
training language settings.

Trend Analysis of IER (ALL)

0.575

—— Hits@1

0.550 Hits@3
GV’) —— Hits@10
505251 — MRR
P
5 0.500
=
@
S0415{ et

0.450

0.425

1 2 3 4 5 6 7 8 9 10
Round

Figure 5: The figure illustrates the impact of the number
of iterations of the IER method on performance.

4.4 Analysis of Language Imbalance

To evaluate the robustness of our framework in sce-
narios with imbalanced language distribution in the
training data, we conducted experiments. Specifi-
cally, we conducted experiments with imbalanced
training data ratios across five languages, while
keeping the total amount of training data constant.
As shown in Figure 3, despite the changes in lan-
guage proportions, the Hits@1 scores for each lan-
guage (dashed lines) and the average score across
the five languages (solid red line) remained rela-
tively stable. It is evident that our framework is
insensitive to variations in the language distribu-
tion. Based on this analysis, our framework can ef-
fectively leverage cross-lingual shared knowledge,
thereby demonstrating strong robustness.

4.5 Analysis of Unseen Languages

To evaluate the generalization capabilities of the
proposed framework on languages not included in
the training data, we conducted analysis experi-
ments. These experiments were conducted with
three distinct training configurations: (1) trained
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Language Query Share  Answer

Prediction By DIFT

Prediction By Ours

EN (Towelhead, FR Thomas | David Kitay | Towelhead | Thomas Newman | James Newton Thomas Newman | Rolfe Kent | James Newton Howard |
composer, ?) Newman Howard | Chris Messina | Rolfe Kent | Carrie Preston Mychael Danna | Theodore Shapiro | Mark Isham | Carter Burwell
FR (Shaji Terayama, T parolier metteur ou metteuse en scéne | journaliste | parolier | parolier | producteur de cinéma | guitariste | metteur en scéne |
occupation, ?) producteur de cinéma | musicien ou musicienne | compositeur ou compositrice | journaliste | artiste
compositeur ou compositrice | autrice-compositrice-interpreéte
T (The Pixar Story, EN John Joe Ranft | Eric Larson | John Lasseter | Milt Kahl | John Lasseter | Eric Larson | Milt Kahl | Glen Keane | Chris Buck
interpreti, ?) Lasseter Glen Keane | James Algar | Don Hahn | Colin Hanks | James Algar
JA (s a R, FW—k | ZH SN | XTINLA | TR | %) | R—T | PV AT Ay | U | NIV A | R—T | N A | 2 AT 4|
X5, ?) | av 28742 | 7V AT 4F AVARILTAY | JVATAS
ZH CRRH- Shnft, | JA ik R | BRI ShhA | R | | HRAE | UG | HEE | SRR | RDTRR | TR | MR
13k BEIEE,?) PO | PEEEAR | BT R

Figure 6: The figure presents a comparison of the prediction results between our method and DIFT in the knowledge
shared case. The Share column indicates that the knowledge of these queries exists in the LLM’s training data but

is presented in other languages.

on EN and FR; (2) trained on EN, FR, and ZH; and
(3) trained on five languages. As shown in Figure 4,
the bar indicates that LLMs trained solely on
EN and FR data demonstrated significant KGC per-
formance on unseen languages IT, JA, and ZH. This
clearly demonstrates that knowledge sharing is ef-
fective not only among languages seen during LLM
training, but also shows significant cross-lingual
generalization capability among unseen languages.
Furthermore, we observed a consistent improve-
ment in performance across all languages as the
number of training languages increased. This find-
ing suggests that training data in more languages
provides richer knowledge signals to LLMs, which
facilitates the sharing of multilingual knowledge.

4.6 Analysis of IER Trends

To evaluate the impact of the number of iterations
in the IER method on MKGC performance, we con-
ducted analytical experiments. Figure 5 illustrates
the changes in all metrics as the number of itera-
tions increases. From the results, it can be observed
that Hits @3, Hits@ 10, and MRR significantly im-
proved in the first three iterations and reached their
optimal values by the tenth iteration. This trend in-
dicates that with an increasing number of iterations,
IER allows LLMs to leverage multilingual shared
knowledge more effectively, thereby significantly
improving the performance of MKGC.

4.7 Ablation Experiment

To verify the effectiveness of each component in
our proposed framework, we conducted ablation
experiment. We evaluated the contribution of each
component by removing it sequentially. As shown
in Table 6, removing the KL-GMoE component
resulted in a drop in Hits@1 from 41.88 to 40.28,
Hits@3 from 50.93 to 49.71, Hits@10 from 58.78

Model H@l H@3 H@10 MRR
Ours 41.88 50.93 58.78 47.86
Ours w/o kg 40.28 49.71 58.07 46.55
Ours w/o kg+ier 40.28 47.66 57.29 4542

Table 6: This table shows the results of ablation experi-
ments on the KL-GMoE (kg) and IER (ier) components.
All results are the average of the five language metrics.

to 58.07, and MRR from 47.86 to 46.55. This in-
dicates that the KL.-GMoE component is crucial
for improving the performance of MKGC. Further-
more, when we removed both KL-GMoE and IER
simultaneously, the values of Hits@3, Hits@10,
and MRR further decrease compared to removing
only KL-GMoE. This demonstrates that the IER
component also makes a positive contribution to
the performance of MKGC. These ablation experi-
ment results strongly prove the effectiveness of our
proposed KL.-GMoE and IER components.

4.8 Case Study

We conducted a case study to evaluate the frame-
work’s performance in cross-lingual knowledge
sharing. These case’ queries are knowledge that
the LLM learned during its training, but expressed
in another language. As shown in Figure 6, for the
English query (Towelhead, composer, ?), the LLM
has already learned this knowledge in the French
training data. Our framework successfully lever-
ages this French knowledge to accurately predict
the entity as Thomas Newman. In contrast, SOTA
LLM-based methods incorrectly predict David Ki-
tay. This demonstrates that our framework can
effectively utilize cross-lingual shared knowledge
to improve completion accuracy.
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5 Related Work

Embedding-based methods map entities and rela-
tions in KGs to low-dimensional vector spaces. For
example, TransE (Bordes et al., 2013) based on
the translation principle of entities and relations.
RotatE (Sun et al., 2019) treats each relation as
rotation in complex vector space. DMoG (Song
et al., 2022a) represents the unseen relations of
the factual graph by fusing ontology and textual
graphs. TransH (Wang et al., 2014) models relation
as hyperplane. HOLEX (Xue et al., 2018) inter-
polate between a high model complexity method
and HolE (Nickel et al., 2016). TR-GCN (Song
et al., 2022b) proposes an ontology-guided zero-
shot relation learning method to represent unseen
relations.

Generation-based Methods transform KGC task
into text generation task. For example, KGT5 (Sax-
ena et al., 2022) posing KG link prediction as a
sequence-to-sequence task. GC-PLM (Song et al.,
2023) enhances the performance of MKGC by in-
troducing global and local knowledge constraints.
GenKGC (Xie et al., 2022) introduces a hierarchi-
cal decoding strategy of relation-guided demonstra-
tion and entity awareness. KICGPT (Wei et al.,
2023) integrates LLMs and KGE model, adopting
a knowledge-prompted contextual learning strategy
to rerank multiple entities. DIFT (Liu et al., 2024)
fine-tunes LLMs using LoRA (Hu et al., 2022) to
select the most optimal entity from candidate enti-
ties obtained by the KGE model.

6 Conclusion

In this paper, we propose a novel MKGC frame-
work. This framework integrates two compo-
nents: KL-GMoE and IER. KL-GMoE signifi-
cantly improves completion performance by ef-
ficiently capturing shared knowledge across lan-
guages. IER fully utilized cross-lingual shared
knowledge through a multi-round iterative ap-
proach, further improving completion performance.
The experimental results demonstrate that our
framework exhibits superior performance in the
MKGC task.

Limitations

Our framework is limited by the token length of
the LLM, therefore it is unable to perform entity
selection based on all entities in the KG. Moreover,
the framework processes text information exclu-
sively. This limitation impedes its application to

multimodal KG datasets, as it cannot integrate in-
formation from other modalities.

Ethics Statement

The paper proposes a method for MKGC and con-
ducts experiments on a multilingual dataset ex-
tended from public available datasets. Therefore,
data privacy implications are non-existent in this
scenario.
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A Appendix

A.1 Prompt Example

We present prompt examples for candidate entity lists of varying lengths during the training phase.

Prompt

Given a triplet with a missing tail entity t: (Saint George and the Dragon, material
used, t).

The following provides descriptive information about entity Saint George and the
Dragon:

Saint George and the Dragon, Saint George and the Dragon or Saint George Killing
the Dragon is a 1555 or 1558 painting by the Venetian artist Tintoretto. It was later
acquired by the English collector

Here are some triplets containing entity Saint George and the Dragon:

[(Saint George and the Dragon, depicts, hill); (Saint George and the Dragon, depicts,
spear); (Saint George and the Dragon, creator, Jacopo Tintoretto); (Saint George and
the Dragon, depicts, combat); (Saint George and the Dragon, depicts, woman); (Saint
George and the Dragon, depicts, sky)]

What is the entity name of t? Select one from the list of entities below: [oil paint;
Saint George and the Dragon; wood; tempera; textile; brick; pearl; metamorphic rock;
schist; sandstone; paint; igneous rock; tissue; gemstone; brass; copper; woven fabric;
volcanic rock; marble; dragon; basalt; sedimentary rock; The Three Graces; limestone;
steel]

[Answer]:

Number
of entities

25

Prompt

Given a triplet with a missing tail entity t: (Jason Lee, instance of, t).

The following provides descriptive information about entity Jason Lee:

Jason Lee, Jason Michael Lee (born April 25, 1970) is an American actor, photogra-
pher, producer, skateboarder, comedian, and writer. He is best known for his roles as
Earl Hickey in the television

Here are some triplets containing entity Jason Lee:

[(Mallrats, cast member, Jason Lee); (Jason Lee, ethnic group, Scottish American);
(Jason Lee, occupation, screenwriter); (Jason Lee, occupation, actor); (Jason Lee,
occupation, film producer); (Jason Lee, occupation, businessperson)]

What is the entity name of t? Select one from the list of entities below: [Jason Lee;
human; twin; Jason Alexander; Soffa Vergara; Kevin Smith; Screen Actors Guild
Award; David Cross; 3D film; college; Primetime Emmy Award; sports season; MTV
Movie Awards; Kaley Cuoco; municipality of Spain; Jason Mewes; decade; military
rank; suburb; animation studio; Jane Lynch; Hank Azaria; Satellite Award; Breckin
Meyer; My Name Is Earl; Patrick Warburton; business]

[Answer]:

Number
of entities

27

Table 7: Prompt examples for candidate entity lists of varying lengths.
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A.2 Details of the Iterative Entity Reranking Algorithm

Algorithm 1 Iterative Entity Reranking (IER)

1: Input: Query g = (h,r,7?), Mc(l) = [e1,e2,...,en]: the top-m entities generated by the KGE model,
Ny, L = p Y

2: fort =1to NV; do

3 e® = argmax P(e; | hyr, M),

e;emtP

g MEFY = MO {e®);

s: LU+ = Insert(L®) \ {e®}, ¢, eM));

6: end for

7: Output: L(Nt+1)

A.3 Analysis of Knowledge Graph Embedding Models

The experimental results in Table 8 clearly demonstrate that when using RotatE to retrieve candidate
entities, our proposed method achieves a significant performance improvement compared to the original
RotatE model, with a 14.78% increase in Hits@ 1. Notably, Ours+RotatE exhibits slightly lower perfor-
mance than Ours+TransE on several language-specific metrics. This phenomenon can be attributed to the
differing top-1 ranking rates of correct entities within the candidate sets generated by each KGE model.
Specifically, the proportion of correct entities ranked as top-1 was 14.38% when using TransE, whereas
this proportion significantly increased to 30.51% with RotatE. Therefore, this feature has had some impact:
during the fine-tuning stage, LLM is more inclined to choose the entity that ranks first in the candidate
set as the final answer. We hypothesize that this "top-1 bias" may, to some extent, suppress the model’s
exploration of other potentially correct answers, leading to Ours+RotatE performing slightly worse than
Ours+TransE on some languages. In future work, we plan to further investigate how to construct a more
stable fine-tuning instruction set that does not rely on traditional KGE models.

MODEL EN FR IT JA ZH AVG

H RotatE 24.08 24.61 2557 2949 3136 27.02
@ Ours+TransE  36.50 36.72 3593 41.60 58.63 41.88
1 Ours+RotatE  36.55 35.70 3546 41.78 59.49 41.80
H RotatE 40.73 42.13 41.68 49.78 62.36 47.34
@ Ours+TransE  46.25 45.30 44.22 5197 6693 50.93
3 Ours+RotatE  46.38 45.05 44.20 52.27 67.13 51.01
H RotatE 52.66 53.17 5150 61.68 7458 58.72
@ Ours+TransE  54.71 53.45 5231 60.85 7256 58.78
10 Ours+RotatE  54.76 54.13 52.53 62.31 74.59 59.66
M RotatE 34.63 3539 3549 4175 48.74 39.20
ﬁ Ours+TransE  42.96 42.58 41.69 48.33 63.74 47.86

Ours+RotatE  43.04 42.18 41.58 49.01 64.46 48.05

Table 8: The impact of different KGE models on the performance of our proposed framework during the candidate
entities retrieval process.

A.4 Analysis of Expert Routing

To verify the existence of knowledge sharing, we analyzed the expert selection in the test samples. We
obtained the output of each expert routing and visualized it from both the linguistic and knowledge
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dimensions. The left side of Figure 7 shows the expert routing analysis based on the linguistic dimension.
lustrates the selection of experts in each Transformer layer of the LLM for samples in different languages.
The expert selections across different language samples are mostly consistent, suggesting that our method
does not distinguish between languages in MKGC task. The right side of the figure illustrates the expert
selection for each relation. The analysis from figure shows that samples with same relations across
different languages are mostly handled by same experts. Overall, some relations exhibit consistent expert
selection, while others show differences. Based on this analysis, it is validated that our method can
effectively leverage knowledge sharing across different languages.

Linguistic Dimension 10 10

Knowledge Dimension

i
III
'.'.'.
at
1
R

‘mer Layers

Transformer Layers
1

Relations

i it
Languages

Figure 7: The left shows expert selection across five languages. The horizontal axis represents all languages, with
each small bar within a language corresponding to an expert. The vertical axis indicates the layer numbers in the
Transformer of the LLM. The color intensity of each blocks represents the frequency of samples selecting particular
expert. The right depicts expert selection across all relations. The horizontal axis represents all relations. Vertical
axis shows the layer numbers in Transformer, each row within a layer corresponding to an expert.

A.5 IER Trend Analysis

We analyzed the impact of the number of iterations in the IER method on five language evaluation metrics.
The experimental results reveal a clear performance improvement across all languages with increased
iterations. These findings demonstrate the IER method’s ability to exploit cross-lingual shared knowledge.
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Trend Analysis of IER (EN)
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Figure 8: This figure shows how the metric performance
of the IER method changes with the number of iterations
on the English test set.

Trend Analysis of IER (FR)
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Figure 9: This figure shows how the metric performance
of the IER method changes with the number of iterations
on the French test set.

Trend Analysis of IER (IT)
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Figure 10: This figure shows how the metric perfor-
mance of the IER method changes with the number of
iterations on the Italian test set.

Trend Analysis of IER (JA)
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Figure 11: This figure shows how the metric perfor-
mance of the IER method changes with the number of
iterations on the Japanese test set.

Trend Analysis of IER (ZH)

I U
0724 T
0.70{ —— Hits@1
Hits@3
$ 0.68] — Hits@10
3 —— MRR
2L o66
o
=)
2 0.64
= ,/."
0.62
0.60
0.58
1 2 3 4 5 6 7 8 9 10

Round

Figure 12: This figure shows how the metric perfor-
mance of the IER method changes with the number of
iterations on the Chinese test set.
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