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Abstract

Question-Answering (QA) systems are vital for
rapidly accessing and comprehending informa-
tion in academic literature. However, some
academic questions require synthesizing infor-
mation across multiple documents. While sev-
eral prior resources consider multi-document
QA, they often do not strictly enforce cross-
document synthesis or exploit the explicit inter-
paper structure that links sources. To address
this, we introduce a pipeline methodology for
constructing a Multi-Document Academic QA
(MDA-QA) dataset. By both detecting commu-
nities based on citation networks and leverag-
ing Large Language Models (LLMs), we were
able to form thematically coherent communi-
ties and generate QA pairs related to multi-
document content automatically. We further
develop an automated filtering mechanism to
ensure multi-document dependence. Our re-
sulting dataset consists of 6,804 QA pairs and
serves as a benchmark for evaluating multi-
document retrieval and QA systems. Our exper-
imental results highlight that standard lexical
and embedding-based retrieval methods strug-
gle to locate all relevant documents, indicating
a persistent gap in multi-document reasoning.
We release our dataset and source code for the
community. !

1 Introduction

In academic research, question-answering (QA)
systems are widely used to help researchers and stu-
dents quickly access and understand complex docu-
ment information (Hermann et al., 2015). However,
as scientific literature expands, extracting key con-
tent efficiently and accurately from a vast library
and providing relevant answers has become a sig-
nificant challenge (Chen et al., 2017).

Most existing QA datasets focus on a single doc-
ument or use multi-hop reasoning (Kwiatkowski
etal., 2019; Yang et al., 2018; Kocisky et al., 2018).

Thttps://github.com/YeloDriver/MDAQA

Example 1:

Question: How does point supervision strategy differ be-
tween infrared small target detection and crowd counting
tasks in terms of network design and performance?
Answer: In infrared target detection, point supervision
uses single points per target and evolves them into masks
through label evolution, achieving 70% IoU of fully su-
pervised methods. For crowd counting, point supervision
uses multiple points (typically 5-20) per image and em-
ploys multiscale fusion networks to handle varying crowd
densities, reaching 95% performance of fully supervised
approaches. The key difference lies in the supervision
density - infrared targets require minimal points due to
target simplicity, while crowd counting needs denser point
annotations to capture crowd distribution variations.
Sources: [2304.01484], [2202.09942]

Example 2:

Question: What are the different approaches to achieving
differential privacy in language models and their relative
trade-offs?

Answer: There are three main approaches: 1) Local DP
that anonymizes each text sample individually but requires
high noise leading to incoherent language, 2) Global DP
that trains language models privately on the full dataset al-
lowing better utility but needs careful privacy accounting,
and 3) Selective DP that protects only sensitive portions
allowing better utility-privacy trade-offs. The choice de-
pends on trust assumptions and utility requirements.
Sources: [2210.13918], [2108.12944], [1712.05888]

Table 1: Two representative examples of multi-
document QA pairs from MDA-QA. Each pair requires
the use of information from two or more articles (cf.
Sources). Example 1 shows a comparison of different
methods. Example 2 shows synthesizing evidence from
multiple sources.

Although earlier multi-hop QA tasks involve sev-
eral documents, they primarily rely on logical or
deductive chains of reasoning. In the end, the fi-
nal answer to the question typically can be found
in a single document (Zhu et al., 2024). Beyond
single-document and multi-hop settings, several
datasets explore multi-document QA (Bolotova-
Baranova et al., 2023; Fan et al., 2019; Han et al.,
2024; Li et al., 2024). However, these methods do
not strictly require synthesizing evidence across
sources. (Li et al., 2024) leverages structural sig-
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Dataset QA Generation Size Source Structure  Multiple Docs
PubMedQA (Jin et al., 2019) Human Experts 1k Title/Abstract X X
QASPER (Dasigi et al., 2021) Human Experts 5k Title/Abstract X X
QASA (Lee et al., 2023) Human Experts 1.8k Full-Text X X
SPIQA (Pramanick et al., 2025) LLMs + Human experts 6k  Full-Text + Figs & Tabs X X
SciDQAT (Singh et al., 2024) LLMs + Human experts 2.9k Full-Text X )
MDA-QA (Ours) LLMs + Hybrid Filter 6.8k Full-Text v v

Table 2: Comparison of our MDA-QA with existing scientific QA datasets. SciDQAT: Only 11% of the QA in

SciDQA dataset require multiple documents.

nals by using clusters from a single paper and its
citations. This anchor-centric method produces
asymmetric, topic-mixed neighborhoods and still
does not ensure multi-document requirements. The
research questions often scatter across articles be-
cause they involve shared or contrasting methodolo-
gies, or concepts that overlap but are not identical.
Existing QA datasets in scientific literature rarely
capture these cross-document relationships or ask
questions requiring multiple documents (Jin et al.,
2019; Tsatsaronis et al., 2015).

To address this issue, we design a pipeline for
generating specialized QA that relies on multiple
documents and propose MDA-QA, a correspond-
ing academic QA dataset in multi-document scenar-
ios. The core idea is to automatically generate QA
pairs from small groups of structurally connected
articles (e.g., through citation links), ensuring that
each QA pair draws on multiple sources. Specif-
ically, we propose using community detection on
citation graphs to identify groups of articles, then
leveraging a large language model (LLM) to create
these complex QA pairs. Finally, we design an au-
tomated quality control process to ensure that the
QA requires content from multiple documents for
a complete response. Table 1 shows two examples
generated by our approach, illustrating how it can
address various question types, such as comparing
two methods (see Example 1), synthesizing evi-
dence from multiple sources (see Example 2), and
even identifying connections across different scien-
tific domains, thereby fostering the development of
potential new ideas.

We use the open-access SPIQA dataset (Praman-
ick et al., 2025), expanding it with structural in-
formation to produce multi-document QA pairs.
We conduct a community division on over 25,000
open-access machine learning conference papers
and generate 6,804 filtered QA pairs, covering
over 3,000 small-scale groups of academic pa-
pers. While our QA pairs undergo automatic multi-
level filtering, we also perform a structured manual

check on 30 randomly sampled questions. Three
domain experts review each question, confirming
that at least two referenced articles are required.
This additional validation step ensures that MDA -
QA reflects multi-document needs rather than inci-
dental single-source occurrences.

To further verify the capability of existing
QA systems on our constructed multi-document
dataset, we establish a multi-document retrieval
task and evaluate various retrieval methods, in-
cluding BM25 (Robertson et al., 2009), Col-
BERT (Khattab and Zaharia, 2020), BGE (Xiao
et al., 2023), and MPNET (Song et al., 2020),
in chunk retrieval and document retrieval scenar-
ios. Our experiments (see Table 3) show that
BM25 achieves a Recall@10 of only 0.35, while
our structure-enhanced dense embedding method,
BGE-neighbor, can reach around 0.55, indicat-
ing a significant challenge for current mainstream
retrieval techniques in multi-document scenarios.
These findings reveal the complexity of the dataset
in terms of multi-document integration and infer-
ence requirements, leaving room for future im-
provements in multi-document retrieval and QA
methods.

The main contributions of this research are three-
fold:

1. We propose a structure-aware framework that
constructs complex multi-document QA pairs
by detecting thematically coherent communi-
ties in the citation graph and guiding LLMs to
synthesize evidence across multiple papers.

2. We construct MDA-QA, a high-quality multi-
document academic QA dataset, filling the
gap in existing datasets for complex multi-
document questions. We release our dataset
and source code for future research.

3. Experimental results show that current re-
trieval methods exhibit substantial gaps on
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MDA-QA, offering a new research base-
line for subsequent development in multi-
document integration and deep reasoning.

2 Related Work

2.1 Datasets for QA on Scientific articles

In recent years, researchers have developed diverse
datasets of various scales and forms for QA tasks
centered on scientific literature. We provide a con-
cise overview and comparison of current scientific
QA datasets in Table 2. Earlier work employed
automated techniques to extract named entities
and their relationships from documents to generate
cloze-style academic paper QA (Rajpurkar et al.,
2016; Jin et al., 2019). Subsequently, datasets
such as PubmedQA (Jin et al., 2019), BIOASQ-
QA (Tsatsaronis et al., 2015; Krithara et al., 2023),
and Qasper (Dasigi et al., 2021) gradually extended
QA generation to include abstracts and parts of
the full text, emphasizing richer semantic informa-
tion. New datasets, including QASA and SPIQA,
have been introduced to push the boundaries of
QA tasks further. QASA (Lee et al., 2023) em-
phasizes understanding the full-text content, cre-
ating QA pairs through manually reading com-
plete articles, and covering more document de-
tails. PeerQA (Baumgidrtner et al., 2025) and Sci-
enceQA(Saikh et al., 2022) also focus on academic
QA but mostly remain single-document. SPIQA
(Pramanick et al., 2025) introduces multimodal
information processing, using Visual Large Lan-
guage Models (VLLMs) to generate high-quality
QA pairs based on figures and corresponding cita-
tions in articles. However, these datasets focus on
deep exploration within a single document. This
constraint restricts broader comparative or syn-
thetic queries that require elements drawn from
multiple articles. Similar to our work, a recent pro-
posed dataset SciDQA (Singh et al., 2024) lever-
ages peer-review questions and author-provided
answers for a deep understanding of scientific pa-
pers. Only 11% of the questions need multiple
documents to answer. In contrast, our MDA-QA
dataset relies on an automated pipeline, generat-
ing multi-document QA at a larger scale and with
strictly enforced multi-document requirements.

2.2 Multi-Document QA Datasets

Beyond single-document QA, several datasets ex-
plicitly address multi-document reasoning. Wik-
iHowQA (Bolotova-Baranova et al., 2023) pro-

vides around 12K how-to questions grounded in
75K passages from WikiHow, focusing on proce-
dural rather than factoid content. ELIS (Fan et al.,
2019) contains 25K open-ended Reddit questions
with web evidence, but without enforced multi-
document synthesis. LFRQA (Han et al., 2024)
emphasizes long-form answers that integrate mul-
tiple documents, while Loong (Wang et al., 2024)
evaluates long-context LLMs on multi-document
QA across domains such as finance, law, and sci-
ence, with around 11 supporting documents per
instance. M3SciQA (Li et al., 2024) constructs
1.5K questions over clusters of an anchor paper
and all its cited papers. Nevertheless, none of these
resources strictly requires synthesis across multiple
documents. In contrast, our MDA-QA leverages ci-
tation networks to construct thematically coherent
communities, ensuring that each question strictly
requires synthesizing evidence across multiple sci-
entific articles.

2.3 Complex QA Challenges

Several studies have addressed textual comprehen-
sion methods and knowledge-based reasoning to
increase the complexity of questions. From tradi-
tional single-document QA datasets like SQuAD
(Rajpurkar et al., 2016) and Natural Question
(Kwiatkowski et al., 2019) to multi-hop reason-
ing tasks such as HotpotQA (Yang et al., 2018)
or hybrid datasets incorporating structured data
like Hybrid QA (Chen et al., 2020b) and OTT-QA
(Chen et al., 2020a), there has been a steady move-
ment toward more diverse and complex QA set-
tings. However, these datasets remain confined
to single-document scenarios or carefully chosen
multi-hop passages, which do not cover the real
multi-document scenarios. Our work seeks to ac-
commodate QA scenarios requiring the synthesis
of distinct, complementary pieces of information
from multiple documents. This differs from these
datasets because the final answer is not fully con-
tained in a single source and cannot be obtained
simply by “hopping” within one text or among mul-
tiple documents.

3 Proposed method

In this section, we present our pipeline for gen-
erating QA pairs that draws on multiple sources
from the scientific literature. As shown in Figure 1,
this process includes three key modules: Commu-
nity Building (Section 3.1), QA Generation (Sec-
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Figure 1: Our proposed process for generating QA pairs from scientific literature.

tion 3.2), and Automated Quality Assurance (Sec-
tion 3.3).

3.1 Community Building

In scientific literature, articles often have complex
and diverse relational connections, such as cita-
tions, methodological similarities, thematic simi-
larities, keyword overlaps, or co-author networks
(Qiu et al., 2014). We focus on citation links, rep-
resenting each paper as a node in a directed graph,
where each edge indicates a citation from one pa-
per to another. To detect communities, we use the
Speaker-Listener Label Propagation (SLPA) algo-
rithm (Kuzmin et al., 2013), which iterates over
nodes to exchange labels, allowing nodes to accu-
mulate multiple labels and thus belong to multiple
communities.

Our choice of SLPA is based on its capacity
to handle overlapping communities and produce
relatively small, thematically coherent communi-
ties. Preliminary tests with Louvain (Blondel et al.,
2008) or Leiden (Traag et al., 2019) that we made
resulted in one large component (An et al., 2004),
making them less suitable for multi-document QA
generation. We decided specifically to focus on
smaller communities so that during the QA gen-
eration process, the LLM can effectively process
and integrate each article’s key points, providing
more precise and feasible multi-document ques-
tions. Each subset of articles exhibits thematic or
methodological coherence, serving as a candidate
group for generating multi-document QA pairs.

3.2 QA Generation

Once the communities have formed, we employ
structured prompting (Schulhoff et al., 2024) with
step-by-step instructions (Appendix A presents the
prompt for QA generation). Specifically, we pro-
vide the LLLM with (i) all the context within the
community, (ii) instructions to cross-reference at
least two documents, and (iii) guidance to generate
a single-sentence question and a concise, multi-

evidence answer. This prompt encourages the
model to examine overlaps across documents sys-
tematically. For instance, this prompt may ask the
model to compare results reported in different arti-
cles, identify conflicting conclusions, or combine
an idea from one article with data from another.

Further, to ensure the QA truly requires multi-
ple documents, we integrate an automatic cross-
check process, where the LLM compares its multi-
document answer with single-document attempts.
We only retain the cases that strictly demand more
than one article.

3.3 Automated Quality Assurance

Although LLMs can generate complex questions
from multiple documents, some answers can still
be found in a single document. To address this,
we design an automated multi-level quality assur-
ance strategy to ensure that the generated QA pairs
require evidence from multiple documents.

As shown in Algorithm 1, for each QA pair
(gi,a;) and its corresponding support document
set .S, we individually provide the model with a
document s; € S, allowing the model to answer
qi, and record this answer as a{ . We then let the
LLM compare a; and a{ to determine which an-
swer is more accurate and complete. Only if a;
is better than ag for all documents in S, the QA
pair is retained, eliminating questions answerable
by a single document. Appendix B presents the
prompts used for the LLMAnswer step and Compare
step. We further conducted a sanity check, com-
plementing Algorithm 1. Three domain experts re-
viewed 30 randomly sampled QA pairs. The result
shows that our automated filter reliably removes
single-document cases while retaining questions
that require cross-document synthesis. The user
interface (UI) and detailed guidelines are presented
in Appendix C.2

Our automated quality assurance process re-
moves QA pairs that appear complex but can be
solved by a single document in large-scale data
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Algorithm 1 QA Filtering

Require: A set of QA pairs {(¢;, a;)}; For each
(gi, a;), a corresponding set of supporting doc-
uments S = {s1,52,...,S}.

Ensure: A filtered set of QA requiring multiple
documents to answer.

1: for each QA pair (¢;, a;) do

2:  Initialize valid < True

3:  for each document s; in S do

4: @) + LLMAnswer(q;, sj) {Model at-

7
tempts to answer g; using only s }

5: comparison <— Compare(%,ai,az ,S)
{Check completeness/accuracy }

6: if comparison # “a; is strictly better”
then

valid < False
break {If a single document answer is
comparable or better, mark invalid }
9: end if
10:  end for
11:  if valid then

12: Retain (g;, a;) {Only keep QA that de-
mands multiple documents }

13:  else

14: Discard (q,', ai)

15:  end if

16: end for

generation. Consequently, it reinforces the multi-
document reliance for each question.

4 Dataset Generation and Analysis

In this section, we detail our MDA-QA dataset
generation with the pipeline in Section 3. Then, we
introduce the statistics of MDA-QA.

4.1 Data Acquisition and Community-Driven
Document Aggregation

Citation Graph Construction We base our study
on open-access academic publications collected by
SPIQA (Pramanick et al., 2025). SPIQA collected
25,859 peer-reviewed articles from 19 top-tier ma-
chine learning conferences between 2018 and 2023,
focusing on the publicly accessible PDF files and
corresponding TeX source files to extract original
high-quality article texts. All articles in this col-
lection are indexed in Semantic Scholar, making
it easier to retrieve relational information across
papers and to build the citation network. In addi-
tion, we exclude 1,977 documents from the original

SPIQA set due to unreadability and inconsistencies
caused by missing content, formatting anomalies,
or unprocessable TeX segments. We use the Se-
mantic Scholar API? to obtain citation information
and build a citation graph with the public Neo4;j
graph database?, treating each document as a node
and each citation as an edge.

Community Detection As mentioned in Sec-
tion 3.1, we adopt the SLPA (Speaker-Listener La-
bel Propagation) algorithm to detect communities
within the directed citation graph. SLPA propa-
gates labels over multiple iterations and filters them
based on frequency thresholds, allowing each doc-
ument to belong to multiple communities. While
SLPA supports both directed and undirected graphs,
our pilot test shows that using the directed graph
yields smaller, more thematically coherent commu-
nities. We set the iteration count to 50, controlling
the number of times labels are exchanged, and the
filtering parameter to 0.1, specifying the minimum
frequency below which labels are discarded. In
these settings, we initially obtained 11,373 commu-
nities.

To ensure the subsequent QA tasks reflect mean-
ingful multi-document scenarios with manageable
context for the LLM, we refine the initially de-
tected communities based on their size and con-
nectivity. Specifically, we discard 6,787 single-
node communities arising from isolated citations
or newer uncited papers. We also remove 414 large-
scale communities exceeding 13 documents, which
risk surpassing input token limits for QA genera-
tion. This filtering procedure yields 4,172 small-
to medium-sized communities, covering 14,698
papers overall. In the future, we will consider hier-
archical or sub-community approaches to preserve
the information of large communities.

4.2 Dataset Construction

Next, we apply the QA Generation (Section 3.2)
and Automated Quality Assurance (Section 3.3)
steps to produce QA pairs grounded in multiple
documents. Since large language models may dif-
fer in their capacity to integrate multi-document
context, we conducted a pilot study with GPT-
40 (Hurst et al., 2024), Claude-3.5-sonnet (An-
thropic, 2024), and Gemini-1.5-Pro (Gemini Team,
2024) on 50 randomly selected communities. The
findings suggest that Claude-3.5 tends to gener-
ate multi-document questions with more precise

*https://www.semanticscholar.org/product/api
3https://neodj.com/
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answers. Details of this study and sample out-
puts from different models can be found in Ap-
pendix C.1. We then use Claude first to create
8,573 multi-document question-answer pairs and
apply our filtering procedure, which yields a final
set of 6,804 QA pairs.

To further validate the reliability of these QA,
we randomly sampled 200 QA pairs together with
their supporting documents. Each case was manu-
ally evaluated by reviewers with expertise in ma-
chine learning against three criteria: (i) assess the
quality and clarity of the question—answer pair; (ii)
verify that a correct response necessitates synthesiz-
ing information from all listed support documents
rather than any single paper; and (iii) check the
factual correctness of the reference answer against
the sources. Of these 200 instances, 198 satisfied
all criteria. The remaining 2 were flagged for un-
clear question wording. We did not observe cases
where the answer could be correctly obtained from
a single document alone. This evaluation verifies
the reliability of the resulting QA pairs and shows
that the automatic generation and filtering pipeline
produces questions that require cross-document
synthesis.

4.3 Statistics of MDA-QA

The MDA-QA dataset is based on 14,698 high-
level machine learning articles, constructing 4,172
academic communities ranging in size from 2 to
13 documents, each containing an average of 4,043
words. We generate high-quality 6,804 QA, focus-
ing on multi-reference articles. On average, the
questions and answers contain 18 and 59 words,
respectively. Notably, the variance in question and
answer lengths differs significantly, 2.96 for ques-
tions and 12.86 for answers. This indicates that
the distribution of question lengths is relatively
uniform. In contrast, answer lengths show more
significant variability, suggesting that the content
needed for answers in a multi-document integration
context is more diverse.

5 Experiments on QA

In this section, we evaluate whether existing re-
trieval methods can successfully identify the multi-
ple documents required by our MDA-QA dataset.
We first describe how we set up the retrieval task
and the methods tested, then analyze retrieval per-
formance. Finally, we explore how the similarity
among documents in a community affects retrieval

results.

5.1 Experimental Setup

Task Formulation. Given a question ¢; sup-
ported by multiple documents {d,ds, ...}, the
goal is to retrieve the ground-truth support set
among a pool of candidate documents. We mea-
sure performance via Recall @k, which reveals how
many of the gold support documents appear within
the top-k retrieved results. We also report Exact
Match, EM @k, which requires that all gold docu-
ments must appear within the top-k results.

Dataset and ground truth. We use the 6,804
multi-document QA pairs in MDA-QA for testing
retrieval. 2-3 gold support documents accompany
each QA pair; none of the questions can be fully an-
swered without referring to all of these documents.

Comparison Methods. We compare classic
lexical retrieval and several semantic embed-
ding-based methods:

1. BM25 (Robertson et al., 2009): A strong
lexical baseline that scores query-document
matches based on term frequencies.

2. ColBERT (Khattab and Zaharia, 2020): A
neural ranking model using BERT encodings;
we adopt its default configuration for passage-
level retrieval.

3. BGE (Xiao et al., 2023): A recent open-
source general embedding model that encodes
queries and documents into a shared semantic
space.

4. MPNET (Song et al., 2020): A widely
used sentence embedding model leveraging
masked and permuted language modeling.

We evaluate each model in two retrieval
paradigms:

1. Chunk-based Retrieval (Chunk). Each
document is segmented into smaller chunks
containing 400 tokens, and embeddings (or
BM25 indexing) are computed at the chunk
level. The question is treated as one embed-
ding/query, and top-k chunks are retrieved
based on the cosine similarity between the
query and the chunk. We then merge chunk-
level retrievals by their parent document to
see if any chunk from a gold document was
retrieved.
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Method Recall@10 Recall@20 Recall@50 EM@10 EM@20 EM@50
Chunk

BM25 0.35 +0.34 0.42 +0.36 0.51 £ 0.37 0.12 0.19 0.28
Colbert 0.44 +0.32 0.52 +0.33 0.62 +0.33 0.16 0.25 0.36
BGE 0.49 +0.34 0.57 +£0.35 0.66 +0.35 0.22 0.33 0.46
MPNET 0.41 +035 0.50 £ 0.37 0.60 + 0.37 0.18 0.27 0.39
Doc

BM25 0.44 +0.36 0.51 £0.37 0.60 +0.37 0.21 0.28 0.37
BGE 0.51 £ 036 0.58 +£0.36 0.68 +0.35 0.27 0.36 0.48
MPNET 0.45 +£0.37 0.54 +0.37 0.64 +0.37 0.24 0.32 0.45
BGE-neighbor 0.55+040 0.63+039 0.73 £036 0.37 0.46 0.57
MPNET-neighbor  0.48 040  0.57 £ 040  0.68 £0.38 0.31 0.40 0.53

Table 3: Retrieval performance on our multi-document QA dataset.

2. Document-level Retrieval (Doc). Each docu-
ment is represented by a single vector, either
by averaging all its chunk-level embeddings
or by indexing each full text as a single BM25
unit.

Finally, we adopt a simple neighbor approach to
exploit structural information in the document-level
retrieval setting. We incorporate the neighbor rela-
tionship from the citation graph built in Section 4.1
for comparison. Given a citation graph G whose
nodes represent documents, we update each node
embedding Emb(v) in a neighborhood-averaging
manner:

Emb’(v) = a x Emb(v)

1
+(1—a)x (|N(v)| > Emb(u)), 1)

uwEN (v)

where N (v) is the set of in-neighbors of v in the
citation graph, and « is a hyperparameter set to
0.5. We detail the selection of a in Appendix C.3.
We label the neighbor-augmented methods BGE-
neighbor and MPNET-neighbor.

5.2 Results on Multi-Document Retrieval

Table 3 summarizes the retrieval performance,
evaluated by Recall@k and EM @£ for each ap-
proach. We report (mean =+ standard deviation) for
recall@Fk across all QA pairs.

Unlike lexical-based BM25, neural embedding
methods (ColBERT, BGE, MPNET) consistently
yield higher recall, indicating that purely lexical
matching struggles to capture the multi-document
context. Among semantic methods, BGE leads

under chunk-based retrieval, while BGE-neighbor
attains the highest recall when using document-
level embeddings augmented with local citation
neighbors. Note that these results apply to both
recall@k and EM @k metrics. These observations
confirm that (1) capturing finer-grained semantics
is crucial, and (2) leveraging the citation structure
yields noticeable gains, thus demonstrating that
MDA-QA remains challenging to naive or solely
lexical and semantical approaches.

Despite these improvements over BM25, the re-
call values are still relatively low (often below 0.7
even at 50 documents retrieved), underscoring the
difficulty of retrieving multiple relevant documents
that collectively answer the question. This shortfall
exemplifies the complex multi-document nature of
MDA-QA.

5.3 Influence of Document Similarity in a
Community

We now analyze whether more homogeneous com-
munities (i.e., documents within them are highly
similar) are easier or harder to retrieve. Let C =
{C1,C4,...,Ck} be a set of communities. Re-
call from Section 3 that each of our QA ques-
tions is anchored in a small community Cj =
{d1,da,...,dy,}.
For each community CY, define:

S(Cx) =

1 .
@) > sim(dy, dj), (@)
2) 1<i<j<my
where ny, = |Cj| and sim(+, -) denotes the cosine
similarity between two documents. We use MP-
NET doc embeddings for simplicity.
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Figure 2: Distribution of community similarity.

Figure 2 shows a histogram of community simi-
larity values. Communities tend to form a strong
mode peaking around 0.75-0.85, though there is
also a broad tail of less-similar document pairs.

To further quantify how similarity impacts re-
trieval, Figure 3 plots the average Recall@10 for
questions grouped by quantiles of community sim-
ilarity. We see a slight upward trend: questions
from more-similar communities can be somewhat
easier to retrieve, presumably because the shared
terminology or themes enable a single embedding
query to retrieve all relevant documents more con-
sistently. Nonetheless, the variance is relatively
large, suggesting that multi-document retrieval re-
mains nontrivial, even when the supporting docu-
ments are semantically similar.

5.4 RAG Baseline

Beyond pure retrieval metrics, we run a prelimi-
nary end-to-end Retrieval Augmented Generation
(RAG) (Lewis et al., 2020) experiment. Specifi-
cally, we retrieve the top-10 documents via BGE or
BGE-neighbor, then feed those documents together
with the question into GPT-40 to generate the final
answer. We also include a zero-shot GPT-40 setup
for comparison.

To evaluate the free-form answers, we follow
the previous work (Pramanick et al., 2025; Singh
et al., 2024; Lee et al., 2023) under four evaluation
metrics - METEOR (Banerjee and Lavie, 2005),
CIDEr (Vedantam et al., 2015), ROUGE-L (Lin,
2004), BERTScore F1 (Zhang et al., 2019).

As Table 4 shows, using BGE-neighbor yields
higher METEOR, ROUGE-L, and BERTScore
than the zero-shot GPT-40 and the standard BGE
approach, indicating that integrating citation struc-
ture helps locate more relevant evidence, thus al-
lowing the LLM to generate the answer. How-
ever, the CIDEr score drops slightly for BGE-

Method M R-L C B-F1
GPT-40 0.16 0.19 0.54 0.18
w/ BGE 023 0.19 054 0.17

w/ BGE-neighbor 0.24 020 050 0.20

Table 4: End-to-end RAG results with GPT-40 on
multi-document QA. M: METEOR, R-L: ROUGE-L, C:
CIDEr, B-F1: BERTScore F1

neighbor. One likely reason is that while the gener-
ated answers align better semantically, the specific
word overlap with reference answers may decrease.
Overall, these findings suggest that incorporating
structured retrieval can improve certain aspects of
answer quality, but gaps in retrieving all necessary
documents still limit overall performance.

5.5 Discussion

Our experiments demonstrate that current retrieval
methods, whether lexical BM25 or dense embed-
ding models (BGE, MPNET, ColBERT), struggle
to retrieve all required documents to answer a ques-
tion in MDA-QA. Even when increasing the top-k
to larger values (e.g., 50), the average Recall re-
mains below 0.70, indicating that current methods
still fail to retrieve all relevant documents consis-
tently. Augmenting document embeddings with
local graph structure (“neighbor”) helps, but there
remains a large gap between these results and the
performance one might desire for multi-document
question answering. Moreover, the relative sim-
ilarity of documents within a community affects
retrieval to some extent, yet higher similarity does
not eliminate the challenge of multi-document inte-
gration.

These findings highlight the relevance of our
dataset for multi-document retrieval and QA. Fur-
ther progress may require more advanced tech-
niques that jointly consider document semantics,
citation networks, and question structure, rather
than relying on independent indexes or simple em-
bedding averages.

6 Conclusion

This study proposes a pipeline for constructing
datasets tailored to multi-document academic QA
tasks based on the SPIQA original data and citation
network structure. We generate MDA-QA of 6,804
high-quality multi-document QA pairs and con-
duct initial retrieval experiments on it. The result
indicates that in multi-document scenarios, straight-
forward keyword matching or semantic embedding
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Figure 3: Average Recall@10 across quantiles of community similarity. n indicate the number of questions in each
bin. Error bars indicate variability among questions in each bin.

methods remain insufficient for capturing comple-
mentary information and latent relationships across
documents. Future work may explore graph-based
methods, contextual reasoning, and knowledge in-
tegration for more effective document merging at
the retrieval stage, and introduce advanced multi-
document reasoning models in the QA stage, ad-
dressing both complex academic inquiries and real-
world industrial use cases.

7 Limitation

Although MDA-QA offers a new direction for
multi-document scientific QA, several limitations
remain. First, our dataset primarily covers the
papers for the specific machine learning domain,
which does not fully capture broader scientific do-
mains. Extending the approach to diverse fields
could yield more comprehensive benchmarks. Sec-
ondly, our QA generation and filtering processes
lean heavily on LLM prompts and responses. Al-
though we have conducted a small-scale expert
review for the automated quality control process,
large models can produce hallucinations or over-
look complex multi-document reasoning. Finally,
this pipeline requires extensive text parsing and
repeats LLM calls, imposing resource costs and
potentially limiting scalability. Adopting a more
efficient model interaction process could reduce
resource demands and support larger-scale deploy-
ment.
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A Prompts for QA generation

The prompt we used for QA Generation is pre-
sented in Figure 6. It contains instructions for
cross-document references and filtering steps.

B Prompts for Automated Quality
Assurance

LLMAnswer

Given the following question and one
scientific paper, generate an answer
based on the given paper. If the
question cannot be answered by the
provided contents, please provide
a reason why. Directly respond
to the question, don’t provide any
additional information. You must
provide a concise answer in one
sentence only.

Question: <question>

Paper: <paper>
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Compare

Given the following question and a set
of corresponding scientific articles:
Question: <question>

Articles: <all_articles>

Compare the model answer with the
grand truth answer based on the
provided articles:

Model answer: <LLMAnswer>

Ground truth answer: <ground_truth>
Determine which answer is better and
why. choose between [model_answer,
ground truth answer, neither, equal]

C Experiment Details

C.1 Comparison of LLM Outputs

In our pilot study, we randomly selected 50 aca-
demic communities and applied the same prompt to
three different large language models (Claude 3.5-
Sonnet, Gemini-1.5-Pro, and GPT-40) to generate
multi-document QA pairs. We present an example
in Table 5.

We manually verified the quality of the gener-
ated QA by each model, focusing on three aspects:
(7) Whether the model understands the prompt’s
requirement to "generate QA based on multiple
documents"; (i) Whether the questions are neither
too trivial nor too specific for any single supporting
document; (7i7) Whether the answer requires inte-
grating all supporting documents to be complete
and accurate.

While each model was able to produce questions
referencing more than one document, we found
that Claude 3.5 generally provided more coherent,
concise, and contextually relevant questions and
answers than the other two. In contrast, the other
models occasionally generate questions that are
either too general or include unnecessary details.

C.2 Expert Sanity Check of the Automated
Filter

This study is a lightweight sanity check designed to
validate the reliability of our large-scale automated
QA filtering (Algorithm 1). The UI used is shown
in Fig 5.

We randomly sampled 30 QA pairs produced by
our pipeline and applied Algorithm 1 to them. Dur-
ing the Compare step, the LLM was additionally

required to provide a brief rationale explaining why
the multi-document answer is strictly better than
any single-document answer.

Three machine learning experts independently
examined each sampled QA pair and assessed:
(i) the overall quality and clarity of the ques-
tion—answer pair; (ii) the correctness of the LLM’s
Compare step reasoning; and (iii) whether answer-
ing the question truly requires at least two docu-
ments.

The result shows that our LLM-based filter’s rea-
soning is consistent with the experts’ assessment,
indicating that the automated process successfully
flags single-document questions while preserving
those that require cross-document synthesis.

C.3 Alpha in Neighbor Method

We systematically evaluated o from 0.1 to 1.0 in
increments of 0.1, measuring how Recall@10, Re-
call@20, and Recall@50 would vary. We con-
ducted this test on MPNET and BGE. Figure 4
presents the resulting curves.

0.75

—e— recall@10
recall@20
0.70 —&— recall@50

0.65 //\‘
0.60
0.45
0.40
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o (Alpha)

Recall Score

(a) Results on MPNET

0.70 f\
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—— recall@50
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0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
o (Alpha)

(b) Results on BGE

Figure 4: Effect of o Parameter on Recall @k Metrics.
In these two figures, the green, orange, and blue curves
represent Recall@10, Recall@20, and Recall@50, re-
spectively. All three curves peak or plateau around
«a = 0.5 for both MPNET and BGE.

As « increases from 0.1, all three Recall met-
rics initially rise, indicating that incorporating a
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Community: [1805.01089, 1906.05691, 1803.01465]

Claude-3.5-Sonnet Q: How does incorporating sentiment information into text summarization models help improve
both tasks according to experimental results?

A: Joint learning of sentiment and summarization leads to better performance in both tasks
because sentiment classification provides supervision signals that guide summarization to capture
sentiment tendencies, while summarization helps identify important sentiment-bearing content
and removes noise, resulting in improved classification accuracy. This is demonstrated by
experimental results showing significant improvements in both ROUGE scores for summarization
and sentiment classification accuracy compared to independent models.

Support: [1805.01089, 1906.05691]

Gemini-1.5-Pro Q: What are the advantages and disadvantages of using word embeddings in the output layer of
a neural paraphrase generation model compared to a traditional linear softmax operation?

A: Using word embeddings in the output layer of a neural paraphrase generation model allows
the model to capture semantic meaning by referring to the embedding of a word, while a
traditional linear softmax operation learns the word itself rather than the relationship between
words. However, word embeddings can increase the model’s complexity and require careful
consideration of how to effectively incorporate them.

Support: [1803.01465, 1805.01089]

GPT-40 Q: How do the proposed models in both papers address the challenge of improving sentence
summarization while ensuring the generated summaries are coherent and relevant to the sentiment
expressed in the reviews?

A: Both models utilize an encoder-decoder framework where one enhances summarization by
focusing on relevant aspects of sentiment within the reviews, while the other employs a retrieval
style for word generation, capturing the semantic meaning through distributed representations,
thereby improving coherence and relevance.

Support: [1906.05691, 1805.01089]

Table 5: Comparison of multi-document QA generated by different LLMs in the same academic community based
on the same Prompt.

greater proportion of the document’s embedding
is beneficial up to a certain point. However, when
« exceeds approximately 0.5-0.6, performance be-
gins to drop. We hypothesize that high « places
too much emphasis on the document’s representa-
tion, underutilizing the citation network context;
conversely, low « dilutes the document’s content
features.

Hence, a = 0.5 emerges as a sweet spot where
retrieval performance across different recall metrics
is either maximal or near-maximal, and remains
relatively robust across various communities of dif-
fering sizes. Based on these findings, we adopt
a = 0.5 in our main experiments to have a balance
between retaining each document’s unique embed-
ding and incorporating vital neighbor information.
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Question Evaluation
Current Question Number: 2
Question: How do dynamic telen pruning methods differ from weight-level lottery tickets for reducing transformer redundaney?

Ground Truth: Dynamic token pruning metheds reduce redundancy by adaptively dropping less informative tokens based on each input image's features, while weight-level lottery tickets try to find static sparse
weight patterns. Tolcen pruning is more flexible and input-adaptive but requires additional computations to determine token importance.

Support IDs: 210612620, 2211.01484

Instructions:

Eeview the model evaluation for each document focused on the "better_answer” decision.

Judge whether the model's selections and associated reasons are logical and consistent

Affer assessing "better_answer" judzments for all documents relating to a question. determine whether the collective evaluations support retaiming the question.
Provide a brief note for each selection if vou have any concems or suggestions.

P

Support Paper: 2106.12620

Model Answer: Dvnamic token pruning methods adaptivelv remove less informative input tokens during inference based on their importance scores, while weight-level lottery tickets focus on identifying and
pruning redundant model parameters through iterative training.

Better Answer: ground truth answer

Reason for Better Answer: The ground truth answer provides more precize details about the key distinction between the two approaches - specifically that token pruning is input-adaptive while weight-level
lottery tickets sesk static sparse patterns. It also notes token pruming's trade-off of requiring additional computation to determine token importance. The model answer is more superficial and misses these
important nuances about the mput-adaptive nature of token pruning versus static weight pruning patterns. The papers emphasize this input-dependency aspect as a key differentiator between the approaches.

Censider if the evaluation from the model i comect?
O Yes O No

Note:

Support Paper: 221101434

Model Answer: Dyvnamic token pruning methods remove tokens during model execution based on mput-specific features, while weight-level lottery tickets focus on identifying important weight imitizlizations
that can be pruned before training begins.

Better Answer: ground truth answer
Reason for Better Answer: The ground truth answer provides more complete and muanced details from the papers: 1) It explains that token pruning is specifically input-adaptive while weight tickets fry to

find static patterns, 2) It acknowledges the tradeoff that token pruning requires additional computation to determine importance, and 3) It better reflects the papers' discussion of flexibili
While the model answer captures the basic distinction, it lacks these important technical nuances that are key to understanding the key differences between the approaches.

Conzider if the evaluation from the model is comrect?
O Yes O No
Note:

O Keep O Discard

Note:
[

Based on the information above, should we keep the question or discard?

Figure 5: UI used for sanity check. For each sampled QA, the interface displays the question, the multi-document
ground-truth answer, per-support-paper model answers with the Compare-step rationale. We ask the experts to
verify the model’s judgment for each paper, add notes, and make a final keep/discard decision.
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** Task
Analyze

Context *%
scientific literature communities to generate complex questions requiring

the synthesis of multiple documents. Each question must:

1. Involve at least 2 articles with deep interconnections

2. Cover question types including but not limited to:

Methodological comparison and critique
Contradictory conclusion analysis
Technological evolution tracing
Multidimensional evaluation

Hypothesis validation pathways

*% Community Information **
<paper contents>

*%* Processing Pipeline **

1. Select at least two articles with deep interconnections.

2. Find the connection between these articles and identify Problem Spaces:

Method contrast: CNN in Paper X vs Transformer in Paper Y
Conclusion conflict: p<@.01 in Paper Z vs p>0.05 in Paper W

Technical progression: Baseline in Paper A -+ Optimized solution in Paper
D

3. Based on the first two steps, generate questions following the rules:

Avoid asking simple or definitional questions.

Avoid asking questions like "How do different approaches...”, "What are
the key challenges...”, "What are the key differences...”

n

The questions should be in one sentence only; they should not consist of
more than one question.

The questions should not contain the titles or method names; don’t use
phrases like ’as discussed in the articles.’

Ensure that the answers are concise, accurate, and directly related to
the corresponding question.

Do not generate any information that does not appear in the original
documents, nor make unsupported inferences.

Repeat the process to generate questions as much as possible.

Figure 6: Prompt provided to Claude 3.5 during QA generation phase
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