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Abstract

Generative Information Retrieval is an emerg-
ing retrieval paradigm that exhibits remark-
able performance in monolingual scenarios.
However, applying these methods to multilin-
gual retrieval still encounters two primary chal-
lenges, cross-lingual identifier misalignment
and identifier inflation. To address these lim-
itations, we propose Multilingual Generative
Retrieval via Cross-lingual Semantic Compres-
sion (MGR-CSC), a novel framework that uni-
fies semantically equivalent multilingual key-
words into shared atoms to align semantics
and compresses the identifier space, and we
propose a dynamic multi-step constrained de-
coding strategy during retrieval. MGR-CSC
improves cross-lingual alignment by assigning
consistent identifiers and enhances decoding ef-
ficiency by reducing redundancy. Experiments
demonstrate that MGR-CSC achieves outstand-
ing retrieval accuracy, improving by 6.83%
on mMarco100k and 4.77% on mNQ320k,
while reducing document identifiers length by
74.51% and 78.2%, respectively. We pub-
licly release our dataset and code at https:
//github.com/simengggg/MGR-CSC

1 Introduction

Multilingual Information Retrieval (MIR) serves
as a critical component in natural language pro-
cessing, particularly in applications such as cross-
border e-commerce (Li et al., 2020) and cross-
lingual search systems (Xu et al., 2021). The
core need lies in developing models that can effec-
tively process multilingual queries and retrieve rel-
evant documents across different languages (Zhang
et al., 2019; Dwivedi and Chandra, 2016). Tradi-
tional translation-based approaches compromise
retrieval quality due to error propagation in ma-
chine translation pipelines (Chandra and Dwivedi,
2017). Recently multilingual pre-trained language
models (PLMs) (Xue et al., 2020; Conneau et al.,
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Figure 1: (a) illustrates the language-independent key-
word approach, where the model biases toward query-
language DocIDs during decoding. In contrast, (b)
demonstrates MGR-CSC successfully retrieves target
documents via semantic clustering, enabling more reli-
able identification.

2019) demonstrate improved performance by en-
coding cross-lingual content into joint semantic
spaces (Yarmohammadi et al., 2019). However,
precise cross-lingual alignment and end-to-end se-
mantic matching remain significant challenges for
pervious methods.

Generative Information Retrieval (GIR) offers a
paradigm shift by leveraging the model’s paramet-
ric memory to store documents and directly gen-
erates document identifiers (DocIDs) (Tay et al.,
2022; Zhuang et al., 2022; Sun et al., 2023). This
approach leverages generative PLMs to learn and
encode direct associations between documents and
their unique DocIDs. Unlike previous paradigms,
GIR offers an alternative end-to-end framework by
utilizing generative PLMs to directly map queries
to relevant DocIDs. This generative approach in-
herently addresses the mentioned challenges by
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learning direct associations between multilingual
queries and DocIDs.

However, the application of GIR to multilin-
gual scenarios confronts two fundamental limita-
tions: (i) Cross-lingual Identifier Misalignment.
Existing DocIDs are constructed using language-
independent encoding schemes, creating isolated
semantic mapping spaces for each language. As
shown in Figure 1 (a), queries in a specific language
lead the model to preferentially generate DocIDs
for documents in the same language, such as En-
glish and French. This phenomenon is a direct re-
sult of cross-lingual identifier misalignment, which
consequently hinders the transfer of multilingual
knowledge through shared latent document-level
representations. (ii) Multilingual Identifier In-
flation. The number of existing DocIDs increases
manifold as the number of languages grows in mul-
tilingual GIR. As shown in Figure 1 (a), keyword-
based methods assign different atom IDs to seman-
tically equivalent keywords across languages. For
instance, the English word largest might be as-
signed atom ID 75, while its French counterpart
maximum is assigned atom ID 366, despite their
semantic equivalence. The combinatorial expan-
sion of unique DocIDs in multilingual documents
intensifies this challenge, posing significant hurdles
for memory efficiency and runtime performance in
autoregressive decoding architectures. Therefore,
a semantically consistent DocID is essential for
cross-lingual alignment and efficient decoding.

In this paper, we present Multilingual
Generative Retrieval via Cross-lingual Semantic
Compression (MGR-CSC), a novel framework
that unifies multilingual keyword semantics into
shared atom IDs, assigns DocIDs to documents,
and employs multi-step constrained decoding. A
high-level overview of MGR-CSC is shown in
Figure 1 (b). MGR-CSC performs cross-lingual
semantic compression by mapping semantically
equivalent multilingual keywords to shared
atom IDs. For example, both the English word
largest and its German counterpart größte are
mapped to atom ID 183. In addition, it applies
dynamic decoding constraints to guide genera-
tion. Specifically, MGR-CSC contain three key
parts. First, we extract explicit keywords from
each multilingual document, and the document
is represented by a set of multiple keywords.
Secondly, these keywords are projected into a
shared latent space using unsupervised clustering.
Within this latent space, semantically equivalent

expressions are assigned the same atom ID,
which effectively compresses the multilingual
identifier space. Finally, we introduce a multi-step
dynamic constraint decoding strategy. The initial
decoding step leverages the global frequency
distribution of atom IDs to guide selection. And a
refinement step narrows the selection space based
on constraints between atomic IDs from preceding
steps. Comprehensive experiments on multiple
benchmark datasets show that MGR-CSC achieves
outstanding performance, surpassing existing
multilingual generative retrieval approaches by
6.83% on mMarco100k and 4.77% on mNQ320k.
Furthermore, it substantially reduces the number
of DocID tokens by 74.51% on mMarco100k and
78.2% on mNQ320k.

The contributions of this paper are as follows:

• We propose DocID construction approach for
multilingual documents in MGR-CSC, en-
abling alignment and compact representation
across languages.

• We propose a dynamic constrained multi-step
decoding framework in MGR-CSC to reduce
decoding complexity.

• Our experiments on multilingual benchmarks
demonstrate the method’s effectiveness and
generalization in cross-lingual retrieval.

2 Related Work

2.1 Multilingual Information Retrieval
Multilingual information retrieval (MIR) seeks to
semantically align queries and documents across
languages, enabling cross-lingual access. Early
MIR relied on translation, such as queries (Elayeb
et al., 2018; Chandra and Dwivedi, 2017),
documents (Yarmohammadi et al., 2019), or
both (Dwivedi and Chandra, 2016) to balance ef-
ficiency and accuracy in practical systems. The
advent of multilingual pretrained language mod-
els such as mBERT (Devlin et al., 2019) and
XLM-R (Conneau et al., 2019) shifted attention
to vector-based retrieval. In this paradigm, queries
and documents are embedded into a shared space
for similarity comparison (Yu and Allan, 2020;
Zhang et al., 2022), thus eliminating external trans-
lation (Oard et al., 2008) and improving under-
standing in low-resource languages. Nonethe-
less, these approaches are limited by a fixed en-
code–match–rank pipeline lacking end-to-end opti-
mization (Tay et al., 2022; Sun et al., 2023) and by
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contrastive learning’s dependence on scarce paral-
lel data (Karpukhin et al., 2020).

2.2 Generative Information Retrieval

Generative approaches are applied in fields such as
information retrieval (Tay et al., 2022; Sun et al.,
2023) and knowledge graphs(Song et al., 2024a;
Abu-Rasheed et al., 2024). By capitalizing on the
memorization capabilities of pre-trained language
models(Song et al., 2024b), GIR directly generates
DocIDs during inference, facilitating an end-to-end
retrieval process. Current DocID representations
primarily fall into two categories: atomic DocIDs
and string DocIDs. For atomic DocIDs, Tay et
al. (Tay et al., 2022) proposed constructing Do-
cIDs using randomly assigned identifiers or cluster-
based embedding layers. In contrast, string DocIDs
employ semantically meaningful strings, such as
document title (Tang et al., 2023) or keywords,
such as TSGen (Zhang et al., 2024), Novo (Wang
et al., 2023). Although, current GIR are primarily
designed for monolingual settings, making effec-
tive adaptation to multilingual contexts difficult to
achieve. To bridge this gap, we propose a semantic
compression approach unifying cross-lingual lexi-
cal representations into a shared semantic space for
multilingual GIR.

3 Methodology

In this section, we elaborate on our proposed
method, Multilingual Generative Retrieval via
Cross-lingual Semantic Compression, termed
MGR-CSC. The core idea is to assign an unique
DocID to each document by leveraging semanti-
cally similar key information across documents
in different languages. This shared representation
enables effective cross-lingual alignment and facili-
tates end-to-end semantic matching within a unified
retrieval framework.

As Figure 2 illustrates, MGR-CSC consists of
three components: (1) extracting distinctive key-
words from multilingual documents, (2) clustering
multiple keywords into one semantic atom, and
assigning each document a unique DocID as a se-
quence of atoms, (3) during retrieval, the model
generates the DocID atom-by-atom under dynamic
decoding constraints.

3.1 Multilingual Keyword Extraction

To capture the essential semantics of multilingual
documents, we extract a fixed set of m keywords

from each document using a prompt-based Large
Language Model (LLM). These keywords serve
as a compact representation of the multilingual
document’s content.

Formally, given a document di, we extract a fixed
number m of keywords as follows:

Ki = {k1i , k2i , . . . , kmi } = LLM(di), (1)

where Ki is treated as a semantically compact rep-
resentation of the document di. And kmi denotes
the m-th keyword of document i. We utilize a
standardized extraction process across all language
documents in order to ensure the consistency of
semantic representations.

3.2 Semantic Atom Construction and DocID
Assignment

Based on the extracted multilingual keywords, we
construct language-independent semantic atoms
and assign unique DocIDs to documents.

First, we aggregate all keywords from the en-
tire document collection into a single global set
K. Although a specific keyword may appear in
the keyword sets Ki of multiple documents, it is
represented only once as a distinct element in the
global set K. Formally, the global keyword set K
is defined as the union of the individual document
keyword sets Ki for all di ∈ D = [d1, . . . , dN ]:

K =
N⋃

i=1

Ki, (2)

where set K contains n unique keywords, and n =
|K| is the total number of distinct keywords in the
collection. Let {k̂1, k̂2, . . . , k̂n} denote the set of
unique keywords. Each keyword k̂i is encoded into
a dense vector representation vi ∈ Rd through a
pre-trained text encoder. We construct a similarity
matrix S ∈ Rn×n where each entry Sij =

vi·vj
∥vi∥∥vj∥

represents the cosine similarity between keywords
k̂i and k̂j .

Keywords are clustered together when their
pairwise similarity meets or exceeds a predefined
threshold θ ∈ [0, 1]. Specifically, a fixed number
of cluster centers is chosen. Keywords with simi-
larity above the threshold θ are directly assigned
to the nearest cluster center, while the others form
single clusters. As a result, the process gives C
clusters with C < N , since similar keywords are
grouped together. As the keywords within each
cluster are semantically similar, each cluster is
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Figure 2: An overview of MGR-CSC’s DocID allocation and reasoning. (a) shows how to extract keywords of
documents; (b) shows clustering is performed based on cross-lingual semantic similarity of keywords, with each
cluster represented by an atom and each document assigned a unique DocID; (c) shows MGR-CSC’s reasoning
strategy, which returns the identifier corresponding to the query, and narrows the decoding range at each step.

represented by an atom, thereby obtaining a set
of atoms A = {a1, a2, . . . , ac}, where ac is the
atomic representation of the c-th cluster.

Finally, since each keyword k̂i belongs to a clus-
ter represented by an atom a, it can consequently
be represented by a. Based on section 3.1, we ob-
tain the set of keywords Ki for each document di.
Each keyword kmi is converted to its atom repre-
sentation. Let akmi denote the atom representing
the keyword kmi . The resulting sequence of atom
representations is used as the unique DocID for
each document di,

DocIDi = [ak1i
, ak2i

, . . . , akmi ] = [a1, a2, . . . , am],
(3)

where DocIDi represents the DocID of the i-th
document. This ensures that all multilingual doc-
uments are assigned DocID representations with
consistent length and shared semantic space.

3.3 Dynamic Constrained Multi-Step
Decoding

In prior methods (Zhuang et al., 2022; Tang et al.,
2023), after obtaining document representations
with unique DocIDs, the decoding process requires
selecting from the complete set of N documents
at each step. For a decoding sequence of length
m, the method produces a search space scaling
as O(Nm). Our proposed method, transforms the
retrieval process into a multi-step decoding process
of length m within a constrained space comprising
c semantic atoms, thereby effectively compressing

the decoding space to O(Cm).
To handle the output space, we employ a dy-

namic constrained multi-step decoding mechanism.
During the retrieval process, based on the query q,
the model generates the DocID of the target docu-
ment dq through the following approach,

P (DocID | q) =
m∏

t=1

P (at | a<t, q), (4)

where P represents the generation probability of
the DocID.

The retrieval process generates the target docu-
ment’s DocID through a multi-step decoding proce-
dure under dynamic constraints. At each decoding
step t (1 ≤ t ≤ m), the model predicts the t-th
atom at based on the query q and the previously
generated prefix DocID<t = [a1, . . . , at−1]. The
candidate atom set At is defined as:

At =
{
akti

∣∣∣ kti ∈ Constraint(Ki)
}
, (5)

where Constraint(Ki) represents the range of docu-
ments available under the prefix constraint, and the
prefix DocID<t = [a1, a2, . . . , at−1]. The optimal
atom at step t is selected via:

at = argmax
a
kt
i
∈At

P (akti | a1, . . . , at−1, q), (6)

with DocID[t] = at. Through m iterations, the
complete DocID is obtained as:

DocID = [a1, a2, . . . , am]. (7)
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Algorithm 1 Dynamic Constrained Multi-Step De-
coding

1: Input Query q, Keyword set K, Documents D =
{d1, . . . , dN}, Atom set A = [a1, . . . , ac]

2: Output Target document DocID

3: Initialize empty DocID sequence: DocID← [ ]

4: for t = 1 to m do
5: if t = 1 then
6: prefix← DocID[ ]
7: else
8: prefix← DocID[1 : t− 1]
9: end if

10: At ← {akt
i
| kt

i ∈ Constraint(Ki)}
11: Compute decoding distribution:
12: Pt ← {P (akt

i
| prefix, q) | akt

i
∈ At}

13: Select optimal atom:
14: at ← argmax(Pt)
15: Update DocID: DocID[t]← at

16: end for
17: Return DocID = [a1, . . . , am]

Algorithm 1 outlines the decoding process ap-
plying this dynamic constraint.

4 Experiment

4.1 Datasets

To comprehensively evaluate the model’s perfor-
mance in multilingual document retrieval, we con-
duct comparative analyses leveraging both standard
public benchmarks and our newly constructed mul-
tilingual dataset. Below we provide overview of
these evaluation datasets:

mMarco100K 1 is a multilingual retrieval
benchmark constructed through neural machine
translation of the original English MS MARCO
dataset (Bonifacio et al., 2021), covering more
than 30 languages, consists of a document and a
question-answer pair. We randomly sampled non-
parallel corpus data in 7 languages, with about 15k
data in each language, and a total of about 100k
data. Among them, the data set is divided into 6.5k
data as a validation set and the rest as a training set.

mNQ320K is a novel multilingual retrieval
dataset developed in this study to overcome the lim-
itations of existing resources in low and medium
resource language scenarios. It consists of query
and document pairs, including about 307K training
data and 8K verification data, constructed through
a systematic translation methodology following the
mMARCO framework. Specifically, We create an
extended version of the NQ320K (Kwiatkowski

1https://github.com/unicamp-dl/mMARCO

et al., 2019) dataset by translating the original data
into seven medium-resource languages spanning di-
verse language families: Afrikaans (af), French (fr),
Arabic (ar), Hindi (hi), Macedonian (mk), Swedish
(sv), and Vietnamese (vi).

4.2 Baselines
We conduct comparisons with both traditional re-
trieval approaches and recent multilingual genera-
tive retrieval models. To ensure fairness, we repro-
duce known advanced generative retrieval methods
capable of handling multilingual retrieval.

BM25 (Robertson et al., 2009) represents a stan-
dard sparse retrieval model that leverages inverted
index structures and operates based on exact key-
word correspondence.

LaBSE (Feng et al., 2022) a multilingual sen-
tence encoder that supports 109 languages and
maps text from different languages into a unified
vector space for cross-lingual retrieval tasks.

mColBERT (Khattab and Zaharia, 2020) a mul-
tilingual version of ColBERT that employs late
interaction mechanisms for dense retrieval.

ColBERT-xm (Louis et al., 2024) a cross-
lingual interaction-based retrieval model that en-
hances multilingual retrieval through fine-grained
token-level interactions.

DSI (Tay et al., 2022) a generative retrieval
method that treats documents as training input and
constructs DocIDs using hierarchical clustering-
based approach.

DSI-QG (Zhuang et al., 2022) a generative re-
trieval method that trains a query generation model,
using short queries to represent the original docu-
ments and random numbers to represent DocIDs.

SE-DSI (Tang et al., 2023) a generative retrieval
method that utilizes strings containing semantic
information as DocIDs. In this study, the titles of
multilingual documents are used as the DocIDs for
this method.

4.3 Detailed Implementation
In our experiments, all methods were reproduced
on the mT5-base model 2 based on the Trans-
former architecture. Following the work of pre-
vious researchers (Zhuang et al., 2022), our train-
ing data adheres to the approach of representing
documents with multilingual queries. Specifically,
the model used for all pseudo-query generation
tasks is Llama3.1-8B 3 (Grattafiori et al., 2024)

2https://huggingface.co/google/mt5-base
3https://huggingface.co/meta-llama/Llama-3.1-8B
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Method
en⇒ oth fr⇒ oth de⇒ oth it⇒ oth es⇒ oth ja⇒ oth zh⇒ oth AVG
@1 @10 @1 @10 @1 @10 @1 @10 @1 @10 @1 @10 @1 @10 @1 @10

m
M

ar
co

10
0k

BM25 17.53 35.34 11.45 26.48 6.50 15.93 10.48 22.85 14.01 28.87 0.00 0.00 0.58 1.17 8.65 18.66
Colbert-xm 62.11 83.45 45.45 70.66 36.62 58.76 38.09 61.12 36.00 64.11 41.19 69.26 39.41 65.63 42.69 67.57
mColbert 52.42 73.17 40.71 68.17 39.98 63.45 38.55 61.84 35.05 63.23 36.49 62.38 33.33 58.55 39.50 64.40
LaBSE 58.04 79.97 51.10 76.71 42.29 66.71 46.45 70.67 48.03 74.92 39.22 65.02 40.73 70.22 46.55 72.03

DSI 10.96 23.52 10.01 23.83 9.16 21.34 9.20 21.84 9.58 22.01 9.43 20.50 8.75 20.54 9.50 21.80
DSI-QG 74.72 87.67 66.05 83.46 61.58 79.96 65.02 82.09 66.90 83.94 62.09 80.76 60.77 78.46 65.21 82.34
SE-DSI 76.57 87.05 71.48 83.58 67.15 79.40 68.06 82.18 70.62 84.23 66.35 79.91 67.03 80.87 69.49 82.43

Ours 72.07 91.27 68.53 87.74 70.73 90.79 69.37 89.01 71.74 91.60 68.68 88.32 67.37 86.13 69.78 89.26

Method
af⇒ oth fr⇒ oth ar⇒ oth hi⇒ oth mk⇒ oth sv⇒ oth vi⇒ oth AVG

@1 @10 @1 @10 @1 @10 @1 @10 @1 @10 @1 @10 @1 @10 @1 @10

m
N

Q
32

0k

BM25 11.73 22.01 12.41 25.45 11.49 24.98 10.75 23.13 11.39 22.48 13.41 26.94 11.84 25.41 11.77 24.16
Colbert-xm 13.01 28.19 17.26 35.47 12.48 22.75 14.64 29.99 13.73 29.20 20.49 37.00 17.36 35.55 15.57 31.16
mColbert 17.79 36.78 18.86 38.67 14.30 27.80 14.05 27.49 15.27 30.35 22.68 43.01 18.82 36.52 17.39 34.37
LaBSE 22.14 45.13 21.96 46.25 14.40 31.40 20.47 42.48 21.44 42.78 25.18 51.65 24.13 46.32 21.29 43.29

DSI 0.11 0.46 0.10 0.41 0.00 0.00 0.00 0.20 0.10 0.40 0.00 0.34 0.10 0.60 0.05 0.33
DSI-QG 24.34 45.03 25.08 48.50 20.95 39.48 16.15 37.34 19.84 42.17 25.90 52.03 20.76 42.22 21.32 43.05
SE-DSI 14.17 26.51 20.62 36.06 15.42 27.06 15.84 28.05 15.35 28.32 22.52 36.49 17.27 33.33 16.76 29.96

Ours 26.74 49.71 24.97 50.47 20.31 44.39 21.04 42.57 23.58 48.76 28.80 52.88 23.38 47.66 24.11 48.06

Table 1: Performance at Recall@1 and Recall@10 on the mMARCO100K and mNQ320K under cross-lingual
retrieval settings. Bolded values indicate the best performance among all comparison methods.

with a temperature of 0.7, each document sample
is converted into 10 multilingual pseudo-queries
through model generation. For keyword genera-
tion, the model employed is Llama3.1-8B with a
temperature of 0. The model used for semantic
similarity calculation is paraphrase-multilingual-
MiniLM-L12-v2 4 (Reimers and Gurevych, 2019).

Training The training was implemented with Py-
Torch (Paszke, 2019) and Transformers (Vaswani
et al., 2017). For mMarco100k, we used a learn-
ing rate of 2 × 10−4, batch size 128, 50 epochs,
and m=3 keywords; for mNQ320k, the learning
rate was 5 × 10−4, with the same batch size and
m, trained for 100 epochs. The cross-entropy loss
function is employed as the objective function. All
experiments ran on eight NVIDIA A40 GPUs with
46GB.

Evaluation Metric Aligning with previous stud-
ies, we evaluate our model’s performance on
the validation sets of both datasets, employing
Recall@1 and Recall@10 as evaluation metrics.
These metrics indicate the fraction of relevant doc-
uments retrieved within the top 1 and top 10 posi-
tions. Due to the multilingual composition of the
candidate document corpus, we present retrieval
results for each query language individually.

4https://huggingface.co/sentence-transformers
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Figure 3: Distribution of the number of DocIDs
across different languages for various methods on the
mMarco100k and mNQ320k datasets. For SE-DSI, DSI-
QG, and DSI, the stacked bar segments represent the
distribution of retrieved DocIDs across languages. The
overall DocID count for each method is indicated to the
right of the corresponding bar.

4.4 Result on mMarco100k and mNQ320k

To demonstrate the performance of our model, we
conduct a comparative analysis with existing meth-
ods. Table 1 shows retrieval results on two multilin-
gual benchmarks. The mMarco100k dataset, sparse
methods such as BM25 perform poorly across lan-
guages tasks, especially on non-Latin scripts such
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af ar fr hi mk sv vi
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Figure 4: Recall@10 performance of target-language
document retrieval with varying source query languages
in the mNQ320k dataset

as Japanese and Chinese. This underscores the
constraints of lexical matching in languages with
morphological and script diversity.

Dense retrieval methods such as LaBSE are more
stable but less effective at capturing cross-lingual
semantics than generative approaches. DSI and
DSI-QG improve Recall@10 on English but under-
perform on syntactically varied languages, reflect-
ing limited generalization.

MGR-CSC demonstrates consistent perfor-
mance across all tested languages on mMarco100k
dataset. While its Recall@1 on English and French
is slightly below SE-DSI, it achieves the highest
Recall@10 in nearly all languages, including Ger-
man, Italian, Spanish, Japanese, and Chinese. This
suggests better semantic coverage and decoding
stability in multilingual contexts.

The mNQ320k dataset, which includes a broader
range of languages, many with fewer resources, of-
fers a more challenging setting. BM25 and DSI
exhibit limited retrieval ability in these scenarios.
LaBSE maintains moderate performance but shows
sensitivity to linguistic variability. DSI-QG and
SE-DSI improve cross-lingual recall balance over
prior methods but exhibit resource-dependent per-
formance. SE-DSI shows accelerated degradation
under low-resource conditions, particularly in lin-
guistically diverse environments.

In contrast, MGR-CSC yields stable and high
recall on all languages in the mNQ320k dataset, in-
cluding significant improvements in low and mid re-
source languages such as Arabic, Hindi, and Mace-
donian. These findings are further supported by

the results presented in figure 4, which shows the
Recall@10 results for the all target language docu-
ments across different query languages. The experi-
mental results indicate that MGR-CSC successfully
maintains retrieval consistency when processing
linguistically diverse data and cross-domain sce-
narios. Furthermore, the framework demonstrates
strong generalizability across both typologically
similar and distinct language families.

4.5 Quantitative Analysis of DocID Usage

To quantitatively compare the decoding range be-
tween our proposed methodology and existing GIR
approaches, we conducted a comprehensive analy-
sis. As depicted in Figure 3, under identical dataset
conditions, our method consistently achieves the
most restricted decoding space. This significant re-
duction in the output range substantially enhances
decoding efficiency and scalability, rendering our
approach particularly advantageous for large-scale
document retrieval.

Furthermore, this reduced decoding space is
crucial for addressing challenges in multilingual
GIR settings. For instance, a single word in high-
resource languages, such as English, French, which
is typically encoded using one or two tokens. In
contrast, in low-resource languages, words are com-
monly represented as a sequence of subword units.
This phenomenon leads to an expanded decoding
space and an increased number of decoding steps in
low-resource scenarios. To effectively mitigate this,
our methodology introduces atomic integer IDs de-
signed to represent clusters of semantically similar
keywords. By compressing lexical-level variations
into a semantically aligned ID space, this approach
effectively minimizes the decoding range and en-
sures more consistent decoding behavior across
linguistic boundaries.

4.6 Ablation Study

To illustrate the contribution of different compo-
nents, we conducted ablation studies on semantic
compression and the decoding strategy separately
using the mNQ320k dataset.

Method R@1 R@10
MGR-CSC 24.11 48.06
w/o decoding strategy 13.50 31.80
w/o semantic compression 15.58 38.76

Table 2: Performance at Recall@1 and Recall@10 on
the mNQ320K under different ablation settings.
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Figure 5: Performance in Recall@10 and decoding time
under varying keyword quantities m.

Experimental results (measured by AVG scores)
show that removing either component leads to a
significant decline in performance. Specifically,
removing the decoding strategy leads to a 10.61%
drop in Recall@1 and a 16.26% drop in Recall@10.
Similarly, removing semantic compression results
in 8.53% drop in Recall@1 and 9.30% drop in Re-
call@10. These results confirm that both semantic
compression and the decoding strategy play crucial
roles in enhancing retrieval effectiveness.

4.7 The performance of the number of
keywords

To examine how the keyword number m affects
retrieval performance and decoding time, we ex-
perimented on the mNQ320k dataset. As depicted
in Figure 5, increasing the number of keywords
enhances semantic representation. However, this
also increases the length of DocIDs, which conse-
quently slows down decoding and impairs overall
performance. The best Recall@10 obtained was
48.06% with three keywords. Fewer keywords,
such as two, restrict semantic coverage. In contrast,
more keywords, for instance five or six, decrease
performance due to increased decoding complexity.

Decoding time scales with DocID length. As the
number of keywords increases from two to six, the
decoding time approximately doubles. For compar-
ison, SE-DSI achieves a Recall@10 of 29.96%. Its
latency is comparable to that of our method when
employing the longest DocIDs using six keywords.
This similarity emphasizes the strong correlation
between sequence length and inference time.

4.8 The performance of the semantic
similarity threshold

To assess the sensitivity of keyword clustering to
semantic similarity thresholds θ, we evaluated re-
trieval performance on the mNQ320k dataset with
thresholds from 0.5 to 0.9. As illustrated in Fig-
ure 6, increasing the threshold from 0.5 to 0.8 re-
sulted in a steady improvement in both Recall@1
and Recall@10, indicating that finer-grained clus-
ters enhance retrieval precision.
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Figure 6: Recall@1 and Recall@10 performance under
varying semantic similarity thresholds θ.

The best results were achieved at 0.8, with
Recall@1 of 24.48% and Recall@10 of 47.89%.
However, raising the threshold to 0.9 caused a
performance drop, with Recall@1 decreasing by
2.46% to 22.02% and Recall@10 decreasing by
3.18% to 44.71%. This suggests that an exces-
sively high threshold leads to overly fine-grained
clustering, splitting semantically related keywords
into separate groups. This reduces semantic gener-
alization and limits the model’s retrieval coverage.

4.9 Case Study

To demonstrate the effectiveness of our pro-
posed multilingual generative retrieval method, we
present a case study on Swedish-Vietnamese cross-
lingual retrieval.

Given the Swedish query “Vad är Australiens
huvudstad?” (What is the capital of Australia?),
the model performs multi-step decoding based on
clustered semantic atoms. Each decoding stage pro-
gressively narrows the candidate space by focusing
on specific semantic dimensions, first detecting the
country entity, then identifying the question type,
and finally locating the target concept.
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Type Document

Theme (vi) Danh sách các thủ đô của Úc
(List of Australian capital cities)

Content (vi) Úc có tám thành phố, mỗi thành phố
đóng vai trò là trụ sở chính quyền của một
tiểu bang hoặc vùng lãnh thổ. Úc được thành
lập vào năm 1901. Năm 1927 , trụ sở chính
quyền quốc gia đã được di dời và chuyển đến
thành phố mới, nơi vẫn tiếp tục đóng vai trò
là thủ đô quốc gia cho đến ngày nay. Mỗi
thủ đô đều có chức năng tư pháp, hành chính
và hành chính. ...

Keywords Úc , thủ đô , Năm 1927
(Australia, capital, 1927)

Atom set 46, 1788, 14920

Query (sv) Vad är Australiens huvudstad?
DSI-QG DocID: 92980 (×)
SE-DSI DocID: (fr) Territoire de la capitale australi-

enne (×)
Ours-step1 DocID: 46
Ours-step2 DocID: 46, 1788
Ours-step3 DocID: 46, 1788, 14920
Output 46, 1788, 14920

Table 3: Case study on mNQ320k.A Vietnamese docu-
ment is represented by clustered keyword atom sets. For
a given Swedish query, the DocID undergoes a step-wise
semantic decoding process along semantic dimensions
to retrieve the target document.

The final DocID is composed of shared semantic
atoms, enabling successful retrieval of the corre-
sponding Vietnamese document: “Danh sách các
thủ đô của Úc ” (List of Australian capital cities).

5 Conclusion

This paper introduces MGR-CSC, a multilin-
gual generative retrieval method leveraging cross-
lingual semantic compression. This method em-
ploys semantic clustering to reduce multilingual
DocIDs and narrow the decoding space, and ap-
plies multi-step constrained decoding to restrict
DocID generation. The experimental reveals that
our method consistently exhibit outstanding perfor-
mance compared to existing retrieval approaches
when applied to multilingual datasets.

Limitations

Since our model is based on multilingual PLM, its
multilingual document understanding capability is
consequently limited by the capabilities of this base
model. This limitation is particularly pronounced
in the context of low-resource languages.

Furthermore, PLMs are mainly designed for text
processing. Our existing framework has limited
capacity for multimodal information requiring in-
tegration of diverse data modalities. It can pro-
cess text components, yet lacks the inherent ability
to understand or reason about cross-modality re-
lationships, thereby restricting its performance in
complex multimodal scenarios.
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A Appendix

A.1 The results of Recall@100 on the mNQ320k dataset

Method af ⇒ oth fr ⇒ oth ar⇒ oth hi⇒ oth mk⇒ oth sv⇒ oth vi⇒ oth AVG
BM25 34.22 38.64 37.19 35.99 35.48 40.34 38.55 37.20

Colbert-xm 43.20 52.80 35.40 48.10 48.48 54.77 50.25 47.57
mColbert 52.58 56.15 44.56 42.09 46.44 58.48 52.60 50.41
LaBSE 65.51 67.48 51.35 64.13 65.51 70.47 65.88 64.33
DSI-QG 63.04 66.39 57.84 60.56 64.43 67.07 61.98 63.04
SE-DSI 38.45 49.70 39.84 40.35 43.84 50.61 44.43 43.88

Ours 67.49 67.11 63.12 62.79 65.72 69.23 64.14 65.66

Table 4: Performance at Recall@100 on the mNQ320K. Bolded values indicate the best performance among all
comparison methods.

To demonstrate the performance of our method on high-ranks@100, we extend the recall@100 results
on the mNQ320k dataset. Table 4 presents the results, showing that our method outperforms others in
most languages as well as in the average score, with the AVG exceeding the current baseline by 1.33%.
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