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Abstract
Large vision-language models (LVLMs) have
achieved remarkable performance on multi-
modal tasks. However, they still suffer from
hallucinations, generating text inconsistent
with visual input, posing significant risks in
real-world applications. Existing approaches
to address this issue focus on incorporating
external knowledge bases, alignment training,
or decoding strategies, all of which require
substantial computational cost and time. Re-
cent works try to explore more efficient alter-
natives by adjusting LVLMs’ internal repre-
sentations. Although promising, these meth-
ods may cause hallucinations to be insuffi-
ciently suppressed or lead to excessive inter-
ventions that negatively affect normal seman-
tics. In this work, we leverage sparse autoen-
coders (SAEs) to identify semantic directions
closely associated with faithfulness or halluci-
nation, extracting more precise and disentan-
gled hallucination-related representations. Our
analysis demonstrates that interventions along
the identified faithful direction can mitigate
hallucinations, while those along the halluci-
natory direction can exacerbate them. Build-
ing on these insights, we propose Steering
LVLMs via SAE Latent Directions (SSL), a
plug-and-play method based on SAE-derived
latent directions to mitigate hallucinations in
LVLMs. Extensive experiments demonstrate
that SSL significantly outperforms existing de-
coding approaches in mitigating hallucinations,
while maintaining transferability across differ-
ent model architectures with negligible addi-
tional time overhead. The code is available at
https://github.com/huazhenglin2003/SSL.

1 Introduction

LVLMs (Liu et al., 2023; Dai et al., 2023b; Liu
et al., 2024b) have demonstrated impressive ca-
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In front of the sofa with wooden legs, a wooden coffee table 
waits patiently. On it, two remotes lie side by side, perhaps 
indicating a recent use of the television or a hint. The walls of 
the room are painted white. A window, although not visible in the 
image, is suggested by the presence of a window sill. 
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Figure 1: The figure shows, from top to bottom, the orig-
inal response from the LLaVA-Next-8b, the response
after intervention along the hallucinatory direction, and
the response after intervention along the faithful direc-
tion. These results demonstrate that targeted interven-
tions along faithful directions suppress hallucinatory
generations, while perturbations along hallucinatory di-
rections tend to elicit more factually incorrect content.

pabilities in jointly processing visual and textual
modalities, achieving strong performance on tasks
such as VQA (Antol et al., 2015) and image cap-
tioning (Li et al., 2022). However, LVLMs still suf-
fer from hallucination (Yin et al., 2011), where the
generated text does not align with the visual con-
tent. This limitation poses significant challenges to
their deployment in critical applications, including
medical diagnosis(Gu et al., 2024) and autonomous
driving(You et al., 2024), where factual consistency
and reliability are essential.

To mitigate hallucination in LVLMs, researchers
explore various strategies, including refining de-
coding algorithms (Leng et al., 2024; Huang et al.,
2024; Kim et al., 2024), incorporating external
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knowledge bases (Qu et al., 2024), and leverag-
ing additional annotated data for model fine-tuning
(Park et al., 2024). While promising, these ap-
proaches often incur substantial computational cost
and time. Recent works (Liu et al., 2025; Jiang
et al., 2024; Li et al., 2025) try to explore more
efficient alternatives by adjusting LVLMs’ inter-
nal representations. However, these methods may
cause hallucinations to be insufficiently suppressed
or lead to excessive interventions that negatively
affect normal semantics. Therefore, extracting fine-
grained and reliable representations related to hal-
lucinations remains a key challenge in advancing
the reliability of LVLMs.

Recently, SAEs have shown success in extracting
fine-grained semantic representations—specifically
capturing whether the model knows certain en-
tities—of abstract concepts in the field of large
language models (LLMs) (Ferrando et al., 2025).
SAEs builds on the Linear Representation Hypoth-
esis (Park et al., 2023), which posits that internal
model representations can be expressed as sparse
combinations of interpretable semantic directions
(Tigges et al., 2024; Li et al., 2023a). Building
on this foundation, Zhang et al. (2024a) utilize
SAEs to interpret LVLM representations and an-
alyze open-set semantics. However, their work
does not address hallucination modeling or inter-
vention. Inspired by these works, we extend the
application of SAE-based analysis from LLMs to
LVLMs, with a particular focus on mitigating hal-
lucinations. Specifically, we leverage the SAE
provided by Zhang et al. (2024a) to identify la-
tent directions correlated with hallucinatory seman-
tics as well as those aligned with faithful content,
and steer the internal semantic representations of
LVLMs, aiming to understand and mitigate halluci-
nations more precisely and directly. As illustrated
in Figure 1, targeted interventions along faithful di-
rections suppress hallucinatory generations, while
perturbations along hallucinatory directions tend to
elicit more factually incorrect content.

Building on this insight, we propose Steering
LVLMs via SAE Latent Directions (SSL), a plug-
and-play approach based on SAE-derived latent
directions to mitigate hallucinations in LVLMs.
During the visual feature merging stage, we inject
faithful semantic directions to amplify grounded
semantic features and improve image–text consis-
tency. In the subsequent language generation stage,
we reduce projection onto hallucinatory semantic
directions, thereby reducing the risk of generat-

ing factually incorrect content. Remarkably, al-
though the SAE was trained on the LLaVA-Next-
8b model, the extracted hallucination and factuality
directions generalize seamlessly to other architec-
tures (e.g., LLaVA1.5-7b model (Liu et al., 2024c)
and InstructBLIP-7b model (Dai et al., 2023a)).
Experimental evaluation on established LVLM hal-
lucination benchmarks shows that SSL outperforms
existing decoding approaches, confirming its effec-
tiveness and efficiency in hallucination reduction.

Our main contributions are as follows:

• We leverage SAEs to identify semantic direc-
tions that are highly correlated with hallucina-
tory and faithful content in the representation
space of LVLMs.

• We propose SSL, a plug-and-play method that
injects factuality semantic directions during
visual feature fusion to reinforce grounded
content and suppresses hallucination direc-
tions during language generation to proac-
tively mitigate hallucinatory outputs.

• Extensive experiments demonstrate that SSL
outperforms existing decoding approaches on
widely used hallucination benchmarks with
negligible time overhead, exhibiting transfer-
ability across different architectures.

2 Preliminary

LVLM generation. LVLMs take both image and
text as input and encode them into a sequence of to-
kens. During autoregressive generation, the model
first concatenates the system tokens Xs, prompt to-
kens Xt, and visual tokens Xv in a predefined order
to form the initial input. At the first generating step
t = 1, the model predicts the output token based on
this initial context. At each subsequent step t > 1,
the previously generated tokens X<t

o are appended
to the end of the initial input, resulting in the cur-
rent sequence

[
Xs, Xt, Xv, X

<t
o

]
. The model then

generates the next token autoregressively according
to the conditional probability distribution, continu-
ing until an end-of-sequence token is produced or
a maximum sequence length is reached:

yt = argmax pθ(yt | Xs, Xt, Xv, X
<t
o ), (1)

where yt is the token generated at time step t.

Sparse autoencoders. SAEs have been proven
to be effective for separating overlapping features
(Bricken et al., 2023; Ferrando et al., 2025). In this
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Figure 2: KDE plots of the selected latent activations for
test samples labeled as hallucination and faithfulness.
The overlaid plots visualize the distributional differ-
ences, with annotated t-statistic, p-value, and Cohen’s d
effect size indicating the statistical separation between
the two groups.

work, we use the SAE provided by Zhang et al.
(2024a), which operates on the residual stream
hl ∈ Rd from the l-th layer of LVLMs. The
SAE projects these representations into a higher-
dimensional latent space z(x) ∈ RdSAE and applies
a ReLU activation:

z(x) = ReLU(Wencx+ benc), (2)

where Wenc and benc denote the encoder’s weight
matrix and bias, respectively. To enforce sparsity, a
top-k operation retains only the k largest activations
in z(x), zeroing out the rest to obtain the sparse
latent vector zk(x) = TopK(z, k). The decoder
then reconstructs the original representation via a
linear combination of the active components:

SAE(x) = W T
deczk(x) + bdec, (3)

where Wdec and bdec denote the decoder’s weight
matrix and bias. During training, the loss function
combines the reconstruction error with an auxil-
iary loss proposed by Gao et al. (2025), aiming to
encourage the utilization of meaningful features
in the latent representation zk(x) and to prevent
feature inactivity, thereby enhancing the overall ex-
pressiveness of the sparse encoding. We refer to
each component of zk(x) as a latent activation, and
each row vector of Wdec as a latent direction.

Steering with SAE Latents. The SAE recon-
structs model representations as a linear combi-
nation of latent directions and a bias, effectively
approximating the original input. Each latent ac-
tivation zj(x) corresponds to a specific decoder
direction dj = Wdec [j, :], enabling targeted ad-
justment of the representation through activation

steering (Turner et al., 2023). This technique al-
lows us to steer the residual stream by modifying
the representation as follows:

xsteer ← x+ αdj , (4)

where α is a tunable parameter that determines the
strength of the intervention.

3 Method

In this work, we introduce SSL, a plug-and-play
method for steering LVLMs. Our method consists
of two principal components: semantic directions
identification and steering LVLMs via SAE latents.

3.1 Semantic Directions Identification

Residual Stream Dataset Construction for Hal-
lucinations and Faithfulness. To investigate
whether there exist directions in LVLMs that are
highly correlated with hallucinatory and faithful
semantics, we randomly sampled 4, 000 image-
text pairs from the MSCOCO dataset (Lin et al.,
2014). Using the LLaVA-Next-8b model (Liu et al.,
2024d) for the image captioning task, we extract
the residual stream representations from the 25th

layer when the model generated object tokens clas-
sified as either hallucinatory or faithful.

Given that a small proportion of object words
are tokenized into multiple subword units, we ex-
clude these cases to simplify the analysis. Further-
more, because each sample exhibited an imbalance
between the counts of hallucinatory and faithful
object terms, we enforce class balance by sampling
an equal number of residual vectors from each cat-
egory per image–text pair. See Appendix A for a
description of the process. Finally, we construct
a balanced dataset containing 1, 784 samples and
divide it into a training set and a test set in a 9 : 1 ra-
tio, for direction mining and direction effectiveness
validation, respectively.

Semantically Hallucinatory and Faithful Direc-
tion Identification via SAE. Inspired by Meng
et al. (2022); Ferrando et al. (2025), we leverage
SAE to identify latent directions aligned with hallu-
cinatory and faithful semantics. Specifically, each
residual stream sample from the training set is
passed through the SAE, and we record the ac-
tivation frequency of each latent activation across
hallucinatory samples Xhall and faithful samples
Xfaithful. For a given latent activation j, its activa-
tion frequencies on hallucinatory samples fhall

j and
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Figure 3: Overview of the proposed SSL approach leveraging SAE to identify semantically aligned directions and
mitigate hallucination in LVLMs. We use SAE to identify latent directions within the internal representation space
of LVLMs that are associated with hallucinatory and faithful semantics, denoted as dhall and dfaithful, respectively.
These semantic directions are then used to modulate the residual stream at the l-th layer, steering the generation
process toward greater factual consistency.

faithful samples f faithful
j are computed as:

fhall
j =

1

Nhall

∑

x∈Xhall

I (zj(x) > 0) ,

f faithful
j =

1

Nfaithful

∑

x∈Xfaithful

I (zj(x) > 0) ,

(5)

where Nhall and Nfaithful represent the number of
hallucinatory and faithful samples, respectively. To
quantify the semantic relevance of each latent ac-
tivation, we compute the difference in activation
frequencies as follows:

shall
j = fhall

j − f faithful
j ,

sfaithful
j = f faithful

j − fhall
j .

(6)

These values reflect the relevance of latent dimen-
sion j to hallucinatory and faithful semantics, re-
spectively. Finally, we identify the latent activation
with the highest shall

j as the hallucination semantic
direction (hereafter referred to as the hall latent),
and the one with the highest sfaithful

j as the faith-
ful semantic direction (hereafter referred to as the
faithful latent).

Validation of the Effectiveness of Semantic Di-
rections. We begin by analyzing the distribu-
tional differences of the hallucinatory latent and
faithful latent activations across both sample types

in the test set. These distributions are visualized us-
ing kernel density estimation (KDE) plots as shown
in Figure 2. We further quantify the separation us-
ing independent two-sample t-tests and compute
Cohen’s d to assess effect sizes. Both latent activa-
tions exhibit statistically significant distributional
shifts, with substantial effect sizes, confirming their
discriminative power.

To probe the semantic alignment of the activa-
tions, we further conduct Spearman rank corre-
lation analysis between the activation values of
hallucinatory samples and their associated halluci-
natory object terms. The hallucinatory latent corre-
lates positively with hallucinatory objects (Spear-
man’s ρ = 0.42, p = 9.95 × 10−9), whereas the
faithful latent correlates negatively (ρ = −0.44,
p = 9.85 × 10−10). Given the binary nature of
the labels and the symmetry of rank correlation,
we infer a positive correlation between the faithful
latent and samples.

Finally, to quantitatively evaluate the predictive
power of SAE-derived directions in distinguishing
hallucinatory from faithful samples, we design a set
of classification experiments based on logistic re-
gression. The model takes the latent activation val-
ues—either individually or in combination—as in-
put features for a binary hallucination classification
task. As illustrated in Figure 4, the results demon-
strate that the latent semantic directions extracted
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Figure 4: Comparison of classification accuracy using
different latent activations. Hall latent and faithful latent
correspond to the identified hallucinatory and faithful la-
tent activations, respectively. Random1 denotes a single
latent activation randomly selected from the SAE latent
space, while Random2 represents a feature combination
of two randomly selected latent activations. The dashed
line indicates the baseline accuracy of 0.5.

by the SAE are discriminative (see Appendix B
for more experimental details). Furthermore, com-
bining the hall latent and faithful latent as input
features yields further performance improvements.
A more detailed discussion on clarifying the bound-
ary between hallucinatory and faithful semantic
directions can be found in Appendix C.

3.2 Steering LVLMs via SAE Latents

Steering Strategy. A core architectural mecha-
nism involves multi-layer residual connections that
progressively model input information. At each
layer, semantic representations are passed through
residual flows, which can be divided according to
the input sequence into four main components: sys-
tem token, prompt tokens, visual tokens, and output
tokens. Among these, visual tokens interact with
language tokens to guide the model’s understand-
ing of image content. Injecting faithful direction at
this position enables the model to increase visual
faithfulness. Output tokens represent the model’s
autoregressive language generations, influenced by
both prompts and visual inputs, thereby reflecting
the model’s semantic behavior. Suppressing hallu-
cinatory directions during this stage helps reduce
hallucination tendencies and enhances factual con-
sistency in language generation.

Following the method described in Section 2, we
identify two semantic direction vectors: the hallu-
cinatory direction dhall and the faithful direction
dfaithful. During the visual feature fusion stage, we
incorporate dfaithful to improve the faithfulness of
visual understanding. In the subsequent language
generation stage, we suppress activations along

dhall to reduce the risk of hallucinatory outputs. Se-
mantic steering at layer l is defined as follows:

Xl,v ← Xl,v + α · dfaithful,

X<t
l,o ← X<t

l,o − α · dhall,
(7)

where α is a tunable hyperparameter controlling
the strength of semantic steering.

Adaptive Steering Parameters (ASP). The set-
ting of the steering strength α plays a crucial role in
determining the effectiveness of semantic interven-
tion. Traditional steering approaches often rely on
a fixed hyperparameter α to linearly combine the
steering vector with the residual representations.
However, this fixed strategy can result in unsta-
ble or suboptimal performance, as the magnitude
of residual vectors can vary across model layers
and token positions. In such cases, a change that
is too small may fail to induce meaningful guid-
ance, while an excessively large change may cause
semantic distortion or instability.

To address this limitation, we propose an adap-
tive feature steering mechanism, which dynami-
cally adjusts the steering strength based on the
norm of the residual vector at each token at a
given layer. This approach ensures more stable and
context-aware intervention across varying model
states. Specifically, the adaptive steering strength
α is computed as:

α = γ · ∥xresidual∥
∥dsteer∥+ ϵ

, (8)

where γ is a scaling factor, xresidual denotes the
residual vector, dsteer is the steering direction, and
ϵ is a small constant to avoid numerical instability.
An overview of the proposed SSL method is pre-
sented in Figure 3. The complete procedure of SSL
is provided in Algorithm 1.

4 Experiments

4.1 LVLMs
We conduct experiments on three representative
LVLMs: LLaVA-NeXT-8b (Liu et al., 2024d),
LLaVA-1.5-7b (Liu et al., 2024c) and InstructBLIP-
7b (Dai et al., 2023a). These models share a modu-
lar structure comprising an image encoder, a pro-
jection module, and a language model. LLaVA-1.5
and LLaVA-NeXT use an MLP to project all image
tokens into the LLM’s input space, while Instruct-
BLIP employs a Q-Former to select a compact set
of informative visual tokens, reducing redundancy.
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Algorithm 1: SSL
Input: Scaling factor γ; steering layer ls;

semantic directions dhall, dfaithful;
residual stream at layer ls:
[Xls,s, Xls,t, Xls,v, X

<t
ls,o

]

1 if L = ls then
2 for token x in residual stream do
3 if x ∈ Xls,v then
4 x← x+ γ · ∥x∥

∥dfaithful∥+ϵ · dfaithful

5 else if x ∈ X<t
ls,o

then
6 x← x− γ · ∥x∥

∥dhall∥+ϵ · dhall

7 else
// System and prompt

tokens remain unchanged

Compared to LLaVA-1.5, LLaVA-NeXT upgrades
the LLM from 7b to 8b parameters and supports
higher-resolution inputs for visual understanding.

4.2 Benchmarks
CHAIR. We evaluate object hallucination using
the Caption Hallucination Assessment with Image
Relevance (CHAIR) metric (Rohrbach et al., 2018),
which compares generated image captions against
ground-truth annotations to detect hallucinatory ob-
jects mentioned in the captions but absent from the
image. CHAIR includes two metrics at both cap-
tions level (CHAIRS) and object level (CHAIRI ):

CHAIRS =
|{captions w/ hallucinatory objects}|

|{total captions}| ,

CHAIRI =
|{hallucinatory objects}|
|{total mentioned objects}| .

(9)
We randomly sample 500 images from the COCO
2014 validation set (Lin et al., 2014) and conduct
five runs with different random seeds. For all
LVLMs, captions are generated using the prompt
“Please describe this image in detail.” We report
the mean and standard deviation for each metric.

POPE. We further evaluate object hallucination
using the POPE benchmark (Li et al., 2023b), a
question-answering dataset designed to assess the
factual consistency of generated image descriptions.
POPE contains 500 images from the MSCOCO
dataset (Lin et al., 2014), each paired with bi-
nary questions of the form: “Is there a <object>
in the image?” The dataset comprises three sub-
sets—random, popular, and adversarial—which

differ in their object sampling strategies. Model
performance is measured using standard classifica-
tion metrics: Accuracy, Precision, Recall, and F1
score. To provide an overall assessment, we report
the average results across all three subsets.

LLaVA-Bench. We evaluate LVLM performance
using the LLaVA-Bench (In-the-Wild) benchmark
(Liu et al., 2024c), a comprehensive set designed to
assess models across diverse and challenging visual
scenarios. The benchmark includes 24 images from
varied real-world contexts, such as indoor scenes,
outdoor environments, and internet memes, paired
with 60 carefully curated questions spanning open-
ended QA, fine-grained descriptions, and complex
reasoning. We prompt the GPT-4o model to eval-
uate the LVLMs’ outputs along two dimensions:
factual accuracy and response detail.

4.3 Baselines

We compare the performance of base LVLMs using
greedy decoding and beam search decoding. Ad-
ditionally, we also conduct a comparison between
SSL and the popular training-free approaches that
require neither external data nor auxiliary models.
Specifically, DoLa (Chuang et al., 2024) derives
the next-token distribution by contrasting logits
from later and earlier layers; VCD (Leng et al.,
2024) employs contrastive learning by comparing
the output distributions generated from original and
perturbed images; OPERA (Huang et al., 2024)
enhances generation quality by alleviating exces-
sive reliance on previously generated tokens dur-
ing beam search; and CODE (Kim et al., 2024)
enhances vision-language alignment by using self-
generated captions as internal references.

4.4 Implementation Details

We set γ to 0.6, 0.8, and 0.1 for LLaVA-NeXT,
LLaVA-1.5, and InstructBLIP, respectively, to bal-
ance effective mitigation of hallucination with min-
imizing the invasiveness of state interventions. SSL
is applied at 16th layer for LLaVA-NeXT, 31th layer
for LLaVA-1.5 and 8th layer for InstructBLIP. We
faithfully replicate all baseline methods, imple-
menting them based on their open-source code-
bases and configuring them according to the hy-
perparameters reported in the original papers. All
experimental results are obtained under consistent
base model, prompt, and generation parameter set-
tings to ensure a fair comparison. For all methods
involving beam search, we set the max_new_token
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LLaVA-NeXT-8b LLaVA-1.5-7b InstructBLIP-7b
CHAIRS ↓ CHAIRI ↓ Avg.Len CHAIRS ↓ CHAIRI ↓ Avg.Len CHAIRS ↓ CHAIRI ↓ Avg.Len

Greedy 29.60±0.89 8.03±0.41 165.61 49.44±1.57 14.19±0.76 82.97 45.44±2.43 13.07±0.71 92.11
Beam 27.20±1.19 7.20±0.39 174.17 53.60±2.39 15.47±0.45 87.38 48.68±1.65 13.59±0.43 95.92
DoLa 29.04±1.08 7.86±0.24 166.14 50.64±2.33 14.51±0.88 82.32 46.12±1.85 13.09±0.90 91.80
VCD 31.36±1.99 8.40±0.79 165.43 51.68±1.85 15.29±0.83 83.03 50.84±2.41 14.51±0.97 91.44

OPERA - - - 44.04±0.94 13.23±0.46 75.79 45.88±2.31 13.15±0.87 93.51
CODE 30.76±0.92 8.09±0.42 158.07 47.72±0.79 14.13±0.56 78.43 50.88±2.05 14.21±0.92 89.62

SSL 26.36±1.94 6.32±0.63 163.86 40.88±2.11 12.30±1.18 82.37 44.04±3.91 12.64±1.38 100.26

Table 1: CHAIR results on MSCOCO dataset averaged over 5 random seeds. The best and second-best results are
indicated in bold and underlined, respectively. Avg.Len represents the average length of the generated descriptions.

LLaVA-NeXT-8b LLaVA-1.5-7b InstructBLIP-7b
F1 score ↑ F1 score ↑ F1 score ↑

Greedy 89.10 84.99 85.37
Beam 89.30 85.31 84.41
DoLa 89.49 85.08 85.22
VCD 88.91 84.42 84.68

OPERA - 85.46 84.42
CODE 88.93 84.64 84.81

SSL 89.66 85.47 85.56

Table 2: POPE results averaged over popular, adversar-
ial, and random splits. The best and second-best results
are indicated in bold and underlined, respectively.

to 512 and the beam size to 5.

5 Results

CHAIR. Table 1 reports the performance of SSL
on the CHAIR benchmark compared to all baseline
approaches. Due to excessive memory require-
ments, OPERA fails to produce results on LLaVA-
NeXT-8b. Notably, although the SAE from Zhang
et al. (2024a) were trained on LLaVA-NeXT-8b,
the identified semantic directions generalize well
across different model architectures. SSL consis-
tently outperforms all baselines across all three
LVLMs, while only incurring a marginal trade-off
in caption length or descriptive richness.

POPE. As shown in Table 2, applying SSL to
LVLMs with different architectures consistently im-
proves performance on the POPE benchmark. This
demonstrates the robustness of SSL in enhancing
models across a spectrum of capabilities and fur-
ther validates the generalizability of the semantic
directions captured by our approach.

LLaVA-Bench. Table 3 presents the evaluation
results on LLaVA-Bench using GPT-4o. The re-
sults highlight the effectiveness of SSL in enhanc-
ing model accuracy across highly diverse and chal-
lenging tasks.

Accuracy ↑ Detailedness ↑
LLaVA-NeXT 6.2891 6.0278

LLaVA-NeXT w/ SSL 6.3671 5.2667

LLaVA-1.5 5.3333 4.7000
LLaVA-1.5 w/ SSL 4.7167 4.5667

InstructBLIP 5.5056 4.1111
InstructBLIP w/ SSL 5.5823 4.2711

Table 3: Evaluation results on the LLaVA-Bench (In-
the-Wild) benchmark based on prompting GPT-4o.

5.1 Ablation Study
Effectiveness of ASP. To validate the necessity
of adaptively adjusting the steering strength, we
conduct an ablation study by replacing ASP with
a fixed α steering parameter as shown in Equa-
tion 4 equal to the γ value. As shown in Table 4,
removing the adaptive strategy ASP results in con-
sistent performance drops across all three model
architectures, highlighting the importance of ASP
in effectively mitigating hallucinations.

Layer Selection Ablation. We conduct an ab-
lation study on LLaVA-NeXT-8b to examine the
impact of applying guidance at different layers.
Figure 5 shows that the choice of guidance layer
significantly affects model performance, setting
γ to 0.8. For LLaVA-NeXT-8b, applying SSL at
middle layers yields more effective mitigation of
hallucinations, with layer 15 achieving the best per-
formance. For further analysis on steering layer
selection and scaling factor γ settings across dif-
ferent models, please refer to Appendix D and E.

5.2 Further Analysis
Analysis of Reverse-SSL for Inducing Halluci-
nations in LVLMs. To further validate the ef-
fectiveness of the semantic directions we identi-
fied, we compare the CHAIR benchmark across
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Figure 5: Results of SSL applied across different layers.

CHAIRS ↓ CHAIRI ↓
LLaVA-NeXT w/ ASP 26.36 6.32

LLaVA-NeXT w/ fixed α 28.40 7.79

LLaVA-1.5 w/ ASP 40.88 12.30
LLaVA-1.5 w/ fixed α 47.21 13.12

InstructBLIP w/ ASP 44.04 12.64
InstructBLIP w/ fixed α 45.76 13.12

Table 4: Ablation study on the necessity of adaptively
adjusting the steering parameters.

three model architectures under three settings: orig-
inal model state, SSL, and Reverse-SSL (see Ap-
pendix F for details on Reverse-SSL). As shown in
Figure 6, across all three model architectures, ap-
plying Reverse-SSL significantly increases halluci-
nations, while standard SSL guidance consistently
reduces hallucinations. To further clearly illustrate
the effectiveness of SSL, we present several quali-
tative examples in Appendix G.

Additional Time Analysis. During each gener-
ation step, SSL dynamically adjusts the steering
strength through a single scaling and weighting op-
eration, introducing negligible computational over-
head. Compared to the overall generation process,
the additional latency introduced by SSL is mini-
mal. A comparison of inference time between SSL
and other baselines is shown in Figure 7.

Effect of Model Size on Method Performance.
To further analyze the impact of model size on
our method, we conducted additional experiments
on the 7B, 8B, and 11B models, evaluating SSL
performance on both the CHAIR and POPE bench-
marks, with results reported in Table 5 and Table 6.
Specifically, for the 11B model, we use Llama-3.2-
11b-Vision-Instruct released by Meta Llama, where
SSL is applied with γ = 0.4 at the 32th layer. The
results demonstrate that SSL effectively mitigates
hallucinations across models of different sizes and
consistently outperforms other baseline methods.

Original SSL Reverse-SSL
20

30

40

50

60

70

CH
AI

R S

InstructBLIP
LLaVA-Next
LLaVA-1.5

(a) CHAIRS across models

Original SSL Reverse-SSL

6

8

10

12

14

16

18

20

CH
AI

R I

InstructBLIP
LLaVA-Next
LLaVA-1.5

(b) CHAIRI across models

Figure 6: CHAIR evaluation across three multi-
modal models—InstructBLIP-7b, LLaVA-NeXT-8b,
and LLaVA-1.5-7b—under three generation settings:
original, SSL, and Reverse-SSL.
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Figure 7: Comparison of inference time for different
methods measured using identical hardware.

6 Related Works

LVLMs refer to the phenomenon where the gener-
ated textual content is inconsistent with the visual
input. This issue arises from various factors, such
as dataset bias, insufficient visual perception by the
encoder, and misalignment across modalities (Liu
et al., 2024a). While prior studies have proposed
diverse strategies to mitigate hallucination, the in-
ternal mechanisms within LVLMs that give rise to
such inconsistencies remain largely underexplored.

Liu et al. (2025) enhance the stability of vi-
sual representations by steering latent features dur-
ing generation, preventing premature degradation.
Jiang et al. (2024) remove hallucination-related fea-
ture components through linear orthogonalization
by projecting the internal image representations of
vision models into the language space, thereby pu-
rifying the input and reducing hallucinations. Li
et al. (2025) uncover phenomena such as early acti-
vation and progressive loss of visual information in
LVLMs, and propose injecting continuous visual
streams during inference to compensate for these
effects, significantly reducing hallucinations.
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CHAIRS ↓ CHAIRI ↓
LLaVA-1.5-7b 49.44 14.19

LLaVA-1.5-7b w/ SSL 40.88 12.30

LLaVA-Next-8b 29.60 8.03
LLaVA-Next-8b w/ SSL 26.36 6.32

Llama-3.2-11b-Vision-Instruct 31.40 7.40
Llama-3.2-11b-Vision-Instruct w/ SSL 28.92 6.69

Table 5: CHAIR results on MSCOCO dataset averaged
over 5 random seeds. The best are indicated in bold.

Unlike previous methods, our work directly iden-
tifies hallucinatory and faithful semantic directions
using SAEs. We then dynamically adjust these
directions during visual-linguistic fusion and gen-
eration to proactively reduce hallucination outputs.

Furthermore, our approach contributes to the
practical interpretability of SAEs in LVLMs,
demonstrating their potential for understanding and
controlling internal semantic representations.

7 Conclusion

This work explores the relationship between the
hallucination in LVLMs and their internal latent
representations. We construct a residual stream
dataset for hallucinatory and faithful object tokens,
and use SAE to extract the semantic directions cor-
responding to hallucination and Factuality. Based
on this insight, we propose SSL, a plug-and-play
method that amplifies true semantics while sup-
pressing potential hallucinations. Extensive exper-
iments demonstrate that SSL outperforms exist-
ing methods. Furthermore, although the SAE was
trained on LLaVA-Next, the semantic directions
it extracted generalize well across different model
architectures, further showcasing the potential of
SAE in understanding and controlling the internal
semantic representations of models.

Limitations

Currently, the only fully open-source multi-modal
SAE is provided by LLM-Labs, trained on the 25th

layer of the LLaVA-Next 8b model. As a result,
our study does not include a comparison of SAEs
trained on other model architectures across differ-
ent multimodal models. Future work can focus on
training multi-modal SAEs on various architectures
to investigate whether the findings from this study
generalize across different models.

Accuracy ↑ F1 score ↑
LLaVA-1.5-7b 83.86 84.99

LLaVA-1.5-7b w/ SSL 84.55 85.47

LLaVA-Next-8b 89.10 89.10
LLaVA-Next-8b w/ SSL 89.19 89.66

Llama-3.2-11b-Vision-Instruct 87.26 87.80
Llama-3.2-11b-Vision-Instruct w/ SSL 87.48 88.07

Table 6: POPE results averaged over popular, adversar-
ial, and random splits. The best are indicated in bold.

Acknowledgements

This work was supported by National
Key R&D Program of China under Grant
No.2024YFC3015501, also supported by the
National Natural Science Foundation of China
under Grant 62576094, and Grant U24A20322.

Ethical Consideration

In our proposed SSL method, positive steering sig-
nificantly reduces hallucinations in LVLMs, while
negative steering increases them. Positive steer-
ing not only improves model performance but also
aligns with ethical principles such as safety and
reliability. In contrast, negative guidance may lead
to more hallucinations and generate false informa-
tion. Therefore, such mechanisms should be ap-
plied with caution, supported by thorough valida-
tion and human oversight.
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A Construction of Residual Stream
Dataset for Hallucinatory and Faithful
Object Words

Figure 8 illustrates the construction process of
the residual stream dataset. We begin by ran-
domly sampling 4,000 image-text pairs from the
MSCOCO dataset and extracting residual stream
vectors from the 25th layer of the LLaVA-Next-
8b model corresponding to object words identified
as either hallucinatory or faithful during inference.
It is worth noting that some object words are tok-
enized into multiple subword tokens by the model’s
tokenizer. Given the relatively low frequency of
such cases and to facilitate consistent statistical
analysis, we exclude these incomplete subword in-
stances from our dataset. For example, the word
“backpack” may be split into two tokens—"back"
and "pack"—by the tokenizer. Since these sub-
tokens do not independently convey the complete
semantic meaning of the original word, they are
omitted from further analysis.

To ensure class balance, we extract an equal
number of residual stream vectors for hallucinatory
and faithful object words from each sample. This
process results in a balanced dataset comprising
1,784 instances, with a 1:1 ratio of positive (hal-
lucinatory) and negative (faithful) samples. We
further divide the dataset into training and test sets
using a 9:1 split while maintaining the class distri-
bution in both subsets. The training set is used to
identify semantic directions closely associated with
hallucination, and the test set is employed to eval-
uate the generalizability and discriminative power
of the extracted semantic features. Using sparse
autoencoder analysis, we find that the direction
corresponding to latent activation index 36992 is
highly correlated with hallucination, whereas index
47230 aligns closely with faithful outputs.

B A Set of Classification Experiments
Based on Logistic Regression

To quantitatively evaluate the discriminative power
of the latent activation directions extracted by the
SAE in distinguishing hallucinatory from faithful
samples, we conduct a series of classification ex-
periments based on logistic regression. Specifi-
cally, for the i-th sample, let z(xi) ∈ RdSAE denote
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scene of a vintage kitchen …… a 
white refrigerator and a white 
sink …… perhaps waiting to be used 
for a warm cup of tea …… a white 
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moment frozen in time, a glimpse 
into a simpler era.
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Figure 8: The process of construction of residual stream dataset for hallucinatory and faithful object words.

the SAE latent representation. From a total of N
samples, we extract individual latent dimensions
indexed by j, denoted as zj(xi), and construct five
types of input features:

Hall latent: The dimension hall with the highest
correlation to hallucinated object words is selected,
forming a one-dimensional feature:

Xhall = [zhall(x1), . . . , zhall(xN )]T ∈ RN×1.
(10)

Faithful latent: The dimension faithful most
correlated with faithful object words is selected,
forming:

Xfaithful

= [zfaithful(x1), . . . , zfaithful(xN )]T ∈ RN×1.
(11)

Random 1: A single latent dimension r1 ∼
U{0, . . . , dSAE − 1} is randomly sampled to form
a one-dimensional baseline feature Xr1 = RN×1.

Random 2: Two latent dimensions (r1, r2) are
randomly sampled to construct a two-dimensional
feature Xr2 ∈ RN×2.

The corresponding label vector is y =[
y(1), y(2), . . . , y(N)

]T
, where y(i) ∈ {0, 1}, with

1 indicating a hallucinatory sample and 0 a faithful
sample. All input features are standardized before
being fed into the logistic regression model. The
model is trained on the training set and evaluated
on the held-out test set using classification accuracy
and confusion matrices as evaluation metrics.

As shown in Figure 9, the confusion matrices for
the three main feature groups (Hall latent, Faith-

CHAIRS ↓ CHAIRI ↓ Avg.Len

LLaVA-NeXT 29.60 8.03 165.61
w/ SSL γ = 0.2 28.36 7.38 163.20
w/ SSL γ = 0.4 27.92 6.69 158.01
w/ SSL γ = 0.6 26.36 6.32 163.86
w/ SSL γ = 0.8 22.28 5.14 185.80
w/ SSL γ = 1.0 13.28 4.06 163.62
w/ SSL γ = 1.5 2.56 0.59 53.80

Table 7: Ablation study on the scaling factor of LLaVA-
Next.

ful latent, Both). The results show that the model
achieves balanced performance across both posi-
tive and negative classes, with no noticeable predic-
tion bias. Figure 4, the performance of Random1
and Random2 approximates the random baseline
(≈ 0.5), while using Hall latent and faithful la-
tent individually yields classification accuracies of
66.67% and 69.54%, respectively. Combining the
two features (Both) further improves performance
to 72.99%.

These findings suggest that the latent repre-
sentations extracted by the SAE encode seman-
tically discriminative signals for hallucination de-
tection. Furthermore, combining hallucination and
factuality-related latent directions provides comple-
mentary information that enhances classification
performance.
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Figure 9: The confusion matrices for three main feature groups.
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Figure 10: Visualization of the linear SVM decision
boundary in the 2D PCA-reduced latent space. Blue
points represent faithful latent directions, while red
points represent hallucinatory latent directions. The
shaded regions indicate the SVM classification regions,
and the black line shows the decision boundary.

C Boundary Between Hallucinatory and
Faithful Semantic Directions

First, we computed the activation frequency of each
latent direction across hallucinatory and faithful
samples. If a direction was significantly more ac-
tive in hallucinatory samples, it was labeled as hal-
lucinatory; conversely, it was labeled as faithful.
Based on this criterion, we selected the top 128
directions with the largest activation differences be-
tween the two categories (excluding dead latents)
for further analysis.

We then used a Support Vector Machine (SVM)
classifier in the high-dimensional space to identify
a separating decision boundary between the two cat-
egories, and applied Principal Component Analysis
(PCA) to project the features into two dimensions
for intuitive visualization. As shown in Figure 10,
although hallucinatory and faithful semantic di-
rections appear as relatively tight clusters in the
2D projection space, the linear decision boundary

learned by the SVM still effectively separates them.
This apparent overlap is mainly due to PCA prior-
itizing the preservation of global variance rather
than discriminative features, with much of the key
class-distinguishing information compressed into
higher-dimensional subspaces. Nevertheless, the
presence of a clear linear boundary even after di-
mensionality reduction indicates that hallucinatory
and faithful semantic directions are inherently sepa-
rable, thereby validating the existence of a semantic
boundary between the two groups.

D Choice of Steering Layer

Figures 11, 12 and 13 present the results of ab-
lation studies investigating the effect of introduc-
ing SSL at individual layers of the LLaVA-Next
(γ = 0.6), LLaVA-1.5 (γ = 0.8) and InstructBLIP
(γ = 0.1) models, respectively. For LLaVA-Next,
we observe that applying SSL at the middle lay-
ers more effectively mitigates hallucinations, con-
sistent with the results shown in Figure 5. For
LLaVA-1.5, we observe that applying SSL at either
the layer1 or deeper layers consistently mitigates
hallucination. This observation aligns closely with
findings reported by Zhang et al. (2024b), He et al.
(2024) and Chen et al. (2025), who also found that
layer1 or deeper layers interventions can signifi-
cantly reduce hallucination in LLaVA-1.5. In con-
trast, for InstructBLIP, introducing SSL at shallow
layers yields more substantial improvements, while
deeper layer interventions contribute less notice-
ably to performance. We hypothesize that this is
attributable to architectural and training differences
in InstructBLIP, specifically, its shallow layers may
already perform substantial cross-modal alignment
early in the pipeline, making early-stage seman-
tic guidance more impactful on overall generation
quality. A deeper analysis of the layer-specific
mechanisms in different multimodal architectures
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Figure 11: Ablation study on steering a specific layer of LLaVA-Next.
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Figure 12: Ablation study on steering a specific layer of LLaVA-1.5.

Algorithm 2: Reverse-SSL
Input: Scaling factor γ; steering layer ls;

semantic directions dhall, dfaithful;
residual stream at layer ls:
[Xls,s, Xls,t, Xls,v, X

<t
ls,o

]

1 if L = ls then
2 for token x in residual stream do
3 if x ∈ Xls,v then
4 x← x− γ · ∥x∥

∥dfaithful∥+ϵ · dfaithful

5 else if x ∈ X<t
ls,o

then
6 x← x+ γ · ∥x∥

∥dhall∥+ϵ · dhall

7 else
// System and prompt

tokens remain unchanged

is left for future work.

E Choice of Scaling Factor

Tables 7, 8, and 9 report the ablation results on
the effect of the scaling factor γ in the SSL. For
the LLaVA series of models, setting γ to 0.6 or

CHAIRS ↓ CHAIRI ↓ Avg.Len

LLaVA-1.5 49.44 14.19 82.97
w/ SSL γ = 0.2 48.16 14.10 83.45
w/ SSL γ = 0.4 47.16 14.04 83.24
w/ SSL γ = 0.6 45.96 13.36 83.63
w/ SSL γ = 0.8 40.88 12.30 82.37
w/ SSL γ = 1.0 33.80 10.18 86.02
w/ SSL γ = 1.5 17.16 7.66 275.16

Table 8: Ablation study on the scaling factor of LLaVA-
1.5.

0.8 effectively reduces hallucinations, indicating
that moderate levels of semantic intervention are
beneficial. However, when γ > 1.0, the super-
vision becomes overly aggressive, disrupting the
model’s behavior and leading to abnormal halluci-
nation metrics. In contrast, for InstructBLIP, larger
values similarly result in performance degradation.
These findings highlight the importance of care-
fully calibrating the intensity of semantic guidance
to balance model control and generation quality
across different architectures.
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Figure 13: Ablation study on steering a specific layer of InstructBLIP.

CHAIRS ↓ CHAIRI ↓ Avg.Len

InstructBLIP 45.44 13.07 92.11
w/ SSL γ = 0.1 44.04 12.64 102.86
w/ SSL γ = 0.2 41.92 12.10 100.26
w/ SSL γ = 0.3 38.40 11.67 105.38
w/ SSL γ = 0.4 37.21 11.45 119.39
w/ SSL γ = 0.5 8.61 10.55 44.49
w/ SSL γ = 0.6 3.42 14.02 52.14

Table 9: Ablation study on the scaling factor of Instruct-
BLIP.

F Reverse-SSL Approach

To further validate the efficacy of the identified se-
mantic directions, we extend the standard SSL by
introducing Reverse Steering LVLMs via SAEs La-
tents (Reverse-SSL), an approach that deliberately
induces the model to generate more hallucinations.
Specifically, at each residual flow layer, we divide
the input sequence into four contiguous segments:
system tokens, prompt tokens, visual tokens, and
output tokens. During the visual-token stage, we
inject a specific reverse-direction vector that delib-
erately shifts the visual features away from the true
image semantics. At the onset of autoregressive
language generation, we inject the specific reverse-
direction to amplify the previously distorted visual
signal, thereby biasing subsequent text outputs to-
ward content that is either factually incorrect or
substantially divergent from the original prompt.
The complete algorithmic procedure for Reverse-
SSL is presented in Algorithm 2.

G More Qualitative Results

Figures 14, 15, and 16 present additional qualita-
tive examples on the LLaVA-Next, LLaVA-1.5, and
InstructBLIP models, respectively, to demonstrate
the effectiveness of our proposed SSL approach in

mitigating hallucinated objects. With the integra-
tion of SSL, the generated descriptions by LVLMs
exhibit improved fidelity to the visual content while
maintaining the richness and informativeness of the
language output.

H Details on the GPT-4o Evaluation

To evaluate the performance of LVLMs on the
LLaVA-Bench benchmark, we adopt GPT-4o as
the reference evaluator. Following the template
provided in Table 10 of Gong et al. (2024), each
evaluation instance includes the original image, the
base output of the LVLM, and its SSL-enhanced
counterpart. The evaluation focuses on both the
accuracy and fineness of the generated responses.
To mitigate potential biases caused by output order,
we randomly swap the positions of the two outputs
with a probability of 0.5 before each evaluation.
Each sample is evaluated four times to compute
an average score. Figures 17, 18, and 19 illus-
trate representative evaluation examples based on
three model architectures: LLaVA-Next, LLaVA-
1.5, and InstructBLIP, respectively.

I License

The open-source data utilized in this work was em-
ployed exclusively for academic research, consis-
tent with the original intended usage. All the used
intellectual artifacts’ license allows for academic
usage.
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GPT-4o Prompt

You are required to score the performance of two AI assistants in describing a given image. You
should pay extra attention to the hallucination, which refers to the part of descriptions that are
inconsistent with the image content, such as claiming the existence of something not present in the
image or describing incorrectly in terms of the counts, positions, or colors of objects in the image.
Please rate the responses of the assistants on a scale of 1 to 10, where a higher score indicates better
performance, according to the following criteria:
1. Accuracy: whether the response is accurate with respect to the image content. Responses with
fewer hallucinations should be given higher scores.
2. Detailedness: whether the response is rich in necessary details. Note that hallucinated descriptions
should not count as necessary details.

Please output the scores for each criterion, containing only two values indicating the scores for
Assistant 1 and 2, respectively. The two scores are separated by a space. Following the scores, please
provide an explanation of your evaluation, avoiding any potential bias and ensuring that the order in
which the responses were presented does not affect your judgment.
[Assistant 1]
{}
[End of Assistant 1]

[Assistant 2]
{}
[End of Assistant 2]

Output format:
Accuracy:
Reason:
Detailedness:
Reason:

Table 10: The prompt used for GPT-4o evaluation.
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Please describe this image in detail.

Human

In the heart of a cozy room, a black and gray cat 
has found a comfortable spot on a wooden floor. 
The cat, with its fur as dark as night and patches 
as light as the moon, is facing away from us. To 
the left of the feline, a blue bicycle leans casually 
against a white wall. The bicycle, with its vibrant 
blue frame and black seat, adds a touch of color to 
the otherwise monochrome setting. The white wall 
behind it contrasts beautifully with the blue of 
the bicycle. The wooden floor beneath these 
objects adds warmth to the image, grounding the 
scene in a sense of homeliness. 

In the image, a black and gray cat is the main 
subject, standing on a wooden floor. The cat is 
positioned in front of a bicycle wheel, which is 
leaning against a white wall. The bicycle wheel is 
black with a red brake, and it has a black tire. The 
cat is facing the wall, and its tail is raised, 
indicating that it might be curious or alert. The 
image also contains a text that reads Trackstar, 
which could be related to the bicycle or the cat. 
The overall scene suggests a domestic setting, 
possibly a home or a garage.

LLaVA-Next

LLaVA-Next
w/ SSL

Please describe this 
image in detail.

Human

The image captures a serene and modern bathroom 
bathed in soft light. Dominating the scene is a 
white toilet, its lid closed, standing next to a 
shower enclosure. The shower, with its clear glass 
door, is adorned with a wooden shelf that holds a 
single red bottle. Next to the shower, there is a 
wooden cabinet with a mirror. The dark brown 
cabinet contrasts with the white countertop, 
which has a sink and a silver faucet. The floor has 
light beige tiles, and the walls are painted light 
gray. The layout is neat and makes the bathroom 
feel calm and modern.

The image captures a modern bathroom bathed in a 
soothing beige color scheme. The bathroom is well-
equipped with a white toilet, a white sink, and a 
white shower. The shower is equipped with a 
wooden cabinet, providing storage space for 
toiletries. The sink is accompanied by a wooden 
cabinet, offering additional storage space. The 
bathroom is illuminated by a light fixture, casting a 
warm glow on the beige tiles that cover the floor 
and walls. The overall layout of the bathroom 
suggests a well-organized and functional space.

LLaVA-Next

LLaVA-Next
w/ SSL

Figure 14: More examples of SSL in reducing hallucinated content in LLaVA-Next.

Please describe this image in detail.

Human

The image features a large brown dog sitting on the 
floor in front of a flat-screen TV. The dog appears 
to be watching the TV, which is mounted on the wall 
above the dog. The TV is displaying a scene with a 
dog, likely capturing the dog's attention. In the 
room, there are two potted plants, one on the left 
side and the other on the right side. A remote 
control can be seen on the floor, close to the dog. 
Additionally, there is a book placed on the floor, 
slightly to the right of the dog.

The image features a large brown dog sitting on a 
carpeted floor in front of a flat screen TV. The dog 
appears to be watching something on the TV screen, 
likely a program or a movie. The TV is positioned on 
the left side of the room. Profiling the dog's 
position, there are two potted plants in the room, 
one on the right side and the other on the left side. 
The overall scene depicts a cozy and comfortable 
environment for the dog.

LLaVA-1.5

LLaVA-1.5
w/ SSL

Please describe this image in detail.

Human

The image features a bathroom with a toilet 
situated on the left side of the room. A sink is 
located on the right side of the bathroom, and a 
mirror is mounted above it. The bathroom also has a 
large bowl-shaped sink, which is a unique and eye-
catching design element. There are several 
toiletries placed around the bathroom, including a 
toilet paper roll, a toothbrush, and a cup. The toilet 
paper roll is positioned near the toilet, while the 
toothbrush and cup are placed on the sink counter. 
The overall atmosphere of the bathroom is clean 
and well-organized.

The image depicts a bathroom with a large sink 
positioned under a mirror. The sink is made of a 
dark wood material, adding a touch of elegance to 
the space. The bathroom also features a toilet on 
the left side of the room. There are several towels 
in the bathroom, with one placed on the sink and 
two others positioned on the floor. Additionally, 
there is a roll of toilet paper on the sink, ensuring 
that the bathroom is well-stocked for its users.

LLaVA-1.5

LLaVA-1.5
w/ SSL

Figure 15: More examples of SSL in reducing hallucinated content in LLaVA-1.5.
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Please describe this image in detail.

Human

The image features a wooden pizza paddle on a 
table, with a partially prepared pizza dough on top 
of it. The pizza dough is topped with various 
ingredients, including tomatoes, shrimp, and other 
vegetables. The paddle is positioned in the center 
of the table, with the pizza dough spread out on top 
of it. There are several cups placed around the 
table, including one on the left side and another on 
the right side. A bowl is also visible on the table, 
likely containing additional ingredients for the pizza. 
A spoon can be seen on the table, possibly used for 
mixing or preparing the pizza dough. <s>

The image features a pizza on a wooden paddle, 
which is placed on a table with a white cloth. The 
pizza is partially covered with various toppings, 
including shrimp, tomatoes, and other ingredients. 
The pizza is placed on the table, with the paddle 
being used to hold it in place. The pizza is large, 
with a significant portion of it visible on the table. 
The table is covered with a white cloth, providing a 
clean and elegant setting for the pizza. <s>

Please describe this image in detail.

Human

The image features a park with a bench placed near 
a bush. The bench is situated on the side of a path, 
with a tree growing next to it. There are several 
benches in the park, with one located closer to the 
bush and another further away. The park is well-lit, 
with streetlights illuminating the area. The bench 
near the bush is positioned in the foreground, while 
the other benches are placed in the background. 
The scene is peaceful and inviting, with the bench 
providing a comfortable spot for visitors to rest 
and enjoy the park's beauty. <s>

The image features a park with a bench placed next 
to a bushy shrubbery, which is positioned in the 
middle of the scene. The bench is placed on the side 
of the bush, with a few other benches placed 
around the area. There are two benches on the left 
side of the image, while another bench is located on 
the right side. The benches are placed at different 
heights, with one bench being slightly higher than 
the others. The bushy shrubbery provides a natural 
touch to the scene, adding a bit of greenery to the 
otherwise concrete-like environment. <s>

InstructBLIP

InstructBLIP
w/ SSL

InstructBLIP

InstructBLIP
w/ SSL

Figure 16: More examples of SSL in reducing hallucinated content in InstructBLIP.
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The image is a digital artwork that features a dog dressed in a style 
reminiscent of the Mona Lisa. The dog is depicted with a brown coat and 
a black face, with a large, expressive nose and eyes. It is wearing a 
brown headband and a dark brown shawl with a pattern that resembles 
the folds of the Mona Lisa's dress. The dog's arms are crossed, and it is 
looking directly at the viewer with a calm and serene expression. The 
background of the image is a landscape with a mountainous terrain, 
featuring a river winding through the mountains. The sky is filled with 
clouds, and the overall color palette is dominated by earth tones, with a 
focus on browns and grays. The painting style is reminiscent of the 
impressionist style, with loose brushstrokes and a focus on the interplay 
of light and shadow. The image is a playful and creative blend of the 
famous painting with the subject of a dog, combining elements of art 
history with a modern twist.

[Input Image]

[Input Instruction] Describe this photo in detail.

[Model Outputs]

The image is a digital artwork that pays homage to the famous painting 
\"Mona Lisa\" by Leonardo da Vinci. The central figure in the artwork is a 
dog, specifically a Chihuahua, dressed in a black dress with a white collar. 
The dog is wearing a brown headscarf and is seated against a backdrop of 
a landscape. The landscape features a river, mountains, and a castle. The 
dog's expression is neutral, and it is looking directly at the viewer. The 
artwork is a playful and creative take on the original painting, replacing 
the human subject with a dog.

LLaVA-Next

LLaVA-Next
w/ SSL

GPT-4o 
Evaluation

Accuracy: 4.0 9.0
Reason: Assistant 1 inaccurately identifies the dog as a Chihuahua and 
mentions a black dress with a white collar, as well as a castle, none of 
which are present in the image. Assistant 2 accurately describes the 
dog in the style of the Mona Lisa, mentioning the correct attire and 
general description, with only minor inaccuracies like referring to the 
face as black instead of brown. 
Detailedness: 5.0 9.0
Reason: Assistant 1 gives less accurate details and misses several 
aspects of the image, resulting in less informative content. Assistant 2 
provides a detailed description of the image, including the style, attire, 
and background elements. It accurately conveys the artistic style and 
elements borrowed from the Mona Lisa. 

Figure 17: The performance of SSL on reducing hallucinations on LLaVA-Next-8b.
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The creature appears to be made of a combination of materials, including 
a red or orange substance that resembles a horse or a camel, and a pair 
of eyeglasses. The overall appearance suggests that the substance is 
likely a combination of clay or a similar material, along with the 
eyeglasses, which add a creative and playful touch to the overall design.

[Input Image]

[Input Instruction]

[Model Outputs]

The creature appears to be made of a combination of plastic and glass.
LLaVA-1.5

LLaVA-1.5
w/ SSL

GPT-4o 
Evaluation

Accuracy: 3.0 5.0
Reason: Assistant 1 accurately identifies the materials as plastic and 
glass, which may relate to the eyeglasses, but it doesn't address the 
fiery aspects or colors. Assistant 2 accurately describes the creature 
as having a red or orange appearance and mentions eyeglasses. However, 
the description of the material as clay is speculative and doesn't fully 
align with the molten, fiery appearance. 
Detailedness: 2.0 6.0
Reason: Assistant 1 gives minimal description and lacks detail, primarily 
naming materials without describing the creature's form or distinctive 
features. Assistant 2 provides more details about the creature's 
appearance, color, and shape, mentioning both a horse or camel likeness 
and speculating on the material, despite some inaccuracies. 

What material appears to make up the creature?

Figure 18: The performance of SSL on reducing hallucinations on LLaVA-1.5-7b.
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The image shows a man in a yellow shirt standing on the back of a yellow 
SUV, ironing clothes on the roof of the vehicle. He is surrounded by 
various items, including a suitcase, a backpack, and a purse. The scene 
takes place on a busy city street, with multiple cars and a traffic light 
visible in the background. The man's presence on the roof of the SUV is 
a unique and creative way to iron clothes, making it a memorable and 
attention-grabbing image. <s>

[Input Image]

[Input Instruction]

[Model Outputs]

In the image, a man is standing on the back of a yellow car, ironing clothes 
on the roof. He is positioned on the right side of the car, with the laundry 
basket placed on the roof rack. The car is parked on a busy street, with 
several other vehicles and a truck in the background. The scene is set in a 
bustling city, with people walking around and cars passing by. The man's 
actions are likely to draw attention from the pedestrians, as he is ironing 
clothes on the roof of the car. <s>

InstructBLIP

InstructBLIP
w/ SSL

GPT-4o 
Evaluation

Accuracy: 6.0 7.0
Reason: Both assistants correctly describe a man ironing on the back of 
a yellow vehicle. However, Assistant 1 inaccurately mentions the man 
standing on the roof and the presence of additional items such as a 
suitcase, a backpack, and a purse, which are not visible. Assistant 2 
incorrectly mentions ironing on the roof, but doesn't add non-existent 
items, therefore has a slightly more accurate description..
Detailedness: 5.0 6.0
Reason: Assistant 1 provides some details, despite the inaccuracies, 
such as the mention of the city street and multiple cars, but includes 
incorrect additional items. Assistant 2 offers a more accurate context 
of the scene, noting the bustling city and people, though details about 
specific objects are still inaccurate. Both descriptions lack accuracy in 
detailedness, but Assistant 2 is slightly more coherent.

Describe this photo in detail.

Figure 19: The performance of SSL on reducing hallucinations on InstructBLIP-7b.
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