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Abstract

Recent advances in reasoning language mod-
els have witnessed a paradigm shift from short
to long CoT pattern. Given the substantial
computational cost of rollouts in long CoT
models, maximizing the utility of fixed train-
ing datasets becomes crucial. Our analysis re-
veals that negative responses contain valuable
components such as self-reflection and error-
correction steps, yet primary existing meth-
ods either completely discard negative samples
(RFT) or apply equal penalization across all to-
kens (RL), failing to leverage these potential
learning signals. In light of this, we propose Be-
havior Constrained Policy Gradient with Neg-
ative Sample Augmentation (BCPG-NSA), a
fine-grained offline RL framework that encom-
passes three stages: 1) sample segmentation, 2)
consensus-based step correctness assessment
combining LLM and PRM judgers, and 3) pol-
icy optimization with NSA designed to effec-
tively mine positive steps within negative sam-
ples. Experimental results show that BCPG-
NSA outperforms baselines on several challeng-
ing math/coding reasoning benchmarks using
the same training dataset, achieving improved
sample efficiency and demonstrating robust-
ness and scalability when extended to multiple
iterations.

1 Introduction

Reasoning capabilities are a critical aspect of eval-
uating the intelligence of large language mod-
els (LLMs). Recent advances have witnessed a
paradigm shift from short to long chain-of-thought
(CoT) reasoning, particularly after the release of
OpenAI’s o1 series (OpenAI, 2024) and Deepseek
R1 (Guo et al., 2025). However, generating lengthy
CoT responses incurs substantial computational
costs. In the online learning paradigm, the peri-
odic rollout process has become the bottleneck of
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the post-training system (Luo et al., 2025), signifi-
cantly reducing training efficiency. Consequently,
maximizing the utility of fixed training datasets un-
der offline learning paradigm becomes increasingly
crucial.

Motivated by this, a natural question arises: How
can we better utilize negative samples, particu-
larly those from long CoT model? Currently, self-
improvement algorithms for enhancing LLMs’ rea-
soning capabilities fall into two categories: rejec-
tion sampling fine-tuning (RFT (Zhang et al., 2024;
Tian et al., 2025)) and reinforcement learning (RL
(Rafailov et al., 2023; Roux et al., 2025; Team,
2025)), yet neither fully exploits the potential of
negative samples. For RFT methods, negative sam-
ples are entirely discarded. While RL methods like
DPO (Rafailov et al., 2023), GRPO (Shao et al.,
2024), and GPG (Chu et al., 2025) attempt to lever-
age negative samples, they simply apply equal pe-
nalization to all tokens without fine-grained dis-
crimination.

We argue that while treating all steps in nega-
tive samples as flawed is reasonable for short CoT
responses due to their brevity and directness, the
situation differs significantly in long reasoning tra-
jectories. Even when the final answer is incorrect,
many intermediate steps can be valuable (Li et al.,
2025; Ahmad et al., 2025). As illustrated in Figure
1(a), we observe that model responses often ex-
hibit intrinsic behaviors such as verification, error-
correction, and self-reflection (Min et al., 2024;
Ahmad et al., 2025), with these patterns occurring
more frequently than in positive samples, partly
due to the typically longer response length of neg-
ative samples (Fatemi et al., 2025). Therefore, in
the long CoT pattern, simply rejecting all steps of
negative samples is not sound, potentially under-
mining beneficial reasoning steps. PPO (Schulman
et al., 2017) attempts token-level credit assignment
through value model. Nevertheless, its effective-
ness is limited by the exponentially growing action
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space under the long CoT paradigm, requiring sub-
stantial data for accurate token-level value estima-
tion.

To better utilize negative samples, we propose a
fine-grained offline RL framework named Behavior
Constrained Policy Gradient with Negative Sam-
ple Augmentation (BCPG-NSA). Our framework
first employs a semantic segmentation model to di-
vide negative samples into multiple steps. These
steps are then evaluated for correctness using an
LLM judger and/or a process reward model (PRM)
(Zheng et al., 2024). Finally, we introduce a novel
token-level policy optimization objective that en-
ables fine-grained leveraging of negative samples,
where the penalization for valuable steps is reduced
or even reversed to encourage their generation, with
this adjustment strength controlled by the mining
coefficient.

Experimental results demonstrate that BCPG-
NSA achieves the best performance and improved
sample efficiency compared to baselines on chal-
lenging math reasoning benchmarks AIME24
and AIME25, and o.o.d coding benchmark Live-
CodeBench. In addition, our ablation studies show
that the consensus-based LLM-PRM annotation
approach yields the best results compared to LLM-
only and PRM-only approaches, indicating the im-
portance of precise step correctness assessment in
negative samples. We also demonstrate that BCPG-
NSA is robust across different mining coefficient
values, maintains stability over extended training
epochs, and scales effectively to multiple iterations.

Our contributions are summarized as follows:

• To the best of our knowledge, we are among
the first to empirically validate the value of
negative samples through experimental analy-
sis and case studies, and propose mining cor-
rect reasoning steps from these samples to en-
hance long CoT reasoning.

• We introduce BCPG-NSA, an effective offline
RL training framework that integrates reason-
ing step segmentation, consensus-based LLM-
PRM annotation, and a policy optimization
objective with negative sample augmentation.
Across several challenging math and coding
benchmarks, BCPG-NSA achieves improved
performance and sample efficiency compared
with baselines.

• We conduct extensive analyses to demonstrate
the robustness and scalability of BCPG-NSA,

providing insights into its effectiveness under
various conditions.

2 Related Work

Long Chain-of-Thought Reasoning Language
Models LLMs have demonstrated remarkable rea-
soning capabilities in complex tasks. CoT (Wei
et al., 2022; Wang et al., 2025, 2024b)is one of the
significant methods to encourage and enhance the
reasoning ability of LLMs, which guides LLMs
to break down problems and solve them step by
step. OpenAI o1 (OpenAI, 2024) is the first to in-
troduce inference time scaling law, which employs
large-scale RL to enable autonomous optimization
of CoT during training and overcome challenging
tasks by generating more reasoning tokens. Sev-
eral efforts (Team, 2024a; Guo et al., 2025; Team,
2025; Zhang et al., 2025a; Hu et al., 2025) have
successfully replicated the inference time scaling
law, demonstrating the powerful capabilities of this
new inference paradigm.

Process Reward Models in Mathematical Rea-
soning Mathematical reasoning in LLMs has made
significant strides with the introduction of reward
models. Reward models are primarily divided into
two categories: Outcome Reward Model (ORM)
and Process Reward Model (PRM). ORMs only
score the final answer of the LLMs’ responses,
while PRMs assign scores to each reasoning step,
providing granular feedback. Consequently, PRMs
can not only guide search (Park et al., 2024b; Zhang
et al., 2024) but also offer dense rewards in RL
training (Gao et al., 2024).

Benefits from Negative Data Many RL meth-
ods for LLMs, such as GRPO (Shao et al., 2024)
and GPG (Chu et al., 2025), consider every step
in a negative sample incorrect, and use the same
strength to push down the likelihood of all tokens
in incorrect responses. Prior research on learn-
ing from negative samples primarily focuses on
training data construction. Recent works on DPO
(Rafailov et al., 2023; Setlur et al., 2024) propose
constructing training pairs with shared prefixes be-
tween positive and negative samples, aiming to
improve the model’s decision-making at critical in-
termediate steps. Another research targeting SFT
data construction (Wang et al., 2024a) additionally
adds a prefix to indicate whether the current gener-
ation is a successful trajectory, helping the model
better distinguish between correct and incorrect re-
sponses. The most closely related work (Li et al.,
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2024b) leverages valuable signals from negative
samples in short CoT reasoning, through a special-
ized dual-LoRA framework for model distillation.
Under the long CoT paradigm, incorrect and cor-
rect steps more frequently alternate throughout the
reasoning process. Therefore, fine-grained mining
of the value of negative samples is a promising di-
rection.

3 Preliminary Analysis: The Value of
Negative Samples

In this section, we investigate two fundamental
questions: 1) Can supervised fine-tuning on nega-
tive samples bring performance benefits? and if so,
2) To what extent can these benefits be realized?

Specifically, we construct two distinct training
datasets from the open-source R1 dataset (Yang
et al., 2025): SFT-pos and SFT-neg, to compare
their respective performance gains when training
the base model Qwen2.5-14B-Base (Team, 2024b).
Both datasets share identical prompts and contain
an equal number of samples (19,000 each). The
key difference lies in their composition: SFT-pos
consists exclusively of responses with correct final
answers, while SFT-neg contains only responses
with incorrect answers.

AIME24 AIME25

Qwen2.5-14B-Instruct 10.00 13.33
- trained on SFT-pos 52.75 39.42
- trained on SFT-neg 41.67 34.00

Table 1: Performance improvement under different train-
ing set curations.

We draw two conclusions from the results pre-
sented in Table 1. Firstly, fine-tuning on nega-
tive samples yields substantial performance gains,
with the SFT-neg model outperforming the base
Qwen2.5-14B-Instruct by 31.67% on AIME24.
This suggests the presence of valuable compo-
nents within incorrect responses. Through human
investigation, we find that long CoT models of-
ten exhibit self-reflection and propose alternative
problem-solving approaches during reasoning. We
illustrate a representative example in Figure 1 (with
complete details provided in Section A).

Secondly, while SFT-neg significantly improves
upon the base model, it still underperforms com-
pared to SFT-pos by 5-10% across benchmarks,
due to the presence of flawed reasoning steps in

negative samples. This observation motivates us to
design a mechanism that efficiently distinguishes
and leverages valuable steps within negative sam-
ples to maximize performance gains.

4 Method

Our method BCPG-NSA encompasses three stages:
thinking process segmentation, consensus-based
step correctness annotation, and policy optimiza-
tion with negative sample augmentation. The over-
all framework of BCPG-NSA is shown in Figure
1(b).

4.1 Segmenting Thinking Process into Steps

To enable a more fine-grained analysis of the nega-
tive sample thinking process, we first need to seg-
ment the thinking process into multiple steps. Previ-
ous approaches to segment the CoT process mainly
fall into two categories: rule-based methods, such
as splitting using double line breaks (Zhang et al.,
2024), and automatic segmentation using LLMs
(Zhang et al., 2025b; Zheng et al., 2024). Rule-
based methods can lead to semantic discontinuity,
such as incomplete reasoning steps or mixing mul-
tiple independent logical segments within a single
step. On the other hand, automatic segmentation
with LLMs may result in content loss after seg-
mentation. Therefore, we choose to use the SAT
model (Frohmann et al., 2024). The SAT model
not only automatically segments text based on se-
mantics, but also ensures consistency of the text
content before and after segmentation. We use a
binary search method to find an appropriate seg-
mentation threshold and make the number of steps
after segmentation within a reasonable range.

Specifically, for each prompt x, we use a fixed
reference policy πref to generate G responses
{yi}Gi=1. The rollout process of πref that auto-
regressively generates the i-th response yi can be
formulated as:

πref(yi|x) =
|yi|∏

j=1

πref(yi,j |x, yi,<j), (1)

where yi,j denotes the j-th token in response yi.
Given the ground truth y∗, the correctness of yi
is labeled by a verifier (e.g., the well-established
math_verify (Kydlíček and Face, 2025) for math
reasoning tasks), yielding a binary reward ri =
r(x, yi, y

∗) ∈ {0, 1}. For negative samples (where
ri = 0), each response yi is segmented by the SAT
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Question: 
What is the 
sum of all of 
the multiples 
of 7 between 
100 and 200?

Segmented reasoning steps 

offline RL 
training data

offline RL 
training data

Segmentation 
by SAT

Consensus
filtering

LLM judger 
annotation

PRM judger 
annotation

Ro
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+1

-1

+1

-� -1 -1

RFT BCPG BCPG-NSA

(a) (b)

training 
data

Step1: Hmm, okay. Let me think about this step by 
step. ... Wait, arithmetic series? Yes, because each 
term increases by a constant difference, which in this 
case is 7. So, I can use the formula for the sum of an 
arithmetic series, S = n/2 ∗ (first term + last term) ... 
————————————————————————
Human Judge Result: 
Reason: Identifies to use the correct formula.

Step2: So, that would be S = 14/2 ∗ (105 + 196). 
Calculating that, 14 divided by 2 is 7, and 105 plus 196 
is 299. So, 7 multiplied by 299. Hmm, 7*300 is 2100, so 
7*299 is 2100 minus 7, which is 2093. 
————————————————————————
Human Judge Result: 
Reason: Miscalculates the sum by incorrectly adding 
the first and last terms (105 + 196 = 299 instead of 301).

Step3: Wait, maybe I miscalculated one of the sums. 
Let me compute the sum from 105 to 196 manually. ...
105 + 112 + 119 + ... = 2107.
————————————————————————
Human Judge Result: 
Reason: Correctly makes reflection and verifies the 
sum as 2107 through a different method.

Step4. ... We then use the arithmetic series sum 
formula: S = n/2 ∗ (first term + last term). Substituting 
the values, we get: S =14/2 * (105+196)= 7 * 299 = 
2093. Thus, the answer is 2093.
————————————————————————
Human Judge Result: 
Reason: Concludes with the incorrect sum of 2093 
instead of the correct 2107.

Negative sample 
augmentation

-�

Positive/Negative response 
labeled by verifier

Positive steps annotated by 
LLM and/or PRM judger

�

��

Augmented steps (strength 
controlled by � ∈ [−1,1])

Figure 1: (a): A case study: presence of correct steps (via human judgments) within an incorrect response. (b): The
overall framework of BCPG-NSA.

model into K consecutive steps:

yi
SAT
= STEPi,1||STEPi,2|| · · · ||STEPi,K ,

STEPi,k ≜ yi,startk || · · · ||yi,endk ,
(2)

where || is the concatenation operator, and startk
and endk represent the indices of the starting and
ending tokens of the k-th step, respectively.

4.2 Consensus-based Annotation by LLM and
PRM Judgers

After performing segmentation on the negative sam-
ples, we use an LLM judger and a discriminative
PRM to jointly annotate each step in the reasoning
process as correct/incorrect.

In designing the LLM judger, we first establish a
taxonomy of context-agnostic reasoning errors, en-
compassing calculation mistakes, derivation errors,
logical flaws, problem misinterpretations, and sim-
ilar issues. However, our preliminary experiments
reveal that these context-agnostic rules alone are
insufficient for comprehensive evaluation. This lim-
itation stems from the distinctive characteristic of
long CoT LLMs: their capability to engage in self-
reflection and error-correction during the reasoning
process, often resulting in alternating sequences
of correct and incorrect steps. Consequently, the
assessment of a step’s correctness cannot be per-

formed independently, but rather depends on its
relationship with the preceding context.

Therefore, we augment the annotation criteria
with two context-aware rules:

Definition 1 (Error Propagation). A reasoning step
is classified as incorrect if it satisfies two condi-
tions: 1) it follows an incorrect step, or 2) it contin-
ues the reasoning based on the previous step with-
out introducing new problem-solving approaches.

Definition 2 (Error Termination). A reasoning step
is classified as correct if it follows an incorrect step
and either: 1) successfully rectifies the previous er-
ror, or 2) introduces an alternative problem-solving
approach.

Formally, we inject these annotation criteria into
the prompt template (see Figure 6) and instruct the
LLM judger ϕLLM(·) to assess the correctness of
each step:

ILLMi,k = ϕLLM(x, STEPi,:k) ∈ {0, 1}, (3)

where ILLMi,k = 1 denotes STEPi,k is annotated as
correct.

Similarly, we use a discriminative PRM ϕPRM(·)
to annotate each reasoning step. The PRM first pre-
dicts the score σi,k for STEPi,k, and then applies
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a threshold λ to determine the annotation outcome:

σi,k = ϕPRM(x, STEPi,:k) ∈ [0, 1],

IPRM
i,k = 1σi,k>λ ∈ {0, 1},

(4)

where 1(·) is the indicator function. In our exper-
iments, λ is determined through grid search, with
the selection criterion being to maximize the consis-
tency between LLM and PRM annotating results.

Finally, we introduce a consensus filtering ap-
proach, in which a reasoning step is considered
correct only when both the LLM judger and PRM
deem it correct:

Ii,k = ILLMi,k ∧ IPRM
i,k . (5)

4.3 Policy Optimization with Negative Sample
Augmentation

Drawing from classical offline RL work (Park et al.,
2024a), we propose a novel objective function that
combines policy improvement with behavior con-
straint (i.e., KL regularization), while introducing a
mechanism to leverage valuable components within
negative samples. Our objective function BCPG-
NSA is formulated as follows:

JBCPG−NSA(πθ) =

1

G

G∑

i=1

1

|yi|

[ |yi|∑

j=1

logπθ(yi,j |x, yi,<j)βi,j(ri − r)

− τ

2

(
log

πθ(yi|x)
πref(yi|x)

)2
]
, (6)

where r = mean({ri}Gi=1) is the average reward
for the group, τ is the behavior constraint factor.
Notably, the value of βi,j is given by

βi,j =





β if yi,j ∈ STEPi,k and Ii,k = 1

and ri = 0

1, otherwise,

(7)

where the “if” condition indicates that token yi,j
appears in a correct step within an incorrect re-
sponse. The mining coefficient β ∈ [−1, 1] is a
hyperparameter that controls the degree of augmen-
tation for correct steps within negative samples.
The smaller values of β indicate stronger augmen-
tation of correct steps in negative samples, and
intuitively, the penalization for valuable tokens is
reduced (when β ∈ [0, 1)) or even reversed to en-
courage their generation (when β < 0). Specifi-
cally, when β = 1, BCPG-NSA reduces to vanilla

BCPG, which penalizes all tokens in negative sam-
ples equally. In this case, the objective function
resembles the loss formulation of Kimi k1.5 (Team,
2025). A detailed procedure of BCPG-NSA is il-
lustrated in Algorithm 1.

Algorithm 1 BCPG-NSA (single iteration)

Input: Reference model πref
/* Offline training data construction */
for x in prompt set do

Rollout by Equation (1)
if ri = 0 then

Response segmentation by Equation (2)
Step annotation by Equation (3) (4) (5)

end if
end for
/* Training */
Initialize policy model πθ ← πref , mining coef-
ficient β
for epoch in 1, 2, · · · ,Epochs do

Update πθ by Equation (6)
end for
Output: πθ

5 Experiments

5.1 Experiment Setting

5.1.1 Training Dataset Construction
For the offline RL training dataset, we build the
prompt seed set based on open-source data col-
lected by the Open-Reasoner-Zero project (Hu
et al., 2025), comprising AIME (up to 2023),
OpenR1-Math-220k (Ben Allal et al., 2025), and
various other open-source datasets (Li et al., 2024a;
Lambert et al., 2025; Hendrycks et al., 2021). Dur-
ing data filtering, we exclude multiple-choice and
true/false questions to prevent cases where the
model might occasionally derive the correct answer
through incorrect reasoning steps, which could re-
sult in false positives and introduce noise into the
training process.

Subsequently, we employ DeepSeek-R1-Distill-
Qwen-14B (DS-R1-14B) to generate responses.
For each question, we sample 32 responses to en-
sure sufficient coverage of the response space. We
set the maximum response length as 22,000 tokens.
The sampling temperature is set to 0.7 to maintain
a balance between response diversity and quality.

After generation, we use the open-source verifier
tool math_verify (Kydlíček and Face, 2025) to
check whether the model’s final answer is correct,
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Question
Count

Total
Samples

Negative
Samples

Total
Tokens

2069 66208 14896 470M

Table 2: Statistics of the offline RL dataset.

and then remove questions for which all responses
are either entirely correct or entirely incorrect, fol-
lowing (Wen et al., 2025). After filtering, the statis-
tics of our final offline RL dataset are summarized
in Table 2.

5.1.2 Evaluation Details
For evaluation, we choose the highly challenging
benchmarks AIME24 (MAA, 2024) and AIME25,
along with MATH500 (Hendrycks et al., 2021), to
demonstrate the model’s mathematical reasoning
performance. We also incorporate LiveCodeBench
(Jain et al., 2024) (2024/8/1 - 2025/2/1) to show
the generalization capabilities to coding tasks. Fol-
lowing DeepSeek-AI (Guo et al., 2025), long CoT
models are commonly deployed with a sampling
temperature. In our evaluation, we set the temper-
ature to 0.7 (identical to the temperature used in
rollout). We report the pass@1 averaged over 40
runs on AIME24 and AIME25. For MATH500
and LiveCodeBench, we average over 10 runs, as
these benchmarks exhibit relatively small variance
between test runs. This ensures statistical robust-
ness and mitigates randomness in sampling, better
reflecting the model’s true capabilities.

5.1.3 Models
Base Model. We initialize our training from the
DS-R1-14B. The reasons for choosing it as the
starting model are as follows: 1) DS-R1-14B has
undergone large-scale SFT training and exhibits a
stable long CoT pattern with frequent alternation
between correct and incorrect steps, making it an
ideal starting model to validate the effectiveness of
NSA. 2) Based on R1 results (Guo et al., 2025), the
14B model achieves comparable performance to
the 32B variant, offering more generalizable find-
ings than the 7B model while being more computa-
tionally efficient than the 32B model.

LLM Judger. We employ Claude-3.7-
Sonnet(thinking) (Anthropic, 2025), one of the lat-
est slow-thinking models, as the judger model.

PRM. We utilize Qwen-Math-PRM-7B (Zhang
et al., 2025b) as the PRM for step-wise annotation.
This choice is motivated by its outstanding perfor-
mance on the ProcessBench (Zheng et al., 2024)

Benchmark, demonstrating its robust capability in
process evaluation tasks. We set the threshold λ as
0.6.

5.1.4 Baselines
We choose the following methods as baselines:

• RFT (Yuan et al., 2023): It exclusively utilizes
positive samples from the offline RL dataset
and updates the model parameters through
SFT loss.

• DPO (Rafailov et al., 2023): It is a prominent
approach in offline RL settings and directly
optimizes the preference objectives with-
out explicit reward modeling. This method
has demonstrated remarkable effectiveness in
preference-based learning tasks.

• TOPR (Roux et al., 2025): As an offline RL
variant, it combines truncated importance sam-
pling for negative samples with RFT-style op-
timization for positive samples, and removes
KL regularization.

• GRPO-offline (Shao et al., 2024): It applies
the GRPO loss consistently throughout the
offline RL training process, eliminating the
need for periodic online data resampling.

The training details of all algorithms can be
found in Section C.

5.2 Main Results

Negative samples play a crucial role in enhanc-
ing the performance of long CoT model. As
shown in Table 3, all offline RL methods consis-
tently outperform RFT. Notably, RFT performs
even worse than the original DS-R1-14B, exhibit-
ing a significant 7.5% drop on AIME24. These re-
sults indicate that positive samples alone are insuf-
ficient to improve a distilled model that has already
undergone SFT on a large-scale dataset. The nega-
tive gradient from negative samples can reduce the
probability of wrong reasoning content, which is
crucial for advancing model performance in long
CoT reasoning. We hypothesize that the reason for
the decline in RFT performance is that a substantial
proportion of questions in our training dataset have
already been utilized in the distillation phase. For
the same questions, the answers generated by DS-
R1-14B are not as good as those generated by R1.
Therefore, during RFT, the model memorizes the
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DS-R1-14B RFT DPO TOPR GPRO-offline BCPG BCPG-NSA

AIME24 70.58 62.92 69.83 69.75 70.50 70.50 72.17
AIME25 49.58 50.75 49.00 52.67 50.90 52.00 54.42

MATH500 91.80 92.20 92.88 93.12 92.08 93.98 93.36
LiveCodeBench 52.40 52.69 51.61 52.90 52.97 53.26 53.84

Average 66.09 64.64 65.83 67.11 66.61 67.44 68.45

Table 3: Evaluation results of BCPG-NSA and baselines on different benchmarks (β is set to 0.5 for BCPG-NSA).

poorer responses and forgets the better ones from
the distillation phase.

Vanilla BCPG sets a competitive foundation.
Despite its simplicity, BCPG achieves a 1.4% av-
erage improvement across all benchmarks com-
pared to DS-R1-14B, outperforming other offline
RL methods. Given its superior performance, we
select BCPG as the foundation to validate the ef-
fectiveness of NSA.

Negative sample augmentation leads to sig-
nificant performance gain. Compared to BCPG,
BCPG-NSA achieves a remarkable 2.5% improve-
ment on AIME25 and a 1% improvement on aver-
age performance. Since DS-R1-14B already per-
forms very well on the AIME24 benchmark, previ-
ous work (Wen et al., 2025) has shown that achiev-
ing further improvements on AIME24 is quite
challenging. However, our BCPG-NSA algorithm
successfully achieves an accuracy exceeding 72%.
These results validate that the correct steps within
negative samples are of great value and can signifi-
cantly enhance the model’s reasoning ability.

6 Ablation Studies

6.1 Different Annotation Methods
In this section, we investigate the impact of the
annotation quality on the performance of BCPG-
NSA. We conduct experiments where negative sam-
ples are annotated using PRM only and the LLM
judger only, respectively, and compare with the
performance obtained by consensus filtering that
integrates both LLM and PRM annotations. Table
4 shows the number of tokens in correct steps and
incorrect steps among negative samples under dif-
ferent annotation methods. In all three experiments
mentioned above, β is set to 0.5.

Results are demonstrated in Table 5. Compared
to the base model DS-R1-14B and the vanilla
BCPG, negative sample augmentation consistently
improves performance across all 3 annotation meth-
ods, demonstrating the robustness of NSA’s bene-

fits regardless of the choice of judgers. Moreover,
the LLM-PRM approach, despite mining the small-
est number of correct tokens (only 26M in total)
from negative samples, achieves the best perfor-
mance. We hypothesize that the consensus-based
filtering implements more stringent selection cri-
teria, ensuring a higher quality of retained correct
steps and avoiding potential false positives from
individual judgers.

Correct tokens Incorrect tokens

PRM-only 38M 80M
LLM-only 65M 53M
LLM-PRM 26M 92M

Table 4: Number of tokens in correct/incorrect steps of
negative samples under different annotation methods.

AIME24 AIME25 Avg.

DS-R1-14B 70.58 49.58 60.08
BCPG 70.50 52.00 61.25

PRM-only 70.58 55.58 63.08
LLM-only 72.17 53.33 62.75
LLM-PRM 72.17 54.42 63.30

Table 5: Performance under different annotation meth-
ods.

6.2 Different Values of Mining Coefficient
Mining coefficient β is the key hyperparameter
in NSA, used to control the strength of the aug-
mentation. Therefore, we test the performance
of the model under different β values within the
range [−1, 1] to demonstrate the robustness of NSA.
When β = 1, BCPG-NSA reduces to the vanilla
BCPG method.

Results in Figure 2 demonstrate that: 1) As β de-
creases (indicating more aggressive negative sam-
ple augmentation), BCPG-NSA’s performance ex-
hibits an initial increase followed by a decline. 2)
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Figure 2: Average performance of AIME24 and
AIME25 across different β values.

BCPG-NSA outperforms vanilla BCPG across a
wide range of β values, including at the relatively
aggressive setting of β = −0.5. This robust per-
formance across different β values suggests that
NSA is not overly sensitive to this hyperparameter
and can consistently deliver performance improve-
ments.

7 Further Analysis

7.1 Training Dynamics

In offline RL, the data in the training set is of-
ten used multiple times for updates. Therefore,
we track the average performance of AIME24
and AIME25 under different update steps dur-
ing training. We conduct experiments with β ∈
[0.25, 0.5, 0.75]. The experimental results in Table
3 show that as the number of training epochs in-
creases, the model’s performance improves steadily.
Therefore, conducting multiple rounds of updates
is essential to fully leverage the rollout data and
achieve higher sample efficiency.

7.2 The Performance of Multiple Iterations

To investigate the scalability of our proposed
method when extended to multiple training iter-
ations, we further evaluate both BCPG-NSA and
BCPG in a second iteration. Given the enhanced
model capabilities after the first iteration, we sam-
ple 1,000 problems from the 13k hard dataset (Hu
et al., 2025) derived from the Open-Reasoner-Zero
project for the second iteration. Using the model
checkpoint from the end of iteration 1, we per-
form rollouts on these problems and generate 32 re-
sponses per problem. As shown in Table 6, BCPG-
NSA achieves an additional 1.3% performance im-

Figure 3: Average performance of AIME24 and
AIME25 under different update steps (single iteration).

provement on AIME25 in iteration 2, demonstrat-
ing its ability to continuously benefit from multiple
iterations. Notably, BCPG’s performance in itera-
tion 2 remains below that of BCPG-NSA in itera-
tion 1, further validating the effectiveness of NSA.

AIME24 AIME25 Avg.

DS-R1-14B 70.58 49.58 60.08

BCPG (iteration 1) 70.50 52.00 61.25
BCPG-NSA (iteration 1) 72.17 54.42 63.30

BCPG (iteration 2) 71.42 53.42 62.42
BCPG-NSA (iteration 2) 72.00 55.75 63.88

Table 6: Performance under multiple iterations.

8 Conclusion

In this paper, we present BCPG-NSA, a novel of-
fline RL framework designed to effectively lever-
age valuable components within negative samples
for LLMs’ long CoT reasoning. Unlike existing
methods that either discard negative samples or
apply equal penalization, our approach enables
fine-grained treatment of negative samples through
three key components: semantic step segmentation,
consensus-based step correctness assessment, and
policy optimization with negative sample augmen-
tation. Experimental results on challenging rea-
soning benchmarks demonstrate that BCPG-NSA
achieves superior performance and exhibits great
robustness and scalability when extended to multi-
ple iterations.

9 Limitations

Although our proposed negative sample augmenta-
tion framework has demonstrated its effectiveness
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on multiple challenging mathematical and code rea-
soning benchmarks, there are still several limita-
tions to be addressed. 1) More fine-grained credit
assignment. Currently, our method assigns equal
credit to all correct steps in negative samples. A
potential improvement would be to enable LLM or
PRM judger to output continuous values instead of
binary decisions, which could then be used to com-
pute a weighted final score, allowing for more pre-
cise credit assignment for each step. 2) While the
consensus-based LLM-PRM annotation method
achieves strong performance, the annotation pro-
cess could be optimized by training a dedicated
model on the labeled data, potentially improving
both efficiency and speed. These improvements
will be explored in future work.
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A Case Study: A negative response that
incorporates positive steps

Figure 4 and Figure 5 present a detailed case to
more specifically demonstrate the results of seg-
mentation and annotation of the negative samples.
Model’s response is segmented into 15 steps. The
content field contains the model’s reasoning pro-
cess in each step. A score of 1 and 0 indicate the
step is correct and incorrect, respectively. The rea-
son field provides the rationale for the scoring.

B Prompt Template for LLM Judger

The prompt template for LLM judger in Section
5.1.3 is shown in Figure 6.

C Training Details

The detailed hyperparameters of the RFT method
are shown in Table 7.

Parameter Value

Max Learning Rate 2.5× 10−6

Min Learning Rate 1× 10−7

Warmup Fraction 0.01
Epochs 6
Batch Size 64
Seq Length 32k

Table 7: Training hyperparameters of RFT.

For other RL methods, the shared hyperparame-
ter settings are shown in Table 8. All experiments
are conducted using 64 NVIDIA H800/H100 GPUs.
The training of BCPG-NSA takes approximately
14 hours.

Parameter Value

Max Learning Rate 5× 10−7

Min Learning Rate 2.5× 10−7

Epochs 8
Batch Size 512
Seq Length 32k

Table 8: Training hyperparameters of offline RL meth-
ods.

For both the BCPG and BCPG-NSA, τ is set to
1× 10−3. For the DPO algorithm (Equation 8), we
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set βDPO to 0.5.

JDPO(πθ;πref) = −E(x,yw,yl)∼D

[

log σ

(
βDPO

(
log

πθ(yw | x)
πref(yw | x)

(8)

− log
πθ(yl | x)
πref(yl | x)

))]

For the objective of TOPR algorithm (Equation
9), the upper bound of the clip a is set to 1, and the
lower bound b is set to 0.

JTOPR(πθ) = −Ey∼πref

[
ρ(x, y) logπθ(y|x)

]
.

(9)
In the equation above, ρ(x, y) is defined as:

ρ(x, y) =





[
πθ(y|x)
πref(y|x)

]a
b
, if r(x, y, y∗) < 0

1, otherwise.
(10)

For the GRPO algorithm (Equation 11), we set
ϵ = 0.2 and βGRPO = 1× 10−3.

JGRPO(πθ) = −Ex∼D,{yi}Gi=1∼πref

[

1

G

G∑

i=1

(
min

( πθ(yi|x)
πref(yi|x)

Ai,

clip(
πθ(yi|x)
πref(yi|x)

), 1− ϵ, 1 + ϵ
)
Ai

)

− βGRPODKL(πθ||πref)
]

(11)
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Problem: What is the sum of all of the multiples of 7 between 100 and 200?
Solution:

• Step 1

– Content: Hmm, okay. Let me think about this step by step. Maybe I can start by
recalling how to find the sum of an arithmetic series because multiples of 7 should
form an arithmetic sequence. Wait, arithmetic series? Yes, because each term
increases by a constant difference, which in this case is 7. So, I can use the formula
for the sum of an arithmetic series. ... Then, dividing both sides by 7, I get 13 = n -
1. Adding 1 to both sides, n = 14. So, there are 14 terms in this sequence.

– Score: 1.
– Reason: Correctly identifies the first term (105), last term (196), and number of

terms (14) in the arithmetic sequence.

• Step 2

– Content: Wait, let me verify that. Let’s list out some terms to be sure. Starting at
105: 105, 112, 119, 126, 133, 140, 147, 154, 161, 168, 175, 182, 189, 196. Yeah,
that’s 14 terms. Okay, so n = 14. Now, plugging these values into the sum formula:
S = n/2 ∗ (first term + last term). So, that would be S = 14/2 ∗ (105 + 196).
Calculating that, 14 divided by 2 is 7, and 105 plus 196 is 299. So, 7 multiplied by
299.Hmm, 7*300 is 2100, so 7*299 is 2100 minus 7, which is 2093.Wait, really? ...

– Score: 0.
– Reason: Miscalculates the sum by incorrectly adding the first and last terms (105 +

196 = 299 instead of 301) and incorrectly computes the sum up to 200 using the
wrong first term (105 instead of 7).

• Step 3

– Content: Wait, that’s a different number. So, which one is correct? ...
Alternatively, since all these numbers form an arithmetic progression, I can use the
formula again. So, S = n/2 ∗ (first term + last term). So, n is 14, first is 105, last
is 196. So, 14/2 is 7, times (105 + 196) is 7*299=2093. ...

– Score: 0.
– Reason: Continues based on STEP 2’s errors (299 instead of 301 and incorrect sum

up to 200) without correction or a new correct approach.

• Step 4

– Content: ... Wait, maybe I miscalculated one of the sums. Let me compute the
sum from 105 to 196 manually, but that would be time-consuming, but let me try a
few terms. 105 + 112 + 119 + 126 + 133 + 140 + 147 + 154 + 161 + 168 + 175 +
182 + 189 + 196. Let me add them step by step. Start with 105. 105 + 112 = 217.
217 + 119 = 336. 336 + 126 = 462. 462 + 133 = 595. 595 + 140 = 735. 735 +
147 = 882. 882 + 154 = 1036. 1036 + 161 = 1197. 1197 + 168 = 1365. 1365 +
175 = 1540. 1540 + 182 = 1722. 1722 + 189 = 1911. 1911 + 196 = 2107.

– Score: 1.
– Reason: Correctly verifies the sum as 2107 through manual addition and the

difference method, despite repeating an earlier incorrect calculation.

Figure 4: An example of negative response that incorporates positive steps (part 1).
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• Step 5

– Content: ...... Wait, so the manual addition gives me 2107, same as 2842 - 735.But
when I used the arithmetic series formula, I got 2093. So, that’s the problem. Why
is there a discrepancy? Wait, let me check the arithmetic series formula again. I
think the issue is with the number of terms.Wait, the first term is 105, which is
15*7, and the last term is 196, which is 28*7.

– Score: 1.
– Reason: Correctly applies the alternative arithmetic series formula to get 2107,

confirming the correct sum.

• Step 6

– Content: Wait, earlier when I did the arithmetic series formula correctly, I think I
messed up. Wait, no. If I use S = n/2 ∗ (first + last), which is
(14/2× (105 + 196) = 7× 299 = 2093. But when we I used the correct formula
S = n/2 ∗ (2a+ (n− 1)d), it gave me 2107. Wait, that’s a contradiction. So, what’s
happening here. Wait, perhaps I made an error in the number of terms. ... So,
n=14, first term 105, last term 196. So, the sum is
14/2 ∗ (105 + 196) = 7 ∗ 299 = 2093 ...

– Score: 0.
– Reason: Reintroduces the incorrect sum (2093) alongside the correct 2107 without

resolving the error.

• Step 7-14. A series of deductions based on false premises.

• Step 15

– Content: So, there are 14 terms in this sequence. We then use the arithmetic series
sum formula: S = n

2 × (first term + last term). Substituting the values, we get:
S = 14

2 × (105 + 196) = 7× 299 = 2093. Thus, the sum of all multiples of 7
between 100 and 200 is 2093 .

– Score: 0.
– Reason: Concludes with the incorrect sum of 2093 instead of the correct 2107.

Figure 5: An example of negative response that incorporates positive steps (part 2).
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You are an expert in evaluating mathematical problem-solving processes. The user will pro-
vide a math problem, a step-by-step solution, and ground truth. Your tasks are as follows:

1. First, extract a concise final answer (Short Answer) from the ground truth.

2. Then, carefully review the user’s step-by-step solution, assigning a score to each step
(either 0 or 1). For each step, provide a brief explanation of your judgment result.

Scoring rules:

• If a step contains an explicit error, such as a reasoning error, calculation mistake, logical
flaw, or misunderstanding of the problem, it should be scored 0.

• If a step does not contain any errors, score it according to the following rules:

1. Error Propagation: If a previous step contains an error and the current step
continues the analysis based on that error without introducing a new, correct
approach or making a proper correction, the current step should also be scored 0.

2. Error Termination: If a previous step contains an error, but the current step either
corrects the previous mistake or introduces a new and correct approach, the current
step should be scored 1. For example:

– STEP K contains an error.
– STEP K+1 continues the analysis based on the error.
– STEP K+2 corrects the previous error or introduces a new and correct approach.

In this case, STEP K and STEP K+1 should be scored 0, and STEP K+2 should be
scored 1.

Your response format should be in json format:
[

{
"STEP 0": 1(int),
"Reason": xxxx(str)

},
{

"STEP 1": 1(int),
"Reason": xxxx(str)

}
...

]

Note: When analyzing the solution, remain objective and rational. Do not be misled by the
way the user’s solution is described.

Figure 6: Prompt template for the LLM judger.
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