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Abstract

We investigate whether Transformer-based
language models, trained solely on Hangul
text, can learn the compositional morphol-
ogy of Sino-Korean (SK) morphemes, which
are fundamental to Korean vocabulary. Us-
ing BERTgasg and fastText, we conduct con-
trolled experiments with target words and their
“real” vs. “fake” neighbors—pairs that share a
Hangul syllable representing the same SK mor-
pheme vs. those that share only the Hangul syl-
lable. Our results show that while both models
—especially BERT—distinguish real and fake
pairs to some extent, their performance is pri-
marily driven by the frequency of each exper-
imental word rather than a true understand-
ing of SK morphemes. These findings high-
light the limits of distributional learning for
morpheme-level understanding and emphasize
the need for explicit morphological modeling
or Hanja-aware strategies to improve seman-
tic representation in Korean language models.
Our dataset and analysis code are available
at: https://github.com/taeheejeon22/
ko-skmorph-1m.

1 Introduction

Language models (LMs) using distributional infor-
mation have achieved considerable success, from
traditional word embeddings to Transformer-based
architectures (Vaswani, 2017). While distribu-
tion is essential for semantic learning, human
language processing also relies on additional re-
sources beyond distribution—such as phonological
and morphological information. These resources
differ across languages: for example, understand-
ing Sino-Korean (SK) morphemes! is critical for
lexical semantics in Korean.

While SK words account for over 57% of the
Korean lexicon (Choo and O’Grady, 1996), native

'Sino-Korean morphemes are Korean morphemes of Chi-

nese origin, typically corresponding to Chinese characters,
and they account for a large portion of Korean vocabulary.

Korean meanin Korean meanin
(Hanja) J (Hanja) e
R . 2 .
(5 % #0) proper fraction (B % #0) improper fraction
,IE: true, real, genuine 'fEi false, fake, pseudo

Figure 1: Illustration of how SK morphemes facilitate
the interpretation of words like 21 24> (1B 57 84 jin-bun-
su “proper fraction’) and 7+ 2 (R 73 8 ga-bun-su
"improper fraction’).

speakers often infer word meanings through SK
morphemes without explicit instruction in Hanja
(Korean Chinese characters). For example (Fig-
ure 1), mathematics learners unfamiliar with Z1&
4 (B384 jin-bun-su ‘proper fraction’, where the
numerator is smaller than the denominator) or 7H&
= (57 %% ga-bun-su ‘improper fraction’, where
the numerator is larger) can infer their meanings us-
ing SK morpheme knowledge rather than context.
Even without prior exposure, knowing morphemes
like % (1 jin “true’) and 7} (X ga “false’) enables
semantic inference.

Psycholinguistic studies show that SK mor-
pheme comprehension plays a crucial role in Ko-
rean word recognition (Yi and Yi, 1999; Yi et al.,
2007; Yi,2009; Bae et al., 2012; Kang et al., 2016;
Bae and Lee, 2017; Bae et al., 2021). Native
speakers mental lexicons are closely linked to SK
morpheme understanding, regardless of Hanja lit-
eracy.” This raises an important question for Al:
while LMs aim to mimic human cognition, do they
truly process language like humans?

Studies on LM linguistic capabilities have
largely focused on syntax and semantics, with
limited attention to morpheme-level understand-

*While SK morphemes can be represented via Hanja, we
focus on Hangul text, as most Korean speakers acquire SK
morphemes without Hanja exposure. Hanja is rarely used in
modern Korean outside specialized contexts.
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ing (Goldberg, 2019; Jawahar et al., 2019; Et-
tinger, 2020; Puccetti et al., 2021; Rogers et al.,
2021). While these works explore syntactic de-
pendencies and meaning composition, morpholog-
ical structure—especially in morphologically rich
languages like Korean—remains underexplored.
SK morpheme comprehension requires syllable-
level representation and morphological aware-
ness, but naive syllable tokenization underper-
forms morpheme-based and BPE approaches in
Korean NLP tasks (Park et al., 2020). Investi-
gating whether LMs acquire such knowledge tests
their alignment with human language acquisition
and generalization beyond surface co-occurrence.

Building on these points, we ask whether Ko-
rean LMs utilize SK morphemes in language pro-
cessing. Transformer-based LMs typically adopt
Byte Pair Encoding (BPE) (Gage, 1994; Sennrich
et al., 2015) tokenizers. While full access to SK
morphemes would require tokenizing each sylla-
ble, this is not feasible under BPE. Thus, it is worth
examining whether LMs—despite lacking direct
access to SK morphemes, which are essential for
human-level understanding in Korean—still make
use of them during processing.

For this purpose, we pose the research question:
Can a Transformer-based LM, without direct ac-
cess to SK morphemes, still learn their composi-
tional morphology? We design experiments using
a target SK word with a “real” neighbor (e.g., 2™
A saengmyeong ‘life’ & YA 4L PE saengsan
‘production’) that shares the same SK morpheme,
A 4 saeng, and a “fake” neighbor (e.g., A4 4
i & A 2F AW saengnyak ‘omission’) that shares
only the Hangul syllable /Y saeng.

Using Bidirectional Encoder Representations
from Transformers (BERT) (Devlin et al., 2018),
a classic Transformer model, alongside fastText
(Bojanowski et al., 2017)—which indirectly ac-
cesses SK morphemes via Hangul syllables—
yields mixed results. Both BERT and fastText as-
sign higher similarity to real than fake pairs, sug-
gesting that BERT may appear to handle the com-
positional morphology of SK morphemes even
without explicit subword segmentation. However,
further analysis reveals that BERT’s performance
is not due to genuine morphological understand-
ing, but rather to its reliance on word frequency in
the training corpus. While neither model truly un-
derstands SK morphemes, BERT’s performance in
particular is driven by exposure to frequent words,
creating only the illusion of semantic understand-

ing.
In this paper, we contribute the following:

* Sino-Korean morphological approach in
Transformer-based Korean models: We
provide an empirical investigation into how
Transformer-based Korean LMs process the
compositional morphology and semantics of
SK morphemes, a topic that has received little
attention in prior work.

* Revealing the limits of purely distribu-
tional approach: Our analysis shows that re-
lying solely on distributional patterns is insuf-
ficient for learning compositional morphol-
ogy, as these models struggle to capture SK
morphemes.

* Specialized dataset for Sino-Korean mor-
phemes: We present a small but focused
dataset to evaluate LMs’ compositional mor-
phological knowledge, offering a starting
point for targeted research on Korean mor-

phology.
2 Related Work

2.1 Hanja-aware Approach for Korean
Linguistic Tasks

Hanja-aware approaches aim to enhance seman-
tic representation by supplementing Hangul input
with corresponding Hanja forms—a key factor in
SK morpheme understanding. Yoo et al. (2019)
introduced a Hanja-aware fastText model that im-
proved word-analogy and similarity tasks. Yoo
et al. (2022) built HUE, a pretrained BERT model
for Hanja texts, showing that Hanja-specific train-
ing aids historical document analysis. Yang et al.
(2023) presented HistRed, a relation-extraction
dataset with bilingual Hanja—Korean annotations,
revealing that Hanja-based models surpass mono-
lingual baselines in entity relation tasks.

Hanja-aware methods have also been explored
in Neural Machine Translation (NMT). Kim
et al. (2020) proposed a preprocessing step us-
ing Hangul-to-Hanja conversion to improve BLEU
scores in Korean-to-Japanese translation. Son
et al. (2022) introduced H2KE, a historical-to-
modern Korean model that uses Hanja to better
align older texts with modern usage.

These studies suggest that incorporating Hanja
helps Korean LMs, but it is unclear whether they
process SK morphemes like humans or just treat
Hanja as extra vocabulary items.
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2.2 Extracting Word Embedding Vectors
from Contextualized Representations

While extracting word embeddings from static
models (e.g., fastText) is straightforward, contex-
tualized models like BERT produce token repre-
sentations that vary with context. Mickus et al.
(2020) used embeddings from the last layer of
bert-large-uncased to examine semantic co-
herence in BERT’s space. Studying five pretrained
LMs, Bommasani et al. (2020) found that mean-
pooling over 100K sentences yields more stable
embeddings resembling static ones. Gupta and
Jaggi (2021) also proposed a method to extract sta-
ble, static embeddings from contextualized models
by pooling vectors across contexts containing each
target word.

3 General Methodology

This study examines whether an LM can learn com-
positional morphology purely from word distribu-
tions in Hangul-only text. We construct word pairs
to test whether a model can detect SK morphemes
in cases of Hangul homography. The idea is sim-
ple: we compare “real” pairs (same syllable and
SK morpheme) and “fake” pairs (same syllable,
different morphemes). A model that captures SK
morphemes should assign higher similarity to real
pairs.

This section outlines shared methodological de-
tails across all experiments, including word pair se-
lection (Section 3.1), model selection and tokeniza-
tion strategy (Section 3.2), embedding extraction
(Section 3.3), and Intrinsic Evaluation Approach
(Section 3.4). Specific evaluation methods and
metrics are discussed in Section 4, where each ex-
periment is detailed separately.

3.1 Word Pair Selection

Focus on the First Syllable We focus on the first
syllable for word pair selection. Psycholinguistic
research, such as Cutler and Norris (1988), has con-
sistently shown that initial syllables serve as cru-
cial cues in lexical access. Similarly, Korean stud-
ies highlight the importance of the first syllable:
(Kwon et al., 2011; Nam, 2022; Lee et al., 2023).
Based on these findings, we restricted neighbor se-
lection to words sharing the first syllable in order
to ensure tighter experimental control.?

3While the present study focuses on first-syllable overlap,
the position of the target syllable may affect the results. Fu-

ture work could test whether final-syllable overlap yields dif-
ferent patterns.

Analysis Framework for Sino-Korean Words
The dataset consists of two-syllable SK nouns,
a common structure in Korean. As mentioned
above, we selected words whose first syllable—
an SK morpheme—governs the pairing. To pre-
vent the model from relying on simple recognition
rather than true SK morpheme understanding, we
excluded words whose first syllable is both a fully
independent morpheme and a standalone word—
such as ¥ (£ wang ‘king’) and 2] (4} “outside’).
To ensure linguistic validity, we consulted re-
cent Korean linguistics studies on SK morphology.
Since the linguistic treatment of SK morphemes
vary among researchers,* we mainly focus on two
recent PhD dissertations (Yang, 2010; He, 2018).
Following the framework in He (2018), our exper-
imental words cover three SK morpheme types:

* Nominal Roots: Dependent morphemes
found in multi-syllable SK words, such as &
(K cheon ‘sky’) in = (KB cheon-guk
‘heaven’) and ¢! (A in ‘person’) in A+ (A
[ in-gu ‘population”).

* Verbal/Adjectival Roots: Bound stems used
in verbs and adjectives, such as 7 (78 gang
‘strong’) in 4= (583 gang-jo ‘emphasis’)
and ¥ (3 byeon ‘change’) in WAl (& &
byeon-sin ‘transformation’).

* Prefixes: Morphemes functioning as prefixes,
such as Z- (# cho ‘super’) in 2% (B &
i® cho-eum-sog ‘supersonic’) and Al- (HT sin
‘new’), AT (FriAX sin-se-dae ‘new gen-
eration’).

Although SK morphemes have many subcate-
gories, we do not separate them in our experiments
since the classification remains debated in Korean
linguistics as mentioned above. Accordingly, we
treat them as dependent morphemes that cannot
stand alone as words.

Neighbor Word Selection For each target word,
we chose neighbor words based on the Hangul
spelling of their first syllable, ensuring a controlled
comparison of morphemic relationships. Only
two-syllable SK nouns were considered, strictly
matching the target’s first syllable.

“For example, Z| (% choe ‘the most’) is classified as a
root in Yang (2010), but as a prefix in He (2018) and the Stan-
dard Korean Language Dictionary.
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Hangul Hanja meaning
TR AIKE B ewwork
el MY HA newcomer
ede. A8 EA e

Figure 2: Examples of real and fake neighbor word
pairs. The target word 212t (F1{E sin-jag "new work”)
and its real neighbor A1 ) (1 A sin-ib *newcomer”)
share both the first Hangul syllable and the SK mor-
pheme. In contrast, the fake neighbor 41-8 ({5 F sin-
yong ’trust’) share only the Hangul syllable but derive
from different SK morphemes, making them unrelated
in meaning.

We classified neighbor words into two types:
“real” neighbors, which share the same SK mor-
pheme (e.g., A2t #11E sin-jag ‘new work’ &
A #r A sin-ib ‘newcomer’), and “fake” neigh-
bors, which share only the Hangul syllable but not
the SK morpheme (e.g., A2 #1E & A& 7
H sin-yong ‘trust’). Figure 2 illustrates this dif-
ference. Note that SK morphemes are represented
by a single Hangul syllable, but one syllable can
correspond to multiple distinct Hanja morphemes.
Thus, words may share the same syllable without
sharing the same morpheme, which is the basis of
our real vs. fake distinction.

Final Word Pair Selection To ensure stable em-
beddings, we chose only high-frequency words
from the training corpus. To reduce confounds
from homography, we included words with either
no homographs or only one highly frequent sense.
Based on the Modern Korean Usage Frequency
Survey (Kim, 2005), we chose words with at most
two distinct senses in actual usage, ensuring mini-
mal ambiguity while maintaining lexical coverage.

Most fake neighbor words’ first syllables are SK
morphemes. When no suitable match meets the
criteria, we allow words whose first syllables are
not SK morphemes. The final dataset consists of
100 target words, 100 real neighbors, and 100 fake
neighbors, enabling a controlled evaluation. The
neighbor list is fixed and independent of the model
(BERT or fastText).

For simplicity, we call the real and fake pairs in
BERT and fastText as BERT-Real, BERT-Fake, fT-
Real, and fT-Fake.

3.2 Model Selection and Tokenization
Strategy

Transformer-based model: BERT We use
BERT as our Transformer-based model, chosen for
its efficiency in small-scale experiments. While
BERT typically uses a BPE tokenizer that may
split SK words, we instead apply a morphological
analyzer to ensure each SK word is tokenized as
a single unit. This controlled setup allows us to
test whether the model learns morphemic meaning
from distributional patterns alone.> It also ensures
a fair comparison with fastText, which produces
the same segmentation but encodes subword-level
information.

Specifically, we use the BERTgasg Morpheme
model from Park et al. (2020), which uses MeCab-
ko® for tokenization. For example, an SK word A3
AVst (4B S saeng-san-ha-myeo ‘produce
and’) is tokenized as “§ A}, 5, ™, while the default
BPE tokenizer splits it as A4k, ## 5.

Baseline model: fastText As our baseline, we
use fastText, which represents words via sub-
word units. While it can directly access sylla-
bles, it lacks explicit SK morpheme segmenta-
tion unless Hangul-to-Hanja conversion is applied.
This setup tests whether morphemic understand-
ing arises purely from distribution or benefits from
syllable-level access. Despite this, we expect
BERT to outperform fastText due to its general su-
periority in NLP tasks.

We use the morpheme_mecab_orig_composed
variant from Jeon (2022), which also employs
MeCab-ko for tokenization. Its training corpus
substantially overlaps with that of the BERT
model (Park et al., 2020), ensuring comparability.

3.3 Embedding Extraction

We use example sentences from the Standard Ko-
rean Language Dictionary’ to derive BERT em-
beddings for the experimental words. If no suit-
able example sentences are available, we supple-
ment them with sentences from Urimalsem® and
the Korea University Korean Dictionary, accessed
via the Naver Korean Dictionary platform®.

>Although the morpheme tokenization setting is some-
what idealized in terms of standard Transformer-based LMs,
Park et al. (2020) reported minimal performance differences
between morpheme and BPE tokenization.
https://bitbucket.org/eunjeon/mecab-ko
"https://stdict.korean.go.kr/
Shttps://opendict.korean.go.kr/main
*https://ko.dict.naver.com/
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Figure 3: Cosine similarity distributions for real and fake pairs in BERT and fastText. Real pairs show higher
similarity than fake pairs, suggesting that both models capture meaningful semantic relationships to a certain extent.

Specifically, we average each word’s embed-
dings across its example sentences and concatenate
the last four layers, following Devlin et al. (2019).
For fastText, which is non-contextual, we extract
static embeddings directly from its embedding set.

3.4 Intrinsic Evaluation Approach

We adopt an intrinsic evaluation strategy without
any downstream classification or fine-tuning. Our
aim is not to test whether the models can be trained
to learn morphemic meanings, but whether they al-
ready acquire them solely through pretraining.

4 Experiments

To investigate SK morpheme understanding in
Transformer-based LMs without direct access to
morpheme syllables, we conduct three experi-
ments. Experiment 1 (Section 4.1) tests whether
the models distinguish real from fake word pairs
via cosine similarity. Experiment 2 (Section 4.2)
compares Top-K similar words for each pair to see
if shared morphemes yield more overlap. Experi-
ment 3 (Section 4.3) uses linear regression to test
whether frequency—crucial in human language ac-
quisition (Lieven, 2010; Ambridge et al., 2015)—
also affects LMs.

4.1 Experiment 1: Cosine Similarity

We compute cosine similarity between word pairs
to test whether models capture compositional mor-
phology of SK morphemes. Each target word
is compared to a real neighbor (e.g., "4 4 iy
saengmyeong ‘life> & "4t L PE saengsan “pro-
duction’) and a fake neighbor (e.g., ¥ & Y
2F H W& saengnyak ‘omission’). If real pairs con-
sistently show higher similarity, this suggests the
model encodes morphemic meaning beyond ortho-
graphic overlap.

Setup Recall from Section3.1 that we use 100
target SK words, each paired with 100 real and 100
fake neighbors, yielding 100 similarity checks per
model. We extract embeddings from BERT and
fastText (Section3.3), compute cosine similarity,
and evaluate results in two ways: (1) accuracy,
i.e., in a binary comparison, whether a real pair has
higher similarity than a fake pair, and (2) statistical
analysis, which compares cosine similarity distri-
butions across real and fake pairs to determine sig-
nificance. In (2), we use the Wilcoxon signed-rank
test to compare cosine similarity for each group.

Results BERT scores 75% accuracy, fastText
71%, both above chance (50%), implying they
might capture some SK morpheme meaning.
BERT, despite lacking direct access to syllables
and SK morphemes, slightly outperforms fastText.
This suggests that explicit subword segmentation
in fastText does not provide a significant advan-
tage in distinguishing SK morphemes. However,
given BERT’s general superiority in NLP tasks, the
difference is not substantial enough to be consid-
ered meaningful.

Figure 3 presents the cosine similarity distribu-
tions. Real pairs show significantly higher sim-
ilarity than fake pairs for both BERT (W =
907.0, p < .001) and fastText (W = 1100.0, p <
.001). In the model-wise comparison, BERT
shows higher overall similarity than fastText
(W =631.0, p < .001 for real, W = 399.0, p <
.001) for fake, indicating BERT generally assigns
higher similarity between words.

While BERT shows stronger overall associa-
tions, this does not imply better SK morpheme
understanding—it likely reflects BERT’s general
strength in lexical representation. The key ques-
tion is whether these similarities indicate mor-
phemic sensitivity, which we test through pairwise
contrasts and other experiments.
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4.2 Experiment 2: Similar Words Retrieval

To assess whether the models truly understand SK
morphemes, Experiment 2 examines similar word
retrieval: for each pair, we compute shared similar
words—overlapping Top-K words by cosine simi-
larity—and check how many share the target’s first
SK morpheme. This tests whether models implic-
itly group words by morphemic meaning without
explicit clustering.

Setup We analyze shared similar words between
real and fake pairs using BERT and fastText em-
beddings. For each pair, we retrieve the top K =
600'° similar words from a 19,591-word SK noun
vocabulary. Shared similar words are those appear-
ing in both the target’s and neighbor’s lists. Among
them, SK-Morpheme Similar Words start with the
same Hanja syllable as the target. For example,
for the real pair A48 (ZE 7 saeng-myeong ‘life’)
and "JAF (A2 PE saeng-san ‘production’), 48 simi-
lar words overlap, and 4 of those share the SK mor-
pheme XY (4 saeng), such as Y& (41, saeng-
hwal ‘living’).
This allows us to measure:

1. The total number of shared similar words be-
tween the target and neighbor.

2. The proportion of SK-Morpheme Similar
Words among all shared similar words.

For the pair-wise comparison (real vs. fake),
we use the Wilcoxon signed-rank test to check
whether real pairs yield more shared similar words.
To reduce noise from pairs with very few shared
similar words, we exclude those below the 25™ per-
centile. For the model-wise comparison (BERT vs.
fastText), we again use the Wilcoxon test on both
shared similar words and SK-Morpheme Similar
Words. After filtering, 46 real and 71 fake pairs
remain.

Results Table 1 shows the pair-wise compari-
son: both BERT-Real and fT-Real retrieved signif-
icantly more shared similar words than their fake
counterparts (p < .001), suggesting that semanti-
cally real pairs tend to share more neighbors. How-
ever, Table2 shows no significant difference in
the proportion of SK-Morpheme Similar Words be-
tween real and fake pairs; thus, we cannot con-
clude that the models reliably capture SK mor-
pheme information reflected in pair types.

10Ablation analysis determined this value for balanced sam-
ple size and semantic quality.

Mean (SD) Median (IQR)  p-value
Pair-wise
BERT-Real 113.50 (70.40)  98.50 (92.75) < 001
BERT-Fake 40.57 (43.28) 23.00 (31.50) :
fT-Real 92.03 (84.94) 60.50 (87.00) < 001
fT-Fake 30.21 (31.19) 16.50 (36.00) :
Model-wise
Real-BERT  105.35 (64.36)  89.50 (90.50) < 05
Real-fT 87.15 (82.14) 59.00 (75.50) :
Fake-BERT  78.14 (65.44) 54.00 (83.50) 058
Fake-fT 66.99 (75.79) 39.00 (73.50) ’

Table 1: Comparison of the number of shared similar
words for real and fake pairs in BERT and fastText. SD:
standard deviation; IQR: interquartile range.

Mean (SD) Median (IQR)  p-value
Pair-wise
BERT-Real  2.74 (2.54) 2.55(3.75) 082
BERT-Fake  1.53 (4.06) 0.00 (0.00) '
fT-Real 2.82(3.31) 1.30 (4.49) 059
[fT-Fake 2.62 (6.40) 0.00 (1.35) ’
Model-wise
Real-BERT  2.66 (3.01) 2.03 (3.94) 323
Real-fT 3.07 (3.56) 1.55 (4.89) )
Fake-BERT  2.12 (2.88) 0.63 (3.27) 142
Fake-fT 3.56 (6.86) 0.47 (4.47) ’

Table 2: Comparison of the proportion (%) of SK-
Morpheme Similar Words among shared similar words
in BERT and fastText. SD and IQR as in Table 1.

Table 1 also presents the model-wise compar-
ison. BERT-Real retrieves significantly more
shared similar words than fT-Real (p < .05),
highlighting BERT’s strength in capturing lexical-
semantic relationships. In Table2, f7-Fake shows
a higher proportion of SK-Morpheme Similar
Words than BERT-Fake (p < .05). Although
this may suggest stronger morphological represen-
tation, it actually reflects fastText’s subword seg-
mentation capturing homography rather than true
SK morpheme understanding. There is no linguis-
tic reason for a higher proportion in fake pairs.

Overall, the results show that BERT retrieves
more shared similar words than fastText, high-
lighting its strength in capturing lexical-semantic
relationships. However, across all comparisons,
BERT shows no clear advantage in capturing SK
morpheme meaning. Thus, although Experiment 1
showed above-chance accuracy, neither model sys-
tematically distinguishes SK morphemes in re-
trieved similar words, so this accuracy should not
be taken as true SK morpheme comprehension.
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BERT (Real Pair)

BERT (Fake Pair)

fastText (Real Pair)  fastText (Fake Pair)

Intercept 0.352 (p < .001)  0.271 (p < .001) 0.367 (p < .001) 0.204 (p < .001)
Target Frequency 14310 (p < .01) 6325 (p = .241) 4144 (p = .483) -137 (p = .981)
Neighbor Frequency 314 (p = .749) -480 (p = .461) 441 (p = .687) 49 (p = .945)
SK Neighbor Frequency -53.43 (p = .152) 3.16 (p = .906) -193.36 (p < .001) -33.94 (p = .256)
Bound morpheme + Free morpheme -0.016 (p = .615) 0.057 (p < .05) -0.098 (p < .01)| -0.012 (p = .633)
R? 0.203 0.149 0.398 0.031

Table 3: Regression results for cosine similarities in BERT and fastText embeddings. Significant predictors (p <

.05) are bolded.

4.3 Experiment 3: Regression Analysis

In Experiment 3, we apply Ordinary Least Squares
(OLS) regression to examine whether the same fac-
tors known to guide human learning of SK mor-
phemes also shape how language models represent
and process them.

Hypothesis Based on psycholinguistic findings
that repeated exposure leads to more robust lexi-
cal representations in humans(Lieven, 2010; Am-
bridge et al., 2015), we propose the following hy-
potheses:

* Hypothesis 1: Higher frequencies of both a
target word and its neighbors lead to more sta-
ble embeddings and thus stronger similarity.'!

* Hypothesis 2: This frequency effect holds pri-
marily for real pairs, not for fake pairs, which
lack meaningful overlap.

Setup We converted raw word frequencies into
relative frequencies, applied a log(1 + x) trans-
formation, and removed outliers using the IQR
method—excluding values outside (Q1 — 1.5 x
IQR, @3 + 1.5 x IQR). This filters out overly
frequent or infrequent words—whose embeddings
may be overly stable or unreliable—yielding 56
real and 52 fake pairs.

SK neighbors are nouns or roots sharing the tar-
get’s first SK morpheme (e.g., & 7% saengh-
wal ‘living’ or 2§ = | £V 88 saengmulche “or-
ganism’ for A§ % A saengmyeong ‘life’). Us-
ing the Standard Korean Language Dictionary and
Kim (2005), we found words matching the target’
s first SK syllable and counted their corpus occur-
rences. Since the corpus lacks explicit Hanja char-
acters, these frequency counts are approximate and
may include homographs.

" Although cosine similarity normalizes magnitude, higher
frequency is expected to yield more stable embeddings by re-
inforcing co-occurrence patterns.

We analyze real and fake pairs with separate re-
gression models, assuming frequency raises simi-
larity for real pairs but not for fake ones. Thus, we
run four models: BERT (Real), BERT (Fake), fast-
Text (Real), and fastText (Fake).

Key Variables

1. Continuous Target Frequency: Fre-
quency of the target word in the training
corpus

2. Continuous Neighbor Frequency: Fre-
quency of the neighbor word in the training
corpus

3. Continuous SK Neighbor Frequency: To-
tal token frequency of all SK neighbors of the
target word in the training corpus

4. Categorical Target word’s SK morpheme
structure

* Bound morpheme + Bound morpheme
(e.g., =1 [HI7 gug-lib ‘national’) — Coded
as 0

* Bound morpheme + Free morpheme (e.g.,
S At Bl deung-san ‘mountain climbing’)
— Coded as 1

The categorical variable is introduced to assess
differences in syllable accessibility. In fastText,
free morphemes can function as standalone tokens,
allowing direct access. If fastText shows perfor-
mance changes while BERT does not, this im-
plies that direct syllable-level access influences SK
morpheme comprehension—even without explicit
Hanja. By contrast, BERT lacks this direct access
and may struggle to capture morphemic meaning.

Results Table3 summarizes the findings. In
BERT (Real Pair), Target Frequency has a sig-
nificant positive effect on cosine similarity (5 =
14310, p < .01), implying that more frequent
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words generally yield higher similarity scores. No
other predictors are significant.

For BERT (Fake Pair), the categorical variable
Bound morpheme + Free morpheme shows a
significant effect (5 = 0.057, p < .05), but the
low R? indicates weak explanatory power.

In fastlext (Real Pair), SK Neighbor
Frequency exerts a strong negative effect on
similarity (8 = —193.36, p < .001), and Bound
morpheme + Free morpheme also shows a sig-
nificant negative effect (3 = —0.098, p < .01).
This suggests that free morphemes, which may
appear as independent tokens, introduce noise that
lowers cosine similarity.

For fastText (Fake Pair), no predictor is signifi-
cant and the model’s R? = 0.031 is very low, sug-
gesting that neither frequency nor morphology af-
fects similarity in fake pairs. This contradicts the
expectation that higher frequency lowers similarity
for unrelated words, indicating both models show
limited SK morpheme understanding.

Overall, BERT’s similarity for real pairs hinges
on frequency, highlighting its dependence on co-
occurrence. In fastText, the categorical variable
matters only in real pairs, where free morphemes
reduce similarity—likely due to their separate-
token status injecting noise into embeddings.

5 Discussion

Although both BERT and fastText show relatively
high accuracy overall (Section 4.1), a closer look
reveals that token frequency drives much of their
performance, rather than a genuine grasp of SK
morphemes. BERT, in particular, assigns higher
similarity to frequently seen words, but this re-
flects context-driven process that more strongly as-
sociates words appearing together often than true
morphemic awareness.

Greater exposure to a word improves its con-
textual representation, but does not directly reveal
its internal compositional morphology. More im-
portantly, the models do not appear to learn this
structure even indirectly: they process each word’
s meaning in isolation rather than forming seman-
tic clusters based on SK morpheme understanding.

A central issue is that language models cannot
explicitly encode the shared structures linking mul-
tiple words with the same SK morpheme. Humans
readily recognize that =0 ([BF% gug-eo ‘national
language’), =5 (37 gug-lib ‘national’), and =
AF (B 52 gug-sa ‘national history’) share the mor-

pheme = (& gug ‘nation”) phonologically and or-
thographically, whereas LMs fail to systematically
detect such patterns. Unlike humans, Transformer-
based models rely solely on contextual associa-
tions, overlooking information accessible through
morphemic awareness.

This limitation affects not only our morpheme-
tokenized model but also typical BPE-based mod-
els. Whereas humans refine their morphemic
knowledge by repeatedly seeing words that share
a syllable, LMs trained solely on co-occurrence
data struggle to internalize morphological struc-
ture. Even large amounts of training data do
not ensure a systematic grasp of morpheme-level
structures, underscoring how purely distributional
learning is insufficient for true understanding of
compositional morphology of SK morphemes.

To overcome these limitations, explicitly encod-
ing shared morphemic information is key to im-
proving LMs’grasp of SK morphemes. Current to-
kenization methods, such as BPE, rely on statisti-
cal segmentation rather than morphological princi-
ples, limiting their ability to capture systematic SK
relationships. While subword models (e.g., fast-
Text) do include syllable-level access, our find-
ings show that simply splitting by syllables is in-
sufficient because one Hangul syllable may map
to multiple distinct Hanja morphemes. Moreover,
Park et al. (2020) demonstrate that syllable-level
tokenization underperforms both morpheme-based
and BPE approaches in many tasks.

A more effective approach may involve lin-
guistically informed tokenization. For example,
Kim et al. (2024) propose a phonology-aware
method that separates Hangul onset-nucleus and
coda, leading to improved performance over BPE-
based models. This highlights the need for alterna-
tive tokenization strategies that explicitly integrate
SK morphemes rather than relying solely on char-
acter sequences.

Considering the above, incorporating Hanja-
aware models could enhance the performance of
LMs. Research on human reading proficiency
shows that less-proficient readers rely more on or-
thography, whereas more-proficient readers rely
more on morphemes—likely using them to in-
fer the meanings of unfamiliar words (Yi, 2009).
Similarly, explicitly integrating Hanja information
could help LMs capture deeper morphemic struc-
tures. Unlike human learners, who may find learn-
ing Hanja challenging, LMs face no such difficulty,
making Hanja incorporation a promising approach
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for advancing SK morpheme comprehension.

More broadly, although we test SK words in
Korean, the issue is not language-dependent: it
asks whether LMs relying solely on distributional
information—often effective without true morpho-
logical understanding—can be said to process lan-
guage as humans do. This question is not con-
fined to Korean. Japanese also has numerous Sino-
Japanese compounds written in Kanji (Japanese
Chinese characters), with added complexity due
to multiple readings. Even in English, BPE to-
kenizers sometimes cut across morpheme bound-
aries (e.g., “unbelievably — un + bel + ievably”
instead of the human segmentation “un + believe +
able + ly”). In such cases, the model faces a chal-
lenge similar to that of a Korean LM lacking under-
standing of SK morphemes. This underscores that
the limitations we observed reflect a general prop-
erty of distributional learning rather than an issue
confined to Korean NLP.

Finally, while our study restricted neighbors to
those sharing the first syllable, future work should
test whether overlap in other positions (e.g., final
syllables) yields different patterns since the posi-
tion of the target syllable may affect the results. In
addition, although most fake pairs are contextually
unrelated, some may co-occur in similar domains
(e.g., A Bk dae-gyeol ‘match’ and TS K&
dae-hoe ‘competition’), potentially inflating sim-
ilarity scores.!”> Humans can readily distinguish
these two types of similarity, contextual similarity
vs. context-free similarity, but language models
may conflate them; future studies should therefore
compare model predictions with human judgments
more directly.

6 Conclusion

While modern LMs successfully validate the core
idea behind the distributional hypothesis (Firth,
1957; Sahlgren, 2006; Kornai, 2023; Jurafsky and
Martin, 2024), distribution alone does not fully ex-
plain word meaning. Sino-Korean morphemes in
Korean illustrate this gap. BERT, a monumental
Transformer LM, does not seem to truly grasp their
compositional morphology; rather, it learns each
word separately, driven by frequency in training

We thank a reviewer for this insightful comment. Upon
re-checking our fake pairs, we found that some, like T2 (¥f
%) and th¥] (K &), may indeed co-occur in similar contexts.
However, we also confirmed that the vast majority of fake
pairs in our dataset do not appear in comparable domains, so
we believe this issue does not critically affect our results.

data. Achieving deeper, human-like language un-
derstanding thus requires more than distributional
cues.

Limitations

This study has several limitations, primarily re-
lated to the size of our dataset, the availability of
example sentences, and the absence of comparison
with a Hanja-trained Transformer-based model.

First, the dataset is relatively small by NLP
standards, although it may be sufficient for hu-
man subject experiments. This limitation arises
from inconsistencies in how Korean linguistics re-
searchers classify SK morphemes, particularly in
distinguishing roots from affixes. To ensure con-
sistency, we relied on previously illustrated exam-
ples in recent PhD dissertations on SK morphol-
ogy (Yang, 2010; He, 2018), which led to a re-
duced dataset size. Additionally, since this study
uses Hangul-only text and models, we had to limit
experimental words to those with minimal homo-
graphic ambiguity or none at all to control for
confounding factors. This further constrained the
dataset.

Second, the number of example sentences for
extracting embedding vectors is limited. On aver-
age, each target word has 4.2 sentences, and each
word pair has 4.77 sentences, primarily sourced
from dictionary examples. However, no existing
corpus provides both Hanja-converted text and dic-
tionary headword information, limiting access to
richer contexts. Furthermore, some extracted ex-
amples had to be removed due to unreliable auto-
matic morphological analysis, which failed to tok-
enize experimental words as single tokens in some
cases. This further reduced the available data.

Finally, this study does not include a comparison
with a Hanja-trained Transformer-based model,
which could provide direct insight into whether ex-
plicit morpheme representations improve perfor-
mance. To the best of our knowledge, no large-
scale Hanja-Hangul-converted corpus exists for
training such models, nor is there a Transformer-
based LM specifically designed for Hanja-aware
Korean text. Future research should explore con-
structing such models to directly assess the role
of Hanja information in SK morpheme comprehen-
sion.
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