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Abstract

Large-scale models have achieved state-of-the-
art performance in automatic speech recogni-
tion (ASR), but their high memory and com-
putation demands pose significant challenges
for deployment. To address these challenges,
weight-only quantization is widely adopted in
large-scale models, where weights dominate
memory usage, as it enables efficient compres-
sion with minimal accuracy degradation com-
pared to activation quantization. Accordingly,
most prior quantization studies for ASR mod-
els have focused on weights and employed
quantization-aware training (QAT) to restore
accuracy. However, QAT incurs substantial ad-
ditional training costs, posing clear limitations
for practical application to large-scale models.
Moreover, despite the varying quantization sen-
sitivity across layers, mixed-precision quanti-
zation (MPQ) remains underexplored in ASR.
In this paper, we propose GenPTQ, a mixed-
precision post-training quantization method
that optimizes the trade-off among accuracy,
model size, and optimization cost by leverag-
ing gradient-based sensitivity measurement and
transforming the search space into a continu-
ous domain for efficient numerical optimiza-
tion. Applied to Whisper and Conformer mod-
els across multiple speech datasets, GenPTQ
achieves up to 89.1% model size reduction (2.5-
bit average precision) with only a 0.8% increase
in WER, and completes optimization in just 15
seconds. These results demonstrate its effec-
tiveness for low-resource ASR deployment.

1 Introduction

Recently, large-scale end-to-end models (Radford
et al., 2023; Gulati et al., 2020; Peng et al., 2022)
based on the transformer architecture (Vaswani
et al., 2017) have achieved state-of-the-art (SOTA)
recognition accuracy in automatic speech recog-
nition (ASR), driving their widespread adop-
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tion across various speech processing applica-
tions (Zheng et al., 2024; Bhagtani et al., 2024).
However, as model size increases, memory usage
and computational cost grow substantially, lead-
ing to excessive power consumption and inference
latency in real-world deployment scenarios (Lee
et al., 2024; Wagner et al., 2024). These issues
extend beyond efficiency concerns, presenting a
critical challenge in terms of environmental impact
and degradation of user experience (Aquino-Britez
et al., 2025; Li et al., 2024a). Accordingly, various
model compression methods have been actively ex-
plored to reduce the size and computational cost
of ASR models, while preserving recognition ac-
curacy (Kim and Kim, 2022; Kim et al., 2024;
Choi and Kim, 2025). Quantization reduces the bit-
precision of weights or activations—originally rep-
resented in 32-bit floating-point format—thereby
effectively reducing the overall model size (Kim
et al., 2022; Gholami et al., 2022). In particular, for
large-scale models such as Whisper (Radford et al.,
2023), memory bandwidth often emerges as the
primary bottleneck rather than computational cost.
Consequently, reducing weight bit-precision is cru-
cial for improving practical efficiency (Kim et al.,
2023). Moreover, as weights consume over 3.4 X
more memory than activations, applying lower-
bit quantization to weights is more efficient, es-
pecially given that activations tend to be more sen-
sitive to accuracy degradation. Accordingly, most
ASR quantization studies have primarily focused
on weight-only quantization, reflecting this charac-
teristic (Rybakov et al., 2023).

Quantization methods are generally catego-
rized into post-training quantization (PTQ) and
quantization-aware training (QAT) (Kim and Kim,
2025; Choi et al., 2024). PTQ applies quantization
directly to pre-trained weights without requiring
retraining, making it attractive for its simplicity
and efficiency. However, the rounding involved in
converting floating-point values to lower-precision
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formats can introduce quantization noise, leading to
potential performance degradation. To address this,
QAT jointly optimizes model weights and quan-
tization parameters (e.g., scaling factors) during
training, which allows the model to better adapt
to quantization and typically results in higher ac-
curacy (Rybakov et al., 2023; Ding et al., 2022).
As a result, most prior ASR quantization studies
have focused on QAT. Nevertheless, QAT imposes
substantial training overhead, often requiring tens
of GPU-hours. For example, applying QAT to the
Conformer-large model demands over 84 hours
of training (Gulati et al., 2020), which presents a
major barrier for practical deployment, especially
in user-adaptive or low-resource settings. Further-
more, as model sizes continue to grow, the training
cost of QAT is expected to scale accordingly (Guan
et al., 2024; Hasan, 2024). These limitations high-
light the need for PTQ methods that offer a better
trade-off between model size and accuracy, without
incurring the high cost of full retraining.

Meanwhile, mixed-precision quantization
(MPQ) mitigates accuracy degradation by assign-
ing optimal bit-precision to each layer based on its
quantization sensitivity (Ranjan and Savakis, 2025;
Dong et al., 2019; Xu et al., 2025). While MPQ has
shown strong potential, its application is limited
by the prohibitively large search space involved
in identifying layer-wise precision configurations.
This results in significant computational and
optimization overhead, posing a major barrier
to practical adoption, especially in large-scale
ASR models. Consequently, these challenges have
slowed the progress of MPQ research in the ASR
domain, despite its theoretical advantages.

To address the limitations of prior ASR quan-
tization methods, we propose GenPTQ, a novel
mixed-precision PTQ approach that achieves an im-
proved trade-off among accuracy, model size, and
optimization efficiency. GenPTQ efficiently allo-
cates per-layer bit precision with minimal optimiza-
tion overhead, achieving robust quantization perfor-
mance across various ASR models and datasets—
all without requiring additional training. The con-
tributions of this work are summarized as follows:

¢ Gradient-Based Layer-Wise Sensitivity
Measurement: We quantitatively assess the
impact of quantization perturbation on model
accuracy by leveraging the gradient informa-
tion of each layer. This metric guides the al-
location of layer-wise optimal bit precision,

thereby enabling effective optimization of the
trade-off between accuracy and model size.

* Low-cost Bit-Precision Allocation Method:
We propose a method to minimize the opti-
mization cost associated with bit-precision
search. Specifically, we introduce a con-
tinuous bit-precision representation (CBPR)
based on layer-wise sensitivity values to pa-
rameterize bit-precision configurations. By
exploiting the differentiability of CBPR, we
design a loss function that enforces a tar-
get average precision constraint. Additionally,
we introduce a sensitivity regularization (SR)
to prevent excessive bit-precision reduction
in highly sensitive layers. This approach en-
ables the effective derivation of optimal bit-
precision configurations with minimal opti-
mization overhead.

* Evaluation of Generalization and Scalabil-
ity: We applied GenPTQ to both the Whis-
per and Conformer models to evaluate its
performance. Across various speech datasets,
the method maintained an average weight bit-
precision of 2.5 bits, reducing model size by
89.1%, with only an average increase of 0.8%
in word error rate (WER) and 0.3% in charac-
ter error rate (CER).

2 Related Works

2.1 Quantization

Overview of Quantization: Quantization reduces
the model size by converting weights and activa-
tions, originally represented in 32-bit floating-point
format, into low-bit precision (e.g., INT2, INT4).
In general, min-max uniform quantization is em-
ployed, which can be formulated as follows:

xq = clamp( Ll;—‘ ,—2b=1 b=l 1)
(1

20 — 1

Here, o and 5 denote the maximum and minimum
values of a 32-bit floating-point input x, respec-
tively. The operator |-| represents the rounding
function, and b indicates the bit-precision. Through
this process, x is mapped to a low-bit integer z,
within the range [-2°~!, 20=1 — 1]. Dequantization
is then applied to restore the value to the original
floating-point domain, as follows:

where sy =

T =8f" x4 2)
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Quantization inevitably introduces perturbation
between the original value = and its quantized rep-
resentation z due to the rounding operation, which
can potentially lead to accuracy degradation. No-
tably, as bit-precision decreases, model size can
be significantly reduced; however, the representa-
tional range of the quantized value z, becomes
increasingly limited, leading to greater accuracy
degradation. Accordingly, we focus on developing
a methodology that effectively improves the trade-
off between model size and accuracy.

Previous Quantization Methods for ASR Mod-
els: To date, most quantization methods for ASR
models have been developed within the QAT
paradigm. For example, (Ding et al., 2022) applied
naive 4-bit QAT to the Conformer, a prominent ar-
chitecture in ASR, achieving minimal degradation
in recognition accuracy. Similarly, (Rybakov et al.,
2023) proposed a sub-channel asymmetric, weight-
only 2-bit QAT method to further improve recog-
nition accuracy. Furthermore, (Kim et al., 2022)
proposed a data-free quantization method that syn-
thesizes mel-spectrograms using batch normaliza-
tion statistics. Although QAT-based quantization
methods have demonstrated high recognition accu-
racy, their application to large-scale ASR models
such as Whisper remains limited due to the sub-
stantial training cost, posing challenges for practi-
cal deployment. Motivated by the limitations, we
propose a PTQ method that minimizes accuracy
degradation without requiring additional training,
even for large-scale ASR models.

Previous PTQ Methods for Other Applications:
AdaRound (Nagel et al., 2020) introduced an adap-
tive rounding method that combines Hessian-based
layer-wise task loss approximation with soft re-
laxation. The method was validated on various
convolutional neural networks (CNNs), including
ResNet (He et al., 2016) and MobileNetV2 (San-
dler et al., 2018), using the ImageNet (Deng et al.,
2009) dataset. In addition, BRECQ (Li et al., 2021)
proposed a PTQ method based on Hessian-guided
block-wise weight reconstruction, targeting vari-
ous CNNs. Although AdaRound and BRECQ were
primarily developed for computer vision tasks,
both methods leverage Hessian-based optimization
frameworks to precisely control quantization per-
turbations at the layer or block level. This design
plays a critical role in determining the overall per-
formance of PTQ. Nevertheless, these methods typ-
ically perform layer- or block-wise optimization
and involve complex Hessian-based computations,

which lead to substantial optimization costs. Con-
sequently, these methods face practical limitations
when directly applied to large-scale ASR models
such as Whisper. To emphasize the suitability of
the proposed method for ASR tasks, we conduct
a comparative evaluation against AdaRound and
BRECQ by applying them to ASR models and as-
sessing both efficiency and accuracy.

2.2 Mixed Precision Quantization

The primary objective of MPQ is to assign the
optimal bit-precision to each layer based on its sen-
sitivity, in order to minimize accuracy degradation
under a given target bit-precision constraint. Specif-
ically, higher bit-precisions (e.g., INT6, INT8) are
allocated to sensitivity-critical layers to preserve
accuracy, while lower bit-precisions (e.g., INT2,
INT4) are assigned to less sensitive layers to ag-
gressively reduce model size. This enables effec-
tive optimization of the trade-off between accu-
racy and model size. For example, HTQ (Li et al.,
2024b) evaluates the importance of each layer
based on connection sensitivity and assigns optimal
bit-precision through Pareto frontier exploration.
AMPA (Ding et al., 2024) performs sensitivity anal-
ysis by integrating gradient magnitude and quan-
tization loss, applying a thresholding mechanism
for dynamically bit-precision assignment. However,
these methods are specifically tailored for CNNs
and face limitations when applied to the structurally
more complex transformer-based ASR models.
Meanwhile, (Xu et al., 2025) proposed a Gumbel-
softmax (Maddison et al., 2016)-based mixed-
precision QAT method for wav2vec2. O(Baevski
et al., 2020) and HuBERT-large (Hsu et al., 2021).
However, these methods commonly involve com-
plex bit-precision search spaces, resulting in high
optimization costs during bit allocation. Such is-
sues become increasingly pronounced for large-
scale models, posing a significant barrier to practi-
cal deployment in real-world systems. To address
this, we propose a mixed-precision PTQ method
that efficiently derives an optimal bit-precision con-
figuration with extremely low optimization cost.

3 Proposed Methods

3.1 Gradient-based Sensitivity Metric

In general, layer-wise sensitivity can be estimated
using quantization perturbation based on mean
square error (MSE). Specifically, for a layer Ly,
where t € {1,2,3,..., N}, with a weight matrix
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w € R™ ", the MSE-based layer-wise quantiza-
tion perturbation ®, is defined as follows:

2= S S - wg)? O

i=1 j=1

That is, ®; quantitatively measures the pertur-
bation introduced by quantization in layer Ly,
which guides the assignment of an appropriate bit-
precision. However, even with the same level of
quantization perturbation, the impact of each layer
on the overall accuracy can vary significantly. That
is, even when the quantization perturbation is small,
certain layers may still have a considerable impact
on overall accuracy. This highlights the need for a
fine-grained sensitivity metric that can accurately
reflect such effects. Therefore, we evaluate the rela-
tive importance of each layer to model accuracy by
leveraging the mean gradient of the weights with
respect to the task loss function L, as follows:

K
1 OLtas

ge(w) = KZ‘ afu»k
i=1 t

Here, g:(w) denotes the average absolute gradient
of the weights in layer L;, which consists of K
weight elements. The operator O represents the par-
tial derivative of the task loss function L, with
respect to each weight element w;. This metric
quantitatively reflects the relative influence of the
weights in layer L; on the task loss L,s (Chauhan
et al., 2023). Based on this gradient g;(w), we de-
fine a more precise sensitivity metric as follows:

4

K
o 1 OL4ask
St = K Z <‘ ow;

i=1

(@—mﬂ) (5)

The proposed sensitivity metric is formulated
as the product of the quantization perturbation and
g¢(w), enabling it to capture not only the magnitude
of quantization error but also the influence of each
layer’s weights on model accuracy. Specifically,
even when the quantization perturbation is small,
a high bit-precision can be assigned if the corre-
sponding weights have a significant impact on the
task performance. This makes the metric a crucial
indicator for guiding the search for bit-precision
configurations that achieve optimal accuracy.

3.2 Continuous Bit-Precision Representation

The sensitivity S;, derived from Eq. (5), is
used to select the optimal bit-precision for each

layer from a predefined candidate set b €
{INT2,INT3,...,INT8}. However, since b is a
discrete variable, it is non-differentiable, and the
optimal bit-precision is typically determined using
search-based algorithms (Kloberdanz and Le, 2023;
Tai et al., 2024). To reduce the computational cost
associated with such search procedures, we propose
CBPR, which transforms layer-wise bit-precision
into continuous and differentiable variables, en-
abling efficient numerical optimization via a loss
function. To this end, we normalize S; and define
CBPR within the range bounded by the minimum
and maximum bit-precisions, byi, and byax, as
follows:
St - Smin

)(bmaac - bmzn)

(0)
Here, Spin and Sy . denote the minimum and
maximum sensitivity values across all layers, re-
spectively. Accordingly, the initial value of F; is
determined based on the sensitivity distribution,
such that layers with higher sensitivity are mapped
to higher bit precisions. The computed P; values
are then used to assign bit-precisions to each layer,
and the average bit-precision of the model, b,,, is
defined as follows:

Smax

1 N
b = > P/ 9
v

The compression ratio of a model is commonly
evaluated using the average bit-precision b,,,. How-
ever, the initial value of b,,, may not satisfy the tar-
get bit-precision constraint b;4. To address this, we
exploit the differentiability of the continuous vari-
able P, to design an optimizable loss function. This
enables the derivation of an optimal bit-precision
configuration P, that minimizes performance degra-
dation while adhering to the target bit-precision
constraint.

3.3 Mixed-Precision Bit Allocation with
Sensitivity Regularization

To ensure that the average bit-precision b,,, satisfies
the target constraint b;,, we formulate the following
loss function Lp:

L, = (®)

1 N
(v3m)

By optimizing P; with respect to £, the average
bit-precision of the model can be adjusted to con-
verge toward the target constraint b;,. However, for
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Figure 1: Overview of the Whisper Model Architecture and the Proposed GenPTQ Framework.

layers with high sensitivity, the initial value of P,
tends to be large, which may result in excessive re-
duction during the gradient descent. Consequently,
low bit-precision could be assigned to highly sen-
sitive layers, leading to accuracy degradation. To
mitigate this, we introduce an SR term as follows:

N
ﬁSR - Z St(bmar - Pt) (9)
t=1

The final loss function, including the SR term, is
defined as follows:

,Cmpq = )\pcp + Ao LsRr (10)

The loss function £,,,,,; mitigates the assignment
of excessively low bit-precisions to highly sensi-
tive layers during the optimization of F;, thereby
guiding the search toward an optimal layer-wise bit-
precision configuration P, that balances the trade-
off between accuracy and model size.

3.4 The Overall Proposed Framework

Figure 1 presents a visual overview of the overall
GenPTQ framework, while Algorithm 1 outlines
its complete operational procedure. We begin by
computing the gradient of the task loss and calcu-
lating the layer-wise sensitivity S; using Eq. (5)
(Algorithml, Line 7). Subsequently, to minimize
optimization cost, CBPR is derived from the sen-
sitivity values (Algorithm 1, Line 11), followed
by numerical optimization guided by a loss func-
tion to obtain the optimal layer-wise bit-precision
configuration that satisfies the target bit constraint
(Algorithm 1, Lines 13-18). In this process, the fi-
nal loss function £, incorporating the SR term,
suppresses the assignment of low-precision bits to
highly sensitive layers and facilitates the deriva-
tion of the optimal bit allocation Pt that adheres

Algorithm 1 GenPTQ Framework

1: Input: Pre-trained weights w, Target bit-precision con-
straints by, Initial bit-precision b, Scaling factor s ¢, Op-
timization iteration iter , Hyper parameter A\, A2, Total
number of layers N, Learning rate n

: for L; in Layers do
: /* Weight quantization & dequantization™/

2
3
— w b ob
4 wq—clamp({g—‘ ,—2°,2° — 1)
S: W=S8f Wy
6
7
8

. /* Compute gradient-based sensitivity using Eq. (5)*/
St =% DI (| % | (@1 - wi)?)

: end for
9: for tin N do
10: /* Calculate CBPR using Eq. (6)*/
e P b + (1= 5t 2o
12: end for
13: for i in iter do
14: /* Calculate MPQ loss using Eq.(10)*/
15: ﬁmpq = Alﬁp + )\2£SR
16: /* Update P; based on backpropagation™®/

)(bmaz — bmin)

17: P+ P —1n- 327;;77

18: end for ' A
19: # Get optimal bit-precision Py
20: ﬁt = Pt

21: for L. in Layers do

22: /* Assign optimal bit precision per Layer*/
23: bopt = \‘pf—‘

24: /* Scaling Factﬁor Update/

25: Sf = Sbopt _1

26: /* Weight quantization & dequantization */
27: wq = clamp( {%—‘ , —2bowt gbopt _ 1)
28: W=Sf-Wq

29: end for

30: Return w

to the target constraint by,. A key advantage of the
proposed method is that it requires only a small
calibration dataset for gradient computation and
achieves efficient bit-precision allocation without
relying on combinatorial search, resulting in min-
imal optimization overhead. This makes it a prac-
tical solution for MPQ, effectively reducing opti-
mization cost while achieving a balanced trade-off
between accuracy and model size.
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4 Experimental Results

4.1 Experimental Environment

We evaluate the performance of GenPTQ on the
Whisper-medium and Conformer-large models.
The pre-trained weights for Whisper-medium were
loaded from Hugging Face (Wolf et al., 2020),
while those for Conformer-large were generated by
training the model using the ESPnet toolkit (Watan-
abe et al., 2018). All experiments were conducted
on a single H100 GPU. During optimization, the
learning rate was fixed at 0.1 with 150 iterations.
To simplify the setup, the hyperparameters A; and
A2 in Eq. (10) were both set to 1. Following the con-
figuration in (Rybakov et al., 2023), quantization
was implemented at the block-wise granularity.

4.2 Performance Evaluation on Various
English Speech Datasets

We apply the proposed method to the Whisper-
medium model and evaluate its recognition error
(i.e., WER and CER) and generalization perfor-
mance across multiple English speech datasets, in-
cluding Librispeech test-clean (Panayotov et al.,
2015), CommonVoice-test (Ardila et al., 2019),
VoxPopuli-test (Wang et al., 2021), Tedlium-
test (Rousseau et al., 2012), GigaSpeech-test (Chen
et al., 2021), and SPGISpeech-test (O’Neill et al.,
2021).

Table 1 compares the performance of the 32-
bit floating-point baseline, a standard min-max
PTQ method (MinMax), and the proposed GenPTQ
(Ours). Here, the bit-precision of Ours refers to the
average bit-precision across the entire model. As
shown in Table 1, our method achieves an average
bit-precision of 2.5-bit while maintaining WER and
CER increases within 1% across all datasets ex-
cept CommonVoice. On Common Voice, relatively
higher increases of 2.4% in WER and 1.1% in CER
are observed. This can be attributed to the higher
level of noise in CommonVoice, which makes the
model more susceptible to quantization-induced
perturbations compared to cleaner datasets such
as Librispeech test-clean. Nevertheless, the pro-
posed method maintains high recognition accuracy
on most datasets, demonstrating robust generaliza-
tion capability across diverse domains. Notably,
it achieves a significantly reduced model size of
323.2MB while maintaining WER and CER com-
parable to MinMax-based INT8 and INT4 PTQ.
Furthermore, it consistently outperforms MinMax-
based INT2 PTQ across all datasets in terms of

recognition accuracy. These results indicate that
the proposed method offers a highly effective trade-
off between model size and accuracy, making it
well-suited for practical deployment in memory-
constrained ASR systems.

Additionally, to demonstrate the portability of
the proposed method, we evaluate its performance
not only on the Whisper model but also on the
Wav2Vec2 (Baevski et al., 2020) model. Specifi-
cally, we load the pre-trained Wav2Vec2 weights
from Hugging Face, apply GenPTQ, and eval-
uate the performance on the LibriSpeech test-
clean dataset. Table 2 presents the performance
of GenPTQ on the Wav2Vec2-L. model. Con-
sistent with the results observed on the Whis-
per model, GenPTQ achieves substantially higher
speech recognition accuracy at an effective preci-
sion of 2.5 bits, compared to the conventional Min-
Max 2-bit baseline. These findings demonstrate
that the proposed method is not only effective for
Whisper but also generalizable to diverse speech
recognition models.

4.3 Performance Evaluation on Conformer

We apply GenPTQ to the Conformer-large model
and compare it with SOTA QAT methods on the
Librispeech test-clean dataset in terms of training
cost, accuracy, and model size trade-offs. Since
baseline WER values vary across methods, accu-
racy is compared based on the relative change in
WER. Accordingly, in Table 3, Baseline! denotes
the baseline performance used in prior works, while
Baseline? represents the baseline performance of
our method. Additionally, the training time for QAT
methods is measured over 70 epochs, following
the official training configuration of the baseline
Conformer-large model.

As shown in Table 3, our method incurs only a
0.3% increase in WER when applying 2-bit pre-
cision to the Conformer model, representing a
marginal increase compared to the SOTA QAT-
based method (Rybakov et al., 2023) at the same bit
precision. However, it is noteworthy that QAT re-
quires over 84 hours of training, while our method
achieves comparable performance with just 7.8 sec-
onds of optimization—focused solely on CBPR
tuning rather than weight updates—demonstrating
the minimal overhead of our approach. These re-
sults demonstrate that our method achieves a favor-
able trade-off between optimization cost and accu-
racy. Moreover, compared to prior methods (Kim
et al., 2022; Ding et al., 2022), our method in-
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Method  Prec. Size(MB) Librispeech CommonVoice Voxpopuli TedLium GigaSpeech SPGISpeech
WER CER WER CER WER CER WER CER WER CER WER CER

Baseline  FP32 2955.9 4.1 1.6 114 5.5 102 60 119 45 126 175 3.7 1.8
INTS8 864.5 4.2 1.6 115 5.5 102 6.1 120 48 128 7.6 3.7 1.8

MinMax  INT4 489.2 4.2 1.7 117 5.6 103 6.1 122 50 127 176 3.8 1.9
INT2 301.5 155 98 287 16.2 28.8 19.8 27.8 180 434 370 192 132

Ours INT2.5 323.2 4.3 1.7 138 6.6 11.0 62 123 47 128 7.6 44 2.1

Table 1: Performance comparison of quantization methods across various datasets (WER and CER in %).

Model Method  Prec. WER(]) CER(}) Dataset Method Prec. WER(]) CER(])
Baseline  FP32 11.9 2.9 Baseline FP32 6.9 3.8
WadVeer L s 20 2D INTS 69 3.9
(Baevski et al., 2020) INT2 21.9 51 Voxpopuli MinMax  INT4 7.3 4.1
Ours INT25 126 27 INT2 15.3 6.8
Ours INT2.5 7.8 4.3
L Baseline  FP32 4.9 1.6
Table 2: Performance of quantization methods on INTS 4.9 16
Wav2Vec2-Large using the LibriSpeech dataset MLS-German MinMax  INT4 5.0 17
INT2 36.5 12.6
Training _ Size Ours INT2.5 5.7 1.8
. 11 1Z: " n
Method  Prec.  Training Time 2 (MB) WER(/) Diff. Baseline FP32 4.4 1.8
Bascline! ~ FP32 4745 20 INTS 5 1.8
asell 3 - - . . - . .
] INTS 1537 i 13 MLS-Spanish  MinMax  INT4 4.8 1.9
) INTS S e 18120 ) INT2 54.2 39.3
3] INT4 M 819 2.0 . Ours INT2.5 54 2.1
[4] INT2 553 2.0 -
Baseline?>  FP32 - - 475.2 22 - . .
o INT2 8 58.6 25 403 Table 4: Performance of quantization methods on
U INT25 66 22 -

Table 3: Performance comparison between the proposed
method and SOTA QAT methods on Conformer-large
using the Librispeech dataset

curs only a slight increase in WER under lower
bit-precision settings, despite requiring no addi-
tional training. Notably, at the 2.5-bit setting, our
method achieves optimal accuracy with no increase
in WER, matching the performance of SOTA QAT
methods. These results highlight that our method
offers a superior trade-off among optimization cost,
accuracy, and model size compared to existing
QAT-based approaches.

Additionally, we compare the performance of
different quantization methods for the Conformer
model across multiple datasets. In particular, we
load pre-trained weights trained on the VoxPop-
uli, Multilingual Librispeech (MLS) (Pratap et al.,
2020) datasets from Hugging Face, and apply
GenPTQ to evaluate the performance on the cor-
responding test sets. As shown in Table 4, the
MinMax method exhibits a substantial increase
in WER at INT?2 precision, whereas our approach
effectively mitigates this degradation at a compa-
rable precision. Furthermore, on the MLS-German
and MLS-Spanish datasets, our method achieves

Conformer-Large across various datasets

Method Prec. WER(]) CER(]) Optimization Time
Baseline FP32 4.1 1.6 -
AdaRound 5.8 2.4 8h 10m
BRECQ INT2 5.5 2.5 2h41m
Ours INT2.5 43 1.7 15.16s

Table 5: Performance comparison between the proposed
method and SOTA PTQ methods on Whisper-medium
using the Librispeech dataset

markedly higher recognition accuracy than the Min-
Max 2-bit method, demonstrating its superior gen-
eralization capability.

4.4 Accuracy-optimization cost trade-off
Evaluation

We compare SOTA PTQ methods (e.g.,
AdaRound (Nagel et al., 2020), BRECQ (Li
et al., 2021)) with the proposed GenPTQ on
Whisper-medium model, focusing on the trade-off
between optimization cost and accuracy. Table 5
presents the optimization time, WER, and CER
of each PTQ method applied to the Whisper-
medium model on the Librispeech test-clean
dataset. We directly applied AdaRound and
BRECQ to Whisper-medium using their official
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Method  Prec.  Size(MB) MLS-German MLS-Portuguese MLS-Spanish MLS-Polish
WER CER WER CER WER CER WER CER

Baseline  FP32 2955.9 6.8 24 8.7 3.1 5.1 1.6 6.5 1.4
INTS 864.5 6.7 23 8.9 32 5.1 1.6 6.6 1.4

MinMax  INT4 489.2 6.9 24 9.2 3.6 52 1.7 6.8 1.6
INT2 301.5 51.7 39.8 64.5 38.4 30.4 164  69.7 545

Ours INT2.5 323.2 7.9 3.1 10.3 3.6 6.3 2.0 7.9 1.9

Table 6: Performance comparison of quantization methods across various multilingual datasets

implementations and evaluated performance under
consistent experimental conditions. In terms
of optimization cost, AdaRound and BRECQ
involve computationally expensive layer-wise and
block-wise procedures, requiring approximately
8 hours and 2 hours, respectively. In contrast, our
method completes optimization in only 15.16
seconds, demonstrating a substantial reduction in
optimization cost. From the accuracy perspective,
GenPT(Q also achieves the best performance,
achieving a WER of 4.3 under the 2.5-bit precision
setting. Meanwhile, directly comparing the
proposed method under the 2.5-bit precision
setting with existing SOTA PTQ methods under
the 2-bit precision setting may appear somewhat
unfair. However, as shown in Table 1, the proposed
method results in a model size that is only
about 22.3MB larger than 2-bit quantization, yet
achieves much better recognition performance (i.e.,
WER = 4.3 vs. WER = 5.8) with significantly
lower optimization cost (i.e., 15.16s vs. 8h10m).
Considering these factors together, the proposed
method offers a highly practical advantage in terms
of the trade-off between optimization cost and
accuracy, and can be regarded as an efficient PTQ
solution for large-scale models.

4.5 Ablation Study

Performance Evaluation on Multilingual
Datasets: Unlike conventional ASR models,
Whisper achieves high multilingual recognition
accuracy without additional fine-tuning. Accord-
ingly, to assess generalization, we evaluate the
proposed method on the MLS dataset, which
includes German, Spanish, Portuguese, and
Polish. As shown in Table 6, the proposed method
achieves significantly lower WER and CER
compared to MinMax-based INT2 PTQ. These
results demonstrate that the proposed method
maintains strong performance even in multilingual
scenarios, highlighting its potential for language
generalization on Whisper.

Dataset SR WER(]) WERDIff. CER(l) CER Diff.
L x 4.9 +0.8 22 +0.6
Librispeech 43 +0.2 17 +0.1
Voxpopuli X 11.5 +1.3 6.7 +0.7
XPOPURL 110 +0.8 6.2 +0.2
. x 13.0 +1.1 52 +0.7
TedLium - ph3 +0.4 4.7 +0.2

Table 7: Analysis of the impact of SR on WER and
CER for Whisper-medium across Librispeech, Voxpop-
uli, and TedLium Datasets

Analysis of the Effectiveness of Sensitivity Reg-
ularization: We further analyze the performance
contribution of the proposed SR. Specifically, we
assess its impact by comparing results with and
without SR in Eq. (10), using the Whisper-medium
model across three datasets: LibriSpeech, VoxPop-
uli, and Tedlium. As shown in Table 7, the appli-
cation of SR leads to reductions in WER and CER
by approximately 0.2 ~ 0.8 and 0.1 ~ 0.2, respec-
tively, across all datasets. These results indicate that
SR effectively mitigates performance degradation
by preventing excessive bit-precision reduction in
highly sensitive layers, even under a fixed target
bit-precision constraint.

A Comprehensive Analysis of Sensitivity Regu-
larization: To more comprehensively analyze the
effectiveness of the proposed SR, we conduct a
visual analysis of the relationship between layer-
wise sensitivity and the assigned bit-precision. Fig-
ure 2(a) and (b) illustrate the bit-precision alloca-
tion without and with SR, respectively. As shown
in Figure 2, the application of SR leads to a clear
difference in bit-precision assignment, particularly
for highly sensitive layers. In Figure 2(a), where SR
is not applied, we observe that layers with high sen-
sitivity (e.g., the first and third layers) are assigned
excessively low bit-precisions (i.e.,2-bit, 3-bit) to
satisfy the global bit constraint b;,. This suggests
that although higher bit-precisions may be initially
assigned during the CBPR computation, they are
aggressively reduced during optimization, compro-
mising the quantization expressiveness of sensitive
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(a) Layer-wise Sensitivity and Precision Analysis (w/o SR)
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Figure 2: Visualization of bit allocation patterns for
Layers 0-70 of the Whisper-medium model under SR-
applied and SR-free conditions. The x-axis denotes
the layer index, the y-axis indicates the assigned bit-
precision, and the secondary axis represents sensitivity.

layers and potentially degrading recognition perfor-
mance. In contrast, Figure 2(b) shows that the ap-
plication of SR stabilizes bit allocation, preserving
relatively high bit-precision (i.e., 8-bit) for layers
with high sensitivity. This highlights the role of SR
in preserving bit-precision where it is most needed
and in stabilizing bit-precision allocation during
CBPR-based optimization.

Analysis of performance variation with respect
to the size of the calibration dataset: We fur-
ther provide a detailed analysis of GenPTQ perfor-
mance on the Whisper model with varying sizes of
calibration data. As shown in Table 8, our method
requires only a very small number of calibration
samples (i.e., 1 or 2 samples), which highlights the
advantage of GenPTQ in incurring extremely low
optimization cost. This is because, unlike conven-
tional approaches that utilize calibration datasets
to update specific quantization parameters through
optimization, the GenPTQ method employs them
solely for gradient computation to measure sensitiv-
ity. As aresult, even a single sample is sufficient for
effective gradient estimation, rendering GenPTQ a
highly practical method with very low dependence
on calibration data.

5 Conclusion

We presented GenPT(Q, a mixed-precision post-
training quantization framework that effectively
balances recognition accuracy, model size, and op-

Calibration Samples  Dataset =~ WER(]) CER(])
1 4.3 1.7
2 Librispeech 4.3 1.7
4 OOM OOM
1 11.0 6.2
2 Voxpopuli 11.0 6.2
4 OOM OOM

Table 8: Performance analysis of GenPTQ on the Whis-
per model with respect to the number of calibration
samples

timization cost for large-scale ASR models. By
leveraging a gradient-based sensitivity metric and
a CBPR, GenPTQ enables efficient layer-wise bit
allocation without requiring any retraining. Experi-
mental results on both the Whisper and Conformer
models demonstrate that GenPTQ achieves an aver-
age of 2.5-bit weight quantization while incurring
less than one percent degradation in WER. More-
over, it completes the entire optimization process
in just 15 seconds, significantly outperforming ex-
isting PTQ and QAT methods in terms of both ac-
curacy and efficiency. These findings highlight the
practicality and scalability of GenPTQ as a quanti-
zation solution for real-world ASR deployment.

Limitations

The proposed method demonstrates strong perfor-
mance across various speech recognition datasets,
significantly reducing optimization cost while
maintaining high recognition accuracy. However, it
follows a gradient-based sensitivity metric to guide
bit-precision allocation, which relies on the assump-
tion that the metric accurately reflects the actual im-
pact on recognition accuracy. This assumption may
not always hold in models with complex inter-layer
dependencies or strong long-range interactions, po-
tentially leading to suboptimal bit allocation.
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A Appendix
A.1 Detailed Hyperparameter Setting

Table 9 summarizes the hyperparameter settings
used in Algorithm 1. Specifically, the target bit-
precision constraint by, is set to 2.5, and the ini-
tial bit-precision b is initialized to 4. Optimization-
related hyperparameters (e.g., learning rate, number
of iterations) follow the configuration described in
Section 4.1.

Hyperparameter Value

big 2.5

b 4

A1 1

Ao 1
n 0.1
Iteration 150

Table 9: GenPTQ Hyperparameter Setting

A.2 Detailed Bit Allocation per Sensitivity in
Whisper with GenPTQ

In Table 10, we present the bit-precision and
corresponding sensitivity values of the fully-
connected layer weights in the encoder and de-
coder blocks (up to the 11th block) of the Whisper-
medium model with GenPTQ applied. The re-
sults are shown under a bit budget constraint
of by = 2.5. Due to the large number of lay-
ers, encoder and decoder blocks beyond the 11th
are omitted for brevity. Notably, layers exhibit-
ing high sensitivity—such as the first and third
layers (i.e., encoder.layers.0.sel f_attn.k_proj
and encoder.layers.0.sel f_attn.q_proj)— are
assigned relatively high bit-precision (e.g.,INTS),
whereas most of the remaining layers are allo-
cated low bit-precision values (e.g., INT2 or INT3).
Given that this setting leads to only minimal in-
creases in WER and CER, the results suggest
that aggressively reducing the bit-precision of low-
sensitivity layers while preserving high-precision
in sensitive layers is an effective strategy for miti-
gating recognition performance degradation under
tight precision constraints.

A.3 Recognition Example

We present recognition examples obtained by ap-
plying both GenPTQ and a MinMax-based PTQ
method to the Whisper-medium model across vari-
ous datasets. As shown in Table 11, we report the

prediction results on multiple benchmarks, includ-
ing LibriSpeech, VoxPopuli, Tedlium, Common-
Voice, GigaSpeech, MLS-German, MLS-Spanish,
and MLS-Polish. For each method, we compare the
predicted transcription (Pred) against the ground
truth reference (Ref) in terms of WER and CER.
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Encoder Layer Prec.  Sensitivity Decoder Layer Prec. Sensitivity
encoder.layers.O.self_attn.k_proj INTS8 6.547e-04 decoder.layers.0.self_attn.k_proj INT3 1.068e-07
encoder.layers.O.self_attn.v_proj INT3 3.891e-06 decoder.layers.0.self_attn.v_proj INT2 | 2.012e-08
encoder.layers.O.self_attn.q_proj INTS8 5.493e-04 decoder.layers.0.self_attn.q_proj INT2 1.705e-13

encoder.layers.0.self_attn.out_proj INT3 1.148e-06 decoder.layers.O.self_attn.out_proj INT3 7.046e-07
encoder.layers.0.fcl INT2 | 2.784e-12 decoder.layers.0.fc1l INT2 | 8.527e-14
encoder.layers.0.fc2 INT3 1.935e-06 decoder.layers.0.fc2 INT2 | 5.698e-08
encoder.layers.1.self_attn.k_proj INT3 2.164e-05 decoder.layers.1.self_attn.k_proj INT2 1.347e-08
encoder.layers.1.self_attn.v_proj INT3 1.441e-07 decoder.layers.1.self_attn.v_proj INT2 | 5.193e-08
encoder.layers.1.self_attn.q_proj INT3 | 4.118e-06 decoder.layers.1.self_attn.q_proj INT3 1.685e-07
encoder.layers.1.self_attn.out_proj INT2 | 2.266e-09 decoder.layers.1.self_attn.out_proj INT2 3.979e-08
encoder.layers.1.fcl INT3 1.930e-07 decoder.layers.1.fcl INT3 | 9.779e-07
encoder.layers.1.fc2 INT2 | 7.034e-13 decoder.layers.1.fc2 INT2 | 3.386e-08
encoder.layers.2.self_attn.k_proj INT3 2.087e-06 decoder.layers.2.self_attn.k_proj INT3 1.600e-06
encoder.layers.2.self_attn.v_proj INT4 | 6.465e-07 decoder.layers.2.self_attn.v_proj INT2 3.644e-08
encoder.layers.2.self_attn.q_proj INT4 7.497e-05 decoder.layers.2.self_attn.q_proj INT2 8.798e-09
encoder.layers.2.self_attn.out_proj INT3 3.103e-07 decoder.layers.2.self_attn.out_proj INT2 3.553e-15
encoder.layers.2.fcl INT3 1.842e-07 decoder.layers.2.fcl INT3 1.885e-07
encoder.layers.2.fc2 INT2 4.761e-13 decoder.layers.2.fc2 INT3 9.683e-08
encoder.layers.3.self_attn.k_proj INT3 1.008e-06 decoder.layers.3.self_attn.k_proj INT2 | 2.185e-08
encoder.layers.3.self_attn.v_proj INT3 1.586e-07 decoder.layers.3.self_attn.v_proj INT2 1.221e-09
encoder.layers.3.self_attn.q_proj INT3 3.700e-07 decoder.layers.3.self_attn.q_proj INT2 | 2.842e-14
encoder.layers.3.self_attn.out_proj INT3 1.868e-06 decoder.layers.3.self_attn.out_proj INT3 1.022e-07
encoder.layers.3.fcl INT3 2.692e-07 decoder.layers.3.fcl INT2 | 0.000e+00
encoder.layers.3.fc2 INT3 6.765e-07 decoder.layers.3.fc2 INT3 1.332e-07
encoder.layers.4.self_attn.k_proj INT3 6.858e-08 decoder.layers.4.self_attn.k_proj INT2 | 4.251e-08
encoder.layers.4.self_attn.v_proj INT2 1.984e-08 decoder.layers.4.self_attn.v_proj INT3 9.400e-08
encoder.layers.4.self_attn.q_proj INT2 | 6.253e-13 decoder.layers.4.self_attn.q_proj INT3 1.735e-07
encoder.layers.4.self_attn.out_proj INT3 1.818e-07 decoder.layers.4.self_attn.out_proj INT2 | 9.603e-10
encoder.layers.4.fcl INT3 | 6.583e-08 decoder.layers.4.fcl INT3 | 2.469e-07
encoder.layers.4.fc2 INT3 | 2.810e-06 decoder.layers.4.fc2 INT2 1.810e-08
encoder.layers.5.self_attn.k_proj INT3 1.684e-07 decoder.layers.5.self_attn.k_proj INT3 9.476e-06
encoder.layers.5.self_attn.v_proj INT3 1.126e-07 decoder.layers.5.self_attn.v_proj INT3 1.057e-07
encoder.layers.5.self_attn.q_proj INT2 | 2.842e-13 decoder.layers.5.self_attn.q_proj INT2 | 3.596e-08
encoder.layers.5.self_attn.out_proj INT3 | 4.630e-07 decoder.layers.5.self_attn.out_proj INT2 | 4.974e-14
encoder.layers.5.fcl INT3 1.493e-07 decoder.layers.5.fcl INT3 1.114e-07
encoder.layers.5.fc2 INT2 2.224e-08 decoder.layers.5.fc2 INT3 1.411e-07
encoder.layers.6.self_attn.k_proj INT3 4.897e-06 decoder.layers.6.self_attn.k_proj INT2 3.834e-08
encoder.layers.6.self_attn.v_proj INT2 2.309e-08 decoder.layers.6.self_attn.v_proj INT2 9.836e-09
encoder.layers.6.self_attn.q_proj INT3 2.297e-07 decoder.layers.6.self_attn.q_proj INT2 8.882e-14
encoder.layers.6.self_attn.out_proj INT2 | 9.653e-09 decoder.layers.6.self_attn.out_proj INT3 1.151e-07
encoder.layers.6.fcl INT2 | 5.761e-08 decoder.layers.6.fc1l INT2 | 9.948e-14
encoder.layers.6.fc2 INT2 | 2.132e-13 decoder.layers.6.fc2 INT2 | 4.219e-08
encoder.layers.7.self_attn.k_proj INT2 | 2.658e-08 decoder.layers.7.self_attn.k_proj INT2 1.019e-08
encoder.layers.7.self_attn.v_proj INT2 | 9.815e-10 decoder.layers.7.self_attn.v_proj INT3 1.126e-07
encoder.layers.7.self_attn.q_proj INT3 2.658e-06 decoder.layers.7.self_attn.q_proj INT2 | 5.779e-09
encoder.layers.7.self_attn.out_proj INT2 | 5.088e-08 decoder.layers.7.self_attn.out_proj INT3 1.191e-07
encoder.layers.7.fcl INT2 | 2.226e-08 decoder.layers.7.fcl INT3 2.236e-07
encoder.layers.7.fc2 INT2 | 2.700e-13 decoder.layers.7.fc2 INT2 1.407e-08
encoder.layers.8.self_attn.k_proj INT3 2.861e-07 decoder.layers.8.self_attn.k_proj INT3 7.417e-06
encoder.layers.8.self_attn.v_proj INT2 | 3.497e-08 decoder.layers.8.self_attn.v_proj INT2 | 5.029e-08
encoder.layers.8.self_attn.q_proj INT3 6.827e-07 decoder.layers.8.self_attn.q_proj INT2 3.796e-08
encoder.layers.8.self_attn.out_proj INT3 1.654e-06 decoder.layers.8.self_attn.out_proj INT2 | 9.592e-14
encoder.layers.8.fcl INT3 1.026e-07 decoder.layers.8.fcl INT3 | 2.081e-07
encoder.layers.8.fc2 INT2 | 4.553e-08 decoder.layers.8.fc2 INT3 | 4.428e-07
encoder.layers.9.self_attn.k_proj INT2 | 5.095e-08 decoder.layers.9.self_attn.k_proj INT2 | 4.474e-08
encoder.layers.9.self_attn.v_proj INT2 | 2.995e-08 decoder.layers.9.self_attn.v_proj INT2 | 5.124e-08
encoder.layers.9.self_attn.q_proj INT2 2.345e-13 decoder.layers.9.self_attn.q_proj INT2 9.948e-14
encoder.layers.9.self_attn.out_proj INT3 2.033e-07 decoder.layers.9.self_attn.out_proj INT2 1.969e-08
encoder.layers.9.fcl INT2 2.079e-08 decoder.layers.9.fc1l INT2 1.279e-13
encoder.layers.9.fc2 INT3 1.513e-06 decoder.layers.9.fc2 INT2 3.613e-08
encoder.layers.10.self_attn.k_proj INT3 9.569e-08 decoder.layers.10.self_attn.k_proj INT2 1.901e-08
encoder.layers.10.self_attn.v_proj INT2 | 2.481e-08 decoder.layers.10.self_attn.v_proj INT3 1.222e-07
encoder.layers.10.self_attn.q_proj INT2 1.634e-13 decoder.layers.10.self_attn.q_proj INT3 1.156e-06
encoder.layers.10.self_attn.out_proj | INT3 9.149e-08 | decoder.layers.10.self_attn.out_proj | INT3 1.043e-07
encoder.layers.10.fcl INT2 | 2.838e-08 decoder.layers.10.fcl INT2 | 2.810e-09
encoder.layers.10.fc2 INT3 9.042e-07 decoder.layers.10.fc2 INT3 8.704e-08

Table 10: Layer-wise sensitivity and assigned bit-precision in the first 11 encoder/decoder blocks of the Whisper-
medium model under the 2.5-bit constraint.
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Dataset Method Prec. Results WER CER
INT4 Ref: out }n the woods stood a n?ce l}ttle fir tree 0.0 00
. Pred : out in the woods stood a nice little fir tree
MinMax Ref: out in the woods stood a nice little fir tree
Libirspeech INT2 Pred : out in the woods to the nice little fur tree 300133
Ref : out in the woods stood a nice little fir tree
GenPTQ  INT2.5 Pred : out in the woods stood a nice little fir tree 0.0 0.0
INT4 Ref : 1 know %t means as much to them as }t means to me 0.0 00
MinMax Pred : i know it means as much to them as it means to me
Voxpopuli INT2 Ref: i know 1.t means as much to them as it means to me 308 307
Pred : it means as much as it means to me
GenPTQ INT2.5 Ref: 1 know Tt means as much to them as ¥t means to me 0.0 00
Pred : i know it means as much to them as it means to me
Ref: senile decrepit laid up done up done for done in cracked up counted out
INT4 R o . 0.0 0.0
. Pred : senile decrepit laid up done up done for done in cracked up counted out
MinMax . e -
Tedlium INT2 Ref : senile decrepit laid up done up done for done in cracked up counted out 42.9 16.9
Pred: seen off the crap it laid up done up done for done in crapped up counted out ' ’
Ref: senile decrepit laid up done up done for done in cracked up counted out
GenPTQ  INT2.5 Pred : senile decrepit laid up done up done for done in cracked up counted out 0.0 0.0
Ref: it is a busy market town that serves a large surrounding area
INT4 .. 8.3 4.9
MinMax Pred : it is a busy market town that serves a large surrounded area
CommonVYoice INT2 Ref : it is a busy market town that serves a large surrounding area 91.7 63.9
Pred : its a piece of market and thats around it here yeah ' ’
GenPTQ  INT2.5 Ref: .1t isa busy market town that serves a large surrounding area 33 49
Pred : it is a busy market town that serves a large surrounded area
Ref: i mean i showed you a short clip and you may have seen about half of them
INT4 . . 59 2.7
. Pred:  mean i showed you a short clip and you may have seen about half of them
MinMax - - :
GieaSpeech INT2 Ref: i mean i showed you a short clip and you may have seen about half of them 118 13.7
825 Pred : i mean i showed you a clip and you may have seen about half of it ' ’
Ref : i mean i showed you a short clip and you may have seen about half of them
PT INT2.5 . . . . .
GenPTQ  IN Pred: imean ishowed you a short clip and you may have seen about half of them 0.0 0.0

Table 11: Recognition examples generated by the Whisper-medium model quantized with GenPTQ across multiple

speech datasets.
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