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Abstract

Large Language Models (LLMs) perform well
in general QA but often struggle in domain-
specific scenarios. Retrieval-Augmented Gen-
eration (RAG) introduces external knowledge
but suffers from hallucinations and latency due
to noisy retrievals. Continued pretraining in-
ternalizes domain knowledge but is costly and
lacks cross-domain flexibility. We attribute this
challenge to the long-tail distribution of do-
main knowledge, which causes partially inter-
nalized yet useful knowledge to be underuti-
lized. We further argue that knowledge acqui-
sition should be progressive, mirroring human
learning: first understanding concepts, then ap-
plying them to complex reasoning. To address
this, we propose Select2Know (S2K), a cost-
effective framework that internalizes domain
knowledge through an internal-external knowl-
edge self-selection strategy and selective super-
vised fine-tuning. We also introduce a struc-
tured reasoning data generation pipeline and
integrate GRPO to enhance reasoning ability.
Experiments on medical, law, and financial QA
benchmarks show that S2K consistently outper-
forms existing methods and matches domain-
pretrained LLMs with significantly lower cost.

1 Introduction

With the rapid advancement of large language mod-
els (LLMs), their effectiveness in general ques-
tion answering has been widely validated (Devlin
et al., 2019; Brown et al., 2020; Lewis et al., 2020;
Shailendra et al., 2024). However, LLMs still
exhibit noticeable performance gaps in domain-
specific QA tasks (Yang et al., 2023; Yue, 2025). To
address these challenges, a variety of approaches
have been explored to improve domain-specific QA
(DSQA) performance.

A common solution is the use of Retrieval-
Augmented Generation (RAG) (Lewis et al., 2020;
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Figure 1: Visualization of token-level prediction prob-
abilities. Low-probability tokens indicate unmastered
domain knowledge, while high-probability tokens re-
flect internal parametric knowledge. This highlights the
need for integrating internal and external knowledge in
domain adaptation. (Note: Schematic illustration; see
Appendix A.1 for real examples.)

Press et al., 2023; Asai et al., 2023; He et al., 2024),
where an retriever is used to access external knowl-
edge from a domain corpus. While RAG helps
incorporate up-to-date information, it introduces
extra latency and computation due to redundant
retrievals. Additionally, distribution mismatches
may lead the retriever to return irrelevant or con-
flicting information, increasing the risk of halluci-
nations (Rawte et al., 2023; Ji et al., 2023; Ye et al.,
2023; Maynez et al., 2020; Xu et al., 2024).

Another line of research focuses on enhanc-
ing domain adaptation through continued pretrain-
ing (Labrak et al., 2024; Qiu et al., 2024; Shu
et al., 2024; Li et al., 2024; Chen et al., 2023).
These methods can achieve strong performance,
but they are extremely resource-intensive and of-
ten lack transferability to other domains. (BioMis-
tral (Labrak et al., 2024) requires training on a
corpus of three billion tokens.)

We argue that the fundamental reason behind
LLMs’ poor performance in DSQA lies in the long-
tail distribution of domain knowledge in pretraining
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data. As illustrated in Figure 1, LLMs have already
internalized parts of domain knowledge during pre-
training. While this knowledge is often incomplete,
it can complement or even correct external domain
inputs, making external-only methods suboptimal.
Furthermore, we believe knowledge acquisition
should follow a human-inspired staged progres-
sion—first achieving conceptual comprehension,
then advancing to complex reasoning.

Building on this insight, we propose a low-cost
post-training framework, Select2Know (S2K), for
domain-specific question answering, which inte-
grates both internal parametric knowledge and ex-
ternal domain knowledge. Specifically, we first in-
troduce a token-level internal-external knowledge
self-selection strategy to construct fusion training
data. We then propose Selective Supervised Fine-
Tuning (Selective SFT) to guide the model toward
focusing on domain knowledge it has not yet mas-
tered. In addition, we design a structured data gen-
eration pipeline to efficiently produce high-quality
reasoning data, and incorporate Group Relative
Policy Optimization (GRPO) (Shao et al., 2024)
to enhance the model’s ability to apply learned
knowledge to real-world reasoning tasks. Our main
contributions are as follows:

• We propose a token-level knowledge self-
selection strategy to fuse internal parametric
knowledge and external domain knowledge.

• We propose a low-cost post-training frame-
work to boost LLM performance on DSQA.

• Experiments across the medicine, law, and
finance demonstrate that S2K matches pre-
trained LLMs with significantly lower cost.

2 Problem Definition

We aim to design a general pipeline that enables
LLMs to efficiently generalize to domain-specific
QA tasks with minimal cost. To closely reflect
real-world scenarios, we make the following as-
sumptions: (1) No existing QA training datasets are
available in the target domain. (2) The only accessi-
ble resource is a collection of unstructured domain-
specific corpus D = {d1, d2, ..., dn}, such as news,
textbooks, regulatory documents, etc. (3) A pre-
trained general LLM M0 (e.g., LLaMA(Touvron
et al., 2023; Grattafiori et al., 2024), Qwen(Yang
et al., 2024a,b)) is used as the foundation.

Our goal is to develop a pipeline P such
that the resulting domain-adapted model MD =

P(M0,D) achieves strong performance on the
domain QA task TQA. Formally, we aim
for Perf(MD, TQA) ≫ Perf(M0, TQA), where
Perf(·) denotes the evaluation performance on do-
main QA tasks.

3 Methods

We introduce S2K, a low-cost post-training frame-
work for adapting general LLMs to domain-specific
QA. As illustrated in Figure 2, S2K first extracts
question-style meta knowledge from raw domain
corpora (Section 3.1.1). We then design a token-
level self-selection mechanism to fuse internal and
external knowledge (Section 3.1.2), complemented
by Selective SFT, which guides the model to fo-
cus on unfamiliar domain knowledge (Section 3.2).
We further introduce structured reasoning data gen-
eration pipeline (Section 3.1.3), and incorporate
GRPO to enhance the model’s reasoning ability for
complex real-world scenarios (Section 3.3).

3.1 Domain Knowledge Generation

3.1.1 Meta Knowledge
As described in Section 2, we construct domain QA
data by first extracting question-style meta knowl-
edge from raw domain corpora D. Since such cor-
pora are often redundant and unstructured, contain-
ing irrelevant details such as timestamps or pub-
lisher metadata, we first cleaning the data to remove
non-informative content, then segment the corpus
into token-balanced chunks using NLTK (Bird,
2006) to preserve semantic coherence. For each
chunk di ∈ D, we prompt a LLM (e.g., DeepSeek-
v3 (Liu et al., 2024) or GPT-4o (Hurst et al., 2024))
to generate a knowledge question. Formally, the
question-style meta knowledge is defined as:

Qi = fprompt(L, di) (1)

where L denotes the LLM used for prompting,
fprompt is the prompting process, and Qi is the
meta question. Detailed prompts are provided in
Appendix A.5.

3.1.2 Internal-External Fusion Knowledge
An intuitive approach to domain knowledge train-
ing is using answers generated from question-
style meta knowledge and their corresponding text
chunks. However, these answers rely only on ex-
ternal documents, which may introduce noise and
ignore the model’s internal knowledge. To address
this, we propose a token-level internal-external
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Figure 2: Overview of S2K, a low-cost post-training framework for domain-specific QA. The method comprises:
data generation (1-X) and model training (2-X). In data generation, question-style meta knowledge is extracted from
domain corpora, followed by token-level fusion of internal and external knowledge, and reasoning QA construction
via relevance-based sampling and structured prompts. In model training, Selective SFT emphasizes unmastered
knowledge using token-level uncertainty, while GRPO-based reinforcement learning enhances reasoning.

knowledge self-selection strategy. Specifically,
we make internal and external knowledge explicit
through two parallel inference settings: one with
both the question and its supporting text chunk
(Q +D) as context, representing external knowl-
edge (AE = PM (Q,D)), and one with the ques-
tion alone (Q) as context, reflecting internal knowl-
edge (AI = PM (Q)). Here, M denotes the target
model, and PM (·) represents its inference process.

The key challenge is determining how to fuse
AE and AI at the token level. We propose a simple
yet effective strategy based on the target model’s
predicted probabilities: without loss of generality,
for token ti, if the model assigns a higher proba-
bility to it under the internal setting than under the
external one, we select the internal token; other-
wise, the external token. Formally:

tFi =

{
tIi , ifPM (tIi | Q,AF

<i) > PM (tEi | Q,D,AF
<i)

tEi , otherwise
(2)

Here, tIi and tEi refer to the model’s token-
level predictions under internal-only knowledge
and external knowledge, respectively. AF

<i =
{tF0 , tF1 , tF2 , . . . , tFi−1}, which ensures two key
properties: (1) the final answer fused from internal
and external knowledge remains coherent and read-
able, and (2) the only difference between the two
inference settings is whether the external document

D is provided.
In practice, selecting knowledge token by token

can be overly greedy and lead to locally optimal
answers. To address this, we adopt a window-based
generation strategy, model generates multiple to-
kens (W ) per step and selects between internal
and external knowledge based on their average log-
probabilities within the window. Meanwhile, to
further mitigate overconfidence, we apply a scal-
ing factor C to favor external knowledge when
appropriate. Moreover, we use log-probabilities
instead of raw probabilities to enhance compara-
bility across tokens. The final implementation is
formalized as:

tFi:i+W =





tIi:i+W , if
1

W

W−1∑

j=0

logPM (tIi+j | Q,AF
<i) ≥

1

W

W−1∑

j=0

logPM (tEi+j | Q,D,AF
<i)

+ C

tEi:i+W , otherwise
(3)

3.1.3 Reasoning Knowledge
Real-world domain scenarios often require reason-
ing across multiple knowledge points. To simu-
late this, we adopt a relevance-based sampling
strategy: for each question and its corresponding
document chunk, we retrieve the top 10 related
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question-chunk pairs, which serve as the basis for
constructing complex reasoning queries.

To ensure the diversity and quality of the reason-
ing data, we propose a structured data generation
pipeline that classifies reasoning types into three
categories: (1) Deductive Reasoning follows a top-
down logical process, applying general knowledge
points to specific reasoning cases, (2) Inductive
Reasoning works in the opposite direction, deriving
general patterns or principles from multiple spe-
cific instances, (3) Case-based Reasoning involves
analogical thinking, where the solution to a new
problem is inferred by comparing it with previously
encountered similar cases. For each type, we de-
sign tailored prompts to guide the LLM in combin-
ing the sampled questions with relevant document
chunks to form coherent, multi-step reasoning QA
pairs. This structured approach enables controlled
and diverse QA synthesis, enhancing logical depth
while providing a general pipeline for efficiently
generating high-quality reasoning data. Details and
examples for each reasoning type are provided in
Appendix A.4 and A.5. The overall data generation
process is illustrated in Algorithm 1.

3.2 Internal–External Knowledge Fusion
Training

In the internal-external fusion data (Section 3.1.2),
part of the knowledge is already embedded in the
internal parameters of the model. Therefore, ap-
plying standard supervised fine-tuning can lead to
inefficient training and slower adaptation to new
knowledge. To mitigate this, we propose Selective
Supervised Fine-Tuning (Selective SFT), which
leverages the model’s token-level uncertainty. To-
kens with higher uncertainty, indicating unfamil-
iar or novel knowledge, are given greater weight
during optimization, while confident predictions
contribute less to the loss.

To quantify the model’s uncertainty, we compute
the per-token entropy based on output logits. The
entropy Ht for each token is defined as:

Ht = −
V∑

v=1

pt(v) log pt(v) (4)

where pt(v) is the predicted probability of token
v at step t, and V is the vocabulary size. To al-
low comparison across models or vocabularies, we
normalize Ht by the maximum entropy log V .

The token-wise weight factor ωt is defined as:

ωt = (1− correctt) + correctt · Ht

log V
(5)

Algorithm 1 Domain Knowledge Generation
Input: Domain corpus D, LLM M , Retriever R, Max answer
length L, Window size W , Margin C, Reasoning typesRt

1: // Step 1: Meta Knowledge Extraction
2: Clean and segment D into token-balanced chunks {di}
3: for each chunk di do
4: Generate meta questions {qi} from di
5: end for
6: // Step 2: Internal-External Fusion Knowledge
7: for each question q and chunk d do
8: Init ContextE ← (q, d), ContextI ← (q), G← ∅
9: while |G| < L do

10: Generate TE , TI under ContextE , ContextI
11: Compute avg. log-probs pE , pI
12: Select TI if pI ≥ pE + C, else select TE

13: update ContextE , ContextI
14: if EOS token in G then break
15: end if
16: end while
17: end for
18: // Step 3: Reasoning Knowledge
19: for each question q in meta knowledge set do
20: Retrieve k relevant pairs {(qi, di)}ki=1 by R
21: for each reasoning type r inRt do
22: Construct prompt Pr according to type r
23: Generate QA pair (q′, a′) usingPr , {(qi, di)}ki=1

24: end for
25: end for
Output: Internal-external Fusion QAs and Reasoning QAs

where correctt is an indicator function that equals 1
if the token prediction is correct, and 0 otherwise.

The final loss is computed as a weighted negative
log-likelihood (NLL):

L =
1

N

T∑

t=1

ωt · NLLt (6)

where N is the number of valid tokens and NLLt

denotes the negative log-likelihood at step t. This
uncertainty-aware objective prioritizes unmastered
external knowledge and avoids redundant updates,
enabling more efficient fine-tuning.

3.3 Reasoning-Enhanced Training
After acquiring domain knowledge, we apply
GRPO, a critic-free reinforcement learning method,
to improve the reasoning capabilities of the LLM.
We design an accuracy reward and a format
reward. The accuracy reward (Racc) has two
cases: +5 for a fully correct answer and 0 for
an incorrect one. The format reward (Rfmt) in-
cludes three cases: +1 for strictly following the
"<think>...</think>...ANSWER" format, 0 for a
formatting error, and –0.5 if "ANSWER" is gen-
erated multiple times, indicating potential reward
hacking, where the model outputs multiple candi-
date answers to maximize reward. The final reward
is the sum of both: R = Racc +Rfmt.
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Method MedQA JECQA FinanceIQ
Avg@5 Cons@5 Pass@5 Avg@5 Cons@5 Pass@5 Avg@5 Cons@5 Pass@5

Zero-Shot 33.5 38.3 67.6 15.9 18.0 39.5 18.0 17.7 62.2

Few-Shot
1-shot 33.6+0.1 36.2-2.1 68.1+0.5 15.2-0.7 16.7-1.3 39.7+0.2 17.5-0.5 16.6-1.1 60.9-1.3
3-shot 33.0-0.5 35.7-2.6 67.6+0.0 12.3-3.6 11.2-6.8 34.9-4.6 16.2-1.8 14.0-3.7 58.1-4.1
5-shot 33.8+0.3 36.3-2.0 67.1-0.5 13.8-2.1 13.2-4.8 37.9-1.6 16.0-2.0 14.4-3.3 57.3-4.9

RAG
Naive 34.2+0.7 38.3+0.0 65.9-1.7 6.1-9.8 4.7-13.3 17.6-21.9 11.8-6.2 5.4-12.3 46.6-15.6
Self-Ask 20.3-13.2 21.7-16.6 67.9+0.3 9.4-6.5 13.9-4.1 18.2-21.3 3.0-15.0 0.3-17.4 13.3-48.9
Self-RAG 23.4-10.1 25.3-13.0 72.7+5.1 6.4-9.5 14.6-3.4 17.7-21.8 10.1-7.9 4.3-13.4 41.2-21.0

Post-Training

SFT 32.4-1.1 35.9-2.4 68.4+0.8 15.3-0.6 16.9-1.1 42.6+3.1 23.1+5.1 25.1+8.0 71.4+9.2
PPO 34.2+0.7 34.8-3.5 40.6-27.0 18.0+2.1 18.1+0.1 28.6-10.9 23.6+5.6 25.7+8.0 69.7+7.5
GRPO 36.1+2.6 36.4-1.9 61.4-6.2 21.1+5.2 21.5+3.5 29.3-10.2 22.6+4.6 24.5+6.8 72.3+10.1
Sel. SFT (Ours) 35.1+1.6 39.6+1.3 75.9+8.3 18.6+2.7 23.1+5.1 42.1+2.6 23.6+5.6 25.5+7.8 72.3+10.1
S2K (Ours) 38.6+5.1 43.4+5.1 77.1+9.5 26.2+10.3 27.7+9.7 43.6+4.1 25.8+7.8 27.7+10.0 73.4+11.2

Table 1: We evaluate S2K against representative domain-specific QA enhancement methods across prompting, RAG,
and post-training approaches on three benchmarks: MedQA (medicine), JECQA (law), and FinanceIQ (finance).
S2K consistently outperforms other QA enhancement strategies we benchmarked, highlighting the effectiveness of
internal-external knowledge fusion and two-stage training. (Sel. SFT means Selective SFT we proposed)

Figure 3: Compared to domain-specific LLMs pretrained on large-scale corpora, S2K reaches comparable perfor-
mance using 2–3 orders of magnitude less data, demonstrating the effectiveness of internal-external knowledge
fusion. Striped bars indicate estimated training tokens due to missing data from the original papers.

4 Experiments

We organize our experiments as follows: Sec-
tion 4.1 details the experimental setup. Section 4.2
provides a quantitative comparison between our
method and other question-answering enhancement
paradigms. Section 4.3 analyzes the sensitivity of
key hyperparameters, revealing underlying mecha-
nisms of our method. Section 4.4 presents ablation
study to examine the contribution of each module.
Finally, Section 4.5 provides case studies illustrat-
ing the use of internal knowledge in practice.

4.1 Experiment Setup

Datasets: To evaluate the cross-domain general-
ization of S2K, we conduct experiments in three

domains: medicine (MedQA (Jin et al., 2021)), law
(JEC-QA (Zhong et al., 2020)), and finance (Fi-
nanceIQ (Zhang and Yang, 2023)). MedQA is a
multilingual medical QA benchmark based on pro-
fessional exams. Training is based on medical text-
books, and evaluation is conducted on the MedQA-
USMLE subset. JEC-QA (Zhong et al., 2020)
is a legal QA dataset derived from the Chinese
National Judicial Examination. S2K is evaluated
on the JEC-QA-KD subset from AGIEval (Zhong
et al., 2024). FinanceIQ (Zhang and Yang, 2023)
is a Chinese financial QA dataset with multiple-
choice questions across diverse topics. Training
data is sampled from corresponding FinCorpus,
and evaluation uses the standard test set.
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Models and Retrieval: We use Qwen2.5-instruct-
7b (Yang et al., 2024b) as our base model, and
use the BM25 (Robertson and Zaragoza, 2009) as
reproduce RAG methods retriever.
Metrics: We use Avg@5, Cons@5, and Pass@5,
representing average accuracy over 5 generations,
majority-vote accuracy, and the rate of including at
least one correct answer.
Baselines: We compare S2K with representative
methods across four categories: prompting, RAG,
post-training, and domain-specific pretraining.
Prompting includes 0/1/3/5-shot settings. RAG
baselines cover standard RAG, Self-RAG (Asai
et al., 2023), and Self-Ask (Press et al., 2023). Post-
training includes SFT, PPO, and GRPO under con-
sistent conditions. We also compare with domain-
specific pretrained models, including BioMis-
tral (Labrak et al., 2024), MMed-Llama-3-8B (Qiu
et al., 2024), and OpenBioLLM-8B (Ankit Pal,
2024) for medicine; Saul-7B (Colombo et al.,
2024), LawChat (Cheng et al., 2024b), and
Lawyer-LLaMA-13B (Huang et al., 2023) for
law; and finance-Llama3-8B (Cheng et al., 2024a),
xunayuan-6B-chat (Zhang and Yang, 2023), and
CFGPT (Li et al., 2024) for finance.

More implementation details, including hyper-
parameters and baselines, are provided in the Ap-
pendix A.

4.2 Main Result
We evaluate S2K from two perspectives. At the al-
gorithm level, we reproduce and compare represen-
tative QA enhancement methods, including prompt-
ing strategies, training techniques, and retrieval-
augmented generation, under identical settings for
fair comparison. At the model level, we directly
compare with open-source domain-specific pre-
trained models to demonstrate the effectiveness
of our approach in realistic deployment scenarios.
S2K proves to be the most effective method
for enhancing DSQA. As shown in Table 1, it
consistently delivers significant performance gains
across all three domains compared to the raw LLM,
demonstrating strong generalization capabilities.
Moreover, it outperforms all other QA enhance-
ment strategies we benchmarked. Notably, meth-
ods that inject domain knowledge into the model’s
context (e.g., Few-Shot and RAG) generally under-
perform, suggesting that in knowledge-intensive
tasks, especially those requiring complex reason-
ing, embedding knowledge directly into model pa-
rameters is a more promising approach.
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Figure 4: Effect of Threshold C and Window W in
Knowledge Self-Selection.

S2K achieves competitive performance with
domain-pretrained models at a significantly
lower training cost. As shown in Figure 3, while
domain-specific pretraining typically requires hun-
dreds of billions of tokens, S2K uses two to three
orders of magnitude less data (e.g., only 0.04B to-
kens for the medical domain), yet still matches or
even surpasses their performance across all three
domains. This highlights the effectiveness of fus-
ing internal parametric knowledge with external
domain knowledge, which will become increas-
ingly valuable as LLMs continue to improve in
their internal knowledge in the future.

4.3 Analysis Experiments

4.3.1 Threshold C in Knowledge Selection

As shown in Equation 3, we introduce threshold C
in internal-external knowledge fusion to encourage
more cautious selection of internal knowledge. As
illustrated in Figure 4a, we analyze the effect of
C on both the proportion of internal knowledge
in the fused data and the model’s performance, in-
creasing C from 0 to 0.1 reduces the proportion
of selected internal tokens from 26.20% to 5.16%,
aligning with the self-selection mechanism defined
in Equation 3. Interestingly, model performance
first improves and then declines as C increases,
peaking at C = 0.07. This suggests that an overly
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Model MedQA JECQA FinanceIQ
Avg@5 Cons@5 Pass@5 Avg@5 Cons@5 Pass@5 Avg@5 Cons@5 Pass@5

LLaMA3.1-8B 22.0 22.5 70.9 8.08 18.3 26.7 12.7 7.6 47.7
+Sel.SFT 27.3 31.3 78.9 9.76 20.3 31.6 21.5 23.4 70.0
+GRPO 29.2 32.4 81.0 20.0 23.0 46.8 23.0 24.7 73.0

Table 2: Evaluation of S2K on a different model architecture. Applying Selective SFT and GRPO on LLaMA3.1-8B
consistently improves performance across MedQA, JECQA, and FinanceIQ, showing that our framework generalizes
beyond the Qwen family of models.

Model Avg@5 Cons@5 Pass@5
Qwen2.5-1.5B 8.9 9.7 36.9
+S2K 17.0 15.1 60.3

Table 3: Evaluation of S2K on a smaller
model(Qwen2.5-1.5B) on the FinanceIQ. Despite
the limited parameter size, applying our framework
leads to substantial improvements across all metrics,
demonstrating the scalability of S2K.

high proportion of internal knowledge may lead
to overconfidence. Conversely, when the internal
knowledge proportion is too low, the fusion reduces
to relying solely on external knowledge, thereby
neglecting the utility of useful internal knowledge.

4.3.2 Window Width W in Knowledge Fusion
To mitigate greedy selection behavior when fusing
knowledge, we introduce a window size parameter
W in Equation 3. The model selects internal knowl-
edge based on the average log-probability over a
window of W tokens, instead of a single token level.
As shown in Figure 4b, W increases from 1 to 20,
the proportion of selected internal tokens steadily
decreases. This indicates that the window mecha-
nism effectively alleviates greedy selection. Corre-
spondingly, model performance first improves and
then degrades, peaking at W = 10, suggests that a
larger window smooths locally confident but poten-
tially incorrect predictions, encouraging the model
to be more cautious in selecting internal knowl-
edge, but an excessively large window may overly
suppress internal knowledge, causing the model to
rely entirely on external knowledge.

4.3.3 Robustness Across Model Architectures
and Sizes

To evaluate the robustness of S2K across differ-
ent model architectures and parameter scales, we
conduct experiments on LLaMA3.1-8B (Dubey
et al., 2024) and Qwen2.5-1.5B. As shown in
Table 2, applying Selective SFT on LLaMA3.1-
8B already yields consistent improvements across

Sampling Avg@5 Cons@5 Pass@5
Random 32.6 35.0 44.6
Relevance-based 38.6 43.4 77.1

Table 4: Effect of sampling strategies on reasoning data
generation.

Acc Fmt Metrics
Correct Correct EA Avg@5 Cons@5 Pass@5

1 - - 34.9 35.7 61.3
1 1 -0.5 35.6 36.7 54.9
5 1 -0.5 38.6 43.4 77.1

Table 5: Comparison of reward schemes. While Acc
means Accuracy reward, Fmt means format reward and
EA means extra-answer penalty.

MedQA, JECQA, and FinanceIQ. Further incorpo-
rating GRPO leads to substantial gains, demonstrat-
ing the effectiveness of S2K.

In addition, Table 3 shows that S2K also bene-
fits smaller models such as Qwen2.5-1.5B. Even
with limited model capacity, our framework signifi-
cantly enhances performance on all three metrics,
suggesting that S2K is general and scalable across
different architectures and model sizes.

4.3.4 Relevance-based sampling of Reasoning
Data Generation

As mentioned in Section 3.1.3, we hypothesize that
complex reasoning tasks require the integration of
multiple relevant knowledge points. To better sim-
ulate realistic reasoning scenarios, we introduce a
relevance-based sampling strategy during the gener-
ation of reasoning data. In this section, we quantita-
tively compare the effects of random and relevance-
based sampling on model performance. The results
in Table 4 show that relevance-based sampling sig-
nificantly improves model performance, supporting
the validity of our hypothesis.

4.3.5 Reward Function Analysis
We use GRPO with accuracy and format re-
wards to boost QA performance in real-world,
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Setting Avg@5 Cons@5 Pass@5
Raw LLM 33.5 38.3 67.6
Only Sel.SFT 35.1+1.6 39.6+1.3 75.9+8.3
Only GRPO 36.1+2.6 36.4-1.9 61.4-6.2
Sel.SFT+GRPO 38.6+5.1 43.4+5.1 77.9+10.3

Table 6: Ablation study on training stages. We com-
pare the raw LLM, applying only Selective SFT, only
GRPO, and their combination. The results show that
Selective SFT and GRPO are both beneficial, while their
combination yields the best overall performance.

Method Data Avg@5 Cons@5 Pass@5
- - 33.5 38.3 67.6
Std.SFT External 33.5+0 36.8-1.5 68.7+1.1
Sel.SFT External 34.2+0.7 37.9-0.4 73.1+5.5
Sel.SFT Fusion 35.1+1.6 39.6+1.3 75.9+8.3

Table 7: Ablation study on SFT. We examine standard
SFT and Selective SFT under different data settings.
Selective SFT consistently outperforms standard SFT,
and incorporating fusion knowledge further enhances
all metrics.

domain-specific settings. We compare three re-
ward schemes: (1) Answer Only: binary reward for
answer correctness; (2) Answer + Format: com-
bined reward for correctness and formatting; and
(3) Enhanced Answer + Format: combined reward
with stronger Answer incentives.

As shown in Table 5, the answer only reward
can lead to formatting issues that degrade overall
performance. Adding a formatting reward signif-
icantly improves structural consistency, although
it lags behind in terms of correctness. By con-
trast, increasing the answer reward while still in-
corporating the formatting reward achieves the best
results. Therefore, we ultimately select the third
reward scheme as the reward during the Reasoning-
Enhanced Training.

4.4 Ablation Study
To provide a clearer understanding of the contribu-
tion of each component in S2K, we report ablation
studies from three complementary perspectives.

First, Table 6 presents the effect of different train-
ing stages. We observe that applying only Selec-
tive SFT leads to notable improvements over the
raw LLM, while GRPO alone slightly improves
Avg@5 but causes degradation in Cons@5 and
Pass@5. In contrast, combining Selective SFT
with GRPO yields the best results across all met-
rics, highlighting the effectiveness of our two-stage
training pipeline.

Method Avg@5 Cons@5 Pass@5
Raw LLM 18.0 17.7 62.2
+R1-distill Data 20.0+2.0 20.3+2.6 66.7+4.5
+Fusion Data 22.2+4.2 24.0+6.3 71.6+9.4

Table 8: Comparison of training data quality on the
FinanceIQ dataset. Both R1-distilled data and our fusion
data improve over the raw LLM, but the fusion data
provides consistently larger gains across all metrics,
demonstrating the superiority of our data fusion strategy.

Second, Table 7 focuses on the SFT stage. Com-
pared with standard SFT using external knowledge,
Selective SFT achieves higher accuracy, especially
in terms of Pass@5. Moreover, when incorporating
our proposed internal–external fusion knowledge,
Selective SFT further boosts performance across
all metrics.

Finally, Table 8 compares our fusion-based train-
ing data with data obtained by directly distilling
R1. While both strategies improve upon the raw
LLM, the fusion data leads to consistently larger
gains across Avg@5, Cons@5, and Pass@5. These
results demonstrate that our data fusion approach
provides higher-quality supervision than direct dis-
tillation, and is a key factor behind the effectiveness
of S2K in domain-specific QA.

4.5 Case Study

In this section, we present a real case in Table 9,
to demonstrate how our fusion mechanism works.
The example focuses on the functional differences
between M1 and M2 macrophages in arginine
metabolism. The original document accurately cap-
tures their metabolic roles, whereas the external
source, despite providing partially relevant details,
introduces factual errors by incorrectly linking M1
to Th2 and M2 to Th1 responses. Our fusion an-
swer not only corrects these mistakes but also re-
tains complementary information from the external
source, resulting in a response that is both more
accurate and more comprehensive.

5 Related Work

Domain-Specific Question Answering: Domain-
Specific QA (Zhang et al., 2024b; Wang et al.,
2024; Siriwardhana et al., 2023) involves leverag-
ing LLMs to accurately understand and respond to
user queries in specialized fields such as medicine,
law, and finance. Despite recent advancements,
LLMs still exhibit noticeable performance gaps
in DSQA tasks (Yang et al., 2023; Mao et al.,
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Type Content

Question What are the key functional differences between M1 and M2 macrophages in their metabolism of arginine
during the immune response to helminths?

Document
...A major difference between M1 and M2 macrophages is...Whereas M1 macrophages express iNOS, which
produces the potent intracellular microbicide nitric oxide (NO), M2 macrophages express arginase-1, which
produces ornithine and proline from arginine...

External
Answer

...M1 macrophages express iNOS, which produces nitric oxide (NO)...M2 macrophages express arginase-1.
Arginase-1 breaks down arginine into ornithine and proline... M1 is usually associated with Th2 cells ✗ and
promotes tissue repair and anti-inflammatory responses. M2 is linked to Th1 cells ✗ and promotes defense...

Fusion
Answer

...M1 macrophages express iNOS, which produces nitric oxide (NO)...M1 macrophages are typically associ-
ated with the Th1 response ✓... M2 macrophages express arginase-1. Arginase-1 breaks down arginine into
ornithine and proline... M2 macrophages are linked to the Th2 response ✓...

Table 9: Knowledge comparison between different answer sources and the fusion result. The original document
accurately distinguishes the metabolic roles of M1 and M2 macrophages. External data reiterates some facts but
introduces significant errors, such as wrongly linking M1 macrophages to Th2 responses. Our fusion method
effectively corrects these inaccuracies while preserving useful complementary details from the external source.

2024; Sharma et al., 2024; Yue, 2025). This
shortfall is primarily due to two key challenges.
First, general-purpose LLMs often lack sufficient
domain-specific knowledge (Mao et al., 2024;
Bhushan et al., 2025). Second, hallucinations (Ji
et al., 2023; Sultania et al., 2024; Bhushan et al.,
2025) remain a major concern, while LLMs can
generate fluent and coherent responses, but may be
factually incorrect or misaligned with the original
sources.
Retrieval-Augmented Generation: RAG (Guu
et al., 2020; Lewis et al., 2020; Izacard et al., 2022;
Nakano et al., 2021; Asai et al., 2023; Ma et al.,
2023; Yu et al., 2024; Shi et al., 2024) enhances
LLMs by incorporating external domain-specific
knowledge, to mitigate hallucinations and improve
performance in DSQA tasks (e.g., Self-RAG (Asai
et al., 2023) is capable of dynamically determining
whether domain-specific knowledge needs to be
retrieved based on the query context, while Self-
Ask (Press et al., 2023) uses search engines for sub-
questions). However, it suffers from conflicting
internal and external domain knowledge (Xu et al.,
2024; Zhang et al., 2024a; Xie et al., 2024).
Continued Training Domain Adaptation: Con-
tinued training (Labrak et al., 2024; Qiu et al., 2024;
Zhang et al., 2025; Mecklenburg et al., 2024) aims
to inject domain-specific knowledge into LLMs to
compensate for their lack of specialized expertise.
This strategy can be broadly divided into two main
approaches: pre-training (Qiu et al., 2024; Shu
et al., 2024; Li et al., 2024; Chen et al., 2023) adap-
tation, which fine-tunes LLMs on domain-specific
corpora to help them internalize expert knowledge
(e.g., BioMistral (Labrak et al., 2024)); and post-
training (Zhang et al., 2025; Mecklenburg et al.,
2024; Tian et al., 2023), which involves fine-tuning

LLMs using QA pairs derived from domain knowl-
edge. However, continued training often encoun-
ters hurdles in effectively enabling LLMs to extract
the acquired knowledge during the inference phase
(Zhang et al., 2025; Ibrahim et al.; Ovadia et al.,
2024). Recent studies further highlight the impor-
tance of data diversity for improving generalization
during fine-tuning (Song et al., 2024), and propose
knowledge-aware fine-tuning strategies to explic-
itly inject and utilize external knowledge, thereby
mitigating hallucinations (Lyu et al., 2024).

6 Conclusion

To address challenges in DSQA, we propose S2K,
an efficient framework designed to enhance LLM
performance in long-tail domains. In vertical do-
mains where no readily available QA datasets exist,
S2K enables effective transfer and generalization
of QA capabilities using only raw corpora. Exper-
iments across multiple representative vertical do-
mains demonstrate its effectiveness. In addition to
strong accuracy, S2K achieves comparable perfor-
mance to domain-pretrained models at significantly
lower cost.

7 Limitation

Although S2K demonstrates strong performance
across various domain-specific scenarios, there re-
mains room for further improvement. At present,
the method primarily focuses on modeling static
domain knowledge and has not been specifically
optimized for rapidly evolving or real-time infor-
mation. In the future, we plan to integrate RAG
techniques to enhance the system’s adaptability to
dynamic knowledge while maintaining broad cov-
erage.
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A Appendix

A.1 Visualization of token-level prediction
probabilities

Figure 1 illustrates the importance of internal
parametric knowledge using a schematic example,
while Figure 5 presents a real-world case. We ran-
domly sample document chunks from a medical
document and feed them into the LLM. Based on
the model’s output logits, we compute token prob-
abilities and visualize the top 32 tokens with the
highest confidence. The results show that even
when provided with external domain documents,
the model correctly predicts a substantial portion
of tokens with high confidence. This indicates that
the LLM has already acquired part of this domain
knowledge during pretraining.

A.2 Implementation Details
This section provides a detailed overview of the
experimental details, including data scales for train-
ing and evaluation, hyperparameter configurations,
and analysis experiments, to ensure the repro-
ducibility and rigor of our results.

A.2.1 Datasets
We first extract meta knowledge from raw domain-
specific corpora. For each meta knowledge in-
stance, we generate internal-external fused data.
Additionally, we sample multiple meta knowl-
edge entries to construct complex reasoning exam-
ples. Experiments are conducted in three domains:
medicine, law, and finance. The number of samples
for each data type in each domain is summarized
in Table 10.

Domain Dmeta Dfusion Dreason Deval

Medicine 41760 41760 3492 1273
Law 15332 15332 4297 1000
Finance 29789 29789 1505 7123

Table 10: Number of samples datasets: where Dmeta

means Meta Knowledge, Dfusion means Fusion Knowl-
edge number, Dreason means Reasoning Knowledge,
Deval means evaluate samples numbers.

A.2.2 Hyperparameter
As described in Section 3.2, our proposed Selective
SFT introduces a weighting factor to the standard
SFT loss, with weights ranging from 0 to 1. As a
result, the overall loss in Selective SFT is smaller
than that of standard SFT. To compensate and en-
hance training effectiveness, we increase the learn-

ing rate accordingly. Table 11 presents the detailed
hyperparameter settings for Selective SFT.

Hyperparameter Value
Finetuning Type lora
Lora Rank 8
Batch Size 32
Learning Rate 1e-3
Number of Epochs 1.0
LR Scheduler cosine
Warm-up Ratio 0.1

Table 11: Hyperparamters of Selective SFT.

In addition, Table 12 provides the detailed hyper-
parameter settings used in the GRPO stage. Specif-
ically, the global batch size refers to the number of
total training samples in one optimization step (set
to 1 in our case due to resource constraints), while
the rollout batch size denotes the number of roll-
outs per sample (set to 8), balancing computational
efficiency and diversity in policy updates. For fair
comparison, the reinforcement learning baselines
are configured with the same hyperparameters.

Hyperparameter Value

Number of Epochs 2
Learning Rate 5e-6
Sequence Length 4096
Warm-up Ratio 0.1
Global Batch Size 1
Rollout Batch Size 8
Max Prompt Length 512
Max Response Length 2048
KL Coefficient 0.04
Checkpoint Strategy step
Random Seed 42
Temperature 0.9
Top-p 1.0
Max grad norm 0.1

Table 12: Hyperparameters of Reinforce Learning.

A.2.3 Metric
We evaluate model performance using three metrics
computed over k = 5 generated answers per ques-
tion: Avg@5, Cons@5, and Pass@5. Given a set of
N questions, for each question i we denote the set
of generated answers as ai1, ai2, . . . , ai5 and their
correctness as binary indicators yi1, yi2, . . . , yi5
where yij = 1 if aij is correct, otherwise 0.
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Figure 5: A real example of token-level prediction probabilities. The horizontal axis represents the token positions
in a domain-specific document, and the vertical axis shows the top-32 tokens ranked by predicted probability.
Green check marks at the top indicate tokens correctly predicted by the model. A greater vertical spread of green
marks suggests more dispersed probabilities and lower model confidence. In contrast, concentrated predictions
with high-ranked correct tokens indicate strong confidence, implying that the model has already internalized the
corresponding domain knowledge.

Avg@5 measures the average accuracy across
all 5 generations:

Avg@5 =
1

5N

N∑

i=1

5∑

j=1

yij (7)

Cons@5 evaluates the correctness of the
majority-voted answer among the 5 generations:

Cons@5 =
1

N

N∑

i=1

I
(

major(ai1, . . . , ai5) = a
gold
i

)
(8)

where major(·) returns the most frequent answer
among the 5 generations, and a

gold
i is the correct

answer for question i. I(·) is the indicator func-
tion, which returns 1 if the condition is true and 0
otherwise.

Pass@5 measures whether at least one of the 5
generations is correct:

Pass@5 =
1

N

N∑

i=1

I

(
5∑

j=1

yij ≥ 1

)
(9)

A.3 Baseline Reproduction Details

In this section, we provide a detailed description
of the reproduction process for other methods to
demonstrate the reproducibility and fairness of the
experimental comparisons.

A.3.1 Few-Shot
In Table 1, we include 0/1/3/5-shot prompting as
baselines. The zero-shot setting corresponds to the
raw LLM, while the 1/3/5-shot prompts are ran-
domly sampled from each dataset’s official training
set. For each test sample, the prompts are indepen-
dently sampled, with a fixed random seed to ensure
reproducibility.

A.3.2 Hyperparameter Settings for
Reinforcement Learning Methods

To ensure reproducibility and fair comparison, we
closely followed standard implementations and
platform-recommended values when reproducing
baseline reinforcement learning methods. Table 12
summarizes the key hyperparameters. The configu-
ration was applied consistently across all PPO and
GRPO training runs. All experiments were con-
ducted under the same hardware environment and
data preprocessing pipeline.

A.3.3 Hyperparameter Settings for RAG with
BM25 Retrieval

For experiments involving RAG, we adopt a tradi-
tional BM25-based retriever to collect candidate
documents, followed by a reranking stage to refine
the top selections. The key parameters used in both
retrieval and reranking stages are summarized be-
low. Retrieval is performed using a batch-based
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Hyperparameter Value Description

Random Seed 2024 Seed for reproducibility in retrieval and reranking.
Retrieval Top-k 5 Number of top documents retrieved per query.
Retrieval Batch Size 256 Number of queries processed in parallel during retrieval.
Retrieval FP16 True Use half-precision (FP16) for retrieval computations.
Retrieval Max Query Length 128 Max token length for each query input.
Rerank Top-k 5 Number of documents reranked per query after initial retrieval.
Rerank Max Length 512 Max token length for concatenated query-document input to reranker.
Rerank Batch Size 256 Number of samples reranked in parallel.
Rerank FP16 True Use FP16 precision for reranking to reduce memory usage.

Table 13: Hyperparameter settings for RAG pipeline with BM25-based retrieval and reranking.

setup with FP16 precision enabled for improved
efficiency. Reranking similarly operates in batches,
with truncated input lengths to balance context and
computational cost.Table 13 summarizes the key
hyperparameters used for RAG.

A.4 Structured Reasoning Examples in QA
Generation

Table 14 presents representative examples of the
three structured reasoning types—deductive, in-
ductive, and case-based—used in our QA pair
generation framework. These examples were
constructed to reflect clinically relevant diag-
nostic and management scenarios, enabling the
large language model (LLM) to generate complex
question–answer pairs guided by distinct logical
paradigms.

• The deductive example demonstrates rea-
soning from a general diagnostic framework
(DSM coding rules) to a specific clinical case
involving substance-induced depressive disor-
der.

• The inductive example illustrates how gen-
eralizable conclusions can be drawn from
specific patient findings that align with the
Brighton diagnostic criteria for Guillain-Barré
syndrome.

• The case-based example applies analogical
reasoning to a surgical decision-making sce-
nario, where guideline-informed management
is inferred based on patient characteristics and
clinical history.

These examples serve to clarify how our struc-
tured prompting strategy supports logical diversity
and clinical fidelity in synthetic QA data creation,
and they provide concrete evidence of how different
reasoning pathways are operationalized in practice.

A.5 Prompts
We generate meta knowledge and reasoning data
by prompting DeepSeek-v3 and GPT-4o. This sec-
tion provides detailed prompt templates. Table 15
presents the prompt used for meta knowledge gen-
eration, while Tables 16 to 18 show the prompts
used for generating inductive, deductive, and case-
based reasoning data, respectively.
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Category Content

Input

1. What are the primary functions of visceral sensory fibers associated with parasympathetic fibers in the
nervous system? (Document:For example, visceral sensory fibers from the heart may enter at...)
2. What are the roles of the parasympathetic and sympathetic nerve supplies in modulating motor functions of
the small intestine and colon? (Document:The myenteric plexus regulates smooth-muscle function through...)
...
9. What are the functional roles of the enteric system in the gastrointestinal tract, and how does it interact
with the sympathetic and parasympathetic nervous systems? (Document:These branches contain preganglionic
parasympathetic fibers...)
10. What are the anatomical structures and spinal segments involved in the sympathetic, parasympathetic, and
sensory innervation of the uterovaginal plexus? (Document:Uterovaginal plexus Frankenhäuser...)

Deductive

A patient presents with chronic abdominal pain and irregular bowel movements. Upon further investigation, it
is suspected that the enteric nervous system is not properly regulating gastrointestinal activities. The physician
hypothesizes that the issue may involve improper modulation by extrinsic parasympathetic fibers. Based on the
anatomical and functional organization of the parasympathetic nervous system, which of the following spinal
cord levels would most likely contain the preganglionic parasympathetic neurons involved in regulating the
distal colon?
A. T1–T12 B. L1–L2 C. S2–S4 D. C1–C7
Correct Answer: C

Inductive

A 45-year-old woman presents with chronic pelvic pain and dysmenorrhea due to endometriosis. Her physician
considers performing a presacral neurectomy to interrupt the sensory fibers from the uterus and cervix. Based
on the anatomical and functional innervation of the uterovaginal plexus, which of the following statements is
correct regarding this procedure?
A. The procedure will effectively relieve pain originating from the ovary because the ovarian plexus is part of
the superior hypogastric plexus. B. The procedure carries a risk of bladder and bowel dysfunction because
the superior hypogastric plexus contains efferent sympathetic and parasympathetic fibers. C. The procedure
targets sensory fibers entering the spinal cord at levels S2–S4, which are responsible for uterine pain. D. The
procedure is unlikely to affect peristalsis in the distal colon because the enteric system operates independently
of extrinsic innervation.
Correct Answer: B

Case-based

A 45-year-old woman presents to her physician with chronic pelvic pain and dysmenorrhea. Upon further
evaluation, she is diagnosed with endometriosis. The physician considers surgical intervention to alleviate
her symptoms by targeting the sensory innervation of the uterus and cervix. Based on the anatomical and
functional information provided, which of the following surgical approaches would most likely interrupt the
sensory fibers responsible for her pain while minimizing the risk of bladder or bowel dysfunction?
A. Resection of the ovarian plexus B. Presacral neurectomy (resection of the superior hypogastric plexus)
C. Blockade of the pudendal nerve D. Resection of a portion of the uterosacral ligaments
Correct Answer: D

Table 14: Representative Examples of Structured Reasoning Types Used in QA Pair Generation. Each case illustrates
a distinct reasoning paradigm—deductive, inductive, or case-based.
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Prompt #1: Meta Knowledge Generation

You are a professional question-generation expert with a focus on academic and technical texts.

## Task:
Carefully read the provided document chunk and generate **exactly one knowledge-based, specific,
and self-contained question**. The question must:
1. Be directly answerable using only the content from the chunk.
2. Reflect representative or meaningful knowledge contained in the chunk — not superficial, vague,
or structural elements.
3. Be expressed in formal, academic language, precise and clear.

## Rules:
1. The question must be fully self-contained and understandable without access to the original
chunk.
2. Do **NOT** use context-dependent phrases like: "as described in the text", "according to the
passage", "in the document", "from the chunk"
3. Add necessary information to the question to ensure that it can be independently understood.
(Bad Case: What are the symptoms described in the text? Good Case: What are the typical symptoms
of generalized anxiety disorder?)
4. If the chunk lacks sufficient knowledge content or contains only general statements, structural
formatting, or introductory language, return the JSON format with an **empty question string**.
5. Avoid vague or incomplete questions like "What does X refer to?"
6. If necessary, add contextual qualifiers (e.g., domain, subject, scope) to the question to
ensure it is fully understandable without seeing the original chunk.
7. Favor questions that involve comparisons, causes, functions, conditions, or processes over
basic definitional questions.
8. If possible, vary the question style (e.g., what, why, how), but keep it answerable solely from
the chunk.

## Output Format:
Only respond in this strict JSON format, without any extra text, markdown, or commentary:

``` json
{{
"question": "Your single knowledge-based question here — or an empty string if no meaningful
question can be asked."
}}
```

## Document:
{article_text}

Table 15: Prompt Design for Meta Knowledge Generation
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Prompt #2: Inductive Reasoning Data Generation

### General Instruction
You are an advanced question generation model that aims to generate case questions that require
inductive reasoning based on multiple instances or observations in the text. Your task is to
generate a question that requires synthesizing information from the provided factual questions
and their corresponding texts. The question must be complete and understandable without requiring
external information.

### Reasoning Type Requirement: Inductive reasoning
A "Instruction" questions involve presenting a realistic scenario where the rules must come
directly from the text (e.g., definitions, theorems, taxonomies). The scenario should be coherent
and plausible in the context of the given information. Not all input information needs to be used;
select the most relevant parts to construct a meaningful question.

### Question Type Requirement: Multiple choice
The generated questions should be presented in the form of multiple-choice questions with **four
options (A, B, C, D)**, only one of which is correct. The correct answer can directly match the
inevitable conclusion in the rule, and the statement should be clear and avoid vague words. Make
sure the distractors seem reasonable, but are obviously different from the correct answer.

### Additional Notes
1. Use clear and concise language to present the scenario.
2. Avoid unnecessary complexity, but ensure the question requires reasoning beyond direct
retrieval.
3. Make sure the question is self-contained and understandable without additional context, that
is, you can understand without using the content in the text.

### Example Format:
Input:
1. What role do natural killer (NK) cells play in immunosurveillance? (Text: Natural killer
(NK) cells play a critical role in the immune response against tumors by killing cancer cells
through perforin-mediated cytotoxicity, which is essential for immunosurveillance in the body.
This process helps to limit tumor progression, making NK cells important in the study of cancer
prognosis.)
2. Which cluster of differentiation marker is used to identify natural killer (NK) cells in
tissue samples? (Text: CD56 is a surface marker specific to natural killer (NK) cells and is used
to identify and isolate these cells in tissue samples, such as those from resected lung cancer
specimens. Therefore, CD56 is the appropriate cluster of diff rentiation marker to study tumor
infiltration by NK cells in cancer research.)

Output:
In a suburban town in Virginia, epidemiologists are alarmed by the increasing number of squamous
cell lung cancer cases. Further investigation reveals that most people in the area work in a
glass factory, the regions main source of employment. A researcher is interested in studying the
role of immunosurveillance in the pathogenesis of this lung cancer. He postulates that tumor
infiltration by natural killer (NK) cells has a better prognosis since they play a major role
in immunosurveillance. NK cells also kill tumor cells by the perforin-mediated destruction of
cancerous cells. The researcher is interested in studying tumor infiltration by NK cells in the
resected specimen from patients within the cohort who have been diagnosed with stage 1 lung cancer.
Which of the following cluster of differentiation markers will he need to use to identify these
cells in the resected specimens?
A. CD20
B. CD3
C. CD34
D. CD56
Correct Answer: D

### Input:
{meta_knowledge_from_sampling}

Now start generating one question based on the given input.

Table 16: Prompt Design for Inductive Reasoning Data Generation
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Prompt #3: Deductive Reasoning Data Generation

### General Instruction
You are an advanced question generation model that aims to generate case questions that require
deductive reasoning based on the knowledge points in the question and the general rules or
definitions in the text. You need to extract clear rules from the text and design a realistic
scenario that requires users to solve the problem through logical deduction from general to specific.

### Reasoning Type Requirement: Deductive reasoning
A "deductive" question involves presenting a realistic scenario where information from the provided
texts must be applied to diagnose, explain, or solve a specific problem. The scenario should be
coherent and plausible within the context of the given information. Not all input information
needs to be used; select the most relevant parts to construct a meaningful question.

### Question Type Requirement: Multiple Choice The generated question should be presented
as a multiple-choice question with **four options (A, B, C, D)**, where only one option is correct.
Ensure the distractors are plausible but clearly distinguishable from the correct answer. The user
should be able to choose the correct answer by synthesizing information from the provided factual
questions and texts.

### Additional Notes
1. Use clear and concise language to present the scenario.
2. Avoid unnecessary complexity, but ensure the question requires reasoning beyond direct
retrieval.
3. Make sure the question is self-contained and understandable without additional context.

### Example Format:

Input:
1. What are the four primary features of tetralogy of Fallot? (Text: Tetralogy of Fallot is a
congenital heart defect characterized by four primary features: ventricular septal defect (VSD),
pulmonary stenosis, right ventricular hypertrophy (RVH), and overriding aorta. These abnormalities
can lead to cyanosis, particularly during episodes of increased oxygen demand, such as feeding or
crying.)
2. Why is right axis deviation a common finding on the electrocardiogram (ECG) of patients
with tetralogy of Fallot? (Text: In patients with tetralogy of Fallot, the electrocardiogram
(ECG) commonly shows right axis deviation due to the right ventricular hypertrophy (RVH) that
develops as a result of the obstruction to blood flow through the pulmonary valve. This feature
is characteristic of the condition and helps to differentiate it from other congenital heart
defects.)

Output:
A 6-month-old girl presents with cyanosis of the lips during feeding. The father reports that the
child has similar brief episodes during activity. Physical examination reveals that the child’s
lips and fingers have cyanosis induced by crying during ear examination. Based on the diagnostic
criteria for tetralogy of Fallot, which of the following features is most likely to be shown on
the child’s electrocardiogram?
A. Left ventricular hypertrophy
B. ST segment depression
C. Widened QRS complex
D. Right axis deviation
Correct Answer: D

### Input: {meta_knowledge_from_sampling}

Now start generating one question based on the given input.

Table 17: Prompt Design for Deductive Reasoning Data Generation
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Prompt #4: Case Reasoning Data Generation

### General Instruction
You are an advanced question generation model designed to create comprehensive reasoning questions
based on factual questions and their corresponding text passages. Your task is to generate a
question that requires synthesizing information from the provided factual questions and their
corresponding texts. The question must be complete and understandable without requiring external
information.

### Reasoning Type Requirement: Case
A "Case" question involves presenting a realistic scenario where information from the provided
texts must be applied to diagnose, explain, or solve a specific problem. The scenario should be
coherent and plausible within the context of the given information. Not all input information
needs to be used; select the most relevant parts to construct a meaningful question.

### Question Type Requirement: Long form
The generated question should be presented as a long form. The user should be able to answer by
synthesizing information from the provided factual questions and texts.

### Additional Notes
1. Use clear and concise language to present the scenario.
2. Avoid unnecessary complexity, but ensure the question requires reasoning beyond direct
retrieval.
3. Make sure the question is self-contained and understandable without additional context.

### Example Format:

Input:
1. What is the infectious form of the prion protein associated with scrapie called? (Text: The
infectious form of the prion protein associated with scrapie is PrPSc, which is misfolded and can
induce other proteins to misfold as well.)
2. What is the role of myoglobin in muscle cells concerning oxygen management? (Text: Myoglobin
serves as an oxygen storage molecule in muscle cells, allowing oxygen to be available during
periods of intense activity.)

Output:
A 55-year-old sheep farmer reports that several of his sheep are exhibiting unusual symptoms such
as tremors, lack of coordination, and intense itching that leads to wool loss. Additionally, he
mentions feeling tired quickly during routine tasks such as herding the sheep. The farmer is
concerned that the symptoms may be related to some infectious agent present on the farm. Based
on the symptoms described and the information provided, what could be the cause of the sheep’s
condition?
Correct Answer: The cause of the sheep’s condition is a parasitic infestation affecting the
nervous system

### Input:
{meta_knowledge_from_sampling}

Now start generating one question based on the given input.

Table 18: Prompt Design for Case Reasoning Data Generation
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