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Abstract

Vision-Language Models (VLMs) show
promise for autonomous driving, yet their
struggle with hallucinations, inefficient reason-
ing, and limited real-world validation hinders
accurate perception and robust step-by-step
reasoning. To overcome this, we introduce
AgentThink, a pioneering unified framework
that, for the first time, integrates Chain-of-
Thought (CoT) reasoning with dynamic,
agent-style tool invocation for autonomous
driving tasks. AgentThink’s core innovations
include: (i) Structured Data Generation, by
establishing an autonomous driving tool library
to automatically construct structured, self-
verified reasoning data explicitly incorporating
tool usage for diverse driving scenarios; (ii)
A Two-stage Training Pipeline, employing
Supervised Fine-Tuning (SFT) with Group
Relative Policy Optimization (GRPO) to equip
VLMs with the capability for autonomous tool
invocation; and (iii) Agent-style Tool-Usage
Evaluation, introducing a novel multi-tool
assessment protocol to rigorously evaluate
the model’s tool invocation and utilization.
Experiments on the DriveLMM-o1 benchmark
demonstrate AgentThink significantly boosts
overall reasoning scores by 53.91% and
enhances answer accuracy by 33.54%, while
markedly improving reasoning quality and
consistency. Furthermore, ablation studies
and robust zero-shot/few-shot generalization
experiments across various benchmarks
underscore its powerful capabilities. These
findings highlight a promising trajectory for
developing trustworthy and tool-aware au-
tonomous driving models. Code is available at
https://github.com/currygka/AgentThink.
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Figure 1: The performance of proposed AgentThink
framework on the DriveLMM-o1 benchmark.

1 Introduction

Recent advances in foundation models have opened
new opportunities for autonomous driving (Jiang
et al., 2025b), where pretrained Large Language
Models (LLMs) (Guo et al., 2025; Budzianowski
and Vuli¢, 2019) and Vision-Language Models
(VLMs) (Tian et al., 2024; Zhuang et al., 2025;
Qian et al., 2025a) are increasingly employed to en-
able high-level scene understanding, commonsense
reasoning, and decision making. These models aim
to transcend traditional perception pipelines, which
rely on hand-crafted components such as object de-
tection (Qian et al., 2025c¢; Shi et al., 2024), motion
prediction (Qian et al., 2024a; Wang et al., 2022),
and rule-based planning (Cheng et al., 2024) by pro-
viding richer semantic representations and broader
generalization grounded in web-scale knowledge.
Many recent approaches recast autonomous driv-
ing tasks as visual question answering (VQA) prob-
lems, applying supervised fine-tuning (SFT) to
foundation VLMs with task-specific prompts for
object identification, risk prediction, or motion
planning (Sima et al., 2024; Marcu et al., 2024; Xu
et al., 2024b; Ding et al., 2024; Wang et al., 2024a).
This paradigm are widely used in offline pipelines
to mine rare driving scenarios, such as identify-
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Describe the 2 most important objects in
the current scene that the ego vehicle
must take into consideration.

<answer>

1. The Yellow SUV ahead.

2. The road shoulder and the
Vegetation.

</answer>

<answer>

1. The Yellow Car on the right.
2. The crosswalk area.
</answer>
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<think>The image shows a scene
from inside the ego vehicle that is
positioned near the road shoulder.
The road shoulder is on the right
side of the image, there is a yellow
SUV ahead of the vehicle. </think>
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<tool>, ion: "get_current_sh
the right."</tool>
<think>Knowing the road shoulder is on the right helps determine
egovehicle's position. Then | can make detections.</think>

', output: "The road shoulder is on

<tool>function: "get_object_detections", parameters: {"range": [20, 20]}
output: "A red SUV is detected ahead of the ego vehicle."</tool>
<think>Combined with the earlier tool result, we confirm the relevant
objects are the red SUV ahead and the road shoulder on the right.</think>
<answer>

1. The Red SUV ahead of the vehicle.
2. The road shoulder on the right side of the ego vehicle.
</answer>
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Figure 2: Illustration of the motivation and key highlights of our proposed framework. (a) Base VLMs use
static input-output mapping with no reasoning, leading to low accuracy and frequent hallucinations. (b) VLM
+ CoT introduces structured reasoning, improving interpretability, but still suffers from inconsistencies and lack
of verification. (c) AgentThink (Ours) augments CoT with dynamic tool use, enhancing accuracy, reducing
hallucinations, and improving reasoning consistency through external verification.

ing intersections with a typical traffic signals or
dense pedestrian activities. However, as shown in
Fig.2 (a), these models typically treat reasoning
as a static input-to-output mapping, neglecting the
uncertainty, and verifiability essential to real-world
decision making. Consequently, they often suffer
from poor generalization, hallucinated outputs, and
limited interpretability (Xie et al., 2025).

To improve robustness and transparency, re-
cent works have explored incorporating chain-of-
thought (CoT) reasoning into VLMs, as shown in
Fig. 2 (b). Some approaches adopt rigid CoT tem-
plates (Tian et al., 2024; Hwang et al., 2024), pro-
moting structured logic at the expense of flexibil-
ity. Others use open-ended reasoning formats (Nie
et al., 2024; Ishaq et al., 2025), but may overfit
to token patterns and exhibit shallow or redundant
reasoning. Moreover, most existing methods rely
purely on imitation learning from curated trajec-
tories, lacking the ability to detect knowledge un-
certainty or invoke tools for intermediate verifica-
tion (Zhang et al., 2025; Qian et al., 2025a,b).

These challenges lead to a pivotal question: How
can a VLM truly function as a decision-making
agent—cognizant of its knowledge boundaries, pro-
ficient in verification, and capable of learning from
tool-guided feedback? Inspiration comes from ex-
perienced human drivers who will consult aids like
mirrors or GPS to refine their judgment when un-
certain. Similarly, a capable autonomous agent

must not only reason explicitly but also recognize
its limitations and dynamically employ tools, such
as object detectors or motion predictors, to steer its
reasoning and decision-making.

Therefore, we present AgentThink, a unified
framework for VLMs in autonomous driving that
models reasoning not as a static output, but as an
agent-style process—in which the model learns to
utilize tools to generate Tool-Augmented reason-
ing chains, verify intermediate steps, and refine its
conclusions. As illustrated in Fig.2 (c), rather than
blindly mapping inputs to outputs, AgentThink dy-
namically decides when and how to use tools dur-
ing inference to support or revise reasoning paths.
To enable this behavior, we create a data-training-
evaluation pipeline. First, we construct a structured
dataset of Tool-Augmented reasoning traces. Then,
we introduce a two-stage training pipeline: (i) SFT
to warm up reasoning capabilities, and (ii) GRPO
(Shao et al., 2024), a reinforcement learning (RL)-
based strategy that refines reasoning depth and tool-
use behavior through structured rewards. Finally,
we propose a comprehensive evaluation protocol
beyond answer correctness to assess tool selection,
integration quality, and reasoning-tool alignment.

As shown in Fig. 1, experiments on the ad-
vanced DriveLMM-o0l benchmark (Ishaq et al.,
2025) demonstrate that AgentThink achieves new
state-of-the-art performance in both answer accu-
racy and reasoning score, surpassing existing mod-
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els. The effectiveness of our approach in cultivat-
ing dynamic, tool-aware reasoning is further sub-
stantiated by comprehensive ablation studies and
robust generalization capabilities across multiple
benchmarks. These collective results strongly sug-
gest that empowering vision-language agents with
learned, dynamically invoked tool use is pivotal for
creating more robust, interpretable, and generaliz-
able systems for autonomous driving.

Generally, our contributions are as follows:

* Propose AgentThink, the first framework to
integrate dynamic, agent-style tool invoca-
tion into vision-language reasoning for au-
tonomous driving tasks. It significantly re-
duces hallucination in VQA and improves
overall reasoning consistency by grounding
each reasoning step in reliable tool outputs.

* Develop a scalable data generation pipeline
that produces structured, self-verified data
with integrated tool usage and reasoning
chains.

¢ Introduce a two-stage training pipeline that
combines SFT with GRPO, enabling mod-
els to learn when and how to invoke tools to
enhance reasoning performance.

* Design new evaluation metrics tailored to au-
tonomous driving tool invocation, captur-
ing tool selection, integration quality, and
reasoning-tool alignment.

2 Related Works

2.1 Language Models in Autonomous Driving

Recent advancements in language modeling have
opened up new opportunities for autonomous driv-
ing, particularly in enabling interpretable reason-
ing, commonsense understanding, and decision-
making (Cui et al., 2024). Early efforts integrated
LLMs such as GPT series (OpenAl, 2023) by re-
casting driving tasks, e.g., scene description (Xu
et al., 2024b; Mao et al., 2023a), decision-making
(Fu et al., 2024; Wen et al., 2023), and risk pre-
diction (Ma et al., 2024) into textual prompts, al-
lowing for zero-shot or few-shot inference. While
these approaches showcased the reasoning poten-
tial of LLMs, they often lacked step-by-step in-
terpretability and struggled with generalization in
out-of-distribution scenarios (Wang et al., 2023).

Recent works have augmented LLMs with
prompting strategies, memory-based context con-
struction, or vision inputs (Huang et al., 2024). For
instance, DriveVLM (Tian et al., 2024) introduces
a CoT approach with modules for scene description,
analysis, and hierarchical planning, while DriveLM
(Sima et al., 2024) focuses on graph-structured vi-
sual question answering. EMMA (Hwang et al.)
demonstrates how multimodal models can directly
map raw camera inputs to driving outputs, includ-
ing trajectories and perception objects. Despite
these advancements, both LLM-centric and VLM-
based methods often treat reasoning as a static
input-output mapping, with limited ability to detect
uncertainty, perform intermediate verification, or
incorporate physical constraints (Ishaq et al., 2025).
Challenges such as hallucinations, over-reliance on
rigid templates, and a lack of domain-specific re-
ward feedback persist. To address these limitations,
our work introduces a Tool-Augmented, RL-based
reasoning framework that enables dynamic and ver-
ifiable decision-making for autonomous driving.

2.2 Visual Question Answering in
Autonomous Driving

Visual Question Answering (VQA) for autonomous
driving has emerged as a benchmark paradigm to
evaluate perception, prediction, and planning capa-
bilities. Benchmarks such as BDD-X (Kim et al.,
2018), DriveBench (Xie et al., 2025), DriveM-
LLM (Guo et al., 2024), Nuscenes-QA (Qian et al.,
2024b), and DriveLMM-o1 (Ishaq et al., 2025) pro-
vide structured QA tasks covering complex reason-
ing scenarios in urban and highway environments.
For VQA tasks, recent approaches such as Rea-
son2Drive (Nie et al., 2024), Alphadrive (Jiang
et al., 2025a), OmniDrive (Wang et al., 2025), and
DriveCoT (Wang et al., 2024b) introduce COT rea-
soning to enhance model interpretability.

However, many adopt rigid reasoning templates
or rely solely on imitation learning, making them
prone to overfitting and hallucination. These meth-
ods often overlook dynamic reasoning processes
and fail to verify intermediate steps using external
tools. In contrast, our framework combines struc-
tured data generation with step-level rewards and
tool-verification during inference. By employing
RL via GRPO, we optimize the model’s reasoning
trajectory to align with correctness, efficiency, and
real-world applicability, setting a new direction for
VQA in autonomous driving.
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Figure 3: AgentThink Framework Architecture. (i) Structured and scalable data generation pipeline that constructs
tool-augmented reasoning; (ii) Two-stage training pipeline that first performs SFT and then applies GRPO to
improve reasoning and tool-use behavior; and (iii) Unified inference and evaluation protocol that dynamically
invokes tools and assesses final answers based on reasoning completeness, consistency, and tool-use effectiveness.

3 Methodology

Our framework is designed to address three key
challenges: (1) How to generate reasoning data
that incorporates tool usage? (2) How to equip
the VLM with the capability to effectively utilize
tools? and (3) How to enable reasoning-driven tool
invocation during inference, and how to evaluate
the model’s ability to leverage tools for solving
driving-related vision-question-answering tasks?

Fig. 3 illustrates AgentThink’s three key compo-
nents: (i) a scalable pipeline for generating struc-
tured, tool-augmented reasoning data; (ii) a two-
stage training pipeline with SFT and GRPO to im-
prove reasoning and tool-use abilities; and (iii) a
new evaluation methodology focused on assessing
the model’s effective tool utilization and its impact
on reasoning.

3.1 Data Generation Pipeline

While prior studies (Wang et al., 2024a; Nie et al.,
2024) have explored reasoning in VLMs, persis-
tent hallucinations remain a challenge. We contend
that reliable autonomous driving reasoning, akin
to human decision-making, necessitates not only
internal knowledge but also the ability to invoke
external tools when needed. Addressing this, we in-
troduce a Tool-Augmented data generation pipeline.
Unlike existing datasets (Wang et al., 2023; Ishaq

et al., 2025) focused solely on reasoning steps and
final answers, our pipeline uniquely integrates ex-
plicit tool usage into the reasoning process.

Tool library. We developed a specialized tool li-
brary inspired by Agent-Driver (Mao et al., 2023b),
featuring core modules for five driving-centric
modules—visual info, detection, prediction, oc-
cupancy, and mapping, plus single-view vision
utilities (open-vocabulary detection, depth, crop-
ping, resizing). This is augmented by fundamental
single-view vision tools like open-vocabulary ob-
ject detectors and depth estimators. Together, these
enable comprehensive environmental information
extraction for diverse perception and prediction
tasks. Details can be found in the Appendix A.

Prompt Design. Initial tool-integrated reason-
ing steps and answers are automatically generated
using GPT-40, guided by a prompt template (as
shown in Fig. 3) designed to elicit a tool-augmented
reasoning chain for instruction £ rather than a di-
rect answer.

Specifically, for a pretrained VLM 7y, an input
image V), and a task instruction £, the reasoning
step at time ¢ is generated as:

Rt:ﬂ9<v,£, [Rla---aRt—ID (1)
where R; denotes the ¢-th reasoning step, and
[R1, ..., R_1] represents the previously generated
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steps in the trajectory. The complete reasoning tra-
jectory is denoted as Tg = (Ry, ..., Ry), where
M is the maximum number of reasoning steps.

Each reasoning step R; includes five key el-
ements: the chosen tool (T'ool;), a generated
sub-question (Sub;), an uncertainty flag (U F;), a
guessed answer (4;), and the next action choice
(AC;) such as continue reasoning or conclude. If
internal knowledge suffices for Sub;, A; is out-
putted and U F; = False; otherwise, UF; = True
and A; is left blank. This process is repeated to
sample N structured reasoning trajectories per QA
pair.

Data Assessment. A separate LLM audits each
data for factual accuracy and logical consistency,
pruning samples with mismatched steps or unsup-
ported conclusions. The result is a high-quality
corpus that couples explicit tool use with coherent,
verifiable reasoning.

3.2 Two-stage Training Pipeline

After constructing the structured dataset, we de-
sign a two-stage training pipeline to progressively
enhance the model’s reasoning capabilities and pro-
ficiency in tool usage.

3.2.1 SFT-based Reasoning Warm-up

In the first phase, we perform SFT on the Tool-
Augmented CoT dataset to warm up the model’s
ability to generate structured reasoning chains and
appropriate tool calls. Each training sample is rep-
resented as 7 = (V, £, Tg, A), where V is the vi-
sual input, £ is the language instruction, 7g is
the step-by-step reasoning trace including both
reasoning steps and explicit tool invocation (e.g.,
Tool(name, params)), and A is the final answer.
The objective is to maximize the likelihood of gen-
erating correct reasoning and action sequences:

T
’C(SleT = _ETND Z lOg W@(Rt | V? ‘Ca R<t)v

t=1

2)
where only the generation of reasoning steps and
tool calls (action type and parameters) is optimized,
while outputs from environment responses (e.g.,
tool returns) are masked out during loss computa-
tion. This phase teaches the model what tools to
use and how to configure them based on the driving

context.
In the second phase, we refine the model with
full context exposure, including actual tool outputs

in the reasoning chain. Training samples now in-
clude observed environment feedback O (e.g., API
results, detected objects, or retrieved text), form-
ing an enhanced tuple (V, £, Tr U O, A). The loss
remains maximum likelihood but now covers both
action generation and observation grounding:

TI
L= —Erp > logmg(zi | V.L,2cr), ()
t=1

where z; denotes tokens in the extended sequence
containing reasoning, actions, and observed out-
comes. This joint modeling of actions and observa-
tions enables the model to learn an implicit under-
standing of expected tool outputs, thereby ground-
ing subsequent reasoning in real-world feedback.
This two-phase warm-up prepares the model for
robust reasoning and effective tool integration prior
to RL fine-tuning.

3.2.2 RLFT-based Reasoning Enhancement

To further optimize the model beyond imitation
learning, we adopt Reinforcement Learning Fine-
Tuning (RLFT) using GRPO, which effectively
leverages structured rewards without relying on
a learned critic.

GRPO Overview. GRPO avoids the need for a
value function by computing the relative advantage
of each sample within a group. Given a question
q and G responses {0;}% | sampled from the old
policy g ,, the GRPO objective is (Shao et al.,
2024):

old >

G
1
Jareo(8) = Eq {0, }~mo rel g Li — BDkL(mo || Tret)
i=1

“
where the group-wise clipped loss is defined as:

L; = min (w; 4;, clip(w;, 1 —¢, 1+€)A;) (5)

and the importance weight w; and normalized
advantage A; are given by:

w; = m(0i | q) (6)
ﬂ-@old(oi | Q)
T mean(r)
Ai = std(r) ™

where r; denotes the reward assigned to output o;,
and 3 and e are tunable hyperparameters.

Reward Design. To guide the model toward
accurate, interpretable, and tool-aware reasoning,
we design a structured reward function with three
major components:
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Reward Type Description

Final Answer
Reward

Verifies final answer against ground
truth; promotes task-level correctness.

Step Reason-
ing Reward

Evaluates intermediate step logic &
structure. Sub-rewards for:

(i) Step Matching: Align with refer-
ence steps and penalize incorrect or-
dering.

(i1) Coherence: Smooth, logical transi-
tions between steps.

Tool Use Re-
ward

Promotes appropriate & meaningful
tool usage. Sub-rewards for:

(1) Format Compliance: Adherence to
expected output structure (e.g., "Tool",
"Step Reasoning").

(ii) Integration Quality: Effective co-
herent incorporation of tool outputs
into reasoning.

Table 1: GRPO reward for tool-augmented reasoning

This structured reward design provides more tar-
geted and interpretable supervision than generic
similarity metrics. It enables GRPO to optimize
both the quality of the reasoning process and the
model’s ability to invoke tools when needed.

3.3 Inference and Evaluation

During inference, as illustrated in Fig. 4, the VLM
dynamically accesses tools from a predefined li-
brary to acquire relevant information, enabling
step-by-step reasoning. This dynamic tool-calling
mechanism not only improves answer accuracy but
also mirrors the structure of our tool-augmented
training data. However, existing benchmarks (Guo
et al., 2024; Ishaq et al., 2025) do not evaluate tool-
usage capabilities. To bridge this gap, we introduce
three metrics (Table 2) that assess the model’s tool
utilization during reasoning, leveraging the LLM-
as-Judge paradigm (Jiang et al., 2025b).

Metric Description

Tool Usage Assesses whether tools are logically

Appropriate- selected and meaningfully used to

ness support individual reasoning steps.

Tool Chain Co- Evaluates whether the sequence of

herence tool invocations is clear, logically or-
dered, and efficiently contributes to
reasoning.

Perception- Measures how well tool usage aligns

Guided Tool with multimodal inputs, including vi-

Alignment sual observations and scene context.

Table 2: Evaluation metrics for tool-use in reasoning

Question:
[Whut actions could the ego vehicle take based on object at back right camera? Why? J

(" [Get_Surrounding_0b 1
\ Ject_Detections]

(Need to find what is the exact nature and position\

Stenkt of object mentioned around the ego vehicle.

L J
continue reasoning
-

o

(" [Get_Future_Trajecto |
\ _ ries_for_Objects]

("I found obj “o1” (Truck). The predicted future )

Step 2 g . P
[ °*P2 ] | trajectory of of relative to ego vehicle is needed. | )
\ continue reasoning

p

Som | [ What is the lane positioning of ego vehicle that | .( [Get_Current_Lane_D 1
L ) | affects possible maneuvers regarding object 012 |&hd( __ Wder] )
continue reasoning
Is N \
Step 4 I can then decide what action ego vehicle should
L J | take based on the position and action of object ol. |
conclude
Final answer: The ego vehicle should mainfain its speed or slightly increase it to ensure a
safe distance from the object detected behind in the back right view (likely a truck) to
avoid potential collisions.
(- E
XN

Figure 4: The model generates structured reasoning
chains, dynamically invokes external tools to resolve un-
certainties (e.g., object detection, trajectory prediction,
lane width), and concludes with an interpretable action
recommendation.

4 Experiments

In this section, we conduct extensive experiments
to validate the effectiveness of AgentThink. Our
experiments are designed to answer the following
core questions:

Q1. Can dynamic Tool-Augmented reasoning im-
prove both final answer accuracy and reason-
ing consistency over existing VLM baselines?

Q2. Does our structured reward design (Final An-
swer, Step-wise Reason, Tool-use) contribute
meaningfully to reasoning behavior?

Q3. How well does AgentThink generalize to un-
seen datasets under zero-shot settings?

Evaluation Metrics. We leverage DriveLMM-
ol’s evaluation metrics, specifically utilizing the
overall reasoning score to gauge the reasoning
of VLMs, and employing multiple choice quality
(MCAQ) to assess the accuracy of the final answers,
with further details provided in the Appendix C.
Additionally, we introduce new metrics to evaluate
tool-use capability as described in Table 2.

Model and Implementation. We employ
Qwen2.5-VL-7B as our base model and keep its vi-
sion encoder frozen. Supervised fine-tuning (SFT)
is applied via LoRA for 20 epochs with a learning
rate of 1 x 10%, followed by GRPO fine-tuning
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Model Driving Metrics (%) 1 Scene Detail (%) T | Overall(%) 1
Risk Assess. Rule Adh. Scene Aware. | Relevance Missing | Reason. MCQ
GPT-40 (Islam and Moushi, 2024) 71.32 80.72 72.96 76.65 7143 | 7252 57.84
Ovisl.5-Gemma2-9B (Lu et al., 2024) 51.34 66.36 54.74 55.72 55.74 | 55.62 48.85
Mulberry-7B (Yao et al., 2024) 51.89 63.66 56.68 57.27 5745 | 57.65 52.86
LLaVA-CoT (Xu et al., 2024a) 57.62 69.01 60.84 62.72 60.67 | 61.41 49.27
LlamaV-ol (Thawakar et al., 2025) 60.20 73.52 62.67 64.66 63.41 | 63.13 50.02
InternVL2.5-8B (Chen et al., 2024) 69.02 78.43 71.52 75.80 70.54 | 71.62 54.87
Qwen2.5-VL-7B (Bai et al., 2025) 46.44 60.45 51.02 50.15 52.19 | 51.77 37.81
DriveLMM-o1 (Ishaq et al., 2025) 73.01 81.56 75.39 79.42 7449 | 7524 62.36
AgentThink (Ours) 80.51 84.98 82.11 84.99 79.56 | 79.68 71.35

Table 3: Evaluation results on the DriveLMM-o01 benchmark. AgentThink significantly improves reasoning and
answer accuracy across all categories by leveraging dynamic Tool-Augmented reasoning.

Model Variant SFT GRPO Reward Setting Driving Metrics (%) T Scene Detail (%) T Overall (%) 1
Setting | Answer Step R. Tool Use | Risk Assess. Rule Adh. Obj Und. | Relevance Missing | Reason. MCQ
Base Model X X X X 46.44 60.45 51.02 50.15 52.19 51.77 37.81
+ SFT v X X X 70.25 79.83 75.41 81.45 71.68 72.54  62.95
+ GRPO X v X X 69.25 75.41 71.58 75.86 68.05 69.41 6141
+ GRPOT X X v X 69.29 75.43 72.66 76.77 69.03 69.43  57.19
+ SFT + GRPO v v v X 71.00 77.35 73.23 78.13 69.08 70.83  64.58
AgentThink (Ours) v v v v 80.51 84.98 82.11 84.99 79.56 79.68 71.35

Table 4: Ablation study of AgentThink on reward design and training strategy. The full model (bottom row) benefits
from the combination of SFT, GRPO, and structured tool-use rewards. Ablation models here trained with 8 epochs.

Model Tool Usage Tool Chain Percep-Guided Overall Tool

Appro. Coh. Tool Align. Score
Base + DirectTool 59.61 73.29 69.71 67.54
Base + SFT 62.38 78.19 75.78 72.12
Base + GRPO 68.44 80.73 80.82 76.66
AgentThink (Ours) 70.92 82.16 84.25 79.11

Table 5: Tool Evaluation Results of Different Qwen2.5-
VL-7B Variants.

for 8 epochs with a learning rate of 1 x 107°. The
training batch size is set to 1 per device. We use
the bfloat16 data type to improve computational
efficiency. All experiments are conducted on 16 x
NVIDIA A800 GPUs. During the GRPO phase,
we perform 2 rollouts per question. Additional im-
plementation details are provided in Appendix B.

4.1 Main Experiment Results

Comparison with Open-Source VLMs. Ta-
ble 3 presents the main results on the Drive LMM-
ol benchmark, comparing AgentThink with a
range of strong open-source VLM models, in-
cluding DriveLMM-ol(Ishaq et al., 2025), In-
ternVL2.5 (Chen et al., 2024), LLaVA-CoT (Xu
et al., 2024a), and Qwen2.5-VL variants.

Our full model, AgentThink, achieves state-of-
the-art performance across all categories. It sur-
passes the baseline Qwen2.5-VL-7B by a wide
margin, improving the overall reasoning score from
51.77 t0 79.68 (+51.9%), and final answer accuracy
from 37.81% to 71.35% (+33.5%). Compared to

the strongest prior system, DriveLMM-o01, which
already integrates some reasoning abilities, Agent-
Think further improves by +5.9% in reasoning and
4+9.0% in final answer accuracy, demonstrating the
advantage of learned tool-use over static CoT or
imitation-based methods.

Performance Breakdown. In addition to rea-
soning and accuracy, AgentThink consistently out-
performs others in driving-specific metrics (risk
assessment, traffic rule adherence, and scene under-
standing), as well as perception-related categories
(relevance and missing detail detection). These
gains reflect its ability to leverage dynamic tool
invocation and feedback to ground its reasoning
more effectively in visual context.

Key Insight. Unlike traditional CoT or prompt-
based methods, AgentThink learns when and why
to invoke external tools, enabling more adaptive
and context-aware reasoning. This leads to bet-
ter decision quality, fewer hallucinations, and im-
proved trustworthiness in safety-critical driving sce-
narios. We provide the case in the Appendix D.

4.2 Tool-Use Analysis

We analyze how different training strategies influ-
ence tool-use behavior during reasoning. Table 5
reports results on these three dimensions: (1) Tool
usage appropriateness, (2) Tool chain coherence,
and (3) Perception-guided alignment.

The DirectTool baseline, which enforces tool in-
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What driving strategy will the ego car adopt and give the
reasons. Choose: A) Go Straight; B) Turn Right; C) Turn Left;

e User

‘Question: What driving strategy will the ego vehicel adopt and
give the reasons. Choose: A) Go Straight; B) Turn Right; C)
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A) Go Straight.

1. The traffic light ahead is green, indicating it's safe
to proceed straight.

2. There are no immediate obstacles or signs
requiring a turn in front of the vehicle.
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<Step>: Wha
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The ego vehicle is in the leftmost lane, indicating a straight path or a
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is in the leftmost lane.
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ositioning indicate about its
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<Step>: What is the traffic situation? There are vehicles on the

DriveBench DriveMLLM

v
eUser

Question: Is pedestrian wearing black clothes in front of red
and white bus?

é User

Question: What driving strategy will the ego vehicel adopt and give
the reasons. Choose: A) Go Straight; B) Turn Right; C) Turn Left; D)
Decelerate; E) Emergency stop; F) Accelerate
-
§7 Qwen’8 7 Qwen8
A) Go Straight
1. The ego vehicle is currently on a straight road with no
visible obstacles indicating a need to change direction. 2. The
traffic light ahead shows a green signal for straight traffic,
allowing the vehicle to proceed without stopping or changing
lanes.3. There are no immediate signs of an emergency or
sudden maneuver required by the driver.

Given that there is no red and white bus,
Answer is No.

<Step>: To defermine if the pedestrian weari
front of the red and white bus, we need o c

hicle’s current position and are there any
in the middle of an infersection.

<Toob: get open or
What might be 5ed on the scene?
<Step>:The traffic light is for pedesrian:
<Step>: Since
Z-value of the bus (3
front of the bus.

Figure 5: Zero-shot qualitative comparison with Qwen2.5VL-7B on BDD-X, Navsim, DriveBench and DriveMLLM.

vocation via prompt without reasoning structure,
shows moderate chain coherence but lower appro-
priateness and alignment—indicating that forced
tool use often lacks purpose. Adding SFT improves
both appropriateness and alignment, but lacks feed-
back on tool quality, limiting further gains. GRPO
with structured rewards leads to significant im-
provements, teaching the model to invoke tools
selectively and integrate outputs coherently. Our
full model, combining SFT and GRPO with full
reward, achieves the best performance across all
metrics. This demonstrates that both supervision
and reward shaping are essential for learning ef-
fective, context-aware tool use. We also evaluate
the impact of the training data scale, as detailed in
Appendix E.

4.3 Ablation Study

In Table 4, we conduct comprehensive ablations
to examine the effect of different reward signals
and training stages in AgentThink. Using SFT
or GRPO alone with either final-answer or step-
reasoning reward provides moderate gains over the
base model, improving task accuracy and reasoning
coherence respectively. However, their effects are
limited when applied in isolation.

We find that combining SFT with GRPO (with-
out the tool-use reward) delivers better perfor-
mance, which shows that warm-up reasoning is
crucial before reinforcement tuning. Our complete
AgentThink model, which incorporates all three
reward components, attains the optimal results. It
greatly enhances both reasoning quality and answer
accuracy, thus emphasizing the importance of using

tools and grounding reasoning in visual context.

4.4 Generalization Evaluation

We assessed AgentThink’s generalization ability
on a new DriveMLLM benchmark under zero-shot
and one-shot settings against a range of strong base-
lines, including prominent VLMs and task-specific
variants (details in Table 6). The evaluation metrics
are detailed in Appendix F.

AgentThink achieves state-of-the-art perfor-
mance with zero-shot (26.52) and one-shot (47.24)
scores, surpassing GPT-40 and LLaVA-72B. While
baseline methods like DirectTool demonstrate
strong perception task results (e.g., RHD 89.2
vs. 86.1, BBox precision 92.4% vs. 91.7%) through
hard-coded tool prompts, they suffer from contex-
tual rigidity and fragmented reasoning-perception
alignment. Our model demonstrates a superior bal-
ance by effectively coordinating explicit reasoning
with learned, adaptive tool use grounded in percep-
tual context. This underscores the advantages of its
learned tool-use mechanism over static prompting
or sheer model scale for robust generalization.

Shown in Table 7, in the zero-shot experiments
on DriveBench (Xie et al., 2025), AgentThink
achieved state-of-the-art performance on 3 out of
5 tasks (External, Sensor, and Transmission) and
ranked within the top 3 on the remaining two
(Weather and Motion). This demonstrates its strong
generalization ability, showing that it can maintain
high performance across diverse unseen tasks and
scenarios, surpassing both general-purpose and spe-
cialist models in Driving VQA.

Qualitatively, as illustrated in Fig. 5, Agent-
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‘ Model ‘

Metric Scores (%) 1 ‘ Overall

Type
\ L/R FB RHD RD \PPos BBox CVD CD \AccS\

GPT-40 (Islam and Moushi, 2024) | 91.72 67.60 9.58 14.69|40.90 4.07 46.11 70.65|43.16| 25.63
GPT-40-mini 67.67 50.13 70.44 0.00 [29.28 3.78 0.00 46.40|33.46| 16.68
LLaVA-ov-72B (Li et al., 2024) 85.42 4948 13.76 4527|16.46 0.00 42.97 27.09|35.06| 21.10

Zero-shot | Qwen2.5-VL-7B (Bai et al., 2025) | 76.55 55.24 7.14 17.11[55.97 38.31 5594 51.52(44.72| 13.36
Qwen + CoT 87.06 63.09 16.69 22.56|52.51 38.87 76.90 38.71|49.55| 19.31
Qwen + DirectTool 78.95 4896 58.43 67.57 |58.20 4222 51.76 51.38 |57.18| 24.05
AgentThink (Ours) 82.33 54.40 56.14 61.45|70.45 56.23 23.09 51.60 |56.96| 26.52
GPT-40 91.08 69.37 36.51 71.17|42.44 5.10 0.00 63.88|47.44| 33.17
GPT-40-mini 66.00 4895 83.02 58.47 (2571 397 5273 55.23|49.26| 22.13
LLaVA-ov-72B(Li et al., 2024) 79.12 62.97 49.26 68.04 |28.57 2.20 53.12 60.90|50.52| 36.66

One-shot | Qwen2.5-VL-7B (Bai et al., 2025) | 80.30 53.14 36.96 39.13|62.69 22.63 49.88 48.3249.13| 33.53
Qwen + CoT 86.35 59.95 43.29 31.81|53.64 26.93 51.02 42.30(49.41| 32.06
Qwen + DirectTool 84.57 55.50 67.32 59.54|85.58 26.07 52.34 53.25|60.52| 42.27
AgentThink (Ours) 78.71 48.46 60.64 60.71|72.36 64.46 52.26 52.04 |61.21 | 47.24

Table 6: Zero-shot and one-shot performance comparison across multiple metrics on the DriveMLLM benchmark.

‘ Size ‘ Type

| BenchDrive Scores (%) 1

Model
| | | Weather External Sensor Motion Transmission

GPT-40 (Islam and Moushi, 2024) | — Commercial 57.2 29.3 443 343 36.8
LLaVA-1.5 (Li et al., 2024) 7B Open 69.7 26.5 18.8 71.3 10.2
LLaVA-1.5 13B | Open 61.6 15.5 24.1 79.8 15.5
LLaVA-NeXT 7B Open 69.7 48.5 21.8 66.0 11.8
InternVL2 (Chen et al., 2024) 8B Open 59.9 50.8 29.9 68.3 30.0
Phi-3 42 B | Open 40.0 25.0 16.8 31.3 27.7
Phi-3.5 4.2 B | Open 60.6 21.3 25.6 33.0 39.7
Qwen2-VL (Bai et al., 2025) 7B Open 76.7 37.5 22.8 57.0 35.8
Qwen2-VL 72B | Open 59.8 45.5 52.3 58.3 44.8
DriveLM (Sima et al., 2024) 7B Specialist 21.2 21.3 9.0 22.3 17.5
Dolphins (Ma et al., 2024) 7B Specialist 54.3 30.0 9.4 9.3 21.5
AgentThink (Ours) 7B Ours 64.8 68.2 56.8 71.8 61.2

Table 7: DriveBench results. AgentThink achieves SOTA on 3/5 tasks (External, Sensor, Transmission), and ranks
top-3 on the remaining 2 (Weather, Motion), indicating strong generalization.

Think successfully navigates challenging zero-
shot corner cases on diverse benchmarks (BDD-
X (Kim et al., 2018), Navsim (Dauner et al., 2024),
DriveBench (Xie et al., 2025), DriveMLLM (Guo
et al., 2024)). In these cases, the base Qwen model
often fails to gather sufficient information or gen-
erates hallucinates during reasoning, leading to in-
correct outputs. In contrast, AgentThink adeptly
invokes tools to acquire critical decision-making in-
formation, thereby correctly answering these diffi-
cult questions. This further highlights the practical
benefits of its dynamic, tool-augmented reasoning
in unfamiliar contexts.

5 Conclusion

We present AgentThink, the first unified frame-
work that tightly fuses CoT reasoning with
agent-style tool invocation for autonomous driv-
ing. With a scalable tool-augmented dataset and a
two-stage SFT with GRPO pipeline, AgentThink
raises DriveLMM-o1 reasoning score from 51.77

to 79.68 and answer accuracy from 37.81% to
71.35%, outperforming the strongest prior model
by +5.9% and +9.0%. Beyond improved perfor-
mance, AgentThink demonstrates stronger inter-
pretability by making each reasoning step grounded
in tool outputs. Notably, as a driving-scene VQA
system, AgentThink aligns with industrial practices
where such models are used off the control loop,
for example, for mining corner cases or providing
high-level feedback in a dual-system setup, and
thus operating under relaxed latency constraints
compared to real-time planning. Results validate
that coupling explicit reasoning with learned tool
use is a promising path toward safer, more robust
language-model-centric driving tasks. We believe
this framework lays the foundation for building
trustworthy VLM-based agents capable of gener-
alizing to complex, dynamic real-world driving
environments.
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Limitations

Data scale. Our tool-augmented corpus totals 18k
annotated instances, limiting exposure to long-tail
or rare driving events. A substantially larger and
more diverse dataset is required for the model to
internalize a broader spectrum of real-world sce-
narios.

Model size. Ours relies on gwen2.5-VL-7B; the
7B-parameter footprint incurs non-trivial memory
and latency overhead on embedded automotive
hardware. Future work should investigate lighter
backbones (e.g., ~3B) that preserve reasoning capa-
bility while easing on-board resource constraints.

Lack of temporal context. The model under dis-
cussion processes single-frame, multi-view images
as inputs. However, in the absence of sequential
information, it may misinterpret scenarios that rely
on temporal cues, such as changing traffic lights.
To address this issue, incorporating video tokens
or employing recurrent memory could be effective
solutions.

Missing 3-D modalities. The absence of Li-
DAR or point-cloud data deprives the model of
precise spatial geometry, introducing uncertainty
in distance-related reasoning. Fusing additional
modalities is expected to enhance robustness.

Ethics Statement

All data come from publicly released driving
datasets that anonymise personally identifiable in-
formation; no private or crowd-sourced data were
collected. The study involves no human subjects,
and every experiment is run offline or in simu-
lation. Model checkpoints are released under a
non-commercial licence that prohibits deployment
in safety-critical vehicles without additional vali-

dation. The work follows the ACL Code of Ethics
and does not rely on sensitive data or models.
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Appendix
A Tool Library

This tool library is designed to support autonomous
driving function calls by providing a comprehen-
sive set of tools for various tasks including visual
detection, object detection, trajectory prediction,
map information querying, and more. Below is
an introduction to the main categories and specific
tools available in the library:

Visual info Functions

» get_open_world_vocabulary_detection:
Given a list of object words, this function
detects the objects in the image and returns
their 2D positions and sizes within the camera
coordinate system. If no related object is
found, it returns None.

* get_3d_loc_in_cam: Given an input image
and object-related keywords, this function cal-
culates the depth value for each pixel and de-
termines the 3D locations of the specified ob-
jects within the camera coordinate system.

Resize_image_info: defines a function to re-
size an image to specified dimensions, sup-
porting various interpolation methods. It re-
quires the input image path, output path, and
target size with, interpolation method as an
optional parameter.

* Crop_image_info: defines a function to crop
arectangular region from an image. It requires
the input image path, output path, and the
coordinates of the crop region.

Detection Functions

» get_leading_object_detection: Detects the
leading object, returning its ID, position, and
size. If no leading object exists, it returns
None.

e get_surrounding_object_detections: De-
tects surrounding objects within a 20mx20m
range, providing a list of object IDs along with
their positions and sizes. Returns None if no
surrounding objects are present.

get_front_object_detections: Identifies ob-
jects within a 10mx20m range in front of the
vehicle, returning their IDs, positions, and
sizes. Returns None if no such objects exist.
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» get_object_detections_in_range: Detects
objects within a specified range (x_start,
x_end)x(y_start, y_end)m?, returning a list
of object IDs and their corresponding posi-
tions and sizes. Returns None if no objects
are found in the range.

» get_all_object_detections: Retrieves detec-
tions for all objects in the entire scene, provid-
ing a list of object IDs and their positions and
sizes. However, it is recommended to avoid
using this function if more specific alterna-
tives are available.

Prediction Functions

* get_leading_object_future_trajectory: Pro-
vides the predicted future trajectory of the
leading object. If no leading object exists, it
returns None.

» get_future_trajectories_specific_objects:
Returns the future trajectories for specific
objects identified by their object IDs. If no
such objects exist, it returns None.

» get_future_trajectories_in_range: Re-
trieves trajectories where any waypoint falls
within a given range (x_start, x_end)x(y_start,
y_end)m?. This function will return None if
no trajectories meet the criteria.

» get_future_waypoint_of_specific_objects_
at_timestep: Obtains the future waypoints of
specific objects at a particular timestep. If an
object does not have a waypoint at the spec-
ified timestep or if no such object exists, it
returns None.

get_all_future_trajectories: Provides the
predicted future trajectories for all objects in
the scene.

Occupancy Functions

* get_occupancy_at_locations_for_timestep:
Determines the probability of occupancy for a
list of locations at a specific timestep. Returns
None if a location is outside the occupancy
prediction scope.

* check_occupancy_for_planned_trajectory:
Evaluates whether a planned trajectory col-
lides with other objects.



Map Functions

» get_drivable_at_locations: Checks the driv-
ability of specific locations. Returns None if
a location is outside the map scope.

get_lane_category_at_locations: Retrieves
the lane category for specific locations. If the
location is outside the map scope, it returns
None.

get_distance_to_shoulder_at_locations:
Calculates the distance to both sides of road
shoulders for specific locations. Returns
None if a location is outside the map scope.

get_current_shoulder: Provides the distance
to both sides of road shoulders for the current
ego-vehicle location.

get_distance_to_lane_divider_at_locations:
Computes the distance to both sides of road
lane dividers for specific locations. Returns
None if a location is outside the map scope.

get_current_lane_divider: Returns the dis-
tance to both sides of road lane dividers for
the current ego-vehicle location.

get_nearest_pedestrian_crossing: Identifies
the location of the nearest pedestrian cross-
ing to the ego-vehicle. Returns None if no
pedestrian crossing exists.

B Implementation Details

In our experiments, we utilized the MS-SWIFT
framework to finish our experiment with the fol-
lowing parameter configuration.

B.1 SFT Phase

We trained the model for 20 epochs using the LoRA
(Low-Rank Adaptation) fine-tuning method, set-
ting the LoRA rank to 8 and the LoRA alpha to
32. To manage GPU memory usage, the per-device
training and evaluation batch sizes were both set
to 2, with gradient accumulation enabled over 16
steps. The learning rate was set to 1 x 10, and
we used the bfloat16 data type to enhance com-
putational efficiency. In order to constrain GPU
memory consumption, we froze the parameters of
the Vision Transformer (ViT) and set the maximum
sequence length to 4096. During training, model
evaluation and saving were performed every 1000
steps, with a limit of 5 saved models. Logging was

conducted every 5 steps to monitor the training pro-
cess closely. We employed the DeepSpeed ZeRO-2
optimizer to optimize training performance and dis-
abled the reentrancy of gradient checkpointing for
efficiency. Additionally, we configured the warm-
up ratio to 0.05 and allocated 4 worker processes
for both the data loader and dataset processing.

B.2 GRPO Phase

The RLHF type was designated as "grpo" to utilize
the GRPO algorithm for reinforcement learning
with human feedback. We activated LoRA training
mode(same as SFT Phase in Sec. B.1) and set the
PyTorch data type to "bfloat16" for efficient compu-
tation. The maximum sequence length was config-
ured to 2048, with a maximum completion length
of 1024. Training was conducted for 8 epoch, with
per-device training and evaluation batch sizes both
set to 1. The learning rate was set at 1 x 1072,
and we employed 8 gradient accumulation steps.
Model evaluation occurred every 500 steps, with
model saving every 100 steps, and we restricted
the total number of saved models to 20. Logging
was performed at every step to closely monitor the
training process. The warm-up ratio for the learn-
ing rate was configured to 0.01. We allocated 4
workers to the DatalL.oader to expedite data loading.
For generation, we allowed 2 generations with a
temperature of 1.2 to enhance output diversity. The
system was prompted with the instruction: "You
are a helpful assistant. You first think about the
reasoning process in the mind and then provide the
user with the answer." We leveraged DeepSpeed’s
ZeRO-3 stage optimizer to optimize training perfor-
mance and enabled logging of model completions
for further analysis. The beta value was set to 0.001
for specific algorithmic adjustments, and the entire
process was conducted for 1 iteration.

C Evaluation Metric in the DriveLMM-o01
Benchmark

To comprehensively evaluate both quantitative per-
formance and qualitative decision-making capabili-
ties in autonomous driving scenarios, we adopt the
evaluation metrics proposed by (Ishaq et al., 2025).

Risk Assessment examines the model’s capacity
to prioritize high-risk objects or scenarios, ensuring
critical situations receive appropriate urgency in
decision-making processes. Accuracy quantifies
the precision of environmental perception through
correct identification and classification of relevant
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elements.

Traffic Rule Adherence measures compliance
with established traffic regulations and domain-
specific best practices, reflecting real-world opera-
tional fidelity.

Scene Awareness and Object Understanding
jointly assess contextual interpretation depth, en-
compassing accurate perception of spatial relation-
ships, dynamic object behaviors, and complex en-
vironmental interactions.

Relevance evaluates alignment between model
outputs and scenario-specific requirements relative
to ground truth annotations, ensuring contextually
appropriate responses.

Missing Details identifies critical information
gaps through systematic analysis of perceptual
blind spots in situational understanding. These
complementary metrics collectively establish a
holistic framework for evaluating system reliabil-
ity, safety margins, and environmental adaptability
across diverse driving conditions.

Metric Description

Risk Assess-  Evaluates if the model correctly
ment Accuracy prioritizes high-risk objects or
scenarios.

Traffic Rule Ad- Scores how well the response fol-

9-10: All steps correctly match or closely
reflect the reference.

* 7-8: Most steps align, with minor devia-
tions.

* 5-6: Some steps align, but several are
incorrect or missing.

 3-4: Few steps align; most are inaccurate
or missing.

* 1-2: Majority of steps are incorrect.

2. Informativeness-Step (1-10): Measures com-
pleteness of reasoning.

* 9-10: Captures almost all critical infor-
mation.

* 7-8: Covers most key points, with minor
omissions.

* 5-6: Missing significant details.
* 3-4: Only partial reasoning present.

e 1-2: Poor extraction of relevant reason-
ing.

3. Risk Assessment Accuracy (1-10): Evalu-
ates if the model correctly prioritizes high-risk
objects or scenarios.

herence

lows traffic laws and driving best
practices.

Scene  Aware-
ness and Object

Measures how well the response
interprets objects, their positions,

* 9-10: Correctly identifies and prioritizes
key dangers.

 7-8: Mostly accurate, with minor mispri-
oritizations.

* 5-6: Some important risks are over-

Understanding and actions.

Relevance Measures how well the response
is specific to the given scenario
and ground truth.

Missing Details ~ Evaluates the extent to which crit-

ical information is missing from
the response.

Table 8: Evaluation metrics for quantitative performance
and qualitative decision-making capabilities

DriveLMM-o1(Ishagq et al., 2025) utilize GPT-
40-mini to complete the evaluation steps. The
prompt we employ is as follows:

You are an autonomous driving reasoning eval-
uator. Your task is to assess the alignment, co-
herence, and quality of reasoning steps in text re-
sponses for safety-critical driving scenarios.

You will evaluate the model-generated reasoning
using the following metrics:

1. Faithfulness-Step (1-10): Measures how well
the model’s reasoning steps align with the
ground truth.
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looked.
* 3-4: Significant misjudgments in risk pri-
oritization.

* 1-2: Misidentifies key risks or misses
them entirely.

4. Traffic Rule Adherence (1-10): Evaluates
whether the response follows traffic laws and
driving best practices.

* 9-10: Fully compliant with legal and safe
driving practices.

* 7-8: Minor deviations, but mostly cor-
rect.

* 5-6: Some inaccuracies in legal/safe driv-
ing recommendations.

* 3-4: Several rule violations or unsafe sug-
gestions.

* 1-2: Promotes highly unsafe driving be-
havior.



5. Scene Awareness & Object Understanding

(1-10): Measures how well the response inter-

prets objects, their positions, and actions.

9-10: Clearly understands all relevant
objects and their relationships.

7-8: Minor misinterpretations but mostly
correct.

5-6: Some key objects misunderstood or
ignored.

3-4: Many errors in object recognition
and reasoning.

1-2: Misidentifies or ignores key objects.

6. Repetition-Token (1-10): Identifies unneces-
sary repetition in reasoning.

L]

9-10: No redundancy, very concise.

7-8: Minor repetition but still clear.

5-6: Noticeable redundancy.

3-4: Frequent repetition that disrupts rea-
soning.

1-2: Excessive redundancy, making rea-
soning unclear.

7. Hallucination (1-10): Detects irrelevant or
invented reasoning steps not aligned with
ground truth.

9-10: No hallucinations, all reasoning is
grounded.

7-8: One or two minor hallucinations.
5-6: Some fabricated details.

3-4: Frequent hallucinations.

1-2: Majority of reasoning is halluci-
nated.

8. Semantic Coverage-Step (1-10): Checks if
the response fully covers the critical reasoning
elements.

9-10: Nearly complete semantic cover-
age.

7-8: Good coverage, some minor omis-
sions.

5-6: Partial coverage with key gaps.

3-4: Major gaps in reasoning.

1-2: Very poor semantic coverage.

9. Commonsense Reasoning (1-10): Assesses
the use of intuitive driving logic in reasoning.

9-10: Displays strong commonsense un-
derstanding.

7-8: Mostly correct, with minor gaps.
5-6: Some commonsense errors.

3-4: Frequent commonsense mistakes.
1-2: Lacks basic driving commonsense.

10. Missing Step (1-10): Evaluates if any neces-
sary reasoning steps are missing.

9-10: No critical steps missing.

7-8: Minor missing steps, but answer is
mostly intact.

5-6: Some important steps missing.
3-4: Many critical reasoning gaps.

1-2: Response is highly incomplete.

11. Relevance (1-10): Measures how well the
response is specific to the given scenario and
ground truth.

9-10: Highly specific and directly rele-
vant to the driving scenario. Captures
critical elements precisely, with no un-
necessary generalization.

7-8: Mostly relevant, but some minor
parts may be overly generic or slightly
off-focus.

5-6: Somewhat relevant but lacks preci-
sion; response contains vague or general
reasoning without clear scenario-based
details.

3-4: Mostly generic or off-topic reason-
ing, with significant irrelevant content.
1-2: Largely irrelevant, missing key as-
pects of the scenario and failing to align
with the ground truth.

12. Missing Details (1-10): Evaluates the extent
to which critical information is missing from
the response, impacting the reasoning quality.

10678

9-10: No significant details are missing;
response is comprehensive and complete.
7-8: Covers most important details, with
minor omissions that do not severely im-
pact reasoning.

5-6: Some essential details are missing,
affecting the completeness of reasoning.
3-4: Many critical reasoning steps or con-
textual details are absent, making the re-
sponse incomplete.

1-2: Response is highly lacking in neces-
sary details, leaving major gaps in under-
standing.
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Figure 6: Our GRPO method with structured rewards
setting and two-stage training strategy significantly
boost final answer accuracy. With just 6k samples, it out-
performs SFT, showing strong performance even with
limited data. As data increase, AlphaDrive consistently
leads in MCQ performance.

Final Evaluation

Compute the Overall Score as the average of all
metric scores.

{
"Faithfulness-Step"”: 6.0,
"Informativeness-Step": 6.5,
"Risk Assessment Accuracy"”: 7.0,
"Traffic Rule Adherence”: 7.5,
"Object Understanding”: 8.0,
"Repetition-Token": 7.0,
"Hallucination”: 8.5,
"Semantic Coverage-Step”: 7.5,
"Commonsense Reasoning”: 7.0,
"Missing Step": 8.5,
"Relevance"”": 8.5,
"Missing Details"”: 7.0,
"Overall Score": 7.42

3

Guidelines

* Avoid subjective interpretation and adhere to
the given thresholds.

* Always strictly follow these scoring guide-
lines.

* Do not add any additional explanations be-
yond the structured JSON output.

D Visualization of Main Experiment

Here we provide the visualizations for different
scenarios (Fig 7, 8). Correct scene understanding

outputs are highlighted in green, while erroneous
interpretations are marked in red for comparative
analysis. Notably, AgentThink demonstrates accu-
rate analytical capabilities and avoid overly conser-
vative decision-making tendencies (e.g. unneces-
sary braking), which compromise driving comfort
despite maintaining safety margins.

E Impact of Data Size

To systematically evaluate the influence of train-
ing data scale, we conduct ablation studies on
Qwen2.5-VL-7B with fixed vision encoder pa-
rameters. The base model is first finetuned via
LoRA-based SFT, followed by policy optimization
through GRPO algorithm. All experiments are im-
plemented on 16x NVIDIA A800 GPUs with uni-
fied hyperparameter configurations. As presented
in Tab. 9 and Fig. 6, reducing training data size
from 12k to 6k samples leads to a performance
decline across all metrics, with SFT-based training
exhibiting a more pronounced degradation. No-
tably, RLFT demonstrates superior robustness to
data scarcity, achieving statistically significant per-
formance gains over SFT counterparts in low-data
regimes (52.32% vs. 62.28% final accuracy at 6k
data scale). This suggests the inherent advantage of
reinforcement learning frameworks in leveraging
limited training samples for vision-language policy
learning.

F Evaluation Metric in the DriveMLLM
Benchmark

The eight metrics in the DriveMLLM benchmark
(Guo et al., 2024) can be described as follows:

Left/Right (L/R) This metric evaluates the
model’s ability to identify which of two objects
is positioned further to the left or right in the image
based on their inferred x-coordinates.

Front/Back (F/B) This assesses whether the
model can determine if one object is in front of
or behind another using depth cues, reflecting its
understanding of z-coordinate relationships.

1, ifpi=u
ace; = ) 1 bi =Y (8)
0, ifp; # i

where: - p; is the model’s predicted label for
sample 7. - y; is the ground truth label for sample .

The overall accuracy acc is calculated as the
mean of the individual accuracies.
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Driving Metrics (%) 1 Scene Detail (%) 1 Overall (%) 1
D\ Amount of Data Risk Ass. Rule Adh. Obj. Und. | Relevance Missing | Reason. MCQ
(a) | GRPO w/ 6k data 68.79 74.93 71.12 75.44 67.80 69.09 64.02
(b) | GRPO w/ 12k data 69.26 75.44 71.68 75.85 68.13 69.48  64.19
(c) | SFT w/ 6k data 74.47 80.58 75.82 80.66 72.02 74.08 62.28
(d) | SFT w/ 12k data 74.81 80.88 76.21 80.90 72.42 7433  62.36
(e) | SFT-GRPO w/ 6kdata 75.60 81.40 76.97 81.74 72.51 7492  64.38
(f) | SFT-GRPO w/ 12kdata 75.69 82.29 76.98 82.58 72.39 75.08  64.94

Table 9: Impact of training data amount on key evaluation metrics (reordered by driving metrics first).

Relative Height Difference (RHD) It tests the
model’s capability to calculate the vertical distance
between the camera and an object based on the
object’s z-coordinate.

Relative Distance (RD) This metric examines
the model’s ability to estimate the Euclidean dis-
tance from the camera to a specified object using
inferred spatial information.

1
1+ agld — d¥

ace; 9)

where: - d; is the model’s predicted distance
for sample i. - dft is the ground truth distance for
sample 7. - o is a scaling factor controlling the
penalty for deviation, set to ag = 0.05.

Positional Precision (PPos) It evaluates the
model’s accuracy in identifying the exact coordi-
nates [z, y] of a specified object within an image.

1
1+ apllx; — x5'|a

acc; = (10)

where: - x; = (x;,y;) are the model’s predicted
coordinates for sample i. - xft = (x,gt, ys t) are the
ground truth coordinates for sample 7. - «, is a
scaling factor, set to oy, = 0.005.

Bounding Box (BBox) This metric assesses the
model’s capability to determine the bounding box
coordinates [min_zx, min_y, mazr_x, mazx_y| of
a specific object.

_ |B;n B

acc; = IoU(B;, BY) =
' (Bi, B7) |B; U BY|

1D

where: - B; is the model’s predicted bounding
box for sample ¢. - Blgt is the ground truth bounding
box for sample i. - | - | denotes the area of the
bounding box.

Camera-Object Vertical Distance (CVD) It
tests the model’s ability to calculate the vertical
distance from the camera to an object based on the
object’s z-coordinate.

Camera-Object Euclidean Distance (CD) This
metric evaluates the model’s skill in computing
the Euclidean distance between the camera and
an object using inferred spatial information. The
computation of the CVD and CD metrics follows
the same methodology as that of the RVD and RD
metrics.

Overall Accuracy Score (AccS) This provides
a comprehensive measure of the model’s perfor-
mance across all the aforementioned tasks, reflect-
ing its overall spatial understanding capabilities.

N 8
1 1
acc = N ; acc; AccS = g ; accy (12)
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Question:
<image>

What is the best way to avoid a collision?
Choose from the following answers only

A) Come to a complete stop.
B) Brake suddenly.

C) Speed up.

D) Change lane to right.

E) Change lane to left.

F) None of the options.

Ground-Truth:

Identify hazards: The front right image shows a white car moving
near the curb of the road, indicating potential for collision if
another vehicle is approaching.

Analyze options: Given the visible surroundings, change in speed
(options A, B, C) or sudden braking (option B) might not be ideal.
Changing lanes (option D or E) could bypass the obstacle.

Final Answer: D) Change lane to right.

—

1.ldentify the scenario: The image shows
a street scene with a car in motion, trees,
buildings, and road signs. There is no
visible indication of an immediate threat
or collision.

2.Analyze the options:

A) Come to a complete stop: This could
be risky if there's a need to continue
driving.

B) Brake suddenly: This can be
dangerous and may cause a loss of
control.

C) Speed up: This increases the risk of a
collision.

D) Change lane to right: This might
not be safe if there's traffic coming from
the right.

E) Change lane to left: This could be
safer if there's clear space on the left side.
F) None of the options: This would
mean no action is needed, which isn't

always the case.

Baseline

Consider the safest option: Given the lack
of immediate danger and the need for
caution, changing lanes to the left
(option E) seems like the safest choice if
there's clear space available.

Final Answer: E) Change lane to Ieft.m

)\ ([ SFT+RLFT

1.In the 'front' image, there
are pedestrians visible on the
sidewalk near the road. This
indicates that there may be
potential obstacles or the
need to yield, which requires
immediate attention to avoid
a collision.

2.The 'front right' image
shows the road ahead with
pedestrians crossing. The
presence of pedestrians
suggests that the ego vehicle
should slow down or stop to
ensure their safety.

3.Considering the current
speed of the ego vehicle is
9.08 km/h and the presence
of pedestrians, the safest
option to avoid a collision is to
come to a complete stop.

Final Answer: A) Come to a
complete stop.

R

( AgentThink \

1.Identify Hazards:

<Tool name>: get_surrounding_object,
get_drivable_lane

<Reason>:The front right image shows a white car
moving near the curb of the road, which indicates
a potential hazard. This suggests that there is a risk
of collision if another vehicle approaches from
behind.

2. Analyze Options:

Option A (Come to a complete stop): This could
be risky because it might not allow enough time
for the other vehicle to react, especially if it's
approaching at high speed.

Option B (Brake suddenly): Sudden braking can
be dangerous and might cause the vehicle to skid,
increasing the risk of a collision.

Option C (Speed up): Speeding up would
increase the likelihood of a collision with the white
car.

Option D (Change lane to right): Changing to
the right lane could help bypass the obstacle

Option E (Change lane to left): Changing to the
left lane might not be possible if the left lane is
occupied or if it's not safe to change lanes.

Option F (None of the options): This option is
not applicable since we have identified viable
options.

Final Answer: D) Change lane to right.

. J

Figure 7: Visulization of Results. Correct scene understanding outputs are highlighted in green, while erroneous
interpretations are marked in red for comparative analysis. Notably, AgentThink demonstrates accurate analytical
capabilities and avoid overly conservative decision-making tendencies (e.g. unnecessary braking), which compro-
mise driving comfort despite maintaining safety margins.
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—

Question:
What is the best way to avoid a

collision? Choose from the following

answers only

A) Come to a complete stop.
B) Brake suddenly.

C) Speed up.

D) Change lane to right.

E) Change lane to left.

F) None of the options.

Baseline

1.1dentify the scenario: The image shows
a nighttime road scene with vehicles in
motion. There are no visible signs of an
immediate threat or collision.

2.Analyze the options:

A) Come to a complete stop: This could
be dangerous if there's traffic behind you,
as it might cause a chain reaction.

B) Brake suddenly: This can be risky if
you're not sure what's ahead, as it might
cause a rear-end collision.

C) Speed up: This is generally unsafe
and increases the risk of accidents.

D) Change lane to right: If there's clear
space and no oncoming traffic, this
could be a safe option.

E) Change lane to left: If there's clear
space and no oncoming traffic, this could
also be a safe option.

F) None of the options: This would
mean none of the given options are
suitable.

Consider the context: The image does not
show any immediate danger, but the
question asks for the best way to avoid a
collision. Given the options, changing

lanes to either side (D or E) seems like

the safest choice if there's clear space

and no oncoming traffic.

Final Answer: D) Change lane to right.g

)

Ground-Truth:

1. The motorcycle is directly ahead, and altering speed
suddenly could be unsafe.

2. Coming to a complete stop could prevent a collision with

the motorcycle.

Final Answer: A) Come to a complete stop.

(" SFT+RLFT
1.Front-view images show
vehicles moving toward the
ego vehicle, indicating
potential collision risks if it
continues without
intervention.

2.The wet road surface
increases stopping distances
and reduces traction.

3.Nighttime conditions
lower visibility, and road
signs suggest caution,
implying a complete stop
may be safest.

4.Given the oncoming traffic
and hazards, stopping is the
best option to prevent
collisions, as sudden braking
might cause skidding and
lane changes could risk
other dangers.

Final Answer: A) Come to a
complete stop.

)

( AgentThink \

1.<Tool name>: get_surrounding_detection
There is a motorcycle directly ahead, which poses a
potential collision risk.

2.Evaluate the Options:

A) Come to a complete stop: This option is safe
and can prevent a collision if the motorcycle is too
close or if there is not enough time to react safely.

B) Brake suddenly: This could be unsafe because it
might cause the vehicle to skid, especially at night
when visibility is low.

C) Speed up: This would increase the risk of a
collision and is not a safe option.

D) Change lane to right: This could be risky if the
motorcycle is in the same lane and changing lanes
could lead to a collision.

E) Change lane to left: This could also be risky for
the same reasons as changing to the right.

F) None of the options: This is not applicable since
we have identified a safe option.

Conclusion: The safest option is to come to a
complete stop to ensure that the motorcycle has
enough space to pass or to allow the driver to react
safely without the risk of sudden braking causing a
skid.

Final Answer: A) Come to a complete stop. /j

\ AR 4 )L Y,

Figure 8: Visulization of AgentThink. Correct scene understanding outputs are highlighted in green, while erroneous
interpretations are marked in red for comparative analysis.
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