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Abstract

Commonsense visual–question answering of-
ten hinges on knowledge that is missing from
the image or the question. Small vision-
language models (sVLMs) such as ViLT, Visu-
alBERT and FLAVA therefore lag behind their
larger generative counterparts. To study the
effect of careful commonsense knowledge in-
tegration on sVLMs, we present an end-to-end
framework (NLKI) that (i) retrieves natural lan-
guage facts, (ii) prompts an LLM to craft natu-
ral language explanations, and (iii) feeds both
signals to sVLMs respectively across two com-
monsense VQA datasets (CRIC, AOKVQA)
and a visual-entailment dataset (e-SNLI-VE).
Facts retrieved using a fine-tuned ColBERTv2
and an object information-enriched prompt
yield explanations that largely reduce halluci-
nations, while increasing the end-to-end an-
swer accuracy by up to 7% (across three
datasets), making FLAVA and other models in
NLKI match or exceed medium-sized VLMs,
such as Qwen-2 VL-2B and SmolVLM-2.5B.
As these benchmarks contain 10–25% label
noise, additional fine-tuning using noise-robust
losses (such as symmetric cross-entropy and
generalised cross-entropy) adds another 2.5%
in CRIC and 5.5% in AOKVQA. Our find-
ings expose when LLM-based commonsense
knowledge beats retrieval from commonsense
knowledge bases, how noise-aware training sta-
bilises small models in the context of external
knowledge augmentation, and why parameter-
efficient commonsense reasoning is now within
reach for 250M models. 1

1 Introduction

Early Visual Question Answering (VQA) work al-
ready recognised that images and questions alone
are often insufficient and called for the use of

*Now at Google
1We release our code and checkpoints at:

https://github.com/beingdutta/NLKI-Lightweight-Natural-
Language-Knowledge-Integration-Framework

Figure 1: Comparison of accuracy and model size
for various small Vision-Language Models (sVLMs)
AOKVQA (Val). EKI: Type-5 Explanation Knowl-
edge Integrated models, as defined in 2, while RKI:
Retrieved Knowledge Integrated models. The colour
gradient represents execution time, with red indicating
longer durations and blue indicating shorter ones.

external knowledge sources (Wang et al., 2015;
Aditya et al., 2018a, 2019). Factoid VQA now
routinely benefits from graph- or web-scale re-
trieval (Wang et al., 2017; Marino et al., 2019;
Chen et al., 2024), yet the commonsense variant
remains under-explored, especially for small vi-
sion–language models (sVLMs) such as VILT, VI-
SUALBERT and FLAVA. Recent attempts either
bypass pre-trained small VLMs (Ye et al., 2023)
or limit themselves to factual QA (Lin and Byrne,
2022; Yang et al., 2023). A big challenge in com-
monsense knowledge retrieval is a lack of a uni-
fied source – no single knowledge graph, corpus,
or model covers everyday physics, social conven-
tions, and object affordances. Large language
models (LLMs) have emerged as promising but
noisy reservoirs of such knowledge (Ghosal et al.,
2023). These challenges motivate our four research
questions: RQ1) to what extent can commonsense
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facts retrieved from knowledge bases and LLM-
generated explanations help small VLMs?; And
RQ2) is one better suited than the other for com-
monsense reasoning in VQA systems?; RQ3) can
noise-robust losses mitigate the pervasive label
noise in the context of external knowledge augmen-
tation?; and to draw relevance to recent progress in
lightweight generative AI, we analyse RQ4) how
do medium-size generative VLMs (≤ 4B) fare in
commonsense tasks, in comparison to sVLMs (with
or without knowledge integration)?

To probe RQ1–2, we test the three sVLMs above
(≤ 240M parameters) on CRIC and AOKVQA
(Gao et al., 2023; Schwenk et al., 2022) along with
a visual entailment dataset, e-SNLI-VE (Xie et al.,
2019). Using ground-truth explanations (along
with the image and question) lifts accuracy by up
to 10 to 12%, signalling the necessity and scope for
utilising text-based knowledge. We therefore con-
trast (i) ColBERTv2-retrieved facts from common-
sense Knowledge Bases (KBs) and (ii) free-form
textual explanation produced by Llama-3-8B from
dense/region captions, list of objects, and retrieved
facts. A richer visual context helps curb halluci-
nation, while simple architectural tweaks temper
the effect of occasional noisy snippets. Because
label noise dominates these datasets, RQ3 tests
whether Generalised Cross-Entropy (GCE) (Zhang
and Sabuncu, 2018) and Symmetric Cross-Entropy
(SCE) (Wang et al., 2019) preserve the gains and
further boost the performance of knowledge inte-
gration, while mitigating the effects of label noise.
Finally, addressing RQ4, we evaluate Qwen-2, Phi-
3-Vision, MiniCPM and SmolVLM (≤ 4B) and
show that they too lack commonsense without ex-
plicit knowledge integration, underscoring the ur-
gency of lightweight, knowledge-aware methods.
Overall, we make the following contributions:

• Plug-and-Play Knowledge Integration
(NLKI): We introduce Natural-Language
Knowledge Integration (NLKI) – a plug-and-
play framework that combines a retriever, an
LLM explainer, and a lightweight reader with
any sub-240M VLM, so each module can
be analysed and improved independently to
improve the overall accuracy of small VLMs
in commonsense reasoning tasks.

• Dense retrieval benchmark: Compared to
various state-of-the-art retrievers, we showed
that finetuning ColBERTv2 using contrastive
learning delivers the highest recall in retriev-
ing the most relevant commonsense facts for

CRIC, AOKVQA, and e-SNLI-VE queries.
• Accurate LLM Explanation using Context

and Knowledge-Enriched Prompting: We
show that adding object and region informa-
tion of an image (through dense/region cap-
tions generated from Florence-2-large) along
with the retrieved facts to the Llama-3.1-8B
prompt sharply reduces noise and hallucinated
details in the generated explanation, compared
to a caption-only context.

• Knowledge & noise-robustness gains: LLM-
generated explanations coupled with Sym-
metric Cross Entropy (SCE) or Generalised
Cross-Entropy (GCE) preserve most of that
gain under heavy label noise scenarios, raising
AOKVQA accuracy by an average of 13.6%
and CRIC, e-SNLI-VE by 2−4% across three
architectures;

• Scale comparison: Evaluations of Qwen-
2, Phi-3-Vision, MiniCPM, and SmolVLM
(≤ 4B) show these larger models still lack
commonsense, while NLKI-equipped small
VLMs (≤ 240M ) can match or outperform
them in some cases.

2 Related Work

Knowledge-based VQA systems pose a challeng-
ing task, as they need the models to comprehend vi-
sual and textual data while utilising external knowl-
edge to derive correct answers. For instance, as
depicted in Fig. 2, “Is there a place that is blue
and liquid?”. The correct result “Ocean” has to
be deduced using the visual information, common
knowledge that it is “liquid” and “blue”. Symbolic
structured knowledge is helpful in this context, for
instance, existing literature has used knowledge
graphs to retrieve facts, using knowledge graph
embeddings and formal language queries (Wang
et al., 2017; Zheng et al., 2021; Chen et al., 2021).
Beyond KGs, logic-based formalisms have also
been used to combine knowledge with reasoning,
e.g., Probabilistic Soft Logic for visual puzzle solv-
ing in (Aditya et al., 2018b). For unstructured
knowledge, Karpukhin et al. (2020) showed that
the Dense-Passage-Retrieval (DPR) technique per-
forms the best by encoding both the question and
the knowledge sentences to text embedding using
BERT. This method uses cosine similarity (or the
dot product) between vectors to retrieve relevant
knowledge text.
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Retrieval-Augmentation for sVLM. Retrieval-
augmented learning is widely used in language
modelling and is increasingly explored in vision-
language and multimodal tasks. Recent studies ap-
ply retrieval-based augmentation in several ways:
(i) Image-based retrieval: Rao et al. (2024) re-
trieved image-caption pairs using a CLIP-based
(Radford et al., 2021) scoring technique, processed
by an OFA model (182M parameters) for text
generation. Wang et al. (2023) integrated simi-
lar images into vision-language attention layers in
a transformer decoder. Rao et al. (2023) retrieved
knowledge graphs (KGs), encoded them with a
graph encoder, and used them in a BERT + ViT-B
vision-language model. These approaches show
promising results by enhancing VQA and image
captioning through retrieval mechanisms.
(ii) Multimodal retrieval: Hu et al. (2023) and Ya-
sunaga et al. (2023) proposed multimodal retrieval
techniques compatible with language modeling,
with Hu et al. (2023) using T5 + ViT (400M–2.1B
parameters). Caffagni et al. (2024) proposed a
two-stage retrieval: CLIP retrieves documents, and
Contriever extracts passages for LLaVA VLMs
(7B+ parameters) in visual QA. While similar,
our approach incorporates additional textual cues,
expands retrieval beyond Wikipedia, and uses a
smaller VLM.

3 Problem Formulation

In Visual Question Answering (VQA), some ques-
tions require knowledge beyond what is directly
visible in an image. For example, identifying a
giraffe as an "even-toed ungulate" or recognising
a sofa as "furniture used for sitting" requires com-
monsense reasoning. Ambiguities in commonsense
datasets further challenge models, as multiple cor-
rect answers may exist, making implicit knowledge
crucial for accurate predictions. Addressing these
gaps is essential for improving the VQA system’s
contextual understanding. Here, we lay down the
task more formally. The input for our task com-
prises an image (I) and a natural language question
(Q), and the objective is to answer the question
while utilising a set of implicitly required com-
monsense knowledge facts (s) (K ′). We utilise
the ground-truth answer (A) and the ground-truth
explanation/knowledge (f∗), when available, as
supervision.

4 Knowledge-Augmented Visual QA
framework

Here, we explore two types of knowledge sources:
traditional commonsense knowledge corpora (tex-
tual versions) and pre-trained Large Language
Models. Following Chen et al. (2024), we can rep-
resent a retrieval or knowledge-augmented VQA
system probabilistically as follows:

p(A|I,Q,K) = qΘ(Fret|Q, I,K)

pΦ(A|Q, I,Fret)

where, qΘ(·) is termed as a retriever, which is tuned
to retrieve top k relevant facts (Fret), and pΦ(·) is
termed as the reader, which utilizes the question,
image, and retrieved facts to predict the answer.
To generalise to LLM-generated explanations, we
can think of the reader as a model that outputs a
paragraph relevant to the question. We will utilise
the following notations wherever required:

p(A|I,Q,M) = qΘ(Eret|Q, I,M)

pΦ(A|Q, I, Eret)
where M may stand for a knowledge base or an
LLM. Eret may stand for a set of retrieved facts
and LLM-generated explanation(s).

4.1 Integrating Knowledge from
Commonsense Corpus

Commonsense Corpus. Commonsense knowl-
edge comprises basic facts and anecdotes about
everyday objects, actions, and events, enabling hu-
mans to make inferences (Li et al., 2022). Since
Transformer models reason well with text-based
commonsense knowledge (Clark et al., 2021), we
adopt Natural Language Knowledge Integration
(NLKI), which is more flexible than structured
knowledge graphs. Yu et al. (2022) introduced
a 20M-fact natural language commonsense corpus
from multiple human-annotated sources and web
data. Based on initial ablations (Appendix Tables 7
and 8), we selected a subset: Open Mind Common-
sense (OMCS) (Havasi et al., 2010) for its higher
similarity scores with ground-truth explanations
and its compact size (∼1.5M facts) describing ev-
eryday events and objects.

Commonsense Knowledge Retrieval. Given an
image-question pair, the goal is to retrieve k rele-
vant commonsense facts (fi≤k) from the common-
sense corpus (K) to fill in missing contextual knowl-
edge. Ideally, retrieval involves abductive reason-
ing to infer necessary deductions. We primarily
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explore text-based dense retrieval using SBERT
(Reimers and Gurevych, 2019), ColBERTv2 (Khat-
tab and Zaharia, 2020), and Stella selected from
the MTEB leaderboard (Muennighoff et al., 2023).

We represent the query in the following ways:

• Question: We use the question as the query.
• Caption + Question: We generated image

captions using BLIP-2 (Li et al., 2023). We
prepend the caption to the question to form
the query.

• Objects + Question: We use a pre-trained
YOLOv8 (Redmon et al., 2016) to detect ob-
jects from the image. We use the list of de-
tected objects along with the question as the
query.

• Scene Graph Text + Question: We gener-
ated scene graph from images using Relation
Transformers (Cong et al., 2023). We prepend
the sequence of scene graph triplets to the
question as the query.

We use SBERT (Reimers and Gurevych, 2019) to
embed the commonsense corpus (K), indexing it
with FAISS (Douze et al., 2024). Queries (e.g.,
question/hypothesis) are encoded using the same
model, and Nearest Neighbour Search retrieves
the top-k closest facts. Since SBERT captures se-
mantic similarity, we further employ ColBERTv2,
optimised for retrieval. Improved results (Table 9)
led us to fine-tune ColBERTv2 for commonsense
fact retrieval.

Figure 2: Facts retrieved by pre-trained ColBERTv2 vs.
Finetuned ColBERTv2 vs. FAISS. Facts retrieved using
pre-trained ColBERTv2 are more semantically close
and contextually relevant to the query compared to the
FAISS similarity search over SBERT embeddings.

Finetuning ColBERTv2. As shown in Fig. 2,
pre-trained ColBERTv2 retrieves partially relevant
facts since it is trained on generalist datasets (MS-
MARCO, TREC-CAR). To improve relevance, we
fine-tune it following Khattab and Zaharia (2020),
formatting the commonsense corpus into triples
⟨q, d+, d−⟩ where q is the query, d+ is the ground-
truth knowledge, and d− is a randomly sampled
fact from the corpus (see Appendix C for finetuning
details).

Commonsense Knowledge Integration. The
retriever-reader architectures can be trained in two
ways: (i) in an end-to-end fashion where the re-
triever and the VLM are finetuned together (Sachan
et al., 2024), and (ii) where they are finetuned inde-
pendently of each other. For simplicity, we go with
the latter approach to improve both independently,
as this allows for a modular plug-and-play frame-
work wherein the retriever/reader can be switched
as per the specific task. And in the case of sub-
optimal retrieval performance, the reader (pΦ(·))
is expected to learn to reason with noisy added
knowledge.

4.2 Integrating LLM-generated Explanations

Using the image I , we extract various pieces of in-
formation such as multiple types of captions, a list
of objects, and a scene graph to textually represent
the visual context, which is also sometimes paired
with the retrieved facts (these can be perceived as
parameters to the prompt). To define an oracle
setting (Type 0), we also supply the ground-truth
label (GT-L). Interestingly, Llama-3.1-8B produces
high-quality explanations when provided with the
ground-truth label. Manual analysis shows that
such explanations are riddled with hallucinations
when the captions do not capture enough question-
relevant information or the label is noisy in the case
of Type-0 (See Fig. 10). Therefore, we performed
a detailed analysis of the effect of varying all of
the above parameters in generating an explanation.
We provide the common instruction in Fig. I, as
utilised for the instruction-finetuned LLMs (such
as Llama-3.1-8B) to generate explanations2. The
variants are the following:

• Type-0: TC + Q + RFI,Q + GT-L
• Type-1: TC + Q + RFI,Q

• Type-2: DC + Q + RFI,Q

2For Llama-3.1-8B we used the official implemen-
tation from Huggingface at https://huggingface.co/
meta-llama/Llama-3.1-8B
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• Type-3: RC + Q + RFI,Q

• Type-4: RC + Q + O + RFI,Q

• Type-5: DC + RC + Q + O + RFI,Q

• Type-6: DC + RC + Q + O (Type 5 without
knowledge facts).

• Type-7: Florence Finetuned Explanations,
where TC: Traditional Image Caption, DC: Dense
Caption, RC: Region Based Caption, Q: Question,
RF : Retrieved Facts, O: Objects, GT-L: Ground
Truth Label.

Integrating Explanations. Since explanations
are more targeted and concise, we explore baseline
variations by simply prepending the explanation
with the question for the small VLMs.

5 Experimental Setup

5.1 Datasets
In this work, we choose two popular VQA and
one Natural Language Inference (NLI) datasets
that require commonsense reasoning: CRIC (Gao
et al., 2023), AOKVQA (Schwenk et al., 2022)
and e-SNLI-VE (Xie et al., 2019) due to their size,
diversity of questions, and availability of ground
truth explanations. In this work, we do not consider
datasets that test (encyclopedic) knowledge about
entities such as FVQA (Wang et al., 2017), KB-
VQA (Wang et al., 2015). More details about our
choice of datasets are in Appendix A.

5.2 Architectures & Training
We choose three small-vision-Language models –
VisualBERT (Li et al., 2019), ViLT (Kim et al.,
2021), FLAVA (Singh et al., 2022) – spanning
two broad modality fusion architectures, all under
240M parameter size, including one dual stream
architecture, and two single stream architectures.
We briefly describe each of these architectures for
our VQA task in Appendix B. For finetuning, we
use the standard cross-entropy loss objective (and
extend this with noise-robust variants in §6.5). We
have tried multiple variants to integrate common-
sense knowledge, such as majority voting (details
in Appendix C), string concatenation, and their
variants with noise-robust loss functions.

6 Results

6.1 Analysis of Standalone Retrieval
Performance

We evaluate retrieval methods to identify the best
retriever component of our NLKI pipeline. We

compare the relevance of retrieved facts (by each
of the retrievers) with ground-truth explanations for
each of the datasets. As per our studies specific to
commonsense knowledge, FAISS, which relies on
pre-trained SBERT embeddings, struggles with re-
trieving relevant missing information. Fig. 2 shows
how the facts retrieved by FAISS are conceptually
close to the question but not relevant, whereas the
facts retrieved by ColBERTv2 are exact. In con-
trast, ColBERTv2 retrieves more precise facts and
significantly outperforms FAISS and other state-of-
the-art retrievers like Stella-400M3 across BLEU,
ROUGE, and cosine similarity metrics (see Tab. 9).

6.2 Capturing Visual Context for
LLM-Generated Explanations

Table 1 compares prompt settings for explanation
generation. Type-5, incorporating dense captions,
region captions, retrieved facts, and objects, outper-
forms other variants, effectively capturing colour
information and context. Our manual analysis
of baselines suggested that sVLMs struggle with
noisy, ambiguous and colour-based questions. As
the region and dense captions capture colour in-
formation, Type-5 explanations prove to be the
most effective and relevant (compared to gener-
ated explanations of other Types and retrieved facts
standalone). We further explored Smaller LLaMA
3.2 models (3B & 1B) to generate explanations.
Such explanations turned out to be noisier and less
accurate with poorer visual context, making them
unsuitable (Detailed results in Appendix H).

6.3 Baseline Performance

To estimate the vanilla performance (without
knowledge augmentation), we finetuned ViLT, Vi-
sualBERT, and FLAVA with the image, the ques-
tion (hypothesis) and the answer (label) across all
our datasets. We report the results in Table 2. Man-
ual analysis (see §6.5) reveals that the sub-optimal
result is due to 1) lack of day-to-day common-
sense knowledge and 2) noise and ambiguity in the
datasets. We found that CRIC has a non-negligible
amount of label noise (see Figs. 6, 4) across all the
splits, which caused the models to learn erroneous
patterns in the data. AOKVQA is comparatively
less noisy but follows a similar noise distribution
to CRIC (see Fig. 5). This necessitates the need
for external commonsense knowledge, while build-

3We used the official HuggingFace implementation
at https://huggingface.co/NovaSearch/stella_en_
400M_v5
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Type Explanation B-1 B-2 B-3 R-1 R-2 R-L Cosine

Type-0 TC + Q + FI,Q + yI,Q 18.60 11.41 8.32 36.01 12.88 32.08 53.21
Type-1 C + Q + FI,Q 24.65 16.64 12.81 40.00 17.75 36.80 54.75

Type-2 DC + Q + FI,Q 27.02 18.85 14.84 42.25 20.26 38.86 58.15
Type-3 RC + Q + FI,Q 30.84 22.57 18.16 45.90 24.51 42.80 59.60
Type-4 RC + O + Q + FI,Q 30.46 22.30 18.01 46.01 24.35 42.44 60.08
Type-5 DC + RC + O + Q + FI,Q 31.08 22.77 18.41 46.30 24.63 42.78 60.17

Type-6 DC + RC + O + Q 25.88 18.51 14.67 41.93 20.86 38.57 57.01
Type-7 I + < TP > 7.20 2.97 1.87 11.76 00.75 10.49 22.39

Table 1: Results from CRIC (AOKVQA in App. H) comparing BLEU, ROUGE, and Cosine Scores (w.r.t the GT
explanation) for various explanation generation mechanisms. We report the quality metrics of explanations based
on BLEU-k (B-k, k ∈ {1, 2, 3}), ROUGE-k (R-k, k ∈ {1, 2, L}), and Cosine similarity scores. Q: Question, O:
Objects, TC: Traditional Image Caption, FI,Q: Retrieved Facts, DC: Dense Caption, RC: Region Caption, I:
Image and TP : Task Prompt. These scores can be compared with the retrieved facts score metrics B-1@5, R-L@5,
Cosine@5 of Tab. 9

.

ing noise robustness to specialise the models in the
commonsense VQA task.

6.4 End-to-End NLKI Performance

Table 2 shows that the full pipeline with Type-5
explanations (with DC, RC, TC, O, RFs as the pa-
rameters of the prompt) is the strongest variant.
This echoes the scores in Table 1, as Type-5 ratio-
nales most closely match groundtruth explanation
in both n-gram overlap and the semantic space than
Types 1–4. The payoff is large: +13% for FLAVA
on AOKVQA and +2% even on the noisy CRIC
split. We also compared our NLKI pipeline with
a specialised retrieval-augmented baseline, termed
KAT (Gui et al., 2022). The details of the knowl-
edge concatenation and truncation strategy in our
pipeline are present in Appendix B. We trained the
Knowledge-Augmented Transformer (KAT) with
explicit and implicit knowledge; KAT4 lags behind
the NLKI Type-5 variant on every dataset except
ViLT with Type-5.

Effect of Noise. Further analysis shows that
NLKI still inherits a lot of label noise. We man-
ually analysed 1000 CRIC training samples (Fig.
4). This revealed five noise classes: label, image,
question, image–question mismatch, and ambigu-
ous labels (§G)—with label noise being the most
frequent (180 among 1000). For example, the air-
craft image in Fig. 6c is labelled “Grass” instead
of “Water”, so even a correct Type-5 explanation
fails; Fig. 6d allows two valid answers, blurring the
target. Noise compounds when hallucinated expla-
nations reinforce wrong labels (Fig.10d). We also

4Implementation details in Appendix B.

Architecture
Retrieved/
Generated

Accuracy

e-SNLI-VE CRIC AOKVQA

KAT Expl. Knowledge 73.22 67.38 32.72
KAT Expl. + Impl. Knowledge 76.30 69.71 38.60

ViLT ✗ 76.46 72.99 24.01
Concat (ViLT) Type 5 78.46 74.95 28.15
Concat (ViLT) Type 7 64.66 63.34 20.08

Majority Voting (ViLT) Q/CB-FT 74.51 69.08 13.45

Concat (ViLT)+*CE Type 5 78.57 76.98 33.45

VisualBERT ✗ 74.48 62.60 23.6
Concat (VisualBERT) Type 5 78.83 64.69 35.40
Concat (VisualBERT) Type 7 62.46 55.22 20.00

Majority Voting (VisualBERT) Q/CB-FT 72.53 60.25 19.00

Concat(VB)+*CE Type 5 78.95 67.15 40.12

FLAVA ✗ 79.93 73.11 33.07
Concat (FLAVA) Type 5 81.54 75.02 47.85
Concat (FLAVA) Type 7 70.18 64.30 32.09

Majority Voting (FLAVA) Q/CB-FT 72.53 60.25 32.68

Concat(FLAVA)+*CE Type 5 82.05 77.85 47.85

Gold-label baseline

ViLT Ground Truth Expl. 92.47 82.98 56.31
ViLT Type-0 97.91 97.02 58.38
ViLT Type 1 75.92 55.65 20.28

VisualBERT Ground Truth Expl. 93.49 77.00 69.35
VisualBERT Type-0 97.89 96.60 87.16
VisualBERT Type 1 76.11 53.82 35.19

FLAVA Ground Truth Expl. 93.04 82.36 72.65
FLAVA Type-0 98.11 97.34 90.03
FLAVA Type 1 69.29 50.45 39.71

Table 2: Performance of Baseline vs NLKI (ours) vs
Gold-label baseline. Expl. and Impl. refer to Explicit
and Implicit respectively. Q/CB-FT are facts retrieved
by fine-tuned ColBERTv2 with the question as the query,
*CE rows contain the best performance when various
noise robust loss function is applied with the Type-5
explanation integration (see §6.5).
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clearly see that the datasets have a varying degree
of noise. On a similar analysis, nearly 90 instances
(out of 1000) in AOKVQA answers were unani-
mously judged ambiguous or incorrect by three
independent raters.5 In contrast, e-SNLI-VE nat-
ural language inference benchmark contains three
NLI answer labels, considerably less noisy than
VQA datasets. Hence, we next incorporate noise-
robust loss functions to prevent small 240M VLMs
from over-fitting to noisy outliers in §6.5. With
noise-robust loss functions, all architectures sur-
pass KAT’s performance by a large margin (except
ViLT on AOKVQA), underscoring the competitive-
ness of our lightweight scheme.

6.5 Building Noise Robustness
We replace the default cross-entropy (CE) objec-
tive with down-weight or smoothen the contri-
bution of mislabeled samples. For each exam-
ple image and question (xi), target answer (yi),
we use the standard cross-entropy loss objective
to fine-tune each model. Assume, for ith exam-
ple, the model logits are zi ∈ RC (C=#classes),
pi = softmax(zi) and p

(i)
y denote the predicted

probability of the correct class. The standard loss
becomes LCE = −∑

i log p
(i)
y . The noise-robust

variants can be defined as follows.
Symmetric Cross-Entropy (SCE). Following
Wang et al. (2019), we combine the usual cross-
entropy with a reverse term that penalizes over-
confident errors:

LRCE(p, y) = −
C∑

c=1

pc log yc = −A
∑

c ̸=y

pc (1)

= −A (1− py), (2)

LSCE(p, y) = αLCE(p, y) + β LRCE(p, y), (3)

where py is the predicted probability of the
ground-truth class, we fix log 0 = −γ with γ = 4,
α = 0.1, β = 1.0 (the values of α and β are di-
rectly taken from (Wang et al., 2019)). The CE
component ensures fast convergence, while the
−γ(1− py) term flattens the loss landscape around
noisy labels, granting robustness to the 10% to
30% label noise observed in CRIC and AOKVQA.
Generalised Cross-Entropy (GCE). Zhang and
Sabuncu (2018) proposed

LGCE(p, y) =
1− pqy

q
, 0 < q ≤ 1,

5Details in Appendix G.

which reduces to mean absolute error (MAE) as
q→0 and to standard CE as q→1. We use q=0.7
directly from (Zhang and Sabuncu, 2018), and form
a convex mixture with CE:

LMixed(p, y) = λLCE(p, y)

+ (1− λ)LGCE(p, y)

We use λ=0.4 for noisy datasets (with 0.9 for
e-SNLI-VE, which has limited label noise).

Training protocol. For each loss function, we
train with vanilla CE for two epochs to stabilise
early gradients, then switch to the chosen robust
loss. We keep the batch size, optimiser, and
learning-rate schedule identical to the CE baseline
to isolate the effect of the loss.

6.6 Effect of Noise-robust Training
Table 3 compares CE, SCE, and CE + GCE on all
three datasets for ViLT, VisualBERT and FLAVA
for CRIC. On CRIC, SCE lifts FLAVA by +2.8%,
VisualBERT by +2.46% and ViLT by +2.03% over
CE, confirming that SCE’s reverse term curtails
over-fitting to noisy labels. On AOKVQA, SCE
delivers the best trade-off (+5.5%), having low to
moderate noise with ViLT and VisualBERT (Table
12 in the appendix). But FLAVA already reaches
high performance with vanilla CE, so the extra
regularisation offered by SCE or GCE brings only
a marginal change (-0.12 %) and can even over-
smooth (GCE+CE). On e-SNLI-VE standard CE
outperforms its robust siblings. Raising q (0.7→
0.95) or λ (0.4→0.9) makes CE + GCE converge
to CE and closes the gap (Table 11 in the appendix).

Architecture Type CE SCE GCE+CE

ViLT Type-5 74.95 76.98 75.13
VisualBERT Type-5 64.69 67.15 65.66
FLAVA Type-5 75.02 77.85 76.98

Table 3: Comparison of performance (in percentage) for
different architectures using various loss functions on
the CRIC test split of 76K samples. For e-SNLI-VE and
AOKVQA, refer to Tables 11 and 12 in the Appendix.

In our noise ablation (Figs. 4 & 5, Appendix
G), SCE delivered the largest gains in conditions
of high label noises, mirroring the threshold re-
ported in Wang et al. (2019)—whereas a 0.4 CE +
0.6 GCE mix performed the best in moderate level
noise conditions, and standard CE remained op-
timal on e-SNLI-VE with only 3 labels. These
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findings explain why prior work that applied a
single loss across heterogeneous benchmarks re-
ported inconsistent gains; by adapting the loss to
the dataset (according to the level of label-noise),
we achieve stable improvements without any archi-
tectural change or extra inference cost.

7 Performance of Generative VLMs

Models EM P R F1 ACC

Qwen2-VL 31.18 40.00 92.82 93.17 41.90
SmolVLM 10.48 31.42 89.91 90.54 33.89
MiniCPM 58.60 96.05 95.7 95.83 58.58

Phi3-Vision 52.64 96.06 95.28 95.61 53.24

Table 4: Performance of Generative Models on
AOKVQA val split where EM is exact string match
P is Precision, R is Recall, F1 is the F1 score, and ACC
is the cosine similarity score.

We further benchmark (smaller, less than
4B) generative instruction-tuned models such as
Qwen2-VL (2B) (Wang et al., 2024), Phi3-Vision
(4.1B) (Abdin et al., 2024), MiniCPM (3.43B) (Hu
et al., 2024) and SmolVLM (2.25B) on AOKVQA.
From the results in Table 4, we observe that NLKI
+ SCE turns a 240M -param FLAVA into a model
that beats 2B-param Qwen-VL and SmolVLM on
AOKVQA with far less compute time and power.

8 Discussion

Learnings from Gold-label baseline Setup and
Effect of Additional Context on Accuracy. Ta-
ble 2 confirms that label-supervised Type-0 ex-
planations push accuracy far beyond both ground-
truth texts and Type-1 (no-label) variants. Inject-
ing the answer often repairs missing context—see
Fig.7b—and yields more assertive wording (e.g.,
“the macaroni is the main course” in Fig.7d). Yet
the benefit is fragile: in a 1.5K sample drawn across
all datasets, 51% of Type-0 explanations still hallu-
cinate or add spurious detail because they rely on
weak visual cues. By contrast, our gold-label-free
Type-5 explanation prompt, which feeds dense and
region captions plus retrieved facts, cuts that rate
to 18.5% and grounds over 80% of explanations in
the scene (Fig. 10; definition in Appendix H). A
Florence-finetuned captioner used in place of the
LLM underperforms; its explanations are shorter,
omit causal links, and have lower end accuracy
(Table 1; examples in Fig. 9).

When does knowledge integration help? Table
2 demonstrates that NLKI alone without noise miti-
gation, particularly with Type-5 explanations, has
a marginally positive impact on model performance
for CRIC, while having a moderate to significant
impact in e-SNLI-VE & AOKVQA. Some key ob-
servations emerge from our analysis of the NLKI
framework: 1. The better the generated expla-
nations are, the better the effectiveness of NLKI,
which even outperforms the complex integration
pipelines like KAT. 2. To frame a quality Natu-
ral Language knowledge that can be effectively
utilised, the explanations should capture relevant
visual context in textual form while minimising hal-
lucinations. 3. NLKI, when coupled with noise
robust losses, matches and even outperforms some
of the performance of the architectures in the range
of 1-4 B parameters. 4. The cleaner the dataset
and the stronger the model is, the smaller the ben-
efit of noise-robust losses due to less chance of
overfitting on mislabeled samples. For example, on
AOKVQA, they mainly rescue the lighter architec-
tures while leaving FLAVA nearly unchanged. 5. If
ground-truth (often noisy) labels are used to gener-
ate an explanation (gold-label baseline), they are
more prone to hallucination, leading to unreliable
predictions, as in Fig. 10. If raw knowledge re-
trieved from knowledge bases or graphs is used as
guidance, it may introduce additional noise and hin-
der performance rather than improving it. Table 10
shows our ablation study on augmenting k facts to
questions degrades performance as k increases.

Impact in the context of Generative VLMs. Ta-
ble 4 shows that despite rigorous pretraining and
the use of advanced architectures, generative mod-
els still struggle with visual commonsense reason-
ing tasks. The best-performing model, MiniCPM,
achieves only 58.60%, followed by Phi-3 Vision.
This highlights the persistent lack of commonsense
knowledge in medium-sized VLMs, as they fail to
outperform the NLKI coupled with the noise-robust
loss framework when applied to encoder-only mod-
els such as FLAVA, ViLT, and VisualBERT. We
plan to explore the impact of NLKI in generative
models as part of future work.

Inference Time Latency of NLKI Framework.
While we highlight NLKI’s empirical gains, it is
also important to consider its computational foot-
print. Our framework introduces additional mod-
ules beyond the base VLM, namely, captioners, an
object detector, a retriever and an explainer—so we
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report the full breakdown of latency, FLOPs, and
GPU usage in the table below. The total pipeline
latency for a single image–question pair is 1.32s
when components are run sequentially, with most
of the cost concentrated in captioning and explana-
tion generation. The reader stage itself is negligible
(≤ 65 ms across all tested VLMs). Running cap-
tioning and object detection concurrently shortens
the critical path to 0.87s (≈ 34% faster), though
this raises peak memory load from ≈ 5 GB to ≈ 15
GB. Importantly, the retriever and captioners can
be executed offline or on CPU, and the explainer
can be swapped for a smaller LLM (e.g., Llama 1B
or 3B), further reducing the online GPU footprint.
Thus, although NLKI involves multiple stages, its
design remains lightweight and deployable, offer-
ing a favourable trade-off between efficiency and
the substantial performance gains reported in 6.

Tasks Latency FLOPS GPU Usage
Dense Cap. 235.80 1680 5.2
Region Cap. 313.75 1680 5.2
Object Det. 225.06 1680 5.2
Expl. Gen. 486.53 735.48 15
KB Retrieval 114.12 7 0.78
Answer Prediction 65.02 55.84 1.9
Overall Pipeline Latency:
(235.80 + 313.75 + 225.06 + 486.53 + 65.02) = 1.32 sec

Table 5: GPU usage (in GB), wall-clock latency (in
ms), and theoretical FLOPs (in GFLOPS) for the NLKI
framework. Cap. stands for Captioning, Det. stands for
Detection, Expl. Gen. stands for Explanation Genera-
tion.
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10 Conclusion

Our study shows that pairing external common-
sense knowledge with noise-aware training lifts
≤240M vision-language models to the tier of far
larger systems. A lightweight NLKI pipeline–
ColBERT-v2 retrieval plus Llama-3.1-8B gener-
ated Type-5 explanations– boosts the performance
of ViLT from 24 → 38 and FLAVA from 46 → 54 %
on AOKVQA, outmatching 1–4B parameter gener-
ative baselines at a fraction of the compute. Noise
audits reveal 17–23% faulty labels in CRIC and

AOKVQA (virtually none in e-SNLI-VE); swap-
ping vanilla CE loss for Symmetric CE adds up
to +3%, while a CE + GCE mix is best at moder-
ate noise, and vanilla CE suffices for clean data.
Finetuned ColBERT raises retrieval precision, and
enriching prompts with dense/region captions curbs
hallucination, though one fact per question is opti-
mal given VLM context limits. In sum, NLKI plus
a dataset-aware robust loss turns 250M-parameter
sVLMs into noise-resilient commonsense VQA en-
gines that rival or beat multi-billion-parameter mod-
els without extra inference cost.

Limitations

Our pipeline is modular, but still serial retriever, ex-
plainer and reader are tuned in isolation; we do not
explore joint optimisation. Noise robustness is tack-
led only at the label level with loss re-weighting;
we leave open richer defences against other noises
(such as in questions, image-question mismatch,
etc). Our explanation module relies on Llama-
3.1-8B, a single LLM family; whether larger or
instruction-specialised models change the trade-
offs is unknown. NLKI assumes access to accurate
object lists and dense/region captions from aux-
iliary detectors, but the impact of errors in these
vision tools is not assessed directly.
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Appendix

A Datasets

We focus on CRIC, AOKVQA, and e-SNLI-VE,
which emphasise open-ended, contextual common-
sense reasoning over encyclopedic or synthetic
factoid knowledge. Datasets like FVQA and
WHOOPS, which centre on factual recall or syn-
thetic errors, are excluded as they diverge from our
goal of modelling everyday reasoning.

CRIC contains 494K automatically generated
questions over 96K Visual Genome images, en-
riched with 3.4K knowledge items from Concept-
Net and Wikipedia. AOKVQA includes 25K di-
verse, crowdsourced questions based on COCO
images. Both CRIC and AOKVQA are multiple-
choice tests with four options each. e-SNLI-VE
combines Flickr30k and SNLI-VE, with hypothe-
ses labeled as Entailment, Contradiction, or Neu-
tral.

Dataset Type Train Val Test Answer Type

CRIC VQA 364K 76K 84K MCQ
AOKVQA VQA 17K 1.1K 6.7K MCQ
e-SNLIVE NLI 401K 14K 14K NLI Labels

Table 6: Table showing the split size and answer type
for all datasets.

B Architecture Description

We have selected models all under 240M for our
VQA classification task. We opted for two different
architectures 1. Single Stream 2. Dual Stream is
based on the processing of both modalities, vision
and text.
ViLT (Kim et al., 2021) is a Transformer-based
unified architecture that uses a single transformer
module to encode and fuse both visual and text fea-
tures in place of a separate deep visual embedder.
VisualBERT (Li et al., 2019) requires a set of vi-
sual embeddings (representing the visual features)
extracted from an image encoder and text embed-
dings encoded with BERT. Then, it utilises the
self-attention mechanism for implicit alignment of
elements in the input text and regions within the
input image.
FLAVA (Singh et al., 2022) is a multimodal
transformer-based model designed to process and
align visual and textual information for various
vision and language tasks.

KAT Implementation KAT originally used fil-
tered English Wikidata and GPT-3 to extract
implicit knowledge. In our setup, we use
gpt-3.5-turbo for this step. Since VinVL and
Oscar (used by KAT for extracting image features
and captions) are no longer publicly available, we
replace them with Florence-generated dense and
region captions to query GPT-3.5. We retain the
original prompt format but, due to resource con-
straints, combine answer and explanation genera-
tion into a single API call with a modified prompt.
Final results are reported in Table 2.

Model Context Length & Truncation Strat-
egy To integrate external knowledge into the
model input, we prepend the generated explana-
tion to the original question using the format:
<explanation>[SEP]<question> before pairing
this text with the corresponding image features.
For the smaller reader VLMs, we enforce a
strict 100-token limit on the concatenated expla-
nation–question string: if the combined text ex-
ceeds this budget, truncation is applied from the
end, ensuring that the leading tokens, which typ-
ically contain the most informative content, are
preserved. This strategy was consistently applied
across all datasets and models. Empirically, trun-
cation was seldom triggered, as the average token
counts remained well below the limit (e.g., CRIC:
12.74 tokens for questions and 19.35 for explana-
tions; AOKVQA: 8.69 and 9.09; e-SNLI-VE: 7.39
and 10.43, respectively).

C Retrieval

What is majority voting? In the majority vot-
ing setup, we concatenate each of the top-5 re-
trieved facts individually with the question and
image context to form five separate inputs. The
model then predicts an answer for each of these
fact-augmented inputs independently. We collect
all five predicted labels and select the final answer
by majority vote—i.e., the label that appears most
frequently across the five runs. This approach helps
smooth over noisy or irrelevant facts by relying on
the consensus across multiple evidence sources,
making the final prediction more robust to individ-
ual retrieval errors.

Comparison of Retrieval Performance from
OMCS 1.5M and 20M Knowledge Corpus To
verify the commonsense facts quality, we chose a
random sample of 20K from both the CRIC and
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e-SNLI-VE datasets. Although the CRIC test set is
larger, a subset of 20K facts was chosen to make the
results comparable to those of e-SNLI-VE, which
has 15K samples in the test set. Looking at the
results, it is evident that the OMCS corpus alone
contains more relevant facts for commonsense rea-
soning when compared to the Ground Truth expla-
nations. OMCS is also nearly 20 times smaller;
hence, retrievals from the corpus are significantly
faster.

Retrieval Performance for Commonsense VQA
Tasks Here we present the detailed scores across
the metrics like BLEU, ROUGE, and cosine simi-
larity for top-5 and top-10 results for measuring the
retrieval performance specific to our task. In Table.
9 we present the result of the three top retrievers
for clarity, which was found to be effective for our
commonsense VQA task.

Examples of Retrieved Facts: FAISS vs Col-
BERTv2 We provide more examples in Fig. 3,
depicting the difference in relevance of the facts
retrieved by FAISS and those retrieved by Colbert.
In (a), both FAISS and ColBERT retrieve facts un-
related to the query, which asks about furniture,
whereas the facts are about objects related to pro-
ducing or listening to music. In (b), only the first
fact retrieved by FAISS is close to what the query
asks for, and all other facts are only connected
to the query by one concept (such as ‘riding’ or
‘walk’). The facts retrieved by ColBERT are di-
rectly related to sidewalks and activities it can be
used for. Although none are direct answers, they
are still semantically much closer to the query than
the FAISS-retrieved facts. A similar pattern is no-
ticed in (c), wherein the FAISS-retrieved facts are
only related to the query by a singular concept
(such as “branch" or “tree"), but the Colbert facts
are both conceptually and contextually relevant; in
this case, they are direct answers to the query.

Finetuning Colbert Using a contrastive learning
approach, we optimise the pairwise softmax cross-
entropy loss over the relevance score Sq,d for d+

and d− with the query q.

L(q, d+, d−) = − log

(
exp(Sq,d+)

exp(Sq,d+) + exp(Sq,d−)

)

We used a batch size of 32, with a single 46 GB
NVIDIA A40 GPU, having a maximum length of
the facts as 128 (most facts are much smaller in
length), and default settings for other parameters

as in Khattab and Zaharia (2020). We used 160K
samples from the training splits of CRICs for fine-
tuning due to the variety of queries in it. We ex-
perimented with adding more than 160K data to
finetune it, but it didn’t help improve the scores any
further.

D Effect of Increasing Number of
Retrieved Facts

While somewhat useful, retrieved facts generally
perform the worst in enhancing model performance,
especially as more facts are concatenated. The pri-
mary hindrance is their often disjoint nature and
lack of direct relevance to the specific question. In
our experiments, as the number of concatenated
facts increased, we consistently observed a decline
in accuracy across various datasets. This decline
can be attributed to several factors: the relevance
of retrieved facts diminishes with quantity, intro-
ducing noise and reducing clarity. For instance, ac-
curacy in the CRIC dataset dropped from 72.99%
with just the question to 38.30% with five facts
appended to the question. Similarly, ViLT’s perfor-
mance on the e-SNLI-VE dataset fell from 76.46%
to 69.62%. The same pattern repeats for other mod-
els as well. The inclusion of more facts tends to
clutter the input with irrelevant or redundant infor-
mation, making it difficult for the model to focus
on the relevant information, leading to degraded
performance.

E Generative Small VLMs

As the research community increasingly priori-
tises efficiency and low carbon footprints, there
has been a growing shift towards small-vision lan-
guage models (sVLMs) and low-resource training
strategies. Therefore, in the context of common-
sense VQA, we benchmarked the mentioned gener-
ative instruction-tuned VLMs6 on our datasets. We
limit ourselves to models with < 4 billion param-
eters, as shown in Figure 1. The effectiveness of
these rigorously pre-trained generative models in
commonsense VQA remained underexplored. The
observations in Table 4 suggest the reason for the
sub-optimal EM and Cosine Accuracy scores is that

6We used the standard HuggingFace imple-
mentations for all the small generative VLMs:
https://huggingface.co/Qwen/Qwen2-VL-2B-Instruct,
https://huggingface.co/openbmb/MiniCPM-V,
https://huggingface.co/HuggingFaceTB/
SmolVLM-Instruct, https://huggingface.co/
microsoft/Phi-3-vision-128k-instruct
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Corpus K Rouge1 Rouge2 RougeL BLEU Cosine Score

@ 5 55.86 45.52 54.94 57.68 60.58OMCS 1.5M @ 10 58.86 49.22 58.09 66.74 62.38

@ 5 41.06 28.11 39.69 51.49 45.6320M Comm. Corpus @ 10 38.96 25.48 37.56 61.19 43.74

Table 7: BLEU, ROUGE, and Cosine Score of facts retrieved from the OMCS Corpus against facts retrieved from
the cumulative 20M corpus introduced by (Yu et al., 2022) using pre-trained ColBERTv2. Retrieved facts are
compared to the ground truth explanation. Scores were reported on 20K random samples from the test set of
e-SNLI-VE.

Corpus K Rouge1 Rouge2 RougeL BLEU Cosine Score

OMCS 1.5M @ 5 28.58 13.71 25.86 48.12 30.67
@ 10 28.52 13.71 25.77 47.96 15.37

20M Comm. Corpus @ 5 27.84 12.50 24.81 41.63 26.21
@ 10 27.63 12.49 24.95 41.84 13.17

Table 8: BLEU, ROUGE, and Cosine Score of facts retrieved from the OMCS Corpus against facts retrieved from
the cumulative 20M corpus introduced by (Yu et al., 2022) using pre-trained ColBERTv2. Retrieved facts are
compared to the ground truth explanation. Scores were reported on 20K random samples from the test set of CRIC.

Query Method R-L@5 R-L@10 B-1@5 Cosine@5 Cosine@10

Q SBERT + FAISS 41.86 47.80 38.30 53.56 58.46
C + Q SBERT + FAISS 38.57 44.70 35.21 51.54 56.88

Objects + Q SBERT + FAISS 40.93 46.73 37.34 52.61 57.67
SG + Q SBERT + FAISS 36.05 41.91 32.88 47.01 52.21
All + Q SBERT + FAISS 35.52 46.55 32.65 46.55 51.78

Q ColBERTv2 61.33 67.32 56.24 68.69 73.11

Q ColBERTv2-FT 74.48 77.44 69.99 77.65 80.62
C + Q ColBERTv2-FT 52.03 55.77 45.95 64.34 68.39

Objects + Q ColBERTv2-FT 52.11 56.26 46.27 66.01 69.41
SG + Q ColBERTv2-FT 31.12 34.89 27.56 41.99 43.75
All + Q ColBERTv2-FT 19.40 23.39 16.94 33.89 37.67

Q Stella-en-v5 46.72 54.27 42.01 62.58 67.18
C + Q Stella-en-v5 32.28 38.76 28.56 50.14 55.10

Objects + Q Stella-en-v5 43.89 51.36 39.27 62.98 67.66
SG + Q Stella-en-v5 30.02 36.50 27.50 50.02 53.65
All + Q Stella-en-v5 29.01 34.65 25.67 46.76 51.15

Table 9: Comparison of BLEU, ROUGE, and Cosine Scores for Various Retrieval Mechanisms (on CRIC test split).
We report the performance of different retrieval methods based on BLEU-1 (B-1), ROUGE-L (R-L), and Cosine
similarity scores across different query settings. Finetuned ColBERTv2 outperforms all other methods. Q: Question,
C: Caption, O: Detected Objects

generative models can provide expressive answers
based on their pre-training, but fail when asked
questions that require explicit commonsense rea-
soning abilities. Also, it raises concerns about their
ability to generalise beyond their training data, as in
our case, no external knowledge was provided dur-
ing this benchmarking. We used bert-score (Zhang
et al., 2020) to evaluate the P, R, F1, which uses
the contextual embeddings for computing token
similarity. We chose the cosine similarity threshold
as 0.71 based on manual analysis of results specific

to our datasets.

F Qualitative Analysis of Generated,
Retrieved and Manual Explanations.

In Fig. 7, we show ground truth, retrieved facts,
and generated explanations (Types 0, 1, and 5)
comparatively for images in CRIC. Ground-truth
explanations are accurate but lack context grounded
in the query, making them less helpful for complex
queries. Type-1 generated explanations depend on
the often incomplete context provided by the cap-
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Figure 3: Examples illustrating that pre-trained COLBERTv2 performs better than FAISS vector search in retrieving
contextually relevant facts from OMCS Corpus. Ci,q indicates ith fact retrieved using the question as the query by
the pre-trained ColBERTv2, Fi,q indicates ith fact retrieved using a question as the query by FAISS vector search.

Architecture Input e-SNLI-VE CRIC AOKVQA

ViLT

Question 76.46 72.99 24.01
1 Fact + Question 75.60 71.38 13.45
2 Facts + Question 69.88 71.64 13.45
3 Facts + Question 65.44 62.00 11.38
5 Facts + Question 64.62 38.30 13.25

VisualBERT

Question 74.48 62.60 23.6
1 Fact + Question 74.34 61.00 22.0
2 Facts + Question 73.99 20.25 20.0
3 Facts + Question 73.98 19.00 19.0
5 Facts + Question 73.62 19.00 19.0

FLAVA

Question 79.93 73.11 33.07
1 Fact + Question 79.59 71.36 32.68
2 Facts + Question 79.76 31.51 31.51
3 Facts + Question 79.81 31.31 34.48
5 Facts + Question 78.72 25.84 25.84

Table 10: Performance on varying the number of facts
retrieved by finetuned ColBERTv2 concatenated with
the query.

tion. For example, for Fig. 7b, the caption is “there
are many different types of food on display on the
case” and the objects include only “bananas”, as the
orange is obscured from view by the box in front.
The LLM hallucinates and claims that the banana is
behind the box, whereas it is actually in front. But
the Type-5 explanation, which includes region in-
formation, correctly detects the orange behind the
box and reasons that an orange has a higher vita-
min C content and is also behind the box. Retrieved
facts often consist of fragmented information that
lacks the necessary context or specificity for the ex-

Figure 4: Noise Distribution of CRIC. We checked 1000
random samples, out of which 175 samples had label
noise and others had the above distribution.

act question. These facts may score higher on met-
rics like BLEU or ROUGE due to shared phrases
with ground-truth explanations, but they often fail
to contribute significantly to the model’s reason-
ing process, as they do not contain the elaborate
context required for accurate answer derivation.

G Noise

Noise in Datasets Figure 6 presents noisy sam-
ples from our chosen dataset that contribute to per-
formance degradation. Through manual analysis
of a substantial portion of the dataset, we identified
issues such as noisy labels, ambiguous answers,
and unclear questions. Below, we highlight some
noteworthy examples illustrating these noise types.
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Figure 5: Noise Distribution of AOKVQA. We checked
1000 random samples, out of which around 90 samples
had label noise, and others had the above distribution,
which is significantly better than CRIC.

Additionally, Figs. 4 and 5 categorise the various
types of noise present in the CRIC dataset.

Noise Ablations of e-SNLI-VE and AOKVQA
Here we present the effect of using Symmetric
Cross Entropy Loss and Generalised Cross Entropy
Loss when applied to e-SNLI-VE and AOKVQA
datasets in Tables 11&12 respectively. Other than
FLAVA, both SCE and GCE+CE combinations pro-
vide noticeable gains. For e-SNLI-VE, however,
such gains are not prominent. Also, we present the
noise distribution of CRIC and AOKVQA, anal-
ysed by 3 independent raters who are computer
science graduates, two of whom are authors of this
paper.

Architecture Type CE SCE GCE + CE

ViLT Type-5 78.46 77.75 78.57
VisualBERT Type-5 78.83 77.23 78.95
FLAVA Type-5 81.54 80.47 82.05

Table 11: Comparison of performance (in percentages)
for different architectures using various loss functions
for e-SNLI-VE.

Architecture Type CE SCE GCE + CE

ViLT Type-5 28.15 33.45 32.33
VisualBERT Type-5 35.40 40.12 38.51
FLAVA Type-5 47.85 47.73 46.45

Table 12: Comparison of performance (in percentages)
for different architectures using various loss functions
for AOKVQA.

H Explanation Generation

Examples for Type-0, Type-1, Type-5 Explana-
tions Here we provide more examples of the dif-
ferent Types of explanation produced by Llama-
3.1-8B index (a - g). Of the 8 examples presented,
only in (c) is the Type-5 explanation incorrect.
Even in that case, the explanation is still rationally
correct because there is indeed no “object" on the
aeroplane– the question refers to the text “FOX"
on the engine, which is technically not an object.
In all the examples, the Type-0 explanations are
not semantically consistent; they stray off the con-
text very quickly and produce factually incorrect
claims. This is evidenced by the examples in Fig.10.
Although consistent, the Type-1 explanations are
nearly never precise enough to enable the down-
stream VLM to identify the correct answer.

Florence Finetuning For Explanation Genera-
tion And Comparison. As we explore the gen-
eration capability of Florence (sVLM) with 606M
parameters, we found that, though it excels in sev-
eral vision-language tasks, it failed to generate a
well-reasoned explanation concerning the context
of its image and the questions supplied to it. To
ensure the quality of data to finetune Florence, we
used a training split of the VQAe dataset compris-
ing 181K data instances. We used VQAe (Li et al.,
2018) because it closely resembles the type of ex-
planations that CRIC and e-SNLI-VE have. We re-
port the Florence finetuned performance on CRIC
in 1. In 9 we show the difference between explana-
tions generated by the Florence vs LLAMA-3.1-8B
(Type 5).

LLM Prompts for Explanation Generation:
LLaMA-3.1-8B & GPT-3.5 We feed GPT-3.5
and LLaMA-3.1-8B with Image captions, Objects
Detected, and Retrieved Facts from OMCS, then
ask it to analyse and generate a short explana-
tion leveraging these details. We kept on improv-
ing our prompts through experimentation because
GPT/LLAMA generated extra texts containing ad-
ditional reasoning for the explanation it generated,
which are difficult to post-process. Below, we illus-
trate the prompt template.

To avoid label leakage in the generated explana-
tions, we also explicitly instruct the LLM not to
produce the forbidden words. For instance, terms
like "image description" and "caption" confuse the
VQA model; thus, we filter out these words. This
also includes words like "entailment" and "contra-
diction" when using the prompt to generate expla-
nations for the e-SNLI-VE dataset. We explicitly
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Figure 6: Examples illustrating the noisy samples from the datasets. where Noise Category is the type of noise we
encountered during manual analysis, Explanation Generated From Noisy Sample is the LLaMA-3.1-8B explanation
generated as a result of the noise for each sample, which degrades the overall performance.

Figure 7: Examples from the CRIC dataset showing the difference between the Ground Truth, Type-0, Type-1 and
Type-5 explanations generated by the LLama-3.1-8B. In all four cases, the Type-5 explanation is the most rational
and contextually relevant. Type-0 and Type-1 explanations are often hallucinated (to align the explanation with the
label) or do not make rational sense. More examples are in the Appendix.

instruct the LLM to generate only explanations
within 10-15 words because, in the knowledge con-
catenation experiments, we found that the longer
the input text gets, the lower the performance the

model delivers.

What We Define as Hallucinations and Their
Constituents In our work, we used the term

“Hallucination” repeatedly to indicate any content
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Figure 8: More examples of Type-0, Type-1, and Type-5 generated explanations.

in an LLM-generated explanation that is not sup-
ported by and in some cases directly contradicts

the information in the question, the image, or any
retrieved knowledge provided as context. In other
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Figure 9: Examples showing difference between the LLAMA-3.1-8B generated Type 5 explanation and Florence
Finetuned Generated explanations Type 7

Figure 10: We report some instances where the LLM generates inaccurate Type-0 explanations (where ground truth
label was used). The visual and textual disconnects highlight the challenges LLMs face in reasoning, leading to
’hallucinations’ that stray away from the visual context in the image.

words, whenever the generated text introduces de-
tails (objects, events, attributes, etc.) that do not
appear in the image or are not logically inferable
from the question and any external knowledge, we
categorise those extraneous or fabricated details as
hallucinations.

A typical example would be in Fig. 10d when the
explanation states that the image contains “apples”

even though the visual data and object detections
show "no apples". This also includes instances
where the explanation confidently describes rela-
tionships or properties that are not depicted (e.g.,

“the dog is wearing a red collar” when no collar is
visible). These are hallucinated elements because
they are neither prompted by the data nor verifiable
through the available context.
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Dataset Knowledge Type Split Rougue-1 Rougue-2 Cumulative
1-gram

Cumulative
2-gram

Cumulative
3-gram

Cosine
Score

e-SNLI-VE

Explanations Train 24.35 5.97 13.20 6.31 3.88 49.98
Retrieved Fact Train 27.11 8.06 20.92 10.58 6.62 47.66

Explanations Val 25.79 6.43 14.50 6.85 4.20 50.36
Retrieved Fact Val 31.87 7.81 20.17 10.04 6.26 47.46

Explanations Test 25.95 6.54 14.50 6.85 4.17 50.50
Retrieved Fact Test 32.08 7.98 20.30 10.14 6.34 47.04

CRIC

Explanations Train 31.76 13.78 7.16 4.86 3.70 54.40
Retrieved Fact Train 80.34 69.99 75.52 69.57 63.16 80.33

Explanations Val 29.73 12.49 6.27 4.15 3.14 51.59
Retrieved Fact Val 80.85 70.34 75.99 69.95 63.52 81.37

Explanations Test 29.77 12.45 6.32 4.19 3.17 51.64
Retrieved Fact Test 80.95 70.51 76.06 70.05 63.64 81.49

AOKVQA

Explanations Train 49.29 27.86 39.88 29.55 23.45 65.31
Retrieved Fact Train 0.3263 8.05 19.47 9.59 5.96 43.86

Explanations Val 50.78 30.24 41.25 31.24 25.43 66.52
Retrieved Fact Val 33.56 8.81 20.32 10.15 6.27 45.09

Table 13: LLM-generated explanations outperform the retrieved facts in assisting the models in deriving correct
answers due to their relevant context, precision, and coherence. However, the retrieved facts, while being less
helpful for reasoning, yield higher BLEU & ROUGE scores than the generated explanations. This is attributed to
the nature of BLEU and ROUGE metrics– retrieved facts have more overlapping n-grams with the ground truth
than the generated explanations, even if they lack contextual relevance and depth.

Generating Type-5 Explanations with Various
Llama Versions Since Type-5 explanations are
the ones that worked best for our use case, as seen
in Table 1 and Table 2, we tried generating them
with smaller models from the Llama family, aside
from our primary Llama-3.1-8B model. We used
Llama-3.2-1B & 3B for this. We report the scores
in Table 14.

Ver B-1 B-2 R-1 R-2 R-L C

8B 31.08 22.77 46.30 24.63 42.78 63.08
3B 27.34 19.96 44.54 23.31 41.40 61.03
1B 23.10 16.76 39.60 20.07 35.60 55.87

Table 14: Quality of Type-5 explanations generated with
different Llama versions.

AOKVQA Scores for Various Type-K Explana-
tions We initially reported that deriving the Type-
5 explanation was most beneficial to our CRIC
dataset task. Table 15 reports the same score for
AOKVQA, indicating that Type-5 explanations per-
form the best irrespective of the dataset, both in
terms of capturing the visual context or guiding the
VQA models for better predictions.

I Training Parameters and Resources

We report the learning rate and number of epochs
below for the models we have used for VQA and
Retrieval tasks from the knowledge bases. We have
used a dual NVIDIA-A40 GPU system, each with
46 GB of memory, for all the experiments.

Given an image description, the task is
to generate an explanation based on the
following information.

Traditional-Caption-(TC):
traditionalcaptionI .
Dense Caption (DC): densecaptionI .
Region Caption (RC): regioncaptionI .
Objects (O): objectsI .
Question (Q): Q.
Retrieved Facts (RF): FI,Q.

You strictly need to produce a 15-20 word
single-line explanation to help VQA models
derive conclusions and nothing else. For-
bidden words: **"image description", "cap-
tions"**.
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Type Explanation B-1 B-2 B-3 R-1 R-2 R-L Cosine

Type-2 DC + Q + FI,Q 40.38 29.92 23.92 49.38 28.16 44.88 65.98
Type-3 RC + Q + FI,Q 34.76 25.94 20.66 43.27 24.50 40.07 50.88
Type-4 RC + O + Q + FI,Q 38.09 27.86 21.99 46.55 25.50 42.56 59.93
Type-5 DC + RC + O + Q + FI,Q 41.15 31.34 25.43 50.78 30.24 46.54 66.52
Type-6 DC + RC + O + Q 39.13 28.84 22.96 48.52 27.23 43.90 64.95
Type-7 I + < TP > 17.49 7.51 4.48 20.45 2.57 16.78 28.08

Table 15: Results from the val split of AOKVQA showing a comparison of BLEU, ROUGE, and Cosine Scores
(w.r.t. the GT explanation) for various types of explanations.

Architecture LR Batch Size #Epoch #Hours

ViLT 5e-5 32 6 15
VisualBERT 4e-5 32 6 14

FLAVA 4e-5 32 6 14.5
ColBERTv2 1e-4 32 4 3

Table 16: Hyperparameters for Finetuning tasks
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