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Abstract

While graph neural networks (GNNs) have
shown remarkable performance across diverse
graph-related tasks, their high-dimensional hid-
den representations render them black boxes.
In this work, we propose Graph Lingual Net-
work (GLN), a GNN built on large language
models (LLMs), with hidden representations
in the form of human-readable text. Through
careful prompt design, GLN incorporates not
only the message passing module of GNNs
but also advanced GNN techniques, including
graph attention and initial residual connection.
The comprehensibility of GLN’s hidden repre-
sentations enables an intuitive analysis of how
node representations change (1) across layers
and (2) under advanced GNN techniques, shed-
ding light on the inner workings of GNNs. Fur-
thermore, we demonstrate that GLN achieves
strong zero-shot performance on node classifi-
cation and link prediction, outperforming exist-
ing LLM-based baseline methods.

1 Introduction

Graph neural networks (GNNs) are designed to pro-
cess graph-structured data, and they have demon-
strated strong performance in various downstream
tasks such as node classification and link predic-
tion (Corso et al., 2024). A key to their success
lies in their message passing module, which up-
dates the representation of a node by aggregating
information from its neighbors (Hamilton, 2020).
However, the high-dimensional embeddings (i.e.,
vectorized representations) obtained via existing
GNNs are generally not comprehensible.

In this work, we propose GLN (Graph Lingual
Network), where an LLM is prompted to aggregate
neighbor information to update a node’s represen-
tation. Therefore, all hidden node representations
of GLN are human-readable texts. Moreover, we
propose a tailored LLM prompting framework in-
corporating advanced GNN techniques, specifically

graph attention (Veličković et al., 2018) and initial
residual connection (Chen et al., 2020).

Compared to existing GNNs, our GLN offers
several advantages. First, its hidden representations
are comprehensible and human-readable, since
they are text descriptions of nodes generated by the
LLM. Second, using an LLM as the message pass-
ing module enables GLN to solve graph-related
tasks in a zero-shot manner, without any training or
task labels. Third, GLN can be further prompted
to explain its decisions on graph-related tasks, fa-
cilitating human understanding of its reasoning.

Thanks to the comprehensibility of GLN’s hid-
den representations, we provide an intuitive analy-
sis regarding how the node representations change
(1) across GLN layers and (2) under advanced
GNN techniques. Drawing from this analysis, we
offer several key insights into the mechanisms un-
derlying GNN message passing and its advanced
techniques. Moreover, we demonstrate the zero-
shot capability of GLN on popular downstream
tasks (node classification and link prediction),
demonstrating its superiority over existing LLM-
based baseline methods. Code, datasets, and ex-
ample node representations generated by GLN are
in https://github.com/kswoo97/GLN-Code.

2 Related work and preliminaries

In this section, we cover related work and prelimi-
naries of our research.

2.1 Related work

Graph neural networks. In various graph-related
tasks, such as node classification and link predic-
tion, graph neural networks (GNNs) have achieved
strong performance (Luo et al., 2024). The core
module of a GNN involves message-passing, which
updates node representation by aggregating in-
formation from its neighboring nodes (Hamilton,
2020) (refer to Figure 1 (b) for an example). This
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Figure 1: Overview of general GNNs and our GLN. To obtain node A⃝’s representation in example graph (a), a
general 2-layer GNN first refines the representations of A⃝ and its one-hop neighbors, and then updates that of A⃝
again using these refined representations, as shown in (b). A similar mechanism is applied in GLN, as shown in (c),
but the aggregation functions and neural networks are replaced by an LLM with our prompt, illustrated in (d) - (f).

process is typically repeated across layers, enabling
a node’s representation at k−th layer to summarize
its k−hop neighbor information.

Several advanced techniques have been proposed
to enhance GNN message passing, notably graph
attention (Veličković et al., 2018) and initial resid-
ual connection (Chen et al., 2020). Graph attention
allows a GNN to learn the relative importance of
each neighbor during aggregation. Initial residual
connections help preserve original representations
(i.e., initial feature vectors) by injecting them into
each layer, mitigating their degradation by the re-
peated message passing.
Combining GNNs with LLMs. With the remark-
able performance of LLMs in a wide range of do-
mains (Chang et al., 2024), many studies have com-
bined them with GNNs to tackle various graph-
related tasks (Ren et al., 2024). Early works either
fine-tuned LLMs (Chen et al., 2024a) or fed LLM
outputs into GNNs during their training for graph-
related tasks (He et al., 2024), both incurring high
training costs. In contrast, several recent works
prompted LLMs to model GNNs’ operations with-
out further training (Chen et al., 2024b; Zhu et al.,
2025). Among them, Zhu et al. (2025) obtained
graph vocabulary for graph foundation models by
prompting LLMs to mimic the message-passing
modules of GNNs. Since their method does not
aim for user comprehension, the refined represen-
tations offer limited utility from a comprehension
perspective. Specifically, instead of enriching tex-
tual representations of nodes across layers, it tends
to merely enumerate neighbor information (see Ap-
pendix B.3 for further details).

2.2 Preliminaries

A graph G = {V, E} is defined by a node set V =
{v1, · · · , v|V|} and an edge set E = {e1, · · · , e|E|}.

Each edge ei ∈ E is defined by a pair of nodes (i.e.,
ei ∈

(V
2

)
), and node vi’s neighbor set Ni is defined

by a set of nodes linked to vi (i.e., Ni = {vj ∈
V : {vi, vj} ∈ E}). In this work, we consider a
text-attributed graph, where each node vi ∈ V is
associated with a text attribute D

(0)
i that describes

vi, which we call initial text attribute.

3 Proposed method: GLN

In this section, we introduce GLN (Graph Lingual
Network), a graph neural network where an LLM
serves as its message passing module. We first
give an overview of GLN (Sec. 3.1) and describe
our specialized prompt that incorporates GNNs’
advanced techniques (Sec. 3.2). Refer to Figure 1
for an overview of GLN.

3.1 Overview

At each layer, GLN refines the textual representa-
tion of each node by prompting an LLM to aggre-
gate information from the node’s neighbors. Specif-
ically, at layer ℓ, an LLM receives an input prompt
consisting of (1) the target node vi’s representa-
tion from the previous layer D

(ℓ−1)
i and (2) the

neighbor representations from the previous layer
{D(ℓ−1)

j : vj ∈ Ni} (the prompt design is detailed
in Sec. 3.2). 1 The LLM then outputs the refined
textual representation of vi, denoted as D(ℓ)

i , effec-
tively integrating the prior representations of both
the target node and its neighbors.

After L iterations, corresponding to the number
of GLN layers, we define the final representation
of node vi as the set of its intermediate embeddings
(i.e., {D(t)

i : t ∈ {0, 1, · · · , L}) 2 to capture di-
verse information about the node. Here, each layer

1Recall that D(0)
i is the vi’s initial text attribute (Sec. 2.2).

2Detailed representation format is in Appendix D.2.
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Its attention mechanism has been adapted and extended in 

various models to address challenges in tasks such as syntactic 

linearization, question answering, and dialogue systems […]

Further developments in neural machine translation and related 

fields have built upon the Transformer architecture, exploring its 

integration with other techniques to enhance performance […]

Recent research has further explored the integration of attention 

mechanisms with other neural architectures, such as convolutional 

and graph-based models, to improve tasks like video recognition […]

The model’s adaptability is further demonstrated in applications 

like sign language translation and visual question answering, where 

attention mechanisms facilitate the processing of complex inputs […]

Discuss applications in general NLP Discuss applications outside NLP

Discuss applications in NLP with emphasis on translation Discuss applications in multimodal NLP

Adding graph attention prompt Adding initial residual prompt

(a) Layer 1 output of GLN – Base

(c) Layer 1 output of (GLN – Base + Graph attention) (d) Layer 2 output of (GLN – Base + Initial residual connection)

(b) Layer 2 output of GLN – Base

Title: Attention Is All You Need

Abstract: […] We propose a new simple network architecture, the Transformer, based solely on attention mechanisms, […] 

Our model achieves 28.4 BLEU on the WMT 2014 English-to-German translation task, […] English-to-French translation task […]

Initial text attribute of the target paper

Introduce Transformer, an attention-operation-based model that achieves strong performance in translation.

Figure 2: Representations become more general across layers, are specialized to the target node through
graph attention, and retain target-specific information in higher layers through initial residual connections.
We present a case study on (Vaswani et al., 2017), showing GLN-Base’s representations of the paper at: (a) layer 1,
(b) layer 2, (c) layer 1 with a graph attention prompt, and (d) layer 2 with an initial residual connection prompt.

of a GNN captures a different level of information:
the earlier layers encode fine-grained, local features
from immediate neighbors, while the later layers
aggregate broader and more abstract information
from multi-hop neighbors (Xu et al., 2018).
3.2 Advanced techniques
GNN-style prompting. The key innovation of
GLN involves its prompt design, which determines
how the LLM aggregates neighbor information to
update the target node representation. For this, we
adopt two advanced GNN techniques: (1) graph
attention (Veličković et al., 2018) and (2) initial
residual connection (Chen et al., 2020) (refer to
Sec. 2.1 for their details). To implement graph
attention with an LLM, we design a prompt that
encourages the LLM to place greater emphasis on
neighbors that are more relevant to the target node
during aggregation; we refer to this as the graph
attention prompt (refer to Figure 1 (f)). 3 Similarly,
to implement initial residual connections, we in-
clude both the previous-layer output and the raw
attributes of each node in their descriptions; we re-
fer to this as the initial residual connection prompt
(refer to Figure 1 (e)). Details on our prompt design
and its alternatives are provided in Appendix D.1.
Token-efficient prompting. We can further im-
prove the efficiency of GLN by incorporating a
token-efficient prompting strategy that reduces in-
put and/or output tokens. Input tokens can be re-

3We provide further analysis on the effect of the graph
attention prompt in Appendix B.5.

duced by updating node representations with ran-
domly sampled neighbors rather than the full neigh-
borhood. Moreover, output tokens can be reduced
by instructing the LLM to follow a specific for-
mat, such as limiting the number of generated para-
graphs. In our experiments, we fix the number of
neighbor samples at 10 and limit the output to 2
paragraphs. Nevertheless, we validate that GLN re-
mains competitive even when fewer neighbor sam-
ples are used and when it is prompted to produce
shorter outputs, as detailed in Appendix B.6.

4 Analysis and experiments

In this section, we analyze representations obtained
by GLN and demonstrate its zero-shot capability
in several graph-related tasks.

4.1 Representation analysis

Setup. We conduct a case study of GLN repre-
sentation of an academic paper, (Vaswani et al.,
2017) (Figure 2), on the OGBN-arXiv citation net-
work dataset (Hu et al., 2020), where nodes and
edges represent papers and citations, respectively.
Additional examples from diverse domains (e.g.,
computer vision and graph learning) are in Ap-
pendix B.1. We extract layer-1 and layer-2 outputs
of GLN-Base, a GLN variant that omits graph
attention and initial residual connection prompts,
using GPT-4o to analyze the effect of the message
passing. To analyze the impact of the two GNN
techniques, we also extract the paper’s GLN repre-
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LLMs Methods Task: Node classification Task: Link prediction A.R.OGBN-Arxiv Book-History Wiki-CS OGBN-Arxiv Book-History Wiki-CS

G
PT

Direct 62.3 44.7 78.3 92.8 85.0 83.2 3.8
All-in-One 61.5 45.4 64.9 91.6 84.8 85.6 3.6
PromptGFM 62.0 44.1 79.0 92.2 81.2 81.0 4.2

GLN-Base 63.0 45.8 79.4 92.4 86.4 83.6 2.2
GLN 64.0 47.3 79.5 93.0 87.0 84.0 1.2

C
la

ud
e

Direct 65.8 48.4 76.6 78.0 65.2 41.2 3.2
All-in-One 67.1 50.4 76.4 72.8 53.6 38.6 3.7
PromptGFM 65.3 50.6 74.5 64.4 50.0 38.2 4.7

GLN-Base 67.1 53.8 77.0 78.2 61.2 42.4 2.2
GLN 67.4 55.2 77.7 78.4 64.0 43.2 1.2

Table 1: GLN outperforms the zero-shot LLM-based baselines on popular graph-related tasks. For node
classification and link prediction, we report accuracy and Hit-ratio@1, respectively, of each method in each dataset.
A.R. denotes average ranking. The best performance in each setting is highlighted in green .

sentation with the graph attention prompt and one
with the initial residual connection prompt.
Observation 1. The node representations become
more general across layers. As shown in Figure 2
(a) and (b), the layer-1 representation focuses on
how the attention operation is used in the NLP
domain. In the layer-2, the scope expands to appli-
cations of attention in computer vision and graph
learning. This shift across GLN layers suggests
that adding message-passing layers (i.e., incorpo-
rating information of the farther neighbors) makes
each node’s representation more general.
Observation 2. Graph attention tailors the neigh-
bor summary for the target node. As shown in Fig-
ure 2 (a) and (c), the paper representation obtained
from GLN-Base involves non-specific enumeration
of various NLP tasks. However, after applying the
graph attention prompt, the representation involves
the specific task addressed in the target paper. This
result suggests that graph attention encourages ag-
gregation toward neighbors that are more relevant
to the target paper.
Observation 3. Initial residual connection pre-
serves the target node information after message
passing. As shown in Figure 2 (c) and (d), the
representation obtained from GLN-Base describes
application of the attention operation outside NLP,
whereas the one obtained after applying the initial
residual prompt maintains its focus on the NLP
domain. This result suggests that the initial resid-
ual connection prompt preserves the target node’s
initial text attribute, encouraging its updated repre-
sentation to stay aligned with that context.
Observation 4. Observations 1-3 are validated via
LLM-as-a-judge protocol. We provide a quantita-
tive assessment of our observations. To this end,
we randomly sample 102 papers and extract the

Layer-2 outputs of 

GLN-Base

Layer-1 outputs of 

GLN-Base

Layer-1 outputs of 

GLN-Base + 

Graph attention

Layer-1 outputs of 

GLN-Base

Layer-2 outputs of 

GLN-Base + 

Initial residual connection

Layer-2 outputs of 

GLN-Base

Q) Which description 

offers a more tailored 

related work discussion 

for the target paper?

User

X-Axis: % 

of LLM 

selection

X-Axis: % 

of LLM 

selection

X-Axis: % 

of LLM 

selection

Q) Which description 

preserves more 

information about the 

target paper?

User

Q) Which description is 

more general?

User

Figure 3: Observations 1-3 hold valid under the LLM-
as-a-judge protocol. We report the ratio of LLM re-
sponses per category for each question.

four aforementioned representations for each. We
then prompt GPT-4o to validate our observation on
the representations, resulting in an evaluation con-
sistent with our observations, as shown in Figure 3.

4.2 Zero-shot capability analysis
Setup. We use two backbone LLMs (GPT-4o-
mini and Claude-3.0-Haiku) 4 and three real-world
graphs: a citation network (OGBN-arXiv), a co-
purchase network (Book-History), and a hyperlink
network (Wiki-CS), whose further details are in Ap-
pendix A. After obtaining the target node’s textual
representation using the proposed method and base-
lines, we input it into an LLM to perform node clas-
sification and edge prediction. Detailed prompts
for each task and further experimental details in
Appendices D.3 and C.1, respectively.

4In Appendix B.6, we present an analysis with a small
language model, showing competitive performance while of-
fering faster inference compared to larger LLMs.
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Baseline methods and GLN. We use four baseline
methods: (1) using only the initial text attribute
of the target node (Direct), (2) providing one-
hop and two-hop neighbors to the LLM to update
the target node’s representation (All-in-One), (3)
an existing text-attributed graph foundation model
(PromptGFM) (Zhu et al., 2025), and (4) a baseline
version of GLN (GLN-Base). For fair comparison,
all methods—including the baselines and GLN
—are equipped with the same backbone LLMs. Fur-
ther details regarding baselines and GLN are pro-
vided in Appendix C.2.
Results. GLN outperforms baseline methods in
10 out of 12 settings (Table 1), demonstrating its
effectiveness in zero-shot capability in node clas-
sification and link prediction. Two points stand
out: (1) GLN ’s superior performance over Direct
highlights the effectiveness of utilizing graph topol-
ogy, and (2) its gain over GLN-Base shows the
effectiveness of our advanced GNN-style prompts.
Further ablation study results are in Appendix B.4.
LLM Reasoning. We further analyze the LLM’s
reasoning behind its downstream task decisions
in Appendix B.2, highlighting which parts of the
textual representation contribute to performance.

5 Conclusion

In this work, we propose GLN, a GNN that uses
an LLM as its message passing module (Sec. 3).
Leveraging the comprehensibility of its hidden
representations, we provide intuitive insights into
message passing and advanced GNN techniques
(Sec. 4.1). Moreover, GLN outperforms baselines
on zero-shot graph-related tasks (Sec. 4.2).

Limitations

Theoretical property. Various theoretical proper-
ties of GNNs, such as expressivity (Xu et al., 2019)
and permutation invariance (Keriven and Peyré,
2019), have been widely studied. Such analyses
rely on certain theoretical properties of the neigh-
bor aggregation functions used in GNNs. However,
since GLN employs an LLM as its aggregation
function, deriving the analogous properties is chal-
lenging. Thus, the theoretical properties of GLN
remain underexplored in this work and can be a
promising direction for future work.

Computational efficiency compared to GNNs.
Due to the usage of a large language model, GLN
has significantly more parameters than general
GNNs, which return vectorized node representa-

tions. Therefore, exploring scaled-up versions of
GLN can be a promising direction for future work.

LLM API cost. We used LLM APIs (specifically,
GPT-4o, GPT-4o-mini, and Claude-3.0-Haiku), in-
curring a total cost of approximately $600 for this
research. This may hinder broader accessibility and
practical use in budget-constrained environments.
While GLN incorporates token-efficient prompting
(Sec. 3.2), enhancing token-efficiency further may
extend the applicability of our approach.

Extensions to various graph types. In this work,
we focus on text-attributed graphs (TAGs), where
(1) each node is associated with a text attribute
and (2) each edge represents a relation between
two nodes. However, many real-world graphs go
beyond text attributes or pairwise relations. Specif-
ically, these include (1) non-text-attributed graphs,
such as sensor networks with numerical node fea-
tures (Jabłoński, 2017), and (2) higher-order rela-
tions among multiple nodes, typically modeled as
hypergraphs (Kim et al., 2024c,a). Thus, extending
GLN to support such graph types can improve its
application to a broader set of real-world scenarios.

Noisy node text attributes. In this work, we use
the TAG benchmark datasets in which node at-
tributes have been carefully preprocessed by their
original curators. However, real-world node text
attributes often contain noise (e.g., low-quality re-
views in co-purchase networks), which can harm
GNN performance (Yan et al., 2023). Our prelimi-
nary analysis also shows that GLN suffers perfor-
mance degradation when noise is introduced into
the input node attributes (see Appendix B.7). Thus,
incorporating text denoising into GLN can improve
its practicality in cases with noisy node attributes.
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A Dataset details

In this appendix section, we provide details regard-
ing the datasets used in this work. The detailed
statistics of each dataset is provided in Table 2.
OGBN-Arxiv (Hu et al., 2020) is a citation net-
work that represents the citation relations between
papers. In this dataset, each node corresponds to
a particular paper, and edges join the papers that
cite or are cited by the corresponding paper. The
attributes of a node correspond to the title and ab-
stract of the corresponding node (paper). The class
of a node corresponds to the arXiv category to
which the corresponding node (paper) belongs.
Book-History (Yan et al., 2023) is a co-purchase
network that represents the co-purchase relations
among books. In this dataset, each node corre-
sponds to a particular book, and edges join the
books that are frequently co-purchased together
with the corresponding book. The attributes of a
node correspond to the description of the corre-
sponding node (book). The class of a node corre-
sponds to the Amazon third-level category to which
the corresponding node (book) belongs.
Wiki-CS (Mernyei and Cangea, 2020) is a hyper-
link network that represents the hyperlink relations
among Wikipedia web pages. In this dataset, each
node corresponds to a particular Wikipedia web
page, and edges join the pages that are either hyper-
linked to or from the corresponding page. The at-

tributes of a node correspond to the content within
the corresponding node (web page). The class of
a node corresponds to the Wikipedia category to
which the corresponding node (web page) belongs.

B Additional analysis

In this appendix section, we provide additional ex-
perimental results that are omitted from the main
section due to space constraints. Specifically, we
present two types of case studies: Case studies ana-
lyzing representations of GLN in various domains
(Appendix B.1) and case studies analyzing the rea-
soning of GLN on downstream graph-related tasks
(Appendix B.2).

B.1 Representation analysis
We analyze the three popular papers from the three
different domains:

• Natural language processing (NLP): ELMo, a
pre-trained language model (Peters et al., 2018)

• Computer vision (CV): Pix2Pix, an image trans-
lation generative model (Isola et al., 2017)

• Graph representation learning (GRL): Graph-
SAGE, an inductive graph neural network
model (Hamilton et al., 2017)

NLP Paper: ELMo. The case study result for
ELMo (Peters et al., 2018) is presented in Figure 4.
Below, we analyze whether the observations in
Section 4.1 are valid in (Peters et al., 2018).

• Observation 1. As shown in Figure 4 (a) and (b),
the layer-1 output focuses on the applications
of context learning in NLP, while the layer-2
output extends to applications beyond NLP, such
as scene graph generation and object detection.
This result suggests that the representation gets
more general across layers.

• Observation 2. As shown in Figure 4 (a) and (c),
the output without the graph attention prompt
lists applications of context learning in NLP,
whereas the output with the prompt focuses on
the integration of contextualized embeddings
with additional features—a technique empha-
sized in the target paper. This result suggests
that the representation gets specialized with the
graph attention prompt.

• Observation 3. As shown in Figure 4 (b) and
(d), the output without the initial residual connec-
tion prompt discusses the applications of context
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Our work contributes to the growing body of research that 

emphasizes the importance of context and model flexibility in 

achieving state-of-the-art results in NLP […]

The integration of visual and textual features, as well as the use 

of attention mechanisms to capture relevant contextual signals, 

highlights the growing trend of leveraging context to improve model 

robustness and performance […]

By incorporating contextual cues, models can achieve more 

accurate and coherent interpretations, as seen in advancements in 

scene graph generation and object detection […]

Incorporating insights from related works, our approach resonates 

with the broader trend of leveraging deep learning architectures to 

enhance language understanding […]

Discuss applications in general NLP Discuss applications outside NLP

Discuss extensions for integration with other models Discuss extensions for better NLP performance

Adding graph attention prompt Adding initial residual prompt

(a) Layer 1 output of GLN – Base

(c) Layer 1 output of (GLN – Base + Graph attention) (d) Layer 2 output of (GLN – Base + Initial residual connection)

(b) Layer 2 output of GLN – Base

Title: Deep contextualized word representations

Abstract: We introduce a new type of deep contextualized work representations that models both complex characteristics of word […]

We show that these representations can be easily added to existing models and significantly improve the state of the art across […]

Initial text attribute of the target paper

Introduce ELMo, context-aware word embeddings obtained from a pre-trained deep bi-directional LSTM model.

Figure 4: A case study on (Peters et al., 2018), showing GLN-Base’s representations of the paper at: (a) layer 1, (b)
layer 2, (c) layer 1 with a graph attention prompt, and (d) layer 2 with an initial residual connection prompt.

The target paper's approach aligns with advancements in 

generative adversarial networks (GANs) that emphasize diversity, 

efficiency, and disentanglement in image generation […]

Subsequent research has expanded on the foundational 

concepts of the target paper by introducing novel architectures 

and methodologies that address specific challenges in image 

translation [...] 

The target paper’s approach is further enriched by 

advancements in generative models that emphasize diversity, 

efficiency, and interpretability […]

The target paper's methodology is further enriched by integrating 

concepts from recent advancements in GAN-based frameworks, 

which have been applied to tasks such as multi-input image 

translation, video-to-video translation […]

Discuss applications in image generation Discuss applications in general-purpose generative models

Discuss applications in image generation with emphasis on 

image translation
Discuss applications in generative models for computer vision

Adding graph attention prompt Adding initial residual prompt

(a) Layer 1 output of GLN – Base

(c) Layer 1 output of (GLN – Base + Graph attention) (d) Layer 2 output of (GLN – Base + Initial residual connection)

(b) Layer 2 output of GLN – Base

Title: Image-to-Image Translation with Conditional Adversarial Networks

Abstract: We investigate conditional adversarial networks as general-purpose solution to image-to-image translation problems. […]

Indeed, since the release of pix2pix software associated with this paper, a large number of internet users […]

Initial text attribute of the target paper

Introduce Pix2Pix, a condition-generative-adversarial-network-based image translation model.

Figure 5: A case study on (Isola et al., 2017), showing GLN-Base’s representations of the paper at: (a) layer 1, (b)
layer 2, (c) layer 1 with a graph attention prompt, and (d) layer 2 with an initial residual connection prompt.

learning in various domains, while that with the
initial residual connection prompt focuses on the
architectural progress in NLP, domain where the
target paper belongs to. This result suggests that
the initial residual connection prompt helps main-
tain the information provided from the initial text
attribute.

In summary, our analysis result suggests that the
observations in Section 4.1 are still valid in (Peters
et al., 2018).

CV Paper: Pix2Pix. The case study result for
Pix2Pix (Isola et al., 2017) is presented in Figure 5.
Below, we analyze whether the observations in
Section 4.1 are valid in (Isola et al., 2017).

• Observation 1. As shown in Figure 5 (a) and (b),
the layer-1 output focuses on the extensions of
pix2pix in image generation, while the layer-2
output discusses its extensions for general gener-
ative models, without targeting specific domain.
This result suggests that the representation gets
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The framework aligns with recent advancements in graph neural 

networks and representation learning, which emphasize the 

importance of capturing both local and global graph structures […]

The framework's ability to generalize to unseen graphs 

is further supported by methodologies that focus on scalable and 

efficient graph processing, such as sub-graph training and adaptive 

receptive fields […]

Recent advancements in graph neural networks have expanded 

the capabilities of frameworks like GraphSAGE by addressing 

challenges such as model compression, anomaly detection, and the 

incorporation of hierarchical structures […]

The development of GraphSAGE is further extended to the 

exploration of graph embeddings and their applications across 

various domains, such as social networks, molecular graphs, and 

knowledge graphs […]

Discuss extensions for GNNs Discuss extensions across diverse tasks

Discuss extensions for scalable GNNs Discuss extensions to diverse graph types

Adding graph attention prompt Adding initial residual prompt

(a) Layer 1 output of GLN – Base

(c) Layer 1 output of (GLN – Base + Graph attention) (d) Layer 2 output of (GLN – Base + Initial residual connection)

(b) Layer 2 output of GLN – Base

Title: Inductive representation learning on large graphs

Abstract: Here we present GraphSAGE, a general inductive framework that leverages node feature information […]

We learn a function that generates embeddings by sampling and aggregating features from a node’s local neighborhood […]

Initial text attribute of the target paper

Introduce GraphSAGE, an inductive GNN designed for large-scale graphs.

Figure 6: A case study on (Hamilton et al., 2017), showing GLN-Base’s representations of the paper at: (a) layer 1,
(b) layer 2, (c) layer 1 with a graph attention prompt, and (d) layer 2 with an initial residual connection prompt.

Target node: Once-for-All: Train One Network and Specialize it for Efficient Deployment

arXiv Paper category: Machine learning

Input type LLM Prediction

Using only the initial text attribute of the target node Neural and evolutionary computing

Using the GLN’s representation of the target node Machine learning

LLM Reasoning

Prediction results

Target 

node
AdaBits: Neural Network 

Quantization with 

Adaptive Bit-Widths

Papers that cite or are 

cited by the target node

Neural Architecture 

Search with 

Reinforcement Learning

…

Q) Provide the predicted category 

and justify your decision by 

highlighting the part of the input 

that influenced your reasoning.

Key parts of the input supporting this choice:

- “efficient deep learning deployment”

- “neural architecture search”

- “train a once-for-all network (OFA)”

- “sub-networks”

- “adaptive bit-widths and slimmable architectures”

- “sustainable deep learning practices”

Universally Slimmable

Networks and Improved 

Training Techniques

Figure 7: A case study on (Cai et al., 2020), showing LLM’s reasoning for its downstream task decision. While an
LLM misclassified the target node when only using the node attributes, it correctly classifies the target node by
using information obtained from the target node’s neighbors.

more general across layers.

• Observation 2. As shown in Figure 5 (a) and (c),
the output without the graph attention prompt
covers image generation, whereas the output
with the prompt focuses on the image transla-
tion within image generation, a task the target
paper focuses on. This result suggests that the
representation gets specialized with the graph
attention prompt.

• Observation 3. As shown in Figure 5 (b) and

(d), the output without the initial residual con-
nection prompt discusses the general generative
models, while that with the initial residual con-
nection prompt focuses on the generative models
for computer vision, which is the key domain the
target paper belongs to. This result suggests that
the initial residual connection prompt helps main-
tain the information provided from the initial text
attribute.

In summary, our analysis result suggests that the
observations in Section 4.1 are still valid in (Isola
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Target node: Age-Delay Tradeoffs in Queueing  Systems

arXiv Paper category: Networking and Internet Architecture

Input type LLM Prediction

Using only the initial text attribute of the target node Performance

Using the GLN’s representation of the target node Networking and Internet Architecture

LLM Reasoning

Prediction results

Target 

node
On Delay Optimal 

Scheduling in Queueing 

Systems with Replications

Papers that cite or are 

cited by the target node

Age of Information for 

Discrete Time Queues

…

Q) Provide the predicted category 

and justify your decision by 

highlighting the part of the input 

that influenced your reasoning.

Key parts of the input supporting this choice:

- “age of information (AoI)”

- “queueing models on AoI”

- “scheduling – the order in which the packets”

- “simple scheduling policies”

- “balance the competing objectives of minimizing both 

age and delay”

Can Determinacy 

Minimize Age of 

Information?

Figure 8: A case study on (Talak and Modiano, 2020), showing LLM’s reasoning for its downstream task decision.
While an LLM misclassified the target node when only using the node attributes, it correctly classifies the target
node by using information obtained from the target node’s neighbors.

et al., 2017).
GRL Paper: GraphSAGE. The case study re-
sult for GraphSAGE (Hamilton et al., 2017) is pre-
sented in Figure 6. Below, we analyze whether the
observations in Section 4.1 are valid in (Hamilton
et al., 2017).

• Observation 1. As shown in Figure 6 (a) and (b),
the layer-1 output focuses on the extensions of
GraphSAGE for graph neural networks, while
the layer-2 output covers the diverse applications
of GraphSAGE, such as model compression and
anomaly detection. This result suggests that the
representation gets more general across layers.

• Observation 2. As shown in Figure 6 (a) and (c),
the output without the graph attention prompt
covers the extensions of GraphSAGE for general-
purpose GNNs, while that with the prompt fo-
cuses on the inductive and/or scalable GNNs,
which are key characteristics of GraphSAGE.
This result suggests that the representation gets
specialized with the graph attention prompt.

• Observation 3. As shown in Figure 6 (b) and
(d), the output without the initial residual connec-
tion prompt discusses GraphSAGE applications
across various tasks, whereas the output with the
prompt emphasizes its use with different graph
types, aligning with the target paper’s broader
focus on graph representation learning. This re-
sult suggests that the initial residual connection

prompt helps maintain the information provided
from the initial text attribute.

In summary, our analysis result suggests that the
observations in Section 4.1 are still valid in (Hamil-
ton et al., 2017).

B.2 Reasoning analysis

As noted in Section 1, textual representations allow
an LLM to reason about its downstream task deci-
sions. In this section, we present case studies on
two papers in the arXiv dataset where using only
the initial text attribute results in misclassification,
while using the representation from GLN yields
correct classification.
Case study 1. The first case is about (Cai et al.,
2020). As shown in Figure 7, the LLM misclassi-
fies the target node when relying solely on its initial
textual attributes (title and abstract) but correctly
classifies it when using the representation from
GLN, where the correct label is ’machine learn-
ing‘. Notably, the LLM explicitly references terms
from neighboring nodes (e.g., neural architecture
search, slimmable networks) that are closely asso-
ciated with the machine learning’ category. This
reasoning result suggests that integrating neighbor
information can improve node classification perfor-
mance, and GLN effectively represents it.
Case study 2. The second case is about (Talak and
Modiano, 2020). As shown in Figure 7, the LLM
misclassifies the target node when relying solely
on its initial text attributes (title and abstract) but
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Layer 1 output of PromptGFM (baseline) Layer 1 output of GLN (Ours)

The central node, titled "Image to Image Translation with Conditional Adversarial Networks," explores 

the use of conditional adversarial networks as a versatile solution for various image-to-image 

translation tasks. This approach not only learns the mapping from input to output images but also the 

loss function necessary for training, allowing for a unified method across diverse applications. The 

release of the associated pix2pix software has demonstrated its wide applicability and ease of use, 

particularly among artists who have experimented with the system without needing extensive 

parameter adjustments.

The selected one-hop neighbors expand on this by exploring related applications and methodologies 

in the domain of generative adversarial networks (GANs) and image translation:

1. **Single Image Haze Removal Using a GAN**: Utilizes a conditional GAN to remove haze from 

images without estimating transmission maps, highlighting the efficiency of GANs in image restoration 

tasks.

2. **Background Matting**: Modifies AlphaGan to incorporate background information for improved 

alpha matting, demonstrating the adaptability of GANs in image compositing.

3. **DeepCloud for Design**: Applies generative models to design, showcasing the potential of GANs 

in creative fields beyond traditional image processing.

4. **Composable Unpaired Image-to-Image Translation**: Extends image translation to handle 

multiple distributions, emphasizing the scalability and flexibility of GAN-based models.

5. **Semantic Deep Intermodal Feature Transfer**: Focuses on transferring features between RGB 

and thermal images, illustrating the capability of GANs in cross-modal applications.

6. **Unsupervised Image-to-Image Translation Using Variational Information Bound**: Addresses the 

challenge of translating unpaired images from different domains, enhancing the diversity and 

applicability of translation models.

7. **Improving Skin Lesion Segmentation**: Leverages GANs for data augmentation to enhance 

medical image segmentation, indicating the clinical potential of adversarial learning.

8. **Learning Landmarks from Unaligned Data**: Utilizes image translation for landmark detection, 

further demonstrating the versatility of GANs in feature extraction tasks.

9. **Triple Generative Adversarial Networks**: Introduces a three-player GAN model for improved 

image generation and classification, showcasing advancements in GAN architecture.

10. **Landmark Assisted CycleGAN for Cartoon Face Generation**: Enhances CycleGAN with 

landmark consistency for high-quality cartoon face generation, emphasizing structural consistency in 

image translation.

11. **Deep Illumination**: Uses GANs for real-time global illumination approximation, bridging the gap 

between traditional graphics and neural rendering.

12. **GANs for Extreme Learned Image Compression**: Proposes a GAN-based framework for 

efficient image compression, highlighting the role of GANs in data-efficient applications.

13. **Deep Feature Consistent Image Transformations**: Unifies various image processing tasks 

under a deep learning framework, demonstrating the broad applicability of deep networks.

14. **De-Raining for Image Restoration**: Develops methods for removing rain effects from images, 

showcasing GANs in environmental condition adaptation.

15. **Motion and Appearance Transfer**: Explores the transfer of human motion and appearance 

between videos, illustrating GANs in dynamic content generation.

16. **Adversarial Networks for Text-to-Image Synthesis**: Surveys GAN-based methods for 

generating images from textual descriptions, highlighting advancements in semantic image synthesis.

17. **Domain Adaptation with GANs**: Addresses domain shift issues in semantic segmentation using 

GANs, emphasizing their role in domain adaptation.

18. **Video Retargeting with RecycleGAN**: Introduces video retargeting techniques using GANs, 

showcasing their application in video content transformation.

19. **OpenGAN for Open Set Generation**: Proposes an open set GAN architecture for generating 

semantically similar images, demonstrating GANs' potential in novel class generation.

20. **CompoNet for Part Synthesis and Composition**: Focuses on generating diverse shapes by 

synthesizing and composing parts, enhancing the creativity of generative models.

21. **Deferred Neural Rendering**: Combines traditional graphics with neural components for photo-

realistic rendering, bridging the gap between 3D content and neural networks.

22. **Disentangling Motion and Appearance in Video Generation**: Proposes a GAN architecture for 

separating motion and appearance in video generation, improving realism in dynamic content.

23. **Semi-Parametric Object Synthesis**: Utilizes a semi-parametric approach for novel view 

synthesis, showcasing the integration of traditional and neural methods.

24. **Synthetic Video Generation for Gesture Recognition**: Introduces a framework for generating 

labeled videos for gesture recognition, emphasizing GANs' role in data augmentation.

25. **Virtual Try-On with M2E-Try On Net**: Develops a virtual try-on network for clothing transfer, 

illustrating GANs' application in fashion and retail.

26. **On-the-Fly Fine-Grained Sketch-Based Image Retrieval**: Proposes a framework for efficient 

image retrieval using sketches, highlighting GANs' potential in interactive applications.

The target paper explores the use of conditional adversarial networks for image-to-image translation, 

providing a versatile framework that learns both the mapping from input to output images and the loss 

function for training this mapping. This approach has been widely adopted due to its ability to handle 

diverse tasks such as photo synthesis from label maps, object reconstruction from edge maps, and 

image colorization without the need for hand-engineered loss functions. The methodology has 

inspired further research into enhancing image translation capabilities, including the integration of 

stochastic elements to improve diversity and sampling efficiency, as well as the development of multi-

modal and multi-domain translation techniques that leverage adversarial learning for improved image 

quality and control over outputs.

Subsequent research has expanded on the foundational concepts of the target paper by introducing 

novel architectures and methodologies that address specific challenges in image translation. These 

include advancements in unsupervised and semi-supervised learning settings, enabling translation 

across multiple domains and modalities without paired data. Techniques such as disentangled 

representation learning and attention mechanisms have been employed to enhance the control and 

precision of image transformations, while adversarial frameworks have been adapted for tasks 

beyond image translation, such as video-to-video translation and domain-invariant training. These 

developments underscore the broad applicability and ongoing evolution of adversarial networks in the 

field of image synthesis and transformation.

Figure 9: A case study on (Isola et al., 2017). While PromptGFM outputs a straightforward list of citing and cited
papers, GLN offers a comprehensible and succinct summary of those closely related to the target paper.

correctly classifies it when using the representation
from GLN, where the correct label is ‘networking
and internet architecture’. Notably, the LLM ex-
plicitly references terms from neighboring nodes
(e.g., age of information, scheduling, and queue-
ing) that are closely associated with the networking
and internet architecture category. This reasoning
result suggests that integrating neighbor informa-
tion can improve node classification performance,
and GLN effectively represents it.

B.3 Comparison with PromptGFM

Recall that we briefly discussed the compari-
son between the outputs of GLN and that of
PromptGFM (Zhu et al., 2025), which is a baseline
method (Section 2.1). In this section, we provide
a detailed case study that compares (1) the repre-
sentations obtained via PromptGFM and (2) those
obtained via GLN.
Setup. To this end, we present the first-layer out-
puts of PromptGFM and GLN for three papers from
different domains within the arXiv citation network:
(Isola et al., 2017) (CV), (Vaswani et al., 2017)
(NLP), and (Hamilton et al., 2017) (GRL). We use
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Layer 1 output of PromptGFM (baseline) Layer 1 output of GLN (Ours)

The central node, "Attention is All You Need," introduces the Transformer architecture, which relies 

solely on attention mechanisms, eliminating the need for recurrence and convolutions. This model 

demonstrates superior performance in machine translation tasks, achieving state-of-the-art BLEU 

scores with enhanced parallelization and reduced training time. The Transformer also generalizes well 

to other tasks, such as English constituency parsing.

The selected one-hop neighbors expand on the central theme of attention mechanisms and their 

applications across various domains:

1. **Pre-trained Language Models and Grammar Induction**: Explores how pre-trained language 

models capture syntactic structures, particularly constituency, without additional training, highlighting 

their effectiveness in demarcating adverb phrases.

2. **Layer Normalization**: Introduces RMSNorm, a computationally efficient alternative to LayerNorm, 

which stabilizes training and boosts convergence in neural networks.

3. **Emotional Narratives and Multimodal Emotion Recognition**: Demonstrates the application of 

attention mechanisms, particularly the Transformer, in predicting emotional valence in multimodal 

time-series data.

4. **Unstructured Mortality Prediction**: Utilizes a hierarchical architecture combining convolutional 

and recurrent layers to enhance mortality prediction using unstructured clinical notes.

5. **Anomaly Detection**: Proposes a method combining Adversarial Autoencoder and RNN with 

attention mechanisms for anomaly detection in high-dimensional, time-evolving categorical data.

6. **Machine Learning in Python**: Discusses the role of deep neural networks and attention 

mechanisms in advancing machine learning and artificial intelligence, emphasizing Python's 

significance in the field.

7. **Sign Language Translation**: Addresses the challenges in sign language translation, proposing 

semi-supervised tokenization approaches to improve translation accuracy.

8. **Adverb Learning from Videos**: Presents a method for learning adverb representations from 

instructional videos using attention mechanisms to enhance action recognition.

9. **Visual Question Answering**: Enhances VQA by leveraging improved feature extractors and 

attention mechanisms to boost performance.

10. **Commonsense Story Generation**: Utilizes knowledge-enhanced pretraining models to 

generate coherent and logical stories, addressing challenges in associating relevant commonsense 

knowledge.

11. **Domain Adaptation**: Focuses on unsupervised domain adaptation using attention mechanisms 

to improve classifier performance by emphasizing probabilistic certainty in image regions.

12. **Intent Classification and Slot Labeling**: Proposes modular frameworks and attention-based 

models for efficient and accurate intent classification and slot labeling in dialogue systems.

13. **Visual Storytelling**: Introduces a hide-and-tell model using.

The Transformer model, as proposed in the target paper, revolutionizes sequence transduction by 

relying solely on attention mechanisms, eliminating the need for recurrent or convolutional neural 

networks. This architecture has demonstrated superior performance in machine translation tasks, 

achieving state-of-the-art BLEU scores with significantly reduced training time and enhanced 

parallelism. The model's versatility extends beyond translation, as it has been successfully applied to 

tasks like English constituency parsing, showcasing its ability to generalize across different domains. 

The Transformer’s attention mechanism has inspired various advancements in natural language 

processing, including improvements in zero pronoun prediction, emotion cause extraction, and low-

resource named entity recognition, by leveraging its ability to capture complex dependencies and 

contextual information.

Further developments in neural machine translation and related fields have built upon the Transformer 

architecture, exploring its integration with other techniques to enhance performance. For instance, 

combining attention mechanisms with convolutional networks has led to improved program repair and 

image captioning, while the use of hierarchical networks has advanced tasks like emotion cause 

extraction. The Transformer’s influence is also evident in the exploration of dynamic vocabularies for 

multilingual translation and the application of attention-based models in diverse areas such as irony 

detection and electronic health records analysis. These innovations underscore the Transformer’s 

foundational role in advancing the capabilities of neural networks in processing and understanding 

complex data structures.

Figure 10: A case study on (Vaswani et al., 2017). While PromptGFM outputs a straightforward list of citing and
cited papers, GLN offers a comprehensible and succinct summary of those closely related to the target paper.

Layer 1 output of PromptGFM (baseline) Layer 1 output of GLN (Ours)

The central node, titled "Inductive Representation Learning on Large Graphs," introduces GraphSAGE, 

a framework designed for generating node embeddings in large graphs, particularly focusing on 

unseen nodes. GraphSAGE leverages node feature information to create embeddings by sampling 

and aggregating features from a node's local neighborhood, offering an inductive approach that 

contrasts with traditional transductive methods which require all nodes to be present during training.

The selected one-hop neighbor nodes share a thematic focus on graph representation learning, graph 

neural networks, and embedding techniques, each contributing unique perspectives and 

methodologies to the field:

1. "Learning Convolutional Neural Networks for Graphs" discusses frameworks for applying CNNs to 

arbitrary graphs, emphasizing the extraction of locally connected regions and efficient computation, 

akin to image-based CNNs.

2. "From Community to Role Based Graph Embeddings" explores the distinction between roles and 

communities in graph embeddings, clarifying mechanisms like random walks and feature diffusion that 

underpin these embeddings.

3. "Discriminative Embeddings of Latent Variable Models for Structured Data" presents structure2vec, 

a scalable approach for structured data representation, highlighting its efficiency and state-of-the-art 

performance in large data applications.

4. "Spectral Networks and Locally Connected Networks on Graphs" proposes generalizations of 

CNNs for graph-based signals, leveraging hierarchical clustering and graph Laplacian spectra for 

efficient learning.

5. "Learning Representations of Graph Data: A Survey" provides a comprehensive overview of graph 

representation learning methods, including kernel, convolutional, graph neural networks, embedding, 

and probabilistic approaches.

6. "Gated Graph Sequence Neural Networks" extends Graph Neural Networks with gated recurrent 

units for sequence outputs, demonstrating state-of-the-art performance in graph-structured data tasks.

7. "Learning Structural Node Embeddings via Diffusion Wavelets" introduces GraphWave, which uses 

heat wavelet diffusion patterns for unsupervised node embedding, capturing structural roles in 

networks effectively.

8. "Revisiting Semi-Supervised Learning with Graph Embeddings" offers a semi-supervised 

framework using graph embeddings for class label prediction, applicable in both transductive and 

inductive settings.

These neighbor nodes collectively enhance the central node by providing diverse methodologies and 

applications within the realm of graph representation learning, emphasizing the versatility and 

scalability of graph-based neural network models and embedding techniques across various domains.

GraphSAGE is an inductive framework designed to generate node embeddings for large graphs, 

addressing the limitations of transductive methods that require all nodes to be present during training. 

By leveraging node feature information and sampling from a node's local neighborhood, GraphSAGE 

efficiently creates embeddings for unseen nodes, outperforming strong baselines on inductive node-

classification benchmarks. This approach aligns with recent advancements in graph neural networks 

and embedding techniques, which emphasize the importance of learning representations that capture 

both local and global graph structures. Techniques such as convolutional neural networks for graphs 

and feature propagation methods have demonstrated the effectiveness of using local neighborhood 

information to enhance the learning of graph representations, which is a core principle of GraphSAGE.

The framework's ability to generalize to unseen graphs is further supported by methodologies that 

focus on scalable and efficient graph processing, such as sub-graph training and adaptive receptive 

fields. These methods ensure that the embeddings capture diverse connectivity patterns and 

structural roles within the graph, similar to the objectives of GraphSAGE. Additionally, the integration 

of attention mechanisms and hierarchical structures in graph neural networks highlights the potential 

for GraphSAGE to incorporate more complex node and edge attributes, enhancing its applicability 

across various domains. The emphasis on scalability and adaptability in these approaches 

underscores the significance of GraphSAGE's contribution to inductive representation learning on 

large graphs, particularly in dynamic and evolving datasets.

Figure 11: A case study on (Hamilton et al., 2017). While PromptGFM outputs a straightforward list of citing and
cited papers, GLN offers a comprehensible and succinct summary of those closely related to the target paper.

GPT-4o as the backbone LLM for both methods.

Results. In short, the output of GLN is more com-
prehensible and well-structured, whereas that of

PromptGFM is limited in its utility from a user com-
prehension perspective. Specifically, as shown in
Figure 9, representations from PromptGFM list brief
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summaries of papers that cite or are cited by the
target paper (Isola et al., 2017). In contrast, GLN
returns a concise and focused summary of the tar-
get node’s neighbors, highlighting how generative
adversarial networks (GANs) are applied to image
translation tasks and further developed.

Similar results are shown in the outputs for
(Vaswani et al., 2017) and (Hamilton et al., 2017),
as shown in Figure 10 and Figure 11, respectively.
These results suggest that GLN yields clearer,
better-structured outputs, whereas PromptGFM’s are
far less useful for user comprehension.
Potential reasons. We hypothesize that the dif-
ferences in user comprehensibility primarily arise
from the specific task assigned to the LLM. Specif-
ically, PromptGFM prompts an LLM to ‘aggregate
neighbor nodes and update a concise yet mean-
ingful representation for the central node’. This
prompt likely leads the LLM to focus heavily on
aggregating neighbor information, resulting in a
mere enumeration of the target node’s neighbors.

In contrast, in GLN, we prompt an LLM to re-
fine the target node’s description by incorporating
its neighbor information. This guides the LLM to
center its attention on the target node and produce
a target-node-centric summary of its neighbors, im-
proving the user comprehensibility of the output.

B.4 Ablation study
In this section, we provide further ablation studies
of GLN: demonstrating whether each (1) graph
attention prompt and (2) initial residual connection
prompt is effective for the downstream task.

As shown in Table 3, GLN —which incorporates
both graph attention and initial residual connection
prompts—outperforms all three variants that omit
either or both prompts. This result suggests that
the two advanced GNN-style prompts are essential
for good downstream task performance.

B.5 Analysis of the graph attention prompt
In this section, we provide an in-depth analysis re-
garding the effect of the graph attention prompt,
which is used in GLN. Recall that our key intuition
behind the graph attention prompt is to instruct the
LLM to focus on the relevant neighbors of the tar-
get node. To validate this, we corrupt each node’s
neighborhood by injecting random neighbors and
examine whether the graph attention prompt helps
GLN maintain performance under such neighbor
corruption. Specifically, for each node, we sam-
ple 7 of its ground-truth neighbors and add 3

G.A. I.R.C. OGBN-arXiv Book-History
Node. Link. Node. Link.

✗ ✗ 63.0 92.4 45.8 86.4
✓ ✗ 62.8 92.4 47.0 86.6
✗ ✓ 63.5 92.2 46.7 86.4
✓ ✓ 64.0 93.0 47.3 87.0

Table 3: Graph attention prompt and initial residual
connection prompt are essential for strong perfor-
mance. Ablation study result of GLN. G.A. and I.R.C.
denote the graph attention prompt and the initial resid-
ual prompt connection prompt, respectively. In addition,
Node. and Link. denote node classification and link
prediction, respectively. The best performance in each
setting is highlighted in bold.

Models OGBN-arXiv Wiki-CS

GLN orig. 77.5 82.5
GLN w/o GA 75.5 79.0
GLN w/ GA 76.5 81.5

Table 4: Graph attention prompt helps GLN to main-
tain its performance under edge corruption. The
node classification performance comparison under input
noise. GLN w/o GA and w/ GA indicate the GLN per-
formance under edge corruption without and with the
graph attention prompt, respectively. GLN orig. indi-
cates the performance of GLN on the original datasets.

nodes sampled from the entire graph, yielding a
10-neighbor set fed to GLN. For experiments, we
sample 200 target nodes from the OGBN-ArXiv
and Wiki-CS datasets and use a 1-layer GLN with
GPT-4.1-nano as the backbone encoder and GPT-
4.1 as the downstream-task-performing LLM.

As shown in Table 4, GLN without the graph
attention prompt suffers a significant performance
drop, whereas GLN with the prompt maintains
performance to some extent. This suggests that
the graph attention prompt helps filter the relevant
neighbors of the target node.

B.6 Improving scalability of GLN

In this section, we analyze several strategies that
can improve the scalability of GLN. Specifically,
we explore three approaches: (1) use of a small
language model (SLM), (2) use of an input-token
efficient strategy, and (3) use of an output-token
efficient strategy. To this end, we sample 200 nodes
from the OGBN-ArXiv and Wiki-CS datasets and
use a 1-layer GLN with GPT-4.1-nano as the back-
bone encoder and GPT-4.1 as the downstream-task-
performing LLM.
Effectiveness under SLM. In GLN, replacing the
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Models OGBN-arXiv Wiki-CS

PromptGFM with LLM 75.0 (6.4) 79.5 (7.6)
GLN with LLM 78.0 (8.2) 82.5 (7.1)
GLN with SLM 77.5 (2.4) 82.5 (2.2)

Table 5: GLN achieves high speed and effectiveness
with an SLM. The node classification performance com-
parison under diverse-sized LLMs. Numbers in paren-
theses indicate the average encoding time per node.

Models (# of neighbors) OGBN-arXiv Wiki-CS

PromptGFM (N = 10) 73.5 (2772) 78.5 (9298)
GLN (N = 3) 76.0 (1067) 81.5 (3419)
GLN (N = 5) 76.5 (1423) 81.5 (4649)
GLN (N = 10) 77.5 (2690) 82.5 (8975)

Table 6: GLN remains strong under fewer neighbor
samples. The node classification performance compari-
son under diverse-sized neighbor samples. Numbers in
parentheses indicate the average number of input tokens
of each case.

LLM with an SLM can improve scalability, since
SLMs require significantly less generation time.
To evaluate model performance, we compare GLN
equipped with SLM (GPT-4.1-nano) against (1)
GLN equipped with an LLM (GPT-4.1) and (2)
PromptGFM equipped with an LLM (GPT-4.1).

As shown in Table 5, GLN with SLM requires
less than one-third the encoding time of GLN with
LLM, while maintaining comparable performance.
In addition, GLN outperforms PromptGFM even
with a smaller backbone language model. This
result demonstrates that the scalability of GLN can
be improved by using SLM, while being effective.
Input-prompt efficient strategy In GLN, we sam-
ple a fixed number of neighbors instead of utilizing
all available ones, as detailed in Appendix C.1. We
investigate how varying the number of neighbor
samples influences GLN encoding.

As shown in Table 6, GLN outperforms Prompt-
GFM even when using significantly fewer neighbor
samples—and thus, far fewer input tokens. This
result demonstrates that strong performance can be
achieved with substantially fewer input tokens than
required by the baseline method.
Output-prompt efficient strategy We limit the
output representation of GLN by 2 paragraphs, as
detailed in Appendix D.1. To further reduce the
output length, we prompt the LLM to generate a
shorter response, constrained to 3 sentences.

As shown in Table 7, GLN outperforms the base-
line method even when the output length is con-

Models (output constraint) OGBN-arXiv Wiki-CS

PromptGFM (N/A) 73.5 (393) 78.5 (491)
GLN (2-paragraphs) 77.5 (256) 82.5 (257)
GLN (3-sentences) 77.0 (110) 81.5 (109)

Table 7: GLN remains strong under stricter output-
length constraint. The node classification performance
comparison under several output constraints. Numbers
in parentheses indicate the average number of output
tokens of each case.

Models OGBN-arXiv Wiki-CS

GLN orig. 77.5 82.5
GLN w/o denoising 75.5 81.0
GLN w/ denoising 77.0 82.5

Table 8: Performance of GLN decreases under in-
put noises, while a simple text denoising technique
can mitigate this. The node classification performance
comparison under input noise. GLN w/o denoising and
w/ denoising indicate the performance of GLN on noisy
datasets without and with the application of denoising
techniques, respectively. GLN orig. indicates the per-
formance of GLN on the original datasets.

strained at the prompt level. This result demon-
strates that strong performance can be achieved
with substantially fewer output tokens than those
used by the baseline methods.

B.7 Analysis under noisy node attributes

In this section, we investigate the effectiveness of
GLN when the input node text attributes contain
noise. To this end, we randomly remove 30% of
the words from each node text attribute. In addi-
tion, to examine whether denoising improves per-
formance under noise, we apply a simple denoising
technique: (1) an LLM is prompted to denoise the
input node attribute by extracting the key concept
of the given text, and (2) the resulting denoised text
is then used as the node attribute. For experiments,
we sample 200 target nodes from the OGBN-ArXiv
and Wiki-CS datasets and use a 1-layer GLN with
GPT-4.1-nano as the backbone encoder and GPT-
4.1 as the downstream-task-performing LLM.

As shown in Table 8, (1) the performance of
GLN decreases when input node attributes are
noisy, while (2) applying a denoising technique
alleviates this performance degradation. These re-
sults suggest that although GLN is sensitive to
noise in node text attributes, adequate denoising
can effectively mitigate such a negative impact.
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C Experiment details

In this appendix section, we provide experimental
details omitted from the main paper (Section 4).

C.1 Experimental setting details

We describe the detailed experimental setting of
the two downstream tasks: (1) node classification
and (2) link prediction.
Node classification. For node classification, we
sample 1,000 nodes with degrees greater than or
equal to 10 from each dataset (i.e., {vi ∈ V :
|Ni| ≥ 10}). We then obtain the textual repre-
sentations of the corresponding nodes and prompt
an LLM to predict their classes. Lastly, measure
accuracy by comparing the predicted classes with
the ground-truth classes.
Link prediction. For link prediction, we sample
500 edges whose endpoint nodes each have a de-
gree greater than 10 (i.e., {ei = {vs, vt} ∈ E :
|Ns|, |Nt| ≥ 10}). We then remove these edges
from E and obtain the textual representations of
their endpoint nodes. Next, for each edge, we:
(1) randomly sample four nodes not connected by
the edge using rule-based sampling, (2) provide
one endpoint of the edge as input to the LLM,
(3) construct a candidate set consisting of the true
other endpoint and the four sampled nodes, and
(4) prompt the LLM to select the node most likely
to be linked with the given node. Lastly, we mea-
sure the Hit-ratio@1 for edges, which is defined
as 1

|E ′|
∑

ei∈E ′ 1[LLM(ei)], where E ′ is a set of sam-
pled edges and 1[LLM(ei)] is an indicator function
that returns 1 if the LLM correctly predicts the
another endpoint of ei, otherwise 0.

C.2 Baseline and GLN details

We describe the detailed setting of each method,
including baseline methods and GLN.
LLMs for downstream tasks. We found that in
downstream tasks, GPT-4o-mini and Claude-3.0-
Haiku—used as our backbone LLMs—often fail to
return outputs in the assigned format, making auto-
matic evaluation challenging. Therefore, only for
downstream tasks, we used more up-to-date models.
Specifically, we used GPT-4.1-mini and Claude-
3.5-Haiku instead of GPT-4o-mini and Claude-3.0-
Haiku, respectively.
Direct. This method performs the downstream
task using only the target node’s initial text at-
tribute, without modifying its textual representation
through certain LLM operations.

Models OGBN-arXiv Wiki-CS

GLN orig. 78.0 83.0
GLN w/ new GA 78.0 82.5
GLN w/ new IRC 76.0 80.5

Table 9: Graph attention prompt is less sensitive to
the choice of the attention-related phrase, while item-
ization for initial residual connection is necessary for
the performance. The node classification performance
comparison under input noise. GLN w/ new GA and
w/ new IRC indicate GLN equipped with a new graph
attention prompt and a new initial residual connection
prompt, respectively. GLN orig. indicates the perfor-
mance of GLN with its original prompt design.

All-in-One. This is our newly introduced baseline
that directly prompts an LLM to refine the target
node’s representation using its (1) one-hop and (2)
two-hop neighbors. Due to input length constraints
of LLMs, we sample 10 one-hop neighbors and
20 two-hop neighbors, uniformly at random, and
provide them as input to the LLM.
PromptGFM, GLN-Base, and GLN. For these
methods, which leverage message passing, we
stack 2 layers, which is a conventional setting in
GNN research (Kipf and Welling, 2017; Veličković
et al., 2018; Hamilton et al., 2017). Due to input
length constraints of LLMs, we sample 10 neigh-
bors for each node, uniformly at random, and use
them for message passing.

D Prompt details

In this appendix section, we provide detailed
prompts used for (1) the encoding process of GLN
and (2) zero-shot downstream tasks (i.e., node clas-
sification and link prediction).

D.1 Prompt for GLN’s encoding
Prompt design. We provide a detailed prompt de-
sign of GLN. Specifically, we present the following
types of prompts:

• Prompt for citation networks: A prompt for
citation networks is in Figure 12.

• Prompt for co-purchase networks: A prompt
for book co-purchase networks is in Figure 13.

• Prompt hyperlink networks: A prompt for hy-
perlink networks is in Figure 14.

Investigating alternatives. We further analyze
the prompt-robustness of GLN. Specifically, we
analyze our prompt designs for (1) the graph atten-
tion prompt and (2) the initial residual connection
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[Task] Refine the target paper’s description in [Point 1] by incorporating the papers from [Point 2].

- [Point 1] Target paper: [Detailed description: <raw text attribute of 𝑣𝑖> ; General description: <ℓ − 1 layer output of 𝑣𝑖>]

- [Point 2] Papers that cite or are cited by the target paper: [

- Paper 1: [Detailed description: <raw text attribute of 𝑣1
′> ; General description: <ℓ − 1 layer output of 𝑣1

′>] 

- Paper 2: [Detailed description: <raw text attribute of 𝑣2
′> ; General description: <ℓ − 1 layer output of 𝑣2

′>] 

- Paper k: [Detailed description: <raw text attribute of 𝑣𝑘
′ > ; General description: <ℓ − 1 layer output of 𝑣𝑘

′ >] 

[Instruction] Your summary must:

- In summarizing the papers in [Point 2], give more emphasis to those more relevant to the target paper in [Point 1].

- Return 2 paragraphs at most.

- Do not introduce external facts; only use the given data.

- Do not mention specific papers by name; focus on content.

- Output only the refined description (no extra commentary.)

/* 𝒩 𝑣𝑖 = 𝑣1
′ , 𝑣2

′ … , 𝑣𝑘
′ */

/* Initial residual prompt */

/* Graph attention prompt */

/* Capacity guidance */

/* Prevents external knowledge */

/* Prevents naïve enumeration */

/* Output format guidance */

Figure 12: Example prompt of GLN for citation networks (oGBN-arXiv dataset).

[Task] Refine the target book’s description in [Point 1] by incorporating the books from [Point 2].

- [Point 1] Target book: [Detailed description: <raw text attribute of 𝑣𝑖> ; General description: <ℓ − 1 layer output of 𝑣𝑖>]

- [Point 2] Books that are frequently co-purchased with the target book: [

- Book 1: [Detailed description: <raw text attribute of 𝑣1
′> ; General description: <ℓ − 1 layer output of 𝑣1

′>] 

- Book 2: [Detailed description: <raw text attribute of 𝑣2
′> ; General description: <ℓ − 1 layer output of 𝑣2

′>] 

- Book k: [Detailed description: <raw text attribute of 𝑣𝑘
′ > ; General description: <ℓ − 1 layer output of 𝑣𝑘

′ >] 

[Instruction] Your summary must:

- In summarizing the books in [Point 2], give more emphasis to those more relevant to the target book in [Point 1].

- Return 2 paragraphs at most.

- Do not introduce external facts; only use the given data.

- Do not mention specific books by name; focus on content.

- Output only the refined description (no extra commentary.)

/* 𝒩 𝑣𝑖 = 𝑣1
′ , 𝑣2

′ … , 𝑣𝑘
′ */

/* Initial residual prompt */

/* Graph attention prompt */

/* Capacity guidance */

/* Prevents external knowledge */

/* Prevents naïve enumeration */

/* Output format guidance */

Figure 13: Example prompt of GLN for co-purchase networks (Book-History dataset).

[Task] Refine the target web page’s description in [Point 1] by incorporating the web pages from [Point 2].

- [Point 1] Target web page: [Detailed description: <raw text attribute of 𝑣𝑖> ; General description: <ℓ − 1 layer output of 𝑣𝑖>]

- [Point 2] Web pages that are hyperlinked to or from the target web page: [

- Web page 1: [Detailed description: <raw text attribute of 𝑣1
′> ; General description: <ℓ − 1 layer output of 𝑣1

′>] 

- Web page 2: [Detailed description: <raw text attribute of 𝑣2
′> ; General description: <ℓ − 1 layer output of 𝑣2

′>] 

- Web page k: [Detailed description: <raw text attribute of 𝑣𝑘
′ > ; General description: <ℓ − 1 layer output of 𝑣𝑘

′ >] 

[Instruction] Your summary must:

- In summarizing the web pages in [Point 2], give more emphasis to those more relevant to the target page in [Point 1].

- Return 2 paragraphs at most.

- Do not introduce external facts; only use the given data.

- Do not mention specific papers by name; focus on content.

- Output only the refined description (no extra commentary.)

/* 𝒩 𝑣𝑖 = 𝑣1
′ , 𝑣2

′ … , 𝑣𝑘
′ */

/* Initial residual prompt */

/* Graph attention prompt */

/* Capacity guidance */

/* Prevents external knowledge */

/* Prevents naïve enumeration */

/* Output format guidance */

Figure 14: Example prompt of GLN for hyperlink networks (Wiki-CS dataset).

prompt. The core of the graph attention prompt
lies in the phrase: ‘give more emphasis to those
more relevant to the target’. Analogously, the core
of the initial residual connection prompt lies in its

itemized structure, which explicitly distinguishes
between the input node attributes and the outputs
of the preceding layers.

To validate the effectiveness of such designs, we
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use a new graph attention prompt that uses ‘weigh
highly the works most closely related to the target’
instead of the phrase mentioned above. In addition,
we also use an alternative initial residual connec-
tion prompt that uses the plain-text prompt instead
of an itemization-based prompt. Specifically, in-
stead of using the itemized structure described in
Figure 12, we use: ‘The detailed description is [...].
The version updated by papers that cite or are cited
by it is [...]’ for the initial residual connection.

As shown in Table 9, performance under an alter-
native graph attention prompt remains largely un-
changed, but declines markedly when the itemized
initial residual connection prompt is substituted
with a plain-text description. This indicates that the
graph attention prompt is relatively insensitive to
the exact phrasing as long as the attention objective
is preserved, whereas explicitly itemized structure
is indispensable for the initial residual connection
prompt for high performance.

D.2 Representation format of GLN

In this section, we further elaborate on the detailed
format of the target node’s representation produced
by GLN. Specifically, we present a format for a
citation network.
Paper: {
- Detailed description: <initial text attribute>,
- General description: <layer-1 output of GLN >,
- Highly general description: <layer-2 output of
GLN >}

This format is provided as a representation for the
target node (paper). In the co-purchase dataset
(Book-History) and hyperlink dataset (Wiki-CS),
we use the terms ‘Book’ and ‘Web page’, instead
of Paper, respectively.

D.3 Prompt for downstream tasks

In this section, we provide details regarding our
prompt for downstream tasks, which are node clas-
sification and link prediction.
Node classification Example node classification
prompts for the OGBN-arXiv dataset (citation net-
work), Book-History (co-purchase), and Wiki-CS
(hyperlink network), are provided in Figure 15, 16,
and 17, respectively. Specifically, we provide a set
of possible categories and ask the LLM to select
the one the target node is most likely to belong to.
Link prediction Example link prediction prompts
for the OGBN-arXiv dataset (citation network),
Book-History (co-purchase), and Wiki-CS (hyper-
link network), are provided in Figure 18, 19, and
20, respectively. Specifically, we present the LLM

with four randomly sampled nodes and one ground-
truth node, prompting it to select the node most
likely to be linked to the target node. The prompt
is tailored to reflect the semantics of the edge type.
For example, in a co-purchase network, we ask:

‘Which book is most likely to be co-purchased with
the target book?’.

E Future work

In this section, we outline potential directions for
future work. Several points raised in the Limita-
tion section suggest promising avenues. Further-
more, GLN holds promise for applications beyond
the current scope, particularly in graph neural net-
work domains such as anomaly detection (Kim
et al., 2024b; Lee et al., 2024) and recommenda-
tion (Acharya et al., 2023; Gao et al., 2022).

F License and AI assistant usage

In this appendix section, we discuss (1) the licenses
of the artifacts used in this work and (2) our use of
an AI assistant, ChatGPT.

F.1 Licenses
The licenses of all artifacts used in this work are
listed below:

• OGBN-arXiv dataset: ODC-BY (https://ogb.
stanford.edu/docs/nodeprop/)

• Book-History dataset: MIT License (https://
github.com/sktsherlock/TAG-Benchmark)

• Wiki-CS dataset: MIT License (https://
github.com/pmernyei/wiki-cs-dataset)

• PromptGFM: CC-By-4.0 (https://arxiv.org/
abs/2503.03313)

• GPT API: OpenAI permits academic use of
the outputs generated by their models (https:
//openai.com/policies/).

• Claude API: Anthropic permits academic
use of the outputs generated by their mod-
els (https://www.anthropic.com/legal/
commercial-terms).

Note that all permits use for academic purposes.

F.2 AI Assistant usage
For this work, we used ChatGPT (Achiam et al.,
2023) to assist with writing refinement and gram-
mar checking.
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[Data description] You have data describing a single paper: [<description of the target node>].

[Task] Choose the most suitable field this paper belongs to from the followings: [<artificial intelligence>, <hardware architecture>, <computational complexity>, 

<computational engineering, finance, and science>, <computational geometry>, <computation and language>, <cryptography and security>, <computer vision 

and pattern recognition>, <computers and society>, <databases>, <distributed, parallel, and cluster computing>, <digital libraries>, <discrete mathematics>, 

<data structures and algorithms>, <emerging technologies>, <formal languages and automata theory>, <general literature>, <graphics>, <computer science and 

game theory>, <human-computer interaction>, <information retrieval>, <information theory>, <machine learning>, <logic in computer science>, <multiagent 

systems>, <multimedia>, <mathematical software>, <numerical analysis>, <neural and evolutionary computing>, <networking and internet architecture>, <other 

computer science>, <operating systems>, <performance>, <programming language>, <robotics>, <symbolic computation>, <sound>, <software engineering>, 

<social and information networks>, <systems and control>]. 

[Instruction] Only return a single predicted field in the format of <field name>. DO NOT include any other words.

Figure 15: Example node classification prompt of GLN for citation networks (OGBN-arXiv dataset).

[Data description] You have data describing a single book: [<description of the target node>].

[Task] Choose the most suitable category this book belongs to from the followings: [<Africa>, <Americas>, <Ancient Civilizations>, <Arctic & Antarctica>, <Asia>, 

<Australia & Oceania>, <Europe>, <Historical Study & Educational Resources>, <Middle East>, <Military>, <Russia>, <World>].

[Instruction] Only return a single predicted category in the format of <category name>. DO NOT include any other words.

Figure 16: Example node classification prompt of GLN for co-purchase networks (Book-History dataset).

[Data description] You have data describing a single web page: [<description of the target node>].

[Task] Choose the most suitable category this web page belongs to from the followings: [<computational linguistics>, <databases>, <operating systems>, 

<computer architecture>, <computer security>, <internet protocols>, <computer file systems>, <distributed computing architecture>, <web technology>, 

<programming language topics>].

[Instruction] Only return a single predicted category in the format of <category name>. DO NOT include any other words.

Figure 17: Example node classification prompt of GLN for hyperlink networks (Wiki-CS dataset).

[Task] Among the 5 candidate papers, choose the paper that is most likely to cite or be cited by the target paper.

- Target paper: <target paper description>.

- Candidate papers: 

- {Paper 1: <candidate paper 1 description>, 

        …

       Paper 5: <candidate paper 5 description>}

[Instruction] Only return the predicted paper number in the format of [k]. DO NOT include other words.

Figure 18: Example edge prediction prompt of GLN for citation networks (OGBN-arXiv dataset).

[Task] Among the 5 candidate books, choose the book that is most likely to be co-purchased with the target book.

- Target book: <target book description>.

- Candidate books: 

- {Book 1: <candidate book 1 description>, 

        …

       Book 5: <candidate book 5 description>}

[Instruction] Only return the predicted book number in the format of [k]. DO NOT include other words.

Figure 19: Example edge prediction prompt of GLN for co-purchase networks (Book-History dataset).
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[Task] Among the 5 candidate web pages, choose the page that is most likely to be co-purchased with the target web page.

- Target web page: <target web page description>.

- Candidate web pages: 

- {Web page 1: <candidate web page 1 description>, 

        …

       Web page 5: <candidate web page 5 description>}

[Instruction] Only return the predicted web page number in the format of [k]. DO NOT include other words.

Figure 20: Example edge prediction prompt of GLN for hyperlink networks (Wiki-CS dataset).
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