
Findings of the Association for Computational Linguistics: EMNLP 2025, pages 10491–10507
November 4-9, 2025 ©2025 Association for Computational Linguistics

R3-RAG: Learning Step-by-Step Reasoning and Retrieval for LLMs via
Reinforcement Learning

Yuan Li* Qi Luo* Xiaonan Li* Bufan Li Qinyuan Cheng
Bo Wang Yining Zheng Yuxin Wang Zhangyue Yin Xipeng Qiu†

School of Computer Science, Fudan University
liyuan24@m.fudan.edu.cn xpqiu@fudan.edu.cn

Abstract

Retrieval-Augmented Generation (RAG) in-
tegrates external knowledge with Large Lan-
guage Models (LLMs) to enhance factual cor-
rectness and mitigate hallucinations. How-
ever, dense retrievers often become the bot-
tleneck of RAG systems due to their limited
parameters compared to LLMs and their inabil-
ity to perform step-by-step reasoning. While
prompt-based iterative RAG attempts to ad-
dress these limitations, it is constrained by
human-designed workflows. To address these
limitations, we propose R3-RAG, which uses
Reinforcement learning to make the LLM learn
how to Reason and Retrieve step-by-step, thus
retrieving comprehensive external knowledge
and leading to correct answers. R3-RAG is
divided into two stages. We first use cold
start to make the model learn the manner of
iteratively interleaving reasoning and retrieval.
Then we use reinforcement learning (RL) to
further harness its ability to better explore the
external retrieval environment. Specifically, we
propose two rewards for R3-RAG: 1) answer
correctness for outcome reward, which judges
whether the trajectory leads to a correct answer;
2) relevance-based document verification for
process reward, encouraging the model to re-
trieve documents that are relevant to the user
question, through which we can let the model
learn how to iteratively reason and retrieve rel-
evant documents to get the correct answer. Ex-
perimental results show that R3-RAG signifi-
cantly outperforms baselines and can transfer
well to different retrievers.

1 Introduction

Retrieval-Augmented Generation (RAG) has be-
come a prevailing mechanism to address Large Lan-
guage Models’ (LLMs) hallucinations, as shown in
Figure 1a. It typically first retrieves relevant docu-
ments and then integrates them to supplement the

*Equal contribution.
†Corresponding author.

Query Doc Answer
Retrieval

(a) Vanilla RAG
Think

Retrieval

Think

Retrieval
Query Answer

(b) Iterative RAG

Think ⚠

Retrieval ❌

Think ✅

Retrieval ✅
Query

Process Reward🏆	and	Outcome Reward🏆

Answer ✅

(c) R3-RAG

Figure 1: Comparison of different RAG approaches: (a)
Vanilla RAG: the LLM uses the documents retrieved for
the original question to generate the response; (b) Itera-
tive RAG: the LLM interleaves thinking and invoking
the retriever in a fixed, human-designed workflow; and
(c) R3-RAG: uses reinforcement learning (RL) to enable
the LLM to better reason and retrieve iteratively, to get
relevant documents and produce the correct answer.

LLMs’ factual knowledge. In this way, RAG can
supplement LLMs with external knowledge, miti-
gating hallucination and leading to better factuality.

The response quality of RAG highly depends on
the retrieval results (Li et al., 2024; Yoran et al.,
2024). However, the widely used retrievers have
become the bottleneck of the RAG system and
have limited the overall performance. Specifically,
dense retrievers usually have significantly fewer
parameters and have not been scaled to the size
of LLMs. Additionally, dense retrievers directly
generate vectors for input sequences and cannot
conduct step-by-step thinking, which makes it chal-
lenging to tackle queries that require reasoning.
RAG with iterative retrieval (see Figure 1b) has
been proposed to address these limitations. For
example, Trivedi et al. (2023) propose that LLMs
interleave retrieval and Chain-of-Thought (CoT) to

10491

better retrieve relevant documents. Li et al. (2024)
propose that LLMs iteratively improve the retrieval
results until they are sufficient to support answering
users’ questions. However, these methods are lim-
ited by human-designed workflows and thus cannot
fully harness LLMs’ reasoning ability. In addition,
LLMs are not trained to iteratively invoke retriev-
ers to obtain comprehensive documents, making it
challenging for the human-designed workflow to
synergize reasoning and retrieval.

To address these limitations, we propose R3-
RAG, which uses Reinforcement learning (RL) to
make the LLM learn how to Reason and Retrieve
step-by-step, thus retrieving comprehensive exter-
nal knowledge and leading to the correct answer.
As shown in Figure 1c, in R3-RAG, the model can
explore better reasoning and retrieval trajectories
using feedback from the outcome reward and the
process reward. Specifically, R3-RAG is divided
into two stages. First, we use a cold start to make
the base model learn the manner of iterative reason-
ing and invoking the retriever. Since a cold start
makes it difficult for the model to fully explore the
external retrieval environment and thus overshad-
ows the model’s ability, we then use RL with the
outcome reward to help the model learn how to
better reason and retrieve external knowledge step-
by-step. To encourage the model to retrieve docu-
ments that are relevant to the user’s question, we
further propose relevance-based document verifica-
tion as a process reward to measure the relevance
of each step’s reasoning and retrieval. In this way,
the model not only learns how to obtain the cor-
rect answer through the outcome reward, but also
learns to reason and retrieve step-by-step through
the fine-grained process reward.

We summarize our contributions as follows:
• To the best of our knowledge, R3-RAG is the

first framework that enables LLMs to perform
step-by-step reasoning and retrieval, guided
by the outcome reward and the fine-grained
process reward.

• We conduct comprehensive comparisons with
extensive iterative RAG methods, and the re-
sults show that R3-RAG significantly outper-
forms them, indicating its effectiveness.

• We will release our code and model to facili-
tate future research.

2 Related Work

Retrieval for RAG The retrieval in RAG can
be mainly divided into two categories: 1) Pas-

sive Retrieval: Guu et al. (2020) implement the
Retrieve-Read paradigm, where retrievers fetch
documents based on input queries before concate-
nating them with prompts for LLMs to generate
responses, a setup followed by many subsequent
works (Lewis et al., 2021; Gao et al., 2023; Li
et al., 2023). However, dense retrievers cannot
perform step-by-step reasoning, and thus, directly
using the original question as the query makes it
difficult to retrieve comprehensive external infor-
mation. Iterative retrieval has been proposed to ad-
dress this limitation; it enables interleaving reason-
ing and retrieval through decomposed queries. 2)
Iterative Retrieval: ReAct, proposed by Yao et al.
(2023), synchronizes reasoning traces with retrieval
actions, while Self-Ask, proposed by Press et al.
(2023), implements an autonomous question for-
mulation mechanism during the reasoning process.
ITER-RETGEN (Shao et al., 2023) introduces
cyclic retrieval-generation patterns; FLARE (Jiang
et al., 2023) incorporates adaptive retrieval when
LLMs generate low-confidence tokens; and IR-
CoT (Trivedi et al., 2023) strategically positions re-
trieval operations within CoT reasoning sequences.
Compared with these iterative retrieval methods,
which are limited by human-designed workflows,
R3-RAG learns to better explore the external re-
trieval environment via RL, thereby alleviating this
limitation.

Large Reasoning Models Recently, we have
seen the emergence of large reasoning models.
OpenAI et al. (2024) introduces OpenAI-O1, which
demonstrates strong step-by-step reasoning and re-
flection capabilities. Similarly, DeepSeek-AI et al.
(2025) develops Deepseek-R1, trained with large-
scale RL based on outcome rewards. Ma et al.
(2025) introduces techniques that enable LLMs to
verify their own reasoning steps, leading to more re-
liable problem-solving capabilities. However, these
RL-based methods are highly limited by the base
model’s knowledge (Yue et al., 2025). In this paper,
we explore training LLMs to reason and retrieve
external information step-by-step, overcoming the
base model’s knowledge limitations when address-
ing complex questions. Guan et al. (2025), Li et al.
(2025), Song et al. (2025), and Zheng et al. (2025),
concurrent with our work, propose using RL to
improve iterative RAG. Our method differs in the
critical reward design: while they use only answer
correctness as an outcome reward, which cannot
provide a fine-grained training signal, we addition-

10492

ally propose relevance-based document verification
as a process reward to better guide the model to
iteratively retrieve relevant documents and thus ob-
tain comprehensive information for the question.

3 Method

RAG struggles to generate high-quality responses
when retrievers fail to comprehensively retrieve the
required knowledge. However, retrievers are usu-
ally weaker than LLMs, thus limiting the LLM’s
ability. To address this limitation, we propose R3-
RAG, which uses Reinforcement learning to en-
able the LLM to learn to Reason and Retrieve step-
by-step, thereby retrieving comprehensive external
knowledge and generating a factual answer. Specif-
ically, R3-RAG is divided into two stages, as shown
in Figure 2. First, we leverage cold start (DeepSeek-
AI et al., 2025) to teach the base model the manner
of iterative reasoning and invoking the retriever.
Since a cold start makes it difficult for the model to
fully explore the external retrieval environment, we
then use RL to further harness its ability to better
search for relevant external knowledge. Specifi-
cally, we propose two rewards for R3-RAG: 1) an
answer-correctness outcome reward, which judges
whether the trajectory leads to a correct answer
against the ground truth; and 2) relevance-based
document verification as a process reward, encour-
aging the model to retrieve documents that are rele-
vant to the user’s question. In this section, we first
introduce the R3-RAG trajectory and then the cold
start and RL training.

3.1 Trajectory Definition

In this section, we define the R3-RAG trajec-
tory. Given a multi-hop question-answering (QA)
dataset Q = {(qi, a∗i)}ni=1, where qi is a question
and a∗i is its ground-truth answer, we define a tra-
jectory Ti for each question qi as a sequence of rea-
soning and retrieval steps Ti = {s1i , s2i , . . . , s

|Ti|
i }.

Each step sji in trajectory Ti is as follows:

sji =

{
(ξji , ψ

j
i , d

j
i) j < |Ti|

(ξji , ai) j = |Ti|
, (1)

where the model iteratively reasons and invokes
the retriever until it deems the documents sufficient
to generate the answer at step |Ti|. ξji denotes the
Reasoning Process at step j, which analyzes all
information (e.g., analysis and documents) accu-
mulated up to step j − 1, and plans the action for

Algorithm 1 Cold-Start Data Generation
Require: Dataset QCS = {(qi, a∗i)}ni=1, Retriever R, Lan-

guage Model M
Ensure: Trajectory-Augmented Dataset DCS

1: MAX_ITERATION← 5, DCS ← ∅
2: for each (qi, a

∗
i) ∈ QCS do

3: Ti ← []
4: for turn ∈ [1, MAX_ITERATION] do
5: step← Parse(M(Prompt(qi, Ti)))
6: if answer ∈ step then
7: Ti.append(step)
8: break
9: else if query ∈ step then

10: step[doc]← R(step[query])
11: Ti.append(step)
12: if turn == MAX_ITERATION then
13: break Fail to generate the answer
14: end if
15: else
16: break The format of Ti is invalid
17: end if
18: end for
19: DCS ← DCS ∪ {(qi, a∗i , Ti)}
20: end for
21: return DCS

step j; ψj
i is the Retrieval Query produced by this

reasoning; dji comprises the Documents returned
by the retriever for that query; and ai is the final
Answer to the original question.

During the reasoning process ξji , the model can
perform step-by-step analysis of the information
gathered in previous steps. If the existing docu-
ments are sufficient to answer the question, the
model outputs the answer ai; otherwise, it deter-
mines what additional information is needed and
invokes the retriever with a new query ψj

i .

3.2 Cold Start

Base models do not natively interleave step-by-step
reasoning with retrieval. We therefore begin with a
cold-start stage that synthesizes supervised trajec-
tories to teach the desired interleaved behavior.

3.2.1 Cold-Start Data Generation
Algorithm 1 outlines the procedure. For each ques-
tion, we iteratively construct a trajectory whose
steps follow a fixed schema. At each iteration, a
powerful LLM is prompted to produce 1) a reason-
ing step with a retrieval query, or 2) a reasoning
step with a final answer. For the first step, the
template in Figure 6 prompts the model to analyze
the problem, outline a solution path, and decide
whether to retrieve or answer directly. For subse-
quent steps, the template in Figure 7 asks the model
to consolidate prior reasoning and retrieved docu-
ments, assess the sufficiency of evidence, identify

10493

❌	Format 🔍Retriever	Result 🎯Answer		

<think>…</think>
<query>…</query>
<doc>…	</doc>
<answer>…</answer>

Thendral	VeesumRelevance
Veri+ication

Format	
Veri+ication

<think>…<query>…</	query	>
<doc>…	</doc>
…	…</answer>

Trajectory	1

The	Model	Couple
<think>…
<query>…</query>
…	…</query>

Trajectory	2

<think>…<think>
<query>…</query>
<answer>…</answer>

Trajectory	3

Trajectory	2

Trajectory	1

The	Model	Couple’s	director	is	older.
Trajectory	3

Doc:	The	Model	Couple	is	by	William	
Klein…

Doc:	Willem	Klein,	born	in	…

Thendral	Veesum’s director	was	born	
earlier.

Doc:	…a	mathematician,	was	born	
in	4	December.

Trajectory	1

Trajectory	2

Trajectory	3

🤖→	{Doc} Answer
Veri+ication

Process	Rewards	

Base	Model R3-RAG
Cold-Start	
Model Policy

Model

Reasoning Answer

Reward	
🏆

Process	
Reward	

Outcome
Reward

PPO	Training	⚙

👣	Trajectory		
<think>
Need	both	directors’	birth	years.
</think>	
<query>
The	Model	Couple	birth	year
</query>	
<doc>
William	Klein,	born	in	1946…
</doc>…
<answer>Thendral	Veesum</answer>

❓Question
Which	Kilm	has	the	director	born	
Kirst,	The	Model	Couple	or	
Thendral	Veesum?	

Clod	Start	🧊

SFT

✅	Ground	Truth
Thendral	Veesum

Training	Pipeline

Reward	Design
Outcome	Rewards	

Reward:	0

Reward:	-1

Reward:	-1

Reward:	0.8

Reward:	0.1

Reward:	2

Reward:	0

Reward:	0

Reward:	0.9

Figure 2: Training Pipeline and Reward Design for R3-RAG

remaining knowledge gaps, and decide whether
further retrieval is necessary or a final answer can
be produced. If a final answer is produced, tra-
jectory construction terminates. The resulting in-
stance pairs each question with an interleaved rea-
soning–retrieval trajectory.

To improve data quality, we vary the sampling
temperature and generate multiple trajectories per
question, then perform rejection sampling against
the ground-truth answer, discarding trajectories
whose final answer is incorrect or whose steps vio-
late the required format. The remaining trajectories
constitute the cold-start dataset DCS.

3.2.2 Cold-Start Training
To use DCS for training in the cold-start stage—i.e.,
supervised fine-tuning (SFT)—we design Algo-
rithm 2 to convert DCS into an SFT-ready dataset
Dtrain

CS = {(inputk, outputk)}mk=1, where m =∑|QCS |
i=1 |Ti|. For each tuple (qi, a

∗
i , Ti) ∈ DCS ,

we generate |Ti| input–output pairs. Consider a
step sji in trajectory Ti. We construct the input by
concatenating the question qi with all steps that
precede sji , serialized into our unified format, in-
cluding the reasoning (analysis ξj

′
i and retrieval

query ψj′
i) and the retrieved documents dj

′
i for all

j′ < j. We then construct the output as the reason-
ing content of the current step sji serialized in the
same format. Iterating over all steps in Ti yields

Algorithm 2 Training Data Generation for SFT
Require: Trajectory-augmented dataset DCS

Ensure: SFT training dataset Dtrain
CS

1: Dtrain
CS ← ∅

2: for each (qi, a
∗
i , Ti) ∈ DCS do

3: context← qi
4: history← ∅
5: for j = 1 to |Ti| do
6: input← Concat(context, history)

7: sji ← Ti[j]
8: if j < |Ti| then
9: (ξji , ψ

j
i , d

j
i)← sji

10: output← Format(ξji , ψ
j
i)

11: step← Format(ξji , ψ
j
i , d

j
i)

12: history← Concat(history, step)
13: else
14: (ξji , ai)← sji
15: output← Format(ξji , ai)
16: end if
17: pair← (input, output)
18: Dtrain

CS ← Dtrain
CS ∪ {pair}

19: end for
20: end for
21: return Dtrain

CS

|Ti| training instances, which we add to Dtrain
CS .

Based on Dtrain
CS , we perform SFT with the max-

imum likelihood estimation objective to obtain the
R3-RAG-CS model. This initialization enables the
model to iteratively reason and retrieve, which can
help the model better sample positive trajectories
and thus yield stronger RL training signals.

10494

3.3 Reinforcement Learning

Although the cold start can enable the model to
learn the manner of iterative reasoning and retrieval,
it is hard to make the model fully explore the ex-
ternal retrieval environment, thus leaving it limited
by the cold-start data. To address these challenges,
we use RL to further harness the model’s own abil-
ities to better reason and retrieve external infor-
mation. Specifically, we propose two rewards for
R3-RAG: 1) answer correctness as an outcome re-
ward, which judges whether the trajectory leads to
correct answers by ground truth; and 2) relevance-
based document verification as a process reward,
encouraging the model to retrieve documents that
are highly relevant to users’ questions. In this sec-
tion, we first introduce the reward design and then
the training objective.

3.3.1 Reward Design
Answer Correctness The high-quality outcome
reward is critical for the model to generate the cor-
rect trajectory (DeepSeek-AI et al., 2025). For
question-answering, string matching is usually
used to judge whether the prediction is correct
according to the ground-truth answer. However,
since the same entity can have different variants,
the match-based judgment can be inaccurate, which
introduces extra noise to the training signal. We
propose to combine the match-based judgment and
the model-based judgment as follows:

Acc(a) =

{
1 if Accmatch(a) orAccmodel(a)

0 otherwise
, (2)

where a is the predicted answer, with Accmatch
and Accmodel denoting the match-based and model-
based answer judgments, respectively.

Document Relevance Using only the outcome
reward is challenging because it provides a limited
fine-grained training signal and results in sparse
rewards, which degrades RL effectiveness. We fur-
ther propose relevance-based document verification
to give fine-grained guidance to the process of iter-
ative retrieval. In each retrieval step, we calculate
the document relevance as:

Rel(dj
i) = LLM(Irelevance, qi, d

j
i), (3)

where Irelevance is the instruction for the LLM
to judge the relevance between the question qi
and the document dji , with scores ranging from

0, 0.1, 0.2, . . . to 1. Since qi and dji are concate-
nated and then sent to the LLM, the relevance judg-
ment can take advantage of full token-level inter-
action and thus guide the model to better retrieve
relevant information.

Format Correctness We also implement a for-
mat reward V al(sji) to encourage the model to re-
sponse in the required format as follows:

Val(sji) =

{
1 if sji is valid
0 otherwise

. (4)

Overall Reward The overall reward r(sji) is de-
fined as:

r(sji) = V al(sji) ·(Acc(ai)+Rel(dji))+V al(s
j
i)−1, (5)

where if sji denotes the final step, ai represents the
predicted answer, and Rel(dji) is set to 0 since no
retrieved document dji is involved in this step. Oth-
erwise, if sji corresponds to an intermediate step,
dji indicates the retrieved documents at that step,
and Acc(ai) is set to 0 as no answer is available.

In this way, we can teach the model to iteratively
invoke the retriever and obtain external information
to achieve the correct final answer. To enhance
the effect of answer-correctness-based reward and
prevent the training from being distracted by other
rewards, we use the following factor to adjust the
process reward throughout the trajectory:

rall(s
j
i) = r(sji) · λT (Ti), (6)

where λT (Ti) is determined based on the trajectory.
For trajectories with correct answers, set λT (Ti) >
1 to reinforce successful reasoning; for incorrect
answers, set 0 < λT (Ti) < 1 to down-weight
the process reward; for trajectories with format
errors, set λT (Ti) = 1 to isolate format penalties
to specific steps.

3.3.2 Training Objective
Guided by the outcome and process reward, we
apply the Proximal Policy Optimization (PPO) to
train R3-RAG-CS model:

LRL =E(x,y)∼Dtrain
RL

[
min

(
ρ(θ)A(x, y),

clip(ρ(θ), 1− ϵ, 1 + ϵ)A(x, y)
)]

(7)

+ βLKL,

where ρ(θ) = P (y|x;θ)
P (y|x;θold) represents the probability

ratio between the current policy and the old policy,

10495

HotpotQA 2WikiMultiHopQA MuSiQue Average
Methods Retriever ACC F1 EM ACC F1 EM ACC F1 EM ACC

Llama-3.1-8B
CoT - 39.2 38.3 27.6 28.8 34.5 25.3 14.0 17.2 8.0 27.3
RAG with CoT E5 53.3 50.8 38.6 32.9 40.2 31.1 16.3 18.8 10.3 34.2
ReAct(Tool Call) E5 30.8 25.8 21.2 17.8 14.5 12.9 8.6 6.5 4.8 19.1
Flare E5 24.6 20.9 17.8 11.9 11.4 10.9 3.5 2.8 2.3 13.3
Self-ask E5 39.1 34.3 29.5 29.0 27.5 26.2 14.4 23.5 13.5 27.5
ITER-RETGEN E5 45.7 40.0 34.3 19.4 18.1 17.0 11.1 8.9 7.9 25.4
IRCoT E5 52.8 46.0 39.3 40.6 37.5 35.1 16.7 13.6 12.0 36.7
Auto-RAG BM25 - 36.1 25.8 - 30.1 23.0 - - - -
DeepRAG BM25 - 51.5 40.7 - 53.3 48.1 - - - -

R3-RAG-CS E5 60.6 55.5 43.6 53.7 53.4 46.5 29.6 29.4 19.4 48.0
R3-RAG E5 64.4 58.8 45.6 61.0 60.9 52.9 32.2 32.7 21.1 52.6
R3-RAG BM25 62.5 57.6 44.4 58.0 58.6 50.6 26.4 27.7 17.2 49.0
R3-RAG BGE 65.3 60.0 46.6 62.1 61.8 53.7 33.8 32.8 21.2 53.8

Qwen2.5-7B
CoT - 34.0 34.0 23.0 31.1 36.9 27.4 12.7 17.0 6.7 25.9
RAG with CoT E5 52.4 49.4 37.6 33.5 39.1 30.1 16.9 18.8 9.9 34.3
ReAct(Tool Call) E5 27.9 23.1 21.1 38.3 31.7 26.1 11.7 8.0 5.8 26.0
Flare E5 28.9 24.8 21.2 29.1 28.3 27.8 6.5 4.8 3.6 21.5
Self-ask E5 37.1 33.2 28.7 31.5 29.8 28.2 13.3 10.7 8.6 27.3
ITER-RETGEN E5 48.4 40.2 35.8 32.8 31.4 30.2 12.3 10.1 8.5 31.2
IRCoT E5 48.4 41.1 35.7 35.8 33.5 31.1 13.5 11.2 9.4 32.6
DeepRAG BM25 - 41.1 32.1 - 44.9 40.4 - - - -
ReSearch-7B BGE 60.3 - 40.6 50.1 - 44.7 32.2 - 21.7 47.5
ReSearch-7B-Instruct BGE 63.6 - 43.5 54.2 - 47.6 33.4 - 22.3 50.4

R3-RAG-CS E5 63.3 57.6 45.2 53.1 53.5 46.1 31.3 31.9 21.9 49.2
R3-RAG E5 65.5 59.7 46.4 62.3 62.7 54.2 33.6 34.0 21.4 53.8
R3-RAG BM25 63.8 58.2 44.9 59.6 61.1 52.8 29.2 30.0 17.6 50.8
R3-RAG BGE 66.4 60.6 46.8 63.0 63.4 55.2 34.8 34.3 21.7 54.8

Table 1: Performance comparison of different models and retrieval methods across multi-hop QA datasets. Our
R3-RAG method consistently outperforms all baselines across accuracy (ACC), F1, and exact match (EM) metrics,
regardless of the base model or retriever used. Bold values indicate the best performance in each column and model
group. Missing values (-) indicate results not reported in the original papers.

A(x, y) denotes the advantage function estimated
using Generalized Advantage Estimation (GAE), ϵ
is the clipping parameter that constrains policy up-
dates, LKL represents the Kullback-Leibler (KL)
divergence between the current policy and the ref-
erence model to prevent excessive deviation, and β
controls the strength of the KL penalty (Schulman
et al., 2017). Details are provided in Appendix B.

4 Experiments

4.1 Datasets and Metrics
We follow Song et al. (2025) to conduct a compar-
ison on three multi-hop QA datasets: HotpotQA
(Yang et al., 2018), 2WikiMultiHopQA (Ho et al.,
2020), and MuSiQue (Trivedi et al., 2022), using
their full dev sets. In the RL stage, we use only
8,192 examples from HotpotQA for training. We
evaluate using three complementary metrics: Ex-
act Match (EM) measures strict string matching
against ground-truth answers; F1 score quantifies
partial matching via token overlap between pre-

dicted and ground-truth answers; and Accuracy
(Acc) is based on LLM judgment of semantic cor-
rectness. For EM and F1, we first extract the short
answer from the LLM’s response and then compare
it against the ground-truth answer.

4.2 Baselines

We compare against several competitive baselines:
1) CoT: LLMs directly answer the question using
CoT; 2) RAG with CoT: LLMs answer the ques-
tion based on documents retrieved using original
questions as queries; 3) Iterative retrieval methods:
LLMs are prompted to invoke retrieval tools dur-
ing reasoning, including ReAct (Yao et al., 2023),
FLARE (Jiang et al., 2023), Self-Ask (Press et al.,
2023), ITER-RETGEN (Shao et al., 2023), and
IRCoT (Trivedi et al., 2023); and 4) Fine-tuned
methods, including Auto-RAG (Yu et al., 2024),
DeepRAG (Guan et al., 2025), and ReSearch
(Chen et al., 2025).

10496

4.3 Implementation Details

For the cold-start stage, we create 51,254 solu-
tion trajectories from the training sets of Hot-
potQA (Yang et al., 2018), 2WikiMultiHopQA (Ho
et al., 2020), and MuSiQue (Trivedi et al., 2022).
For the RL stage, we sample 8,192 instances from
the remaining HotpotQA training data. We em-
ploy E5-base-v2 (Wang et al., 2022) as our default
retriever. During evaluation, the models receive
complete retrieved documents, limited to the top 5
per iteration with a maximum of 5 iterations. Un-
like prior work (Zheng et al., 2025), which extracts
information from retrieved documents to reduce
context length, our approach directly incorporates
complete retrieved documents. All methods are
evaluated using the same metrics and hyperparam-
eters. Further details are provided in Appendix C.

4.4 Main Results

We show the evaluation results of R3-RAG using
Llama-3.1-8B and Qwen2.5-7B in Table 1. We see
that R3-RAG significantly outperforms baselines
on three datasets across different metrics, which
indicates strong overall reasoning and retrieval per-
formance. Specifically, R3-RAG outperforms the
strongest iterative RAG workflow method, IRCoT,
by around 15 percentage points on average, which
shows that R3-RAG can help the model better
learn to iteratively reason and retrieve step-by-step
and thus get more accurate answers. Addition-
ally, R3-RAG also outperforms ReSearch (Chen
et al., 2025), which uses RL with an outcome-based
reward to augment the model’s iterative retrieval
ability. This shows the advantages of R3-RAG’s
reward design, which not only teaches the model
to get the final answer but also guides the model to
retrieve documents relevant to the question. Mean-
while, R3-RAG achieves significant improvements
with both Qwen2.5-7B and Llama-3.1-8B, and this
shows the robustness of R3-RAG. Although R3-
RAG’s RL is only trained on the HotpotQA dataset,
R3-RAG outperforms the cold-start model on three
datasets, which shows that the proposed RL algo-
rithm can generalize well across various datasets
and further demonstrates R3-RAG’s transferability
to different downstream scenarios.

5 Analysis

5.1 Effect of Different Reward

Table 2 presents the comparative performance of
different reinforcement learning configurations in

Methods 2Wiki MuSiQue Avg

R3-RAG 61.0 32.2 46.6
- Process Reward 59.0 31.4 45.2

- Outcome Reward 53.7 29.6 41.6

Table 2: Effect of Different Reward on R3-RAG.

R3-RAG. Our full model employs both process and
outcome rewards. When we remove the process
reward component from our complete R3-RAG
framework, we observe a performance decline of
1.4 percentage points on average (from 46.6% to
45.2%), which shows that fine-grained process re-
wards effectively guide the model to retrieve more
relevant documents at each reasoning step, leading
to improved overall performance. Further remov-
ing the outcome reward component (thus eliminat-
ing all reinforcement learning signals) results in
an additional performance drop of 3.6 percentage
points on average (from 45.2% to 41.6%). These re-
sults demonstrate the effectiveness of both reward
components. Outcome rewards guide the model to
optimize for correct final answers, while process
rewards provide granular feedback on the quality
of each retrieval operation. By jointly optimizing
for both the ultimate goal (correct answers) and the
intermediate steps (relevant document retrieval),
our approach achieves a more effective reasoning-
retrieval strategy.

5.2 Effect of Maximum Iteration Steps

In this section, we analyze how the number of rea-
soning steps affects model performance. As shown
in Figure 3, R3-RAG demonstrates steady improve-
ments in answer accuracy as the number of steps
increases from 1 to 10. Notably, R3-RAG contin-
ues to benefit from additional reasoning steps at

1 2 3 4 5 6 7 8 9 10
Maximum Steps

0

20

40

60

Ac
cu

ra
cy

HotpotQA

1 2 3 4 5 6 7 8 9 10
Maximum Steps

0

20

40

60

Ac
cu

ra
cy

2WikiMultiHopQA

R3-RAG-CS(Qwen)
R3-RAG(Qwen)

R3-RAG-CS(Llama)
R3-RAG(Llama)

Figure 3: Impact of the maximum number of reasoning
steps on HotpotQA and 2WikiMultiHopQA. Results are
shown for both Qwen and Llama backbone models. All
models are trained with up to five reasoning steps.

10497

1 2 3 4 5 6 7 8 9 10
TOP-K

50
55
60
65
70

Ac
cu

ra
cy

HotpotQA

1 2 3 4 5 6 7 8 9 10
TOP-K

40

50

60

70

Ac
cu

ra
cy

2WikiMultiHopQA

R3-RAG-CS(Qwen)
R3-RAG(Qwen)

R3-RAG-CS(Llama)
R3-RAG(Llama)

Figure 4: R3-RAG performance across different re-
trieval top k.

inference time, even beyond the maximum number
used during training (five steps). This suggests that
our framework enables models to generalize their
reasoning procedures effectively to longer infer-
ence trajectories. Furthermore, we observe that R3-
RAG consistently outperforms R3-RAG-CS when
evaluated with the same maximum number of steps,
highlighting the effectiveness of our RL training
approach in enabling models to more accurately
answer questions while using the same number of
reasoning steps.

5.3 Impact of Retrieval Top-k Parameter

We analyze how the number of documents retrieved
at each step affects our method’s performance. Fig-
ure 4 demonstrates that increasing top k from 1 to
5 significantly improves performance by approx-
imately 8 percentage points, while adding more
documents beyond 5 yields minimal gains (less
than 1%). Additionally, we observe that our RL
approach substantially enhances answer accuracy
across all top-k configurations, demonstrating the
robustness of our RL method regardless of varia-
tion in the number of retrieved documents per step.

5.4 Transferability over Different Retrievers

We analyze the impact of different retrievers on our
method compared with several baselines and show
the results in Table 3. Despite being trained ex-
clusively with the E5 retriever, R3-RAG maintains
its performance and consistently outperforms all
baselines when using different retrievers, demon-
strating the transferability of R3-RAG’s learned
reasoning and retrieval strategies across external
retrieval environments. Meanwhile, R3-RAG’s per-
formance variation across three different retrievers
is less than 3%, which further shows R3-RAG’s
robustness. In contrast, baseline methods show
significant fluctuation. For example, IRCoT’s accu-

Methods Retriever Hotpot 2Wiki Avg

Llama-3.1-8B
CoT with RAG BM25 52.3 31.5 41.9

E5 53.3 32.9 43.1
BGE 55.8 33.9 44.8

ReAct BM25 33.6 18.0 25.8
E5 30.8 17.8 24.3

BGE 29.8 16.1 22.9
IRCoT BM25 52.8 41.4 47.1

E5 52.8 40.6 46.7
BGE 43.3 20.8 32.0

R3-RAG BM25 62.5 58.0 60.2
E5 64.4 61.0 62.7

BGE 65.3 62.1 63.7

Qwen2.5-7B
CoT with RAG BM25 49.9 29.8 39.9

E5 52.4 33.5 42.9
BGE 55.1 35.3 45.2

ReAct BM25 43.4 28.7 36.1
E5 27.9 38.3 33.1

BGE 37.7 27.4 32.6
IRCoT BM25 48.5 33.8 41.2

E5 48.4 35.8 42.1
BGE 40.5 20.1 30.3

R3-RAG BM25 63.8 59.6 61.7
E5 65.5 62.3 63.9

BGE 66.4 63.0 64.7

Table 3: Performance comparison of different retrieval
methods (BM25, E5, BGE) across models on the Hot-
potQA and 2WikiMultiHopQA datasets. Results show
only the accuracy (ACC) metric .

racy on the 2WikiMultiHopQA dataset plummets
from 35.8% when using E5 to just 20.1% with
BGE, revealing the human-designed workflow’s
sensitivity to different external retrieval environ-
ments. Additional results across more datasets and
metrics are provided in Appendix D.

5.5 Efficiency Analysis

Longer responses that externalize reasoning often
improve accuracy, but they also increase latency
and token cost. To quantify this trade-off, we com-
pare R3-RAG with ReSearch (Chen et al., 2025)
on the Qwen backbone, reporting the average LLM
token usage for correctly answered questions on

Method 2Wiki MuSiQue Avg

ReSearch 506.97 541.97 524.46
R3-RAG 382.08 429.94 405.01

Reduction (%) ↓ 24.6 20.7 22.8

Table 4: Token usage comparison with ReSearch on
the Qwen backbone. Values are average LLM tokens
per correctly answered question across the multi-step
interaction (lower is better).

10498

2WikiMultiHopQA and MuSiQue. As shown in
Table 4, R3-RAG uses 22.8% fewer tokens on av-
erage (24.6% on 2WikiMultiHopQA; 20.7% on
MuSiQue) while maintaining higher accuracy (Ta-
ble 1). We attribute this efficiency to our outcome-
plus-process rewards: by jointly rewarding the fi-
nal answer and each intermediate retrieval decision,
R3-RAG retrieves more relevant documents and
requires fewer, more productive reasoning turns
than the outcome-only ReSearch baseline.

5.6 Case Study

We conduct a case study on a multi-hop question
(Figure 5) that asks for the film-The Model Couple
or Thendral Veesum-whose director was born ear-
lier. RAG + CoT fails to retrieve comprehensive
information for this question. Specifically, it only
retrieves the directors of these movies and thus fails
to generate the answer. In contrast, R3-RAG can
decompose the whole question into the following
chain of retrieval queries: 1) the director of the film
The Model Couple -> William Klein; 2) the director
of the film Thendral Veesum -> B. S. Ranga; 3) the
birth date of William Klein; and 4) the birth date
of B. S. Ranga. Through iterative reasoning and
retrieval, R3-RAG progressively retrieves relevant
information and thus obtains comprehensive infor-
mation for the question. Additionally, R3-RAG can
adaptively decompose the previous query when it
fails to retrieve relevant information. Specifically,
when it tries to retrieve documents that contain
both directors’ birth dates and fails, it further de-
composes this query into two separate queries and
then successfully retrieves the corresponding infor-
mation, which shows R3-RAG’s potential when it
encounters complex queries.

6 Conclusion

We propose R3-RAG, a framework that leverages
reinforcement learning to teach LLMs how to rea-
son and retrieve step-by-step, optimizing the inter-
leaved reasoning and retrieval process with both
outcome rewards and fine-grained process rewards
through relevance-based document verification. Ex-
perimental results demonstrate that R3-RAG signif-
icantly outperforms existing iterative RAG meth-
ods across multiple benchmarks. Further analyses
show the effectiveness of R3-RAG’s reward design
and its transferability across different retrievers.

Question: Which film has the director born first, The Model
Couple or Thendral Veesum?

Golden Answer: Thendral Veesum

R3-RAG

RAG with CoT
… The Model Couple is by William Klein...
Documents:

Output:
Step 1: Based on the document, the director of "The Model
Couple" is William Klein.
Step 2: The director of "Thendral Veesum" is not mentioned in
the provided documents.
Step 3: Since "Thendral Veesum" is not mentioned in the provided
documents, we cannot determine its director's birth year.
The final answer: We cannot answer.

No birth date for William
No mention of Thendral

Step1
Analysis: The question first need identifying the directors of The
Model Couple and Thendral Veesum and then comparing their
birth dates.
Query: Who is the director of the film The Model Couple?
Documents: ...The Model Couple is by William Klein…
Step2
Analysis: This document shows that the director of The Model
Couple is William Klein.
Query: Who is the director of the film Thendral Veesum?
Documents: ... Thendral Veesum is by B. S. Ranga...
Step3
Analysis: This document shows that the director of Thendral
Veesum is B. S. Ranga.
Query: What are the birth dates of William Klein and B. S. Ranga?
Documents: ... Willem Klein, a Dutch mathematician, was born in 4
December...
Step4
Analysis: The documents does not provide the birth dates. The
documents retrieved are about individuals with similar names but
not the specific directors. Now, further decompose this problem.
Query: What is the birth date of William Klein, the director of The
Model Couple?
Documents: ...William Klein was born in April 19, 1928...
Step5
Analysis: This document shows that the birth date of William Klein
is April 19, 1928.
Query: What is the birth date of B. S. Ranga, the director of Thendral
Veesum?
Documents: ... B. S. Ranga was born on Nov 11, 1917…
Step6
Analysis: This document shows that the birth date of B. S. Ranga is
November 11, 1917. Based on their birth dates, the "Thendral
Veesum" has the director born first.
Answer: Thendral Veesum.

Adaptively Modify the Query

Figure 5: Case Study: R3-RAG can reason and retrieve
step-by-step and adaptively modify the query when re-
trieval fails.

Limitations

Despite the effectiveness of R3-RAG, our approach
has two main limitations. First, our experiments
rely on publicly available academic datasets, which
may lack sufficient diversity and realism, poten-
tially limiting the model’s robustness and general-
ization to real-world user queries. Future research
could address this by curating more diverse and
representative datasets. Second, our cold-start data
quality is constrained by the reasoning capabilities
of the foundation model (DeepSeek-v3). Due to the

10499

model’s limitations, we could not reliably generate
correct reasoning trajectories for certain challeng-
ing multi-hop questions, even after repeated sam-
pling. Using stronger models, such as DeepSeek-
R1, could further enhance cold-start data quality in
future work.

Ethics Statement

Our research complies with ethical standards
in NLP research. We utilize publicly avail-
able datasets (HotpotQA, 2WikiMultiHopQA, and
MuSiQue) and models (Llama-3.1-8B, Qwen2.5-
7B) under appropriate licenses for academic re-
search. Our derivative models comply with their
original licenses. Detailed information about
datasets, models, frameworks, and licensing can be
found in Appendix F.

Regarding data privacy and content safety, we
conducted a thorough review of the datasets to en-
sure they do not contain personally identifiable in-
formation (PII) or offensive content. The datasets
consist of questions and answers derived from
Wikipedia, which undergoes content moderation.
The questions focus on factual knowledge and do
not target sensitive personal information. No ad-
ditional data collection involving human subjects
was conducted for this research, eliminating risks
related to personal data exposure. Furthermore, we
did not implement mechanisms that could generate
harmful or offensive content. The training objec-
tives were focused on improving factual accuracy
and reasoning capabilities for answering multi-hop
questions based on retrieved information.

References
Emily M. Bender, Timnit Gebru, Angelina McMillan-

Major, and Shmargaret Shmitchell. 2021. On the
dangers of stochastic parrots: Can language mod-
els be too big? In Proceedings of the 2021 ACM
Conference on Fairness, Accountability, and Trans-
parency, FAccT ’21, page 610–623, New York, NY,
USA. Association for Computing Machinery.

Mingyang Chen, Tianpeng Li, Haoze Sun, Yijie Zhou,
Chenzheng Zhu, Haofen Wang, Jeff Z. Pan, Wen
Zhang, Huajun Chen, Fan Yang, Zenan Zhou, and
Weipeng Chen. 2025. Research: Learning to rea-
son with search for llms via reinforcement learning.
Preprint, arXiv:2503.19470.

DeepSeek-AI. 2024. Deepseek-v3 technical report.
Preprint, arXiv:2412.19437.

DeepSeek-AI, Daya Guo, Dejian Yang, Haowei Zhang,
Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu,

Shirong Ma, Peiyi Wang, Xiao Bi, Xiaokang Zhang,
Xingkai Yu, Yu Wu, Z. F. Wu, Zhibin Gou, Zhi-
hong Shao, Zhuoshu Li, Ziyi Gao, and 181 others.
2025. Deepseek-r1: Incentivizing reasoning capa-
bility in llms via reinforcement learning. Preprint,
arXiv:2501.12948.

Tianyu Gao, Howard Yen, Jiatong Yu, and Danqi Chen.
2023. Enabling large language models to generate
text with citations. In Empirical Methods in Natural
Language Processing (EMNLP).

Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri,
Abhinav Pandey, Abhishek Kadian, Ahmad Al-
Dahle, Aiesha Letman, Akhil Mathur, Alan Schel-
ten, Alex Vaughan, Amy Yang, Angela Fan, Anirudh
Goyal, Anthony Hartshorn, Aobo Yang, Archi Mi-
tra, Archie Sravankumar, Artem Korenev, Arthur
Hinsvark, and 542 others. 2024. The llama 3 herd of
models. Preprint, arXiv:2407.21783.

Xinyan Guan, Jiali Zeng, Fandong Meng, Chunlei Xin,
Yaojie Lu, Hongyu Lin, Xianpei Han, Le Sun, and
Jie Zhou. 2025. Deeprag: Thinking to retrieval
step by step for large language models. Preprint,
arXiv:2502.01142.

Kelvin Guu, Kenton Lee, Zora Tung, Panupong Pasu-
pat, and Ming-Wei Chang. 2020. REALM: retrieval-
augmented language model pre-training. CoRR,
abs/2002.08909.

Xanh Ho, Anh-Khoa Duong Nguyen, Saku Sugawara,
and Akiko Aizawa. 2020. Constructing a multi-hop
qa dataset for comprehensive evaluation of reasoning
steps. Preprint, arXiv:2011.01060.

Jian Hu, Xibin Wu, Zilin Zhu, Xianyu, Weixun Wang,
Dehao Zhang, and Yu Cao. 2024. Openrlhf: An easy-
to-use, scalable and high-performance rlhf frame-
work. arXiv preprint arXiv:2405.11143.

Zhengbao Jiang, Frank F. Xu, Luyu Gao, Zhiqing Sun,
Qian Liu, Jane Dwivedi-Yu, Yiming Yang, Jamie
Callan, and Graham Neubig. 2023. Active retrieval
augmented generation. Preprint, arXiv:2305.06983.

Jiajie Jin, Yutao Zhu, Xinyu Yang, Chenghao Zhang,
and Zhicheng Dou. 2024. Flashrag: A modular
toolkit for efficient retrieval-augmented generation
research. CoRR, abs/2405.13576.

Jeff Johnson, Matthijs Douze, and Hervé Jégou. 2019.
Billion-scale similarity search with GPUs. IEEE
Transactions on Big Data, 7(3):535–547.

Patrick Lewis, Ethan Perez, Aleksandra Piktus, Fabio
Petroni, Vladimir Karpukhin, Naman Goyal, Hein-
rich Küttler, Mike Lewis, Wen tau Yih, Tim Rock-
täschel, Sebastian Riedel, and Douwe Kiela. 2021.
Retrieval-augmented generation for knowledge-
intensive nlp tasks. Preprint, arXiv:2005.11401.

Xiaonan Li, Kai Lv, Hang Yan, Tianyang Lin, Wei Zhu,
Yuan Ni, Guotong Xie, Xiaoling Wang, and Xipeng

10500

https://doi.org/10.1145/3442188.3445922
https://doi.org/10.1145/3442188.3445922
https://doi.org/10.1145/3442188.3445922
https://arxiv.org/abs/2503.19470
https://arxiv.org/abs/2503.19470
https://arxiv.org/abs/2412.19437
https://arxiv.org/abs/2501.12948
https://arxiv.org/abs/2501.12948
https://arxiv.org/abs/2407.21783
https://arxiv.org/abs/2407.21783
https://arxiv.org/abs/2502.01142
https://arxiv.org/abs/2502.01142
https://arxiv.org/abs/2002.08909
https://arxiv.org/abs/2002.08909
https://arxiv.org/abs/2011.01060
https://arxiv.org/abs/2011.01060
https://arxiv.org/abs/2011.01060
https://arxiv.org/abs/2305.06983
https://arxiv.org/abs/2305.06983
https://doi.org/10.48550/ARXIV.2405.13576
https://doi.org/10.48550/ARXIV.2405.13576
https://doi.org/10.48550/ARXIV.2405.13576
https://arxiv.org/abs/2005.11401
https://arxiv.org/abs/2005.11401

Qiu. 2023. Unified demonstration retriever for in-
context learning. In Proceedings of the 61st Annual
Meeting of the Association for Computational Lin-
guistics (Volume 1: Long Papers), pages 4644–4668,
Toronto, Canada. Association for Computational Lin-
guistics.

Xiaonan Li, Changtai Zhu, Linyang Li, Zhangyue Yin,
Tianxiang Sun, and Xipeng Qiu. 2024. LLatrieval:
LLM-verified retrieval for verifiable generation. In
Proceedings of the 2024 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies
(Volume 1: Long Papers), pages 5453–5471, Mexico
City, Mexico. Association for Computational Lin-
guistics.

Xiaoxi Li, Guanting Dong, Jiajie Jin, Yuyao Zhang,
Yujia Zhou, Yutao Zhu, Peitian Zhang, and Zhicheng
Dou. 2025. Search-o1: Agentic search-enhanced
large reasoning models. Preprint, arXiv:2501.05366.

Xing Han Lù. 2024. Bm25s: Orders of magnitude faster
lexical search via eager sparse scoring. Preprint,
arXiv:2407.03618.

Ruotian Ma, Peisong Wang, Cheng Liu, Xingyan Liu,
Jiaqi Chen, Bang Zhang, Xin Zhou, Nan Du, and
Jia Li. 2025. S2r: Teaching llms to self-verify and
self-correct via reinforcement learning. Preprint,
arXiv:2502.12853.

OpenAI, :, Aaron Jaech, Adam Kalai, Adam Lerer,
Adam Richardson, Ahmed El-Kishky, Aiden Low,
Alec Helyar, Aleksander Madry, Alex Beutel, Alex
Carney, Alex Iftimie, Alex Karpenko, Alex Tachard
Passos, Alexander Neitz, Alexander Prokofiev,
Alexander Wei, Allison Tam, and 244 others. 2024.
Openai o1 system card. Preprint, arXiv:2412.16720.

Ofir Press, Muru Zhang, Sewon Min, Ludwig Schmidt,
Noah A. Smith, and Mike Lewis. 2023. Measuring
and narrowing the compositionality gap in language
models. Preprint, arXiv:2210.03350.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec
Radford, and Oleg Klimov. 2017. Proximal policy
optimization algorithms. CoRR, abs/1707.06347.

Zhihong Shao, Yeyun Gong, Yelong Shen, Minlie
Huang, Nan Duan, and Weizhu Chen. 2023. En-
hancing retrieval-augmented large language models
with iterative retrieval-generation synergy. Preprint,
arXiv:2305.15294.

Huatong Song, Jinhao Jiang, Yingqian Min, Jie Chen,
Zhipeng Chen, Wayne Xin Zhao, Lei Fang, and Ji-
Rong Wen. 2025. R1-searcher: Incentivizing the
search capability in llms via reinforcement learning.
Preprint, arXiv:2503.05592.

Qwen Team. 2024. Qwen2.5: A party of foundation
models.

Harsh Trivedi, Niranjan Balasubramanian, Tushar Khot,
and Ashish Sabharwal. 2022. Musique: Multi-
hop questions via single-hop question composition.
Preprint, arXiv:2108.00573.

Harsh Trivedi, Niranjan Balasubramanian, Tushar
Khot, and Ashish Sabharwal. 2023. Interleav-
ing retrieval with chain-of-thought reasoning for
knowledge-intensive multi-step questions. Preprint,
arXiv:2212.10509.

Liang Wang, Nan Yang, Xiaolong Huang, Binxing
Jiao, Linjun Yang, Daxin Jiang, Rangan Majumder,
and Furu Wei. 2022. Text embeddings by weakly-
supervised contrastive pre-training. arXiv preprint
arXiv:2212.03533.

Shitao Xiao, Zheng Liu, Peitian Zhang, and Niklas
Muennighoff. 2023. C-pack: Packaged resources
to advance general chinese embedding. Preprint,
arXiv:2309.07597.

Zhilin Yang, Peng Qi, Saizheng Zhang, Yoshua Ben-
gio, William W. Cohen, Ruslan Salakhutdinov, and
Christopher D. Manning. 2018. Hotpotqa: A dataset
for diverse, explainable multi-hop question answer-
ing. Preprint, arXiv:1809.09600.

Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak
Shafran, Karthik Narasimhan, and Yuan Cao. 2023.
React: Synergizing reasoning and acting in language
models. Preprint, arXiv:2210.03629.

Ori Yoran, Tomer Wolfson, Ori Ram, and Jonathan Be-
rant. 2024. Making retrieval-augmented language
models robust to irrelevant context. In The Twelfth
International Conference on Learning Representa-
tions, ICLR 2024, Vienna, Austria, May 7-11, 2024.
OpenReview.net.

Tian Yu, Shaolei Zhang, and Yang Feng. 2024. Auto-
rag: Autonomous retrieval-augmented generation for
large language models. Preprint, arXiv:2411.19443.

Yang Yue, Zhiqi Chen, Rui Lu, Andrew Zhao, Zhaokai
Wang, Yang Yue, Shiji Song, and Gao Huang. 2025.
Does reinforcement learning really incentivize rea-
soning capacity in llms beyond the base model?
Preprint, arXiv:2504.13837.

Yaowei Zheng, Richong Zhang, Junhao Zhang, Yanhan
Ye, Zheyan Luo, Zhangchi Feng, and Yongqiang Ma.
2024. Llamafactory: Unified efficient fine-tuning
of 100+ language models. In Proceedings of the
62nd Annual Meeting of the Association for Compu-
tational Linguistics (Volume 3: System Demonstra-
tions), Bangkok, Thailand. Association for Computa-
tional Linguistics.

Yuxiang Zheng, Dayuan Fu, Xiangkun Hu, Xiaojie Cai,
Lyumanshan Ye, Pengrui Lu, and Pengfei Liu. 2025.
Deepresearcher: Scaling deep research via reinforce-
ment learning in real-world environments. Preprint,
arXiv:2504.03160.

10501

https://doi.org/10.18653/v1/2023.acl-long.256
https://doi.org/10.18653/v1/2023.acl-long.256
https://doi.org/10.18653/v1/2024.naacl-long.305
https://doi.org/10.18653/v1/2024.naacl-long.305
https://arxiv.org/abs/2501.05366
https://arxiv.org/abs/2501.05366
https://arxiv.org/abs/2407.03618
https://arxiv.org/abs/2407.03618
https://arxiv.org/abs/2502.12853
https://arxiv.org/abs/2502.12853
https://arxiv.org/abs/2412.16720
https://arxiv.org/abs/2210.03350
https://arxiv.org/abs/2210.03350
https://arxiv.org/abs/2210.03350
https://arxiv.org/abs/1707.06347
https://arxiv.org/abs/1707.06347
https://arxiv.org/abs/2305.15294
https://arxiv.org/abs/2305.15294
https://arxiv.org/abs/2305.15294
https://arxiv.org/abs/2503.05592
https://arxiv.org/abs/2503.05592
https://qwenlm.github.io/blog/qwen2.5/
https://qwenlm.github.io/blog/qwen2.5/
https://arxiv.org/abs/2108.00573
https://arxiv.org/abs/2108.00573
https://arxiv.org/abs/2212.10509
https://arxiv.org/abs/2212.10509
https://arxiv.org/abs/2212.10509
https://arxiv.org/abs/2309.07597
https://arxiv.org/abs/2309.07597
https://arxiv.org/abs/1809.09600
https://arxiv.org/abs/1809.09600
https://arxiv.org/abs/1809.09600
https://arxiv.org/abs/2210.03629
https://arxiv.org/abs/2210.03629
https://openreview.net/forum?id=ZS4m74kZpH
https://openreview.net/forum?id=ZS4m74kZpH
https://arxiv.org/abs/2411.19443
https://arxiv.org/abs/2411.19443
https://arxiv.org/abs/2411.19443
https://arxiv.org/abs/2504.13837
https://arxiv.org/abs/2504.13837
http://arxiv.org/abs/2403.13372
http://arxiv.org/abs/2403.13372
https://arxiv.org/abs/2504.03160
https://arxiv.org/abs/2504.03160

A Online Data Sampling of RL

Unlike the training of cold start or offline RLHF
where data can be prepared in advance, PPO re-
quires online sampling during the training process,
with the dataset divided into multiple batches for
sampling and training.

We use multi-hop question-answering datasets
QRL that are distinct from the cold-start datasets
(QRL ∩QIL = ∅) for reinforcement learning, with
online sampling logic consistent with the cold-
start phase. We denote the sampled dataset as
DRL = {(qi, a∗i , Ti) | (qi, a∗i)} and the final train-
ing dataset as Dtrain

RL = {(inputk, outputk)}m
′

k=1,
where m′ =

∑|QRL|
i=1 |Ti|, with each pair consist-

ing of the question with previous reasoning steps
as input and the current reasoning step as output.

A key distinction from the cold-start phase is
that during reinforcement learning, we preserve all
trajectories regardless of correctness or complete-
ness. Consequently, the final step in any trajectory
Ti from DRL may lack an answer or generate an
incorrect answer.

B Generalized Advantage Estimation and
KL Divergence Definition

The advantage function A(x, y) in reinforcement
learning is used to guide policy improvement. We
estimate A(x, y) using Generalized Advantage Es-
timation (GAE). In GAE, the advantage A(x, y) is
defined as follows:

A(x, y) =

T−1∑

t=0

(γλ)tδt, (8)

where δt is the Temporal Difference (TD) error at
time step t, which is δt = rt + γV (y) − V (x).
Specifically, x represents the current state st, y rep-
resents the next state st+1, rt is the reward received
at time step t, γ is the discount factor, V (x) and
V (y) are the value functions for states x and y,
respectively, and λ is a hyperparameter that con-
trols the trade-off between bias and variance in the
advantage estimation process. The summation in
the definition of A(x, y) captures the idea of taking
into account not just the immediate rewards but
also the future rewards, discounted over time, to
provide a more accurate estimation of the advan-
tage.

The term LKL represents a KL-divergence
penalty to prevent the policy from deviating too
much from the initial model:

LKL = DKL[P (y|x; θinit) ∥ P (y|x; θ)], (9)

where β controls the strength of this regularization.
The details of the process reward model will be
provided in the next section.

C Implementation Details

We use Llama-3.1-8B (Grattafiori et al., 2024) and
Qwen2.5-7B (Team, 2024) models for training and
evaluating. For the stage of the cold start, we
prompt DeepSeek-V3 (DeepSeek-AI, 2024) mod-
els to obtain step-by-step solution trajectories that
can solve problems correctly with a specific format.
We sampled from 15,000 examples in the 2Wiki-
MultiHopQA training set, 19,937 examples in the
MuSiQue training set, and the first 30,000 exam-
ples in HotpotQA, resulting in 10,843, 14,145, and
26,266 solution trajectories respectively. Then we
further cleaned these data to ensure they conform
to our required format specifications. We obtained
a total of 51,254 trajectories for cold start, which
can arrive at correct answers but do not necessarily
follow optimal solution paths. We use these lower-
quality data to train our base model through the
LLaMA-Factory framework (Zheng et al., 2024),
resulting in the first version of our method, which
we call R3-RAG-CS. During training, we apply
full-parameter fine-tuning with DeepSpeed zero-3
optimization and a maximum token length of 4,096.
For Llama and Qwen models, we set learning rates
at 1.0e-5 and 7.0e-6, with batch sizes of 8 and 16
respectively.

For the stage of RL, since we have fully uti-
lized the 2WikiMultiHopQA and MuSiQue train-
ing datasets, we extract 8,192 samples from the
remaining 60,000+ HotpotQA training data for re-
inforcement learning. We modified the sampling
code in the OpenRLHF framework (Hu et al., 2024)
to enable step-by-step sampling and tool calling ac-
cording to our requirements. Then we use the mod-
ified OpenRLHF to complete PPO reinforcement
learning training, resulting in our R3-RAG models.
Actor learning rates are set at 5e-7 for both models,
critic learning rates at 9e-6, and the training batch
size is uniformly set at 64. The context length after
multiple inference iterations and model calls may
lead to CUDA out of memory errors. To avoid
frequent errors, we limit each retrieved document
to 512 characters during reinforcement learning
training. we set γfail = −0.1, γincorrect = −0.2,
and γcorrect = 0.6. And we use Qwen2.5-14B-

10502

Instruct (Team, 2024) to assign scores of document
relevance.

We use the wikipedia-nq-corpusfrom Tevatron
(wikipedia2018) with the FlashRAG (Jin et al.,
2024) framework to build the retriever. If the re-
triever is not specified, we default to using the E5-
base-v2 model(Wang et al., 2022) as the retriever.
Additionally, for fair testing, we also provide re-
sults using BGE-large-en-v1.5(Xiao et al., 2023)
and BM25(Lù, 2024). When using the E5 and
BGE models, We use the faiss library (Johnson
et al., 2019) for GPU-accelerated retrieval.

In evaluation, although we know that excessive
context length can degrade model reasoning per-
formance, we directly input the retrieved content
into the model without extracting key information
as other methods do. This better represents the
model’s capabilities in real-world environments,
where useful information is often hidden among
large amounts of irrelevant information. We set
the retriever’s top-k to 5 and limit the maximum
number of iterations to 5 during evaluation. Specif-
ically, for the Naive RAG method, since each ques-
tion only retrieves once, we set the number of top-k
to 16, as our proposed method uses fewer than 16
documents on average. If the model fails to an-
swer a question within this number of steps, we
consider it unable to answer the question and count
it as incorrect. We implemented Naive Genera-
tion, Naive RAG, and react methods, prompting the
models to generate answers step by step. For base-
lines including Flare, Self-ask, ITER-RETGEN,
and IRCoT, we used the FlashRAG implementa-
tion. All methods first generate answers, which
are then evaluated using a unified evaluation script.
Evaluation data for Auto-RAG and DeepRAG are
cited from the DeepRAG(Guan et al., 2025), while
ReSearch-Qwen-7B-Instruct results are cited from
its paper(Chen et al., 2025). We ensured consistent
evaluation parameters across all methods. And we
use Qwen2.5-72B-Instruct (Team, 2024) to judge
the correctness for the accuracy in our metrics.

We conducted all our model training experi-
ments twice to ensure the training process is re-
producible. During evaluation, we observe that
the model’s output results were stable, therefore
we only performed a single trial. We conduct our
experiments using NVIDIA H100 GPUs.

D Details of Analysis for Retriever
Quality

We present a comprehensive evaluation of datasets
and metrics in Table 5. The results show that our
model consistently outperforms all baselines across
all metrics on the three datasets. Moreover, R3RAG
consistently surpasses R3-RAG-CS, further demon-
strating the transferability of R3-RAG’s learned
reasoning and retrieval strategies across external
retrieval environments.

Interestingly, among the baseline methods, both
models struggle to effectively utilize the stronger
BGE retriever, often performing better with the
theoretically weaker BM25 and E5 retrievers. We
propose two explanations for this counter-intuitive
phenomenon. First, different models have varying
adaptation capabilities to retriever characteristics,
meaning that stronger general-purpose retrievers
don’t always provide better document recall for
all models and baseline query formulations. Sec-
ond, our analysis of retrieval queries and returned
documents reveals that baseline methods typically
generate broad queries containing multiple knowl-
edge points, expecting retrievers to return compre-
hensive information in a single operation. How-
ever, these knowledge points often have low se-
mantic similarity to each other (e.g., different entity
names). BM25 and E5, especially BM25, tend to
prioritize documents with high relevance to individ-
ual knowledge points, while BGE attempts to opti-
mize for average relevance across all query compo-
nents, potentially resulting in lower relevance for
each specific knowledge point and consequently
fewer critical documents compared to BM25.

E Potential Risk

Previous works have shown LLMs can have vari-
ous kinds of bias(Bender et al., 2021). Since our
method uses training data distilled from DeepSeek-
v3 during the cold-start phase, it can also inherit
such biases.

F Details of Research Artifacts and
Licenses

This research utilizes several publicly available
datasets, pre-trained models, and frameworks. We
provide comprehensive details on their licenses and
our usage to ensure transparency and compliance
with ethical research standards.

10503

HotpotQA 2WikiMultiHopQA MuSiQue Avg
Methods Retriever ACC F1 EM ACC F1 EM ACC F1 EM ACC

Llama-3.1-8B
RAG with CoT BM25 52.3 49.9 38.1 31.5 39.4 30.5 13.3 16.3 8.0 32.4

E5 53.3 50.8 38.6 32.9 40.2 31.1 16.3 18.8 10.3 34.2
BGE 55.8 52.8 40.5 33.9 41.1 32.4 16.8 19.5 10.3 35.5

ReAct(Tool Call) BM25 33.6 28.3 23.3 18.0 15.4 13.6 8.4 5.8 4.3 20.0
E5 30.8 25.8 21.2 17.8 14.5 12.9 8.6 6.5 4.8 19.1

BGE 29.8 25.2 20.6 16.1 13.2 11.6 8.2 6.0 4.6 18.0
IRCoT BM25 52.8 46.4 39.5 41.4 38.6 36.2 17.5 14.0 12.0 37.2

E5 52.8 46.0 39.3 40.6 37.5 35.1 16.7 13.6 12.0 36.7
BGE 43.3 37.8 32.4 20.8 18.9 17.9 12.8 10.3 9.0 25.6

R3-RAG-CS BM25 57.8 53.3 41.6 48.0 49.1 42.3 22.6 23.0 15.4 42.8
E5 60.6 55.5 43.6 53.7 53.4 46.5 29.6 29.4 19.4 48.0

BGE 61.7 56.8 44.5 54.6 54.4 47.4 28.8 28.9 19.4 48.4
R3-RAG BM25 62.5 57.6 44.4 58.0 58.6 50.6 26.4 27.7 17.2 49.0

E5 64.4 58.8 45.6 61.0 60.9 52.9 32.2 32.7 21.1 52.5
BGE 65.3 60.0 46.6 62.1 61.8 53.7 33.8 32.8 21.2 53.7

Qwen2.5-7B
RAG with CoT BM25 49.9 47.8 36.0 29.8 36.4 27.4 14.3 16.8 8.7 31.3

E5 52.4 49.4 37.6 33.5 39.1 30.1 16.9 18.8 9.9 34.3
BGE 55.1 51.7 39.6 35.3 40.5 32.0 18.3 20.9 11.3 36.2

ReAct(Tool Call) BM25 43.4 36.0 29.4 28.7 25.1 23.0 11.3 7.6 5.5 27.8
E5 27.9 23.1 21.1 38.3 31.7 26.1 11.7 8.0 5.8 26.0

BGE 37.7 31.4 26.0 27.4 22.6 20.6 11.9 8.2 5.8 25.7
IRCoT BM25 48.5 42.4 36.1 33.8 31.7 29.6 12.8 10.7 9.1 31.7

E5 48.4 42.1 35.7 35.8 33.5 31.1 13.5 11.2 9.4 32.6
BGE 40.5 35.3 30.0 20.1 18.9 18.2 9.2 7.7 6.5 23.3

R3-RAG-CS BM25 60.4 55.5 43.5 49.8 50.4 43.5 25.1 25.3 16.2 45.1
E5 63.3 57.6 45.2 53.1 53.5 46.1 31.3 31.9 21.9 49.2

BGE 64.1 58.7 46.1 55.2 55.2 48.1 31.1 31.1 21.1 50.1
R3-RAG BM25 63.8 58.2 44.9 59.6 61.1 52.8 29.2 30.0 17.6 50.9

E5 65.5 59.7 46.4 62.3 62.7 54.2 33.6 34.0 21.4 53.8
BGE 66.4 60.6 46.8 63.0 63.4 55.2 34.8 34.3 21.7 54.7

Table 5: Comprehensive performance comparison of different retrieval methods (BM25, E5-base-v2, BGE-Large)
across all models on HotpotQA, 2WikiMultiHopQA, and MuSiQue datasets. Results include accuracy (ACC), F1,
and exact match (EM) metrics.

F.1 Datasets and Licenses

We utilized three multi-hop QA datasets:

• HotpotQA (Yang et al., 2018) - Distributed
under the CC BY-SA 4.0 license

• 2WikiMultiHopQA (Ho et al., 2020) - Dis-
tributed under the Apache-2.0 license

• MuSiQue (Trivedi et al., 2022) - Distributed
under the CC BY 4.0 license

Our usage of these datasets adheres strictly to
their intended research purposes as specified by
their creators. All datasets were used in their origi-
nal form for academic research purposes only, and
no modifications were made to their licenses. The
datasets contain questions derived from Wikipedia
content and are designed specifically for multi-hop
question answering research.

For the artifacts we created in this study (fine-
tuned R3-RAG-CS and R3-RAG models), we main-
tain the same licensing terms as their base models
and specify that they are intended for academic
research purposes only. These derivative models
are compatible with the original access conditions
of their base models and datasets, and should not
be used outside of research contexts. Our modifica-
tions were limited to parameter fine-tuning and did
not alter the fundamental architecture or intended
use cases of the original models.

F.2 Models, Frameworks, and Their Licenses

We employed the following models and frame-
works:

Language Models:

• Llama-3.1-8B (Grattafiori et al., 2024) - Avail-
able under the Llama 3.1 Community License

10504

• Qwen2.5-7B (Team, 2024) - Available under
the Apache-2.0 license

Retriever:

• E5-base-v2 (Wang et al., 2022) - Available
under the MIT license

• BGE-large-en-v1.5 (Xiao et al., 2023) - Avail-
able under the MIT license

• BM25S (Lù, 2024) - Available under the MIT
license

Frameworks:

• LLaMA-Factory (Zheng et al., 2024) - Avail-
able under the Apache-2.0 license

• OpenRLHF (Hu et al., 2024) - Available under
the Apache-2.0 license

• FlashRAG (Jin et al., 2024) - Available under
the MIT license

• FAISS (Johnson et al., 2019) - Available under
the MIT license

Our use of these artifacts is consistent with their
intended purposes. The language models and re-
trieval models were used for natural language pro-
cessing and information retrieval tasks within a
research context. The frameworks were employed
as development tools to implement our research
methodology. No commercial applications were
developed using these resources. All model adap-
tations created during this research maintain com-
patibility with the original license terms of their
respective base models.

10505

def prompt_question_init(question):
return f'''

Role
You are an expert in large language models and knowledge retrieval , with extensive

expertise in problem decomposition.
Answer Format:
The problem analysis: [Analyze information based on the question .]
** Either :**
The retrieval query: [If information is insufficient , generate one query.]
OR:
The final answer: [If information is sufficient , provide the final answer .]
Instructions:
1. **The Problem Analysis **:

- ** Decision Making **:
- ** Sufficient Information **: If the available information is adequate and no

more query need to retrieve , use your parameter knowledge and reasoning
capability to solve it and get the answer. Finaly , output the answer in the
"The final answer :" section.

- ** Insufficient Information **: If the information is lacking , identify what
information is missing:

- ** Determine Next Retrieval **: Consider what content should be retrieved
next and decomposite the query into simpler retrieval queries.

2. ** Response Formatting **:
- **Start with Analysis **: Always begin with "The problem analysis :" followed by

the detailed analysis. Only one analysis is permitted; therefore , include all
your analytical content within this section.

- ** Choose Appropriate Section **: Based on the decision:
- Include "The retrieval query:" if more information is needed.
- Include "The final answer :" if sufficient information is available.

- ** Generate a Single Query **: Based on the analysis , formulate one targeted
query and place it in the "The retrieval query:" section. Ensure that only
one query is generated , focusing on the first retrieval question needed.

- ** Language Consistency **: Provide the entire response in English , regardless of
the input language.

Key Competencies
1. ** Decision Making **:

- ** Assessment **: Evaluate whether it is feasible to resolve the entire problem
based on all preceding steps.

- ** Action in Uncertainty **: If uncertain , initiate an attempt to solve the
problem.

- ** Failure Handling **: If the solution process encounters a failure , terminate
the attempt and analyze which information should be retrieved next.

2. ** Decomposition of Retrieval Content **:
- ** Problem Breakdown **: When analysis requires solving a problem , decompose

complex questions into smaller , actionable sub -questions (atomic problems).
- **Step -by-Step Resolution **: Address these sub -questions sequentially and

establish a logical sequence to answer the original question.
- ** Identifying Broad Problems **: If the analysis reveals that the information

retrieved in the last step does not align with the query , this indicates that
the problem is too broad. In such cases:

- ** Suggestion **: Propose a method to decompose the problem into smaller sub -
questions.

- ** Implementation **: Attempt to break down the original query into simpler ,
more manageable questions.

- ** Methods of Decomposition **: Complex questions can be decomposed into **two
fundamental forms **:

- ** Sequential Decomposition **:
- ** Definition **: Break the problem into a series of dependent steps , where

each step relies on the result of the previous one.
- ** Parallel Decomposition **:

- ** Definition **: Split the problem into multiple independent sub -problems ,
solve each separately , and then combine the results.

Current Input: The question: {question}
Output:
'''

Figure 6: The initial prompt template used for the first step of trajectory generation.

10506

def prompt_question(steps_formatted , question):
return f'''

Role: You are an expert in large language models and knowledge retrieval.
Answer Format:
The problem analysis: [Analyze information based on previous steps and the question]
** Either :**
The retrieval query: [If information is insufficient , generate one query]
OR:
The final answer: [If information is sufficient , provide the final answer]
Instructions:
1. **The Problem Analysis **:

- ** Review Previous Steps **: Examine all prior steps , including analyses , queries
, and documents.

- ** Decision Making **:
- ** Sufficient Information **: If the information is adequate , analyze it to

solve the problem and output the answer in the "The final answer :" section.
- ** Insufficient Information **: If the information is lacking:

- ** Evaluate Last Step **: Analyze the documents obtained in the last step to
determine if they are relevant to the query or the problem at hand.

- ** Utilizing parameter knowledge **: If the retrieval results of the query
are not relevant , check if your parameter knowledge can response the
query.

- ** Assess Previous Steps **: Identify what information is missing from the
overall previous steps.

- ** Determine Next Retrieval **: Consider what content should be retrieved
next and decomposite the query into simpler retrieval queries.

2. ** Response Formatting **:
- **Start with Analysis **: Always begin with "The problem analysis :" followed by

the detailed analysis. Only one analysis is permitted; therefore , include all
your analytical content within this section.

- ** Choose Appropriate Section **: Based on the decision:
- Include "The retrieval query:" if more information is needed.
- Include "The final answer :" if sufficient information is available.

- ** Generate a Single Query **: Based on the analysis , formulate one targeted
query and place it in the "The retrieval query:" section. Ensure that only
one query is generated , focusing on the first retrieval question needed.

- ** Language Consistency **: Provide the entire response in English , regardless of
the input language.

Key Competencies
1. ** Decision Making **:

- ** Assessment **: Evaluate whether it is feasible to resolve the entire problem
based on all preceding steps.

- ** Action in Uncertainty **: If uncertain , attempt to solve the problem.
- ** Failure Handling **: If the solution process encounters a failure , terminate

the attempt and analyze which information should be retrieved next.
2. ** Decomposition of Retrieval Content **:

- ** Problem Breakdown **: When analysis requires solving a problem , decompose
complex questions into smaller , actionable sub -questions (atomic problems).

- **Step -by-Step Resolution **: Address these sub -questions sequentially and
establish a logical sequence to answer the original question.

- ** Identifying Broad Problems **: If the analysis reveals that the information
retrieved in the last step does not align with the query , this indicates that
the problem is too broad. In such cases:

- ** Suggestion **: Propose a method to decompose the problem into sub -questions.
- ** Implementation **: Attempt to break down the original query into simpler ,

more manageable questions.
- ** Methods of Decomposition **: Complex questions can be decomposed into **two

fundamental forms **:
- ** Sequential Decomposition **:

- ** Definition **: Break the problem into a series of dependent steps , where
each step relies on the result of the previous one.

- ** Parallel Decomposition **:
- ** Definition **: Split the problem into multiple independent sub -problems ,

solve each separately , and then combine the results.
Current Input: The question: {question }. The Previous Steps :{ steps_formatted}
Output:
'''

Figure 7: The prompt template used for subsequent steps in trajectory generation.

10507

