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Abstract

In the field of design patent analysis, traditional
tasks such as patent classification and patent
image retrieval heavily depend on the image
data. However, patent images—typically con-
sisting of sketches with abstract and structural
elements of an invention—often fall short in
conveying comprehensive visual context and
semantic information. This inadequacy can
lead to ambiguities in evaluation during prior
art searches. Recent advancements in vision-
language models, such as CLIP, offer promis-
ing opportunities for more reliable and accu-
rate AI-driven patent analysis. In this work,
we leverage CLIP models to develop a uni-
fied framework DESIGNCLIP for design patent
applications with a large-scale dataset of U.S.
design patents. To address the unique char-
acteristics of patent data, DESIGNCLIP in-
corporates class-aware classification and con-
trastive learning, utilizing generated detailed
captions for patent images and multi-views im-
age learning. We validate the effectiveness
of DESIGNCLIP across various downstream
tasks, including patent classification and patent
retrieval. Additionally, we explore multimodal
patent retrieval, which provides potential to
enhance creativity and innovation in design
by offering more diverse sources of inspira-
tion. Our experiments show that DESIGN-
CLIP consistently outperforms baseline and
SOTA models in patent domain on all tasks.
Our findings underscore the promise of mul-
timodal approaches in advancing patent anal-
ysis. The codebase is available here: https:
//github.com/AI4Patents/DesignCLIP

1 Introduction

Patents are units for the state of the art innovation,
designs and technological advancements as well
as they offer legal protection for inventors’ intel-
lectual property (Moser, 2013). Patents grant the
owner the authority to prevent others from man-
ufacturing, utilizing, or distributing the patented

invention without their permission1. Among the
two popular types, utility patents are granted for in-
novations in processes, machines, manufactures, or
compositions of matter, including improvements,
design patents are awarded for new, original, and
ornamental designs applied to manufactured items.
While utility patents have been well studied (Fall
et al., 2003; Kamateri et al., 2022; Siddharth et al.,
2022; Kang et al., 2020), design patents remain
relatively underexplored.

One of the most important design patent tasks is
patent retrieval. This aims to determine the novelty
of the patent and prevent infringements. A patent is
only granted if the design significantly differs from
existing ones. Most previous research (Higuchi
and Yanai, 2023; Lo et al., 2024) focus primarily
on image-to-image retrieval since there is a lack
of informative text descriptions in design patents.
Patent classification (Rademaker, 2000; Kamateri
et al., 2024) is another task by patent reviewers who
classify applications into various subject matters
and assign design classification codes. In the US
design patent system, there are 33 classes which
also contain various subclasses. Automating the
patent classification process can save an enormous
amount of time.

Solving the above tasks would need sophisti-
cated multimodal techniques due to several chal-
lenges. Design patent images are sketches that
provide detailed design information and differ sig-
nificantly from natural images (please see the ex-
amples of patent designs in Figure 2). Additionally,
the class distribution in the design patent dataset
is highly imbalanced, with the six most frequent
classes accounting for almost half of the total data
(Figure 1). Furthermore, the aim is to build one
single model that can perform the patent classifi-
cation as well as retrieval. There are currently no
multimodal models that are designed to address

1https://www.uspto.gov/patents/basics
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these challenges and specifically tailored for de-
sign patents.

Our contributions. In this paper, we develop
a new CLIP-based framework to facilitate multi-
modal analyses on design patents. Our major con-
tributions are as follows.

• Multimodal Analysis. We address the prob-
lem of multimodal analysis in design patents
by building a comprehensive AI-based frame-
work. The goal is to address the time-
consuming patent tasks such as patent clas-
sification and patent retrieval efficiently.

• DESIGNCLIP: We modify CLIP (Radford
et al., 2021) by incorporating the domain
knowledge from design patents. It uses a
class-aware learning method to balance the
long-tailed distribution of classes in design
patents, and is pre-trained with multiple tasks,
including patent classification and multi-view
image-image contrastive learning.

• Experiments: We conduct comprehensive
experiments showing that our methods out-
performs baseline models and the state-of-art
patent image retrieval models on all down-
stream tasks and gain notable improvements
on design patent representations.

2 Background on Patent Analysis

The patent retrieval task focuses on efficiently
retrieving relevant patent documents and images
based on search queries. In design patents, this task
is focused on image-to-image retrieval, where the
objective is to find visually similar design images
that match a given image query. (Kucer et al., 2022)
implement various models such as ResNet50 (He
et al., 2016), and Sketchy RN50 (Sangkloy et al.,
2016). Their patent-specific models are initially
pre-trained on ImageNet (Deng et al., 2009) and
fine-tuned on the DeepPatent dataset. Similarly,
(Higuchi and Yanai, 2023; Higuchi et al., 2023) use
a deep metric learning framework, utilizing cross-
entropy methods like InfoNCE with ArcFace. On
the other hand, (Lo et al., 2024) implement several
advanced models, such as ViT (Dosovitskiy et al.,
2020) and Swin (Liu et al., 2021), along with more
recent multimodal models such as BLIP-2 (Li et al.,
2023), and GPT-4V (Achiam et al., 2023). They in-
troduce a novel approach by proposing a language-
informed strategy for learning features from patent
images. Please refer to the survey (Shomee et al.,

2025) for more details. Notably, there is currently
no specific machine learning or AI-based research
focused on the critical constraints (e.g., classes
and multi-views) from the design patents and we
address this in this paper.

While utility patents are different from design
patents, the images in utility patents are not well-
studied. (Ghauri et al., 2023) classify utility patent
images into distinct types of visualizations, includ-
ing graphs, block circuits, flowcharts, and technical
drawings. They employ the CLIP model (Rad-
ford et al., 2021), integrated with a Multi-layer
Perceptron and various Convolutional Neural Net-
works (Krizhevsky et al., 2012) architectures, to
enhance the precision of patent image classifica-
tion. IMPACT dataset (Shomee et al., 2024) is a
comprehensive and large-scale resource compris-
ing over 500,000 U.S. design patents issued be-
tween 2007 and 2022. It includes 3.61 million
figures accompanied by detailed captions, titles,
and metadata, offering a rich multimodal dataset
that integrates visual and textual information. In
this paper, we mainly focus on design patents using
IMPACT dataset and address the two primary tasks
associated with the design patents. We demon-
strate the design patent retrieval task in three dif-
ferent formats: text-to-image, image-to-text, and
image-to-image. Additionally, the classification of
design patent images into 33 subject matter (class)
and various subclasses is a detailed and structured
approach to organizing design patents. We address
the classification task by categorizing patents into
their class level categories using both text-based
captions and images.

Figure 1: Design patent data category distributions in
our test data. Top 6 categories consists of 44.58% of all
the data which shows a long tail distribution.
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Figure 2: The framework for DESIGNCLIP. The inputs are patent images and simple text (title). First, we generate
descriptions and pass them along with images to text and image encoders accordingly. Then, we pre-train CLIP-
based models with adapted class-aware sampling and learning and multi-view image contrastive learning on 285,000
design patents. LMVCL,LCACL, and LCACLS denote the multi-view contrastive loss (Eq. 5), class-aware contrastive
loss (Eq. 3), and class-aware classification loss (Eq. 4) respectively.

3 DESIGNCLIP

In this work, we address the challenges of de-
sign patent analysis by adapting the CLIP vision-
language model family. The major components
of our framework, DESIGNCLIP, are as follows:
First, considering the long tail distribution among
the classes of design patents, we begin with propos-
ing a class-aware learning method to resample con-
struct pairs in the batch. This helps our method
DESIGNCLIP to balance learning from all the
classes. Then, we pre-train DESIGNCLIP with mul-
tiple tasks, including patent classification, image-
caption contrastive loss, and multi-view image-
image contrastive loss. Our architecture is illus-
trated in Figure 2.

Brief Review of CLIP Framework: CLIP (Rad-
ford et al., 2021), a multimodal model uses con-
trastive learning to bridge the gap between text and
images. At its foundation is the principle of acquir-
ing perceptual understanding from the guidance
of natural language. During its pre-training phase,
CLIP learns to identify if a text snippet and an im-
age are matched in its dataset. The training involves
a series of five ResNets and three Vision Transform-
ers to facilitate zero-shot classification. CLIP has
been popular across various fields including medi-
cal imaging (Lu et al., 2024; Müller et al., 2022; Lei
et al., 2023), robotics (Shibata et al., 2024; Rana

et al., 2023; Sontakke et al., 2024), biodiversity
monitoring (Gong et al., 2024), e-commerce (Hen-
driksen et al., 2022), educational technology (Sun
et al., 2024) and showed great performance.

The popular CLIP (Radford et al., 2021) is a
pre-trained model to learn image-text pairs with
contrastive loss. This approach enables the model
to differentiate between semantically similar and
dissimilar data points, enhancing its ability to cap-
ture meaningful relationships between visual and
textual information. CLIP is widely applied for a
variety of multimodal tasks, including zero-shot
classification, and multimodal search. Specifically,
given an image, CLIP can retrieve the most relevant
text descriptions (e.g., captions or labels). Given
image-text pairs {(vi, ti)}Ni=1, the vanilla loss func-
tion in CLIP is defined as:

LCLIP = − log
exp(sim(vi, ti)/τ)∑N

k=1 exp(sim(vi, tk)/τ)
, (1)

where sim(·) is the cosine similarity between the
image embedding vi and the text embedding ti, and
τ is a temperature parameter.

3.1 Class-aware Learning
As illustrated in Figure 1, the class (category) dis-
tribution in the design patent dataset is highly im-
balanced, among which the top six most frequent
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classes constitute 44.58% of the total training data.
This imbalance presents a significant challenge
for the standard CLIP contrastive learning method.
This long tail recognition problem tends to be bi-
ased towards the head classes and leads to subop-
timal performance on the less frequent classes. In
DESIGNCLIP, we address this problem by utiliz-
ing the marginal distribution in two ways: Class-
aware Sampling and a modified Class-aware Con-
trastive Loss.

3.1.1 Class-aware Sampling

While training DESIGNCLIP, it is essential for
each batch to contain an adequate amount of data
from all the classes, which ensures each class re-
ceives appropriate supervision signals (Wang et al.,
2017; Kang et al., 2019; Zhu et al., 2022). We con-
sider resampling categories dynamically in each
batch to construct contrastive pairs. For analyzing
patents in the constrastive learning framework, we
use a positive sample as the patent image and its
generated captions, and the negative sample as the
patent image with the caption of another patent.
The quality of negative image-text pairs plays a
vital role in contrastive learning. Intuitively, our
goal is twofold: (i) to maintain a balanced repre-
sentation of all classes during the batch training,
and (ii) while constructing batches, we also aim to
increase the likelihood that each batch contains a
more diverse set of classes, with a particular focus
on sufficient representation from the tail classes.
To do so, we define the probability of sampling a
class c as,

pc =

1

fβ
c∑C

j=1
1

fβ
j

, (2)

where fc is the frequency of class c in the batch, C
is the total number of classes, and β is a hyperpa-
rameter of rebalancing the weights of the classes.

The advantage of our definition of pc is that
when an anchor from a tail class is involved, we
can easily adjust the sampling process by increas-
ing the value of β in Eq. 2 for the head (popular)
classes. This reduces the likelihood of the nega-
tive pairs mainly originating from the head classes,
and thereby prevents the tail classes from being
overly penalized as negatives. This adjustment
helps the model to learn better representations for
the tail classes and leads to improved performance
in downstream tasks like patent classification and
patent retrieval.

3.1.2 Class-aware Contrastive Loss
In addition to Class-aware Sampling, we introduce
a modified Class-aware Contrastive Loss that fur-
ther mitigates the imbalance by incorporating class-
dependent weighting into the CLIP contrastive loss
in Eq. 1, as follows:

LCACL = − 1

fβ
i

log
exp(sim(vi, ti)/τ)∑N

k=1 exp(sim(vi, tk)/τ)
,

(3)
where, fi is the frequency of class which the

i-th sample belongs. This class-aware weighting
ensures that the loss function penalizes misclassifi-
cations more heavily for tail classes, which encour-
ages the model to allocate more capacity to learn
these classes.

3.2 Multi-task Pre-training
Considering the properties of patent data and tasks,
we train DESIGNCLIP on three tasks simultane-
ously, including (1) class-aware image-generated
description contrastive learning, (2) class-aware
classification, and (3) class-aware image-image
(other views) contrastive learning. In task (1), we
use the methods in Class-aware Learning. In this
section, we introduce task (2) and task (3).

3.2.1 Class-aware Classification
In this task, we aim to handle the class imbalance
in addition to the Class-aware Learning. It helps
to capture the subtle differences between patents
which enhances the model’s ability to generalize
across diverse categories. Specifically, DESIGN-
CLIP incorporates an attention-based (Vaswani
et al., 2017) classification layer with both image
and text features. Let vi ∈ Rdv denote the visual
features extracted from the i-th image by an image
encoder, and ti ∈ Rdt denote the textual features
extracted by a text encoder, the attention scores is
computed as αi = softmax (Wvvi +Wtti + ba),
and then the combined multimodal vector hi is cal-
culated by hi = αi ⊙ (W ′

vvi +W ′
t ti), where W

are learnable weights and b is bias. Finally, the
class-aware classification loss is computed as:

LCACLS = − 1

fβ
i

log
exp(w⊤

c hi)∑C
j=1 exp(w

⊤
j hi)

, (4)

where fi is the frequency of class in which i-th
sample belongs, β is a hyperparameter of rebalanc-
ing the weights of each class, and wc represents the
weight vector of class c.
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This class-aware classification approach ad-
dresses the class imbalance to ensure that DESIGN-
CLIP effectively pays importance to the underrep-
resented (tail) classes. We also add the attention
mechanism to learn the most relevant features in
both image and text modalities. Moreover, by ap-
plying class-aware weighting, DESIGNCLIP can
be generalized across a wide variety of categories
of design patents.

3.2.2 Multi-view Image-image Contrastive
Learning

Patents often include multiple views of the same
design to provide a comprehensive understanding
of the object from different angles, as shown in
Figure 2 (“Multi-view Images"). To effectively
learn the multi-view information, we employ a sim-
ilar class-aware contrastive learning approach in
Class-aware Learning. The goal is to learn consis-
tent representations across different views of the
same patent while distinguishing these from views
of other patents. Note that, the number of views
varies in each patent, and some contain over 10
views. Thus, we mainly focus on front, top and
side views. By aligning features from different
views of the same object in a shared embedding
space, the model gains a better understanding of
the design. Similar to Eq. 3, given image-image
pairs {(vi, v′i)}Mi=1, the multi-view image-image
contrastive learning loss is written as:

LMVCL = − 1

fβ
i

log
exp(sim(vi,v

′
i)/τ)∑M

k=1 exp(sim(vi,v′
k)/τ)

,

(5)
where fi is the frequency of class which the i-th
sample belongs. To construct positive pairs, we
randomly sample the image from the front view,
side view, and top view.

Finally, our pre-train loss of DESIGNCLIP is a
linear combination of three tasks as follows:

L = λ1LCACLS + λ2LCACL + λ3LMVCL (6)

4 Experiments

Reproducibility. We make the codebase avail-
able here: https://github.com/AI4Patents/
DesignCLIP

4.1 Dataset
We use a total of 285,391 patents for training DE-
SIGNCLIP, and 10,000 patents for validation from

IMPACT dataset (Shomee et al., 2024). More-
over, we also generate captions following IMPACT
for different views with the prompt: This is the
{patent_view} view image of {patent_title}. What is
the shape of the image? What is the functionality
of {patent_title}? The “patent_view” includes top,
front, and side views. In addition, we used data
including 22,467 design patents from 2023 as test
set, such as evaluations on zero-shot performance.
Note that we use IMPACT as a baseline for patent
downstream tasks. More details of the dataset are
shown in the Appendix A.1.

4.2 Implementation details

We use an open source implementation of CLIP2.
The backbone models are ResNet50, ResNet101,
ViT-B-32 and ViT-L-14. The hyperparameters for
the best performance are listed as follows: learning
rate is 5e − 6, weight decay is 0.1, optimizer is
AdamW for all models, β is 1.2, λ1 is 1, λ2 is 0.1
and λ3 is 0.2. The batch size is 128, except 64 for
ViT-L-14. We use image size of 224 × 224 in all
the experiments. All pre-training experiments are
conducted on a cluster of 4 NVIDIA A40 GPUs,
and the downstream tasks and ablation studies are
on 4 NVIDIA V100 GPUs.

4.3 Patent downstream tasks

In this work, we mainly demonstrate DESIGNCLIP
is beneficial for patent domain tasks, including
patent classification and retrieval. However, there
are limited studies focus on design patent, and they
only work on image retrieval task. To evaluate
the effectiveness of DESIGNCLIP, we consider to
conduct experiments on image retrieval compar-
ing with the state-of-the-art methods, and evaluate
on design patent classification and multimodal re-
trieval comparing with the general CLIP which is
pre-trained on natural images and IMPACT results.

4.3.1 Image retrieval
Recent design patent studies mainly focus on im-
age retrieval (IR). This process is often used for
discovering new patents and assessing their nov-
elty. These studies are validated with DeepPatent
dataset (Kucer et al., 2022) containing 45,000 de-
sign patents. To verify DESIGNCLIP, we conduct
experiments compare to the SOTA model (Higuchi
and Yanai, 2023) on DeepPatent. We reproduce the
same retrieval pipeline which used ArcFace (Deng

2https://github.com/mlfoundations/open_clip
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Table 1: Image retrieval results (mAP) comparison be-
tween DESIGNCLIP and other patent SOTA models on
DeepPatent test set. Image size is 224 × 224. The best
results are in bold. *Denotes our implementation.

Model mAP

DeepPatent (Kucer et al., 2022) 0.379
ViT-B + ArcFace (Higuchi and Yanai, 2023) 0.614

SWIN (image) + ArcFace (Higuchi and Yanai, 2023) 0.676
SWIN (image+text) + ArcFace* 0.684
CLIP-ViT-B (image) + ArcFace* 0.645

CLIP-ViT-B (image+text) + ArcFace* 0.671
IMPACT (Shomee et al., 2024) 0.657

DESIGNCLIP-ViT-B (image) + ArcFace 0.698
DESIGNCLIP-ViT-B (image+text) + ArcFace 0.712

et al., 2019) with different backbones. In our set-
tings, we utilize DESIGNCLIP as backbones and
also compare the performance of only using vision
features and combining vision and textual features.
More details of the implementations are shown in
the Appendix (Sec. A).

Table 1 illustrates the results of image retrieval.
The evaluation metric is the mean Average Preci-
sion (mAP) over all queries in the test set. DESIGN-
CLIP outperforms SOTA models by replacing the
backbones which are pre-trained on patent data
with our DESIGNCLIP models. Indeed, textual
features are also beneficial to image retrieval. We
show the retrieval examples in the Appendix.

4.3.2 Patent classification

Patent classification is important but time-
consuming for patent reviewers, and could be faster
with AI-based frameworks. Thus, we consider to
showcase the effectiveness of DESIGNCLIP on the
classification task. The baseline model is OpenAI
pre-trained CLIP and IMPACT. We use our test set
(patents from 2023) to demonstrate the classifica-
tion tasks, including zero-shot classification, and
finetuning with a linear classifier. More details of
the implementations are shown in the Appendix
(Sec. A).

We demonstrate two settings of patent classifica-
tion results in terms of accuracy in Table 2. We use
backbones with RN101 and ViT-B to compare the
results. In all settings, DESIGNCLIP performed
better than CLIP and IMPACT. Notably, in fine-
tuning settings, DESIGNCLIP outperforms CLIP
by 60.1% for RN101 and by 5.4% for ViT-B, and
achieves a 35.9% improvement for RN101 and a
3.6% improvement for ViT-B comparing IMPACT.
Therefore, DESIGNCLIP provides better represen-

tations for patent classification.

Table 2: Accuracy (%) for patent classification: compar-
ison between CLIP and DESIGNCLIP on 2023 test set.
The best results are highlighted in bold in both settings.

Model Backbone Zero-shot Fine-tune

CLIP
RN101 11.91 22.45
ViT-B 10.88 43.06

IMPACT*
RN101 11.89 27.66
ViT-B 12.39 43.81

DESIGNCLIP RN101 11.93 35.93
ViT-B 14.70 45.37

4.3.3 Multimodal retrieval
The patent retrieval task is to identify relevant
patent documents and images in response to search
queries. In this task, we focus on multimodal
retrieval, which incorporates both text and im-
ages. This integration enhances the ability to cross-
reference and verify information, thus improving
the overall effectiveness and efficiency of patent
searches. In addition, multimodal retrieval can en-
able creativity and innovation in design by provid-
ing richer and more diverse sources of inspiration.
We perform experiments on zero-shot text-image
(T2I) and image-text (I2T) retrieval tasks on our
validation set.

We evaluate multimodal retrieval performance
(Recall@K3) and present results in Table 3. It
shows that DESIGNCLIP outperforms CLIP with
all backbones on two tasks. As shown in the results,
DESIGNCLIP gains significant improvements, by
up to 360% and 348% respectively at R@5 on T2I
and I2T retrievals. Note that, ViT-L obtains the
best recall in all settings, which demonstrates that
the larger advanced models boost the performance.
Multimodal retrieval examples are provided in the
Appendix.

4.4 Ablation studies
We perform the ablation studies to analyze the hy-
perparameter settings and the components of DE-
SIGNCLIP, including the effectiveness of captions,
multiple views, and pre-train tasks. Considering
the limitations of computing resources, we use the
patents from the recent five years for all ablation
studies, including 113,887 patents in the train set
and 5,000 patents in the validation set. We perform
all ablation studies on the backbone of ViT-B-32.

3The metric R@K evaluates whether the ground truth ap-
pears within the top K results of the validation set.
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Table 3: Multimodal retrieval performance comparison
between CLIP, IMPACT and DESIGNCLIP on valida-
tion set. The ViT-L-14 model demonstrated superior per-
formance over the other three backbone models tested.
The highest Recall@K (%) values are highlighted in
bold. *Denotes our implementations.

Model Backbone Text-Image Image-Text
R@5 R@10 R@5 R@10

CLIP

RN50 5.47 8.51 5.24 7.72
RN101 7.60 11.17 6.10 9.35
ViT-B 7.49 10.60 6.90 10.34
ViT-L 13.26 18.29 12.07 17.17

IMPACT*

RN50 17.21 23.18 14.67 21.48
RN101 22.10 31.35 20.32 27.70
ViT-B 25.60 34.92 24.88 35.12
ViT-L 37.34 50.56 38.79 51.05

DESIGNCLIP

RN50 25.17 34.50 23.49 32.70
RN101 26.71 36.51 25.37 34.84
ViT-B 29.75 39.91 28.39 38.26
ViT-L 42.30 52.80 40.14 53.98

4.4.1 Analysis of detailed descriptions
We further analyze on the effectiveness of differ-
ent texts. Specifically, we follow IMPACT dataset
and classify their generated descriptions into cap-
tions only with “Patent Title”, captions only with
“Shape” and full captions. Based on the results
shown in Table 4a, the detailed descriptions, in-
cluding the shape and functions are beneficial for
multimodal models to adjust to the patent domain.
A notable increase of over 3% on both multimodal
retrieval tasks indicates that DESIGNCLIP, which
is trained with generated descriptions has, a better
understanding for further assessing and inspiring
on design patents.

4.4.2 Impact of different views
Patent images feature views from various perspec-
tives, and we explored how these views impact
image retrieval. We illustrate different views re-
sults of image retrieval with DESIGNCLIP-ViT-B,
as shown in Table 4b. Front views benefits image
retrieval task with ≈ 1.8 % increase comparing
with side views. Table 5 shows the multimodal
retrieval performance across four different views
with DESIGNCLIP-ViT-B. The front view yields
the highest recall, while the side and top views do
not produce satisfactory results. We also combine
these three views which we refer as ‘Multi view’
but this did not improve performance either. Our
experiments demonstrate that not all views con-
tribute equally to the performance of retrieval tasks.
Using only side and top views can significantly re-
duce the model’s generalization ability. This lack

of effectiveness can be attributed to the side and top
views often not capturing sufficient design details.
For instance, Figure 7a (Appendix) shows the de-
sign of an oven, where the top view fails to convey
the design information of an oven which leads poor
recall. Therefore, we believe these views may not
capture the most distinguishing features of the de-
sign, leading to confusion when the model attempts
to match these views with corresponding text or
images. Based on these findings, we can conclude
that the front view most effectively conveys the
essential information of a design and aligns well
with textual elements such as titles and captions.

Table 4: Ablation studies on different text and views.
Backbone models is ViT-B. The best results of mul-
timodal retrieval (Recall@K (%)) and image retrieval
(mAP) are in bold.

Text I2T T2I
R@5 R@5

Patent Title 22.38 22.18
Shape 23.80 24.16

Full captions 25.56 25.90
(a) Text inputs

Views IR
mAP

Side 0.611
Top 0.605

Front 0.629
(b) Views

Table 5: Multimodal Retrieval Task Performance using
multiple views. Backbone is ViT-B. Front view demon-
strated higher performance over the other three views.
The highest Recall@K (%) values are highlighted in
bold.

View
Text-Image Image-Text

R@5 R@10 R@5 R@10

Side view 8.24 12.45 9.41 13.61
Top view 9.12 13.37 9.96 15.01

Multi view 8.59 12.57 9.58 13.82
Front view 12.05 17.47 13.36 18.86

4.4.3 Effectiveness of pre-train tasks
To verify the effectiveness of our adapted multi-
task pre-training, we conduct experiments on dif-
ferent combinations of pre-train tasks, including
(1) class-aware image-generated description con-
trastive learning, (2) class-aware classification, and
(3) class-aware image-image contrastive learning.
As results shown in Table 6, pre-training on all
tasks brings significant improvements for all down-
stream tasks in zero-shot settings. Thus, DESIGN-
CLIP not only enhances the model’s generalization
capabilities but also can be more adaptable to many
patent tasks.
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(a) CLIP (b) DESIGNCLIP

Figure 3: DESIGNCLIP in (b) often retrieves the accurate different views as the top results (green boxes in the first
row). However, the results are not always accurate (red box in second row).

Table 6: Ablation studies on pre-train tasks of DESIGN-
CLIP. We evaluate classification (Accuracy (%)), mul-
timodal retrieval (Recall@K (%)) and image retrieval
(mAP) with ViT-B. The best results are in bold.

Pre-train tasks Classification I2T T2I IR

(1) (2) (3) Accuracy R@5 R@5 mAP
✓ 3.18 20.94 21.24 0.649
✓ ✓ 8.29 21.38 20.98 0.652
✓ ✓ ✓ 8.64 21.56 21.71 0.658

4.4.4 Impact of vision backbones
In training DESIGNCLIP, we choose 4 backbone
architectures RN50, RN101, ViT-B, and ViT-L. Ta-
ble 3 in the main paper shows the performance of
text-image and image-text retrieval tasks for the
comparisons of CLIP and our pretrained DESIGN-
CLIP. The results show that both ResNet50 and
ResNet101 achieve comparable recall, while ViT-
B performs slightly better. Notably, the Vision
Transformer Large (ViT-L) model significantly out-
performs the others, as evidenced by its higher
Recall@5 and Recall@10 scores in both retrieval
directions (Text-Image and Image-Text). The size
of the parameter of the ViT-L model allows it to
better handle patent data and makes it effective for
patent image and text retrieval tasks.

4.4.5 Hyperparameters Analysis
As results shown in Figure 4, we can conclude (1)
increasing β values for balancing tail classes can

(a) T-I R@5 with different β (b) I-T R@5 with different λs

Figure 4: Ablation on hypermateters of β and λs.

improve the performance, see Figure 4a, but bigger
β values may cause overfit on the tail classes which
will be harmful for the overall pre-training. (2) Fig-
ure 4b shows that the weight assgined to LCACL is
crucial to the performance. LCACLS ensures that
the model learns to categorize images correctly,
but emphasis on the classification could reduce the
model’s ability to generalize to new data. Similar
to the results in impact of different views, while
the multi-views help in learning consistent repre-
sentations across different views, a smaller weight
for LMVCL indicates that image views alignment
needs to be carefully considered and may diminish
the benefits.

4.5 Qualitative Analysis
We show the retrieval results of multiple views
from DESIGNCLIP. Figure 3 presents the top two
image retrievals. DESIGNCLIP often retrieves the
different views of the query figure. Figure 9 (see
the Appendix) shows that CLIP often cannot re-
trieve multiple views of the same query figure.
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(a) CLIP (b) DESIGNCLIP

Figure 5: UMAP feature embeddings for patent images. (a) Visualization of features using CLIP models (b)
Visualization of features using DESIGNCLIP. DESIGNCLIP shows well formed clusters in image features.

4.5.1 U-MAP projection analysis
Figure 5 shows the learned image features for
sample patents using U-MAP projection (McInnes
et al., 2018). Different colors represent the clusters
of the corresponding classes. We observe that DE-
SIGNCLIP can identify clusters over the extracted
image features, but CLIP is not able to classify the
patent images. It shows that DESIGNCLIP might
be more beneficial in the specific patent domain for
many relevant downstream tasks, such as classifi-
cation and retrieval.

4.5.2 Class-aware classification analysis
We further analyze the impact of class-aware learn-
ing in DESIGNCLIP. On patent classification tasks,
DESIGNCLIP improves by 1.22 % on the top-6
classes and 2.90 % on the long-tail classes. Among
all 33 classes, DESIGNCLIP outperforms CLIP in
20 classes under fine-tuning (see Figure 6). These
results highlight the importance and effectiveness
of class-aware learning for improving performance
on long-tail classes.

5 Conclusions

In this paper, we introduce DESIGNCLIP to pro-
vide a domain-aware multimodal model for design
patents. We first consider class-aware sampling
and contrastive learning for the long-tail distribu-
tion in design patent data. In addition, multi-view
image-image contrastive learning provides a com-
prehensive understanding of the patents from differ-
ent angles, which can improve the performance in
patent retrieval. Finally, we pre-train CLIP-based
models on multi-tasks tailored for design patents.
Our DESIGNCLIP outperforms the baseline mod-

Figure 6: DESIGNCLIP improve classification accura-
cies for 20 classes among long-tail distributions.

els on patent classification, image retrieval and
multimodal retrievals. These demonstrate that DE-
SIGNCLIP can provide a better understanding and
generalization ability for design patents in multi-
modal scenarios.
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6 Ethical considerations

The ethical considerations for the multimodal anal-
ysis with DESIGNCLIP include the followings:

• Needs for human supervision. As with
many AI tools, DESIGNCLIP could be mis-
used for non-scientific or adversarial purposes,
such as generating infringing designs. The
model is intended solely for research, analy-
sis, and balancing the use of technology with
human oversight is important to maintain the
quality and integrity of patent applications.

• Legal issues. Ethical considerations should
also include to ensure that the design patents
generated from DESIGNCLIP comply with
legal requirements and regulations of patent
laws.

7 Limitations

Patents often include a varying number of views,
and many views are difficult to understand even
for humans. Additionally, in many cases, patents
have new designs on the front view but contain
similar side and top views, which challenge the
model to distinguish the patterns between different
patents. This can lead to a poor alignment and
a less effective learning. Thus, we will consider
to address the challenges of incorporating multi-
views as a future research direction. Moreover,
while our current work primarily utilizes the CLIP
model due to its feasible and strong contrastive
learning framework, exploring more MLLMs, such
as LLaVA (Liu et al., 2023), Qwen-VL (Bai et al.,
2023), will be a potential future direction.
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Appendix

A Additional Implementation Details

We describe the implementation details of pre-
training DESIGNCLIP in our paper. In addition, we
adjust specific requirements for patent downstream
tasks, such as image retrieval and classification,
and these implementation details are provided in
this section.

A.1 Caption generation
One of the challenges with the design patents is
lack of textual data. Figure 2 (see “Patent Titles")
illustrates that there are only simple texts as titles
in design patent data. However, detailed captions
along with images are important for enhancing per-
formance in various Natural Language Processing
and multimodal tasks (Pan et al., 2023; Hu et al.,
2023; Shao et al., 2023). As depicted in Figure 2
(see “Multi-views Images") , when compared to
the multiple images associated with a patent, the
corresponding patent text typically provides only
brief and abstract descriptions, such as the patent
title and view orientations. We provide detailed
design patent text and image examples in 7.

Specifically, we utilized the LLaVA-1.5-13b
model for caption generation, following the IM-
PACT (Shomee et al., 2024) paper. For each patent,
we experiment with different prompts to generate
suitable descriptions (captions). Initially, we at-
tempt to create descriptions without mentioning
the patent title. When queried about functionality,
the responses become vague, such as ‘The function-
ality of the image is to show the design.’ Given that
design patents differ from the natural images, it is
challenging to generate descriptions without the
title or object name. For instance, a bear-shaped
design can also be an edible cookie. Therefore,
we use the following prompts: This is the image
of {patent_title}. What is the shape of the image?
What is the functionality of {patent_title}? The
generated descriptions provide enriched textual in-
formation, as shown in Figure 2.

A.2 Image retrieval
We integrate DESIGNCLIP into SOTA patent im-
age retrieval method (Higuchi and Yanai, 2023).
We use pre-trained DESIGNCLIP backbones and
leave other settings the same. Specifically, the
dataset used in this task is DeepPatent with patents
from 2018 to 2019, including a train set of 254,787
images, a validation set of 44,815 images, and a

test set of 38,834 images. The loss function is
Focal loss (Lin et al., 2017). The best hyperparam-
eters are from (Higuchi and Yanai, 2023) which
are listed as follows: the batch size is 256, the opti-
mizer is AdamW, the learning rate is 1e−4 and the
number of training epochs is 25.

A.3 Patent classification
The dataset of design patents has 33 classes. For
the classification task, we use data from 2023. We
show design categories and number of examples
of our train data in Table 7. In patent classifica-
tion, we finetune a simple linear classifier with
frozen CLIP (Radford et al., 2021) and DESIGN-
CLIP backbones (e.g., RN101 (He et al., 2016),
ViT-B (Dosovitskiy et al., 2020)) for comparisons.
The hyerparameters are listed as follows: the batch
size is 32, the optimizer is AdamW, the learning
rate is 1e−4, and the number of training epochs is
15.

B More Qualitative Analysis

In this section, we demonstrate additional quali-
tative analysis. We begin with providing details
of visualization of feature embeddings. Then, we
show some multimodal retrieval examples.

B.1 More details of visualization of feature
embeddings.

Figure 5 in the main paper compares UMAP
(McInnes et al., 2018) visualizations of feature
embeddings from CLIP and DESIGNCLIP mod-
els for patent images. The patent data are from
2023, including 8,643 patents. We focus on the top
most common categories: transportation, record-
ing, lighting, games, furnishings and apparel. The
CLIP model shows overlapping categories with
less distinct clustering which indicates mixed fea-
ture recognition across various categories like trans-
portation, games, and apparel. On the other hand,
DESIGNCLIP shows distinct clusters for almost all
the categories. The clear clusters in the DESIGN-
CLIP visualization show that it is very effective for
accurately classifying and finding patent images.

B.2 Additional class-aware classification
analysis

We present the performance comparisons of CLIP
and DESIGNCLIP with backbone of RN-101 on
classification tasks. As results shown in Figure 8a,
DESIGNCLIP improves significantly on the all top
classes. Figure 8b shows that CLIP is not able to
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(a) Example patent images with multiple views (b) Example patent texts

Figure 7: Example of design patent for an oven. Figure (a) shows main, front, top and enlarged front view of a single
design. Figure (b) shows patent texts that includes title, Patent ID, single line claim, and description of figures.

Table 7: The table shows the list of U.S. design patent classes and number of occurrences in our classification task.

Class Description Occurences

D1 Edible Products 38
D2 Apparel and Haberdashery 930
D3 Travel Goods, Personal Belongings, and Storage or Carrying Articles 462
D4 Brushware 122
D5 Textile or Paper Yard Goods; Sheet Material 20
D6 Furnishings 1052
D7 Equipment for Preparing or Serving Food or Drink Not Elsewhere Specified 906
D8 Tools and Hardware 735
D9 Packages and Containers for Goods 525
D10 Measuring, Testing or Signaling Instruments 444
D11 Jewelry, Symbolic Insignia, and Ornaments 369
D12 Transportation 1261
D13 Equipment for Production, Distribution, or Transformation of Energy 755
D14 Recording, Communication, or Information Retrieval Equipment 1943
D15 Machines Not Elsewhere Specified 512
D16 Photography and Optical Equipment 359
D17 Musical Instruments 35
D18 Printing and Office Machinery 55
D19 Office Supplies; Artists’ and Teachers’ Materials 146
D20 Sales and Advertising Equipment 39
D21 Games, Toys and Sports Goods 962
D22 Arms, Pyrotechnics, Hunting and Fishing Equipment 184
D23 Environmental Heating and Cooling, Fluid Handling and Sanitary Equipment 743
D24 Medical and Laboratory Equipment 1044
D25 Building Units and Construction Elements 179
D26 Lighting 901
D27 Tobacco and Smokers’ Supplies 136
D28 Cosmetic Products and Toilet Articles 329
D29 Equipment for Safety, Protection and Rescue 80
D30 Animal Husbandry 347
D32 Washing, Cleaning or Drying Machines 221
D34 Material or Article Handling Equipment 127
D99 Miscellaneous 26
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(a) Patent classification comparisons on top 6 classes (b) Patent classification comparisons on tail classes

Figure 8: Comparisons between CLIP-RN101 and DESIGNCLIP-RN101 in classification for top-6 classes and tail
classes. DESIGNCLIP improves significantly over CLIP on the all top classes.

predict on most of the tail classes, but DESIGN-
CLIP provides accurate predictions on 9 long-tail
classes. Therefore, we believe that DESIGNCLIP
can improve the performance on patent classifica-
tion and class-aware learning is effective for long-
tail class distribution domain data.

B.3 Image retrieval examples

In this task, we present three examples of image-
to-image retrieval using CLIP-ViT-B and DESIGN-
CLIP-ViT-B as backbones with ArcFace (Deng
et al., 2019; Higuchi and Yanai, 2023) based on a
given query image. The goal is to identify images
similar to the query image. We show the top five
retrieval results for both CLIP and DESIGNCLIP
for qualitative analysis.

In Example 1, shown in Figure 9, CLIP fails to
retrieve a single relevant image, while DESIGN-
CLIP correctly retrieves the top 4 out of 5 im-
ages. In Figure 10, our model achieves perfect
retrieval, identifying all 5 relevant images in differ-
ent views. We observe that CLIP only can retrieve
images with similar shape but fails to capture patent
class and different views. Therefore, DESIGNCLIP
pre-trained with class-aware information and multi-
views can improve performance in image retrieval
tasks. However, in Figure 11, both CLIP and our
model demonstrate similar performance. We leave
the analysis of unsuccessful cases—such as Figure
11—for our future work.

B.4 Multimodal retrieval examples.

We present four examples of multimodal image re-
trieval. For each example, based on a given query
(caption) and a ground truth (GT) image, the ob-
jective is to identify similar images to the GT. The

backbone is ViT-B. We show the top five retrieval
results for both the CLIP model and DESIGNCLIP
for case studies of their performance comparisons
in matching images to textual descriptions.

• Example 1: Text Query: The image is a draw-
ing of a wheel, which is a circular object with
a central hub and spokes.

Ground truth image: D0862341.TIF, where
D0862341 is patent id.

• Example 2: Text Query: The image is a draw-
ing of a control valve. The control valve is a
device used to regulate the flow of fluid, such
as water, steam, or gas, in a system.

Ground truth image: D0858713.TIF

• Example 3: Text Query: The image is a truck
vehicle grille. The grille serves as a protective
covering for the front of the truck, covering
the engine and radiator.

Ground truth image: D0850330.TIF

• Example 3: Text Query: The image is a
square-shaped vehicle floor mat, which is de-
signed to provide comfort and protection for
the vehicle floor.

Ground truth image: D0845852.TIF

Our DESIGNCLIP model retrieves success-
fully the ground truth images as the top results
in Figures 12, 13, and 15. In 14, the ground
truth image was retrieved as the second top result.
Specifically, as shown in Figure 12, both models
can retrieve wheels. However, DESIGNCLIP is
pre-trained on our proposed methods tailored on
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Column Example Description

title Electronic device with graphical user interface The design’s title

id D0964399 The patent document number serves as a means
of identifying the patent.

claim The ornamental design for an electronic device
with graphical user interface, as shown and
described.

A design patent application includes only a
single claim

date 20220920 Date of the patent’s publication

class D14485 U.S. design patent category.

no_figs 2 Number of figures for the design

sheets 2 The quantity of design sheets given for the
figures. Some of the sheets has multiple figures

fig_desc [‘FIG. 1 is a front view of a display screen or
portion thereof with graphical user interface
showing the claimed design; and,’, ‘FIG. 2 is a
front view of an electronic device having a
display screen with the graphical user interface
of FIG. 1 applied to the display screen.’]

The representation of every drawing view,
including front, top, perspective, and others, is
described in the figure descriptions.

caption The image is square-shaped and features a
graphical user interface on an electronic device.
The functionality of such a device is to provide
users with an interactive and visually appealing
interface to access and control various features
and applications. The graphical user interface
makes it easier for users to navigate and interact
with the device, enhancing the overall user
experience.

Detailed descriptions of the design’s shape and
functionality

Table 8: Description of some of the fields in the CSV file extracted from the XML files for each design patent. The
description explains what each column means and includes examples from the patent ID D14485.

the design patent data, it is able to capture the de-
tails of design which demonstrates DESIGNCLIP
can provide better capability for prior art search
and design inspirations. Moreover, in 15, although
CLIP retrieved ground truth images, other retrieved
images are vehicles, not a floor mat. However,
DESIGNCLIP can retrieve images that are more
relevant for vehicle mats. In fact, DESIGNCLIP
learns better representations for understanding de-
sign patent data in multimodal scenarios.
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(a) Image retrieval results of CLIP-ViT-B + ArcFace

(b) Image retrieval results of DESIGNCLIP-ViT-B + ArcFace

Figure 9: Image Retrieval example 1 of patent D0815721. (a) and (b) are top 5 retrieval results of CLIP and
DESIGNCLIP respectfully. Green box denotes to the correct image. DESIGNCLIP can retrieve the image correctly.
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(a) Image retrieval results of CLIP-ViT-B + ArcFace

(b) Image retrieval results of DESIGNCLIP-ViT-B + ArcFace

Figure 10: Image Retrieval example 2 of patent D0817138. (a) and (b) are top 5 retrieval results of CLIP and
DESIGNCLIP respectfully. Green box denotes to the correct image. DESIGNCLIP can retrieve the image correctly.
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(a) Image retrieval results of CLIP-ViT-B + ArcFace

(b) Image retrieval results of DESIGNCLIP-ViT-B + ArcFace

Figure 11: Image Retrieval example 3 of patent id D0827684. (a) and (b) are top 5 retrieval results of CLIP and
DESIGNCLIP respectfully. Green box denotes to the correct image. CLIP and DESIGNCLIP only retrieves rank 1
image correctly.
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(a) Text query and ground truth image

(b) Retrieval results of CLIP

(c) Retrieval results of DESIGNCLIP

Figure 12: Text-image Retrieval example 1. Text query and ground truth image are shown in (a). (b) and (c) are top
5 retrieval results of CLIP and DESIGNCLIP respectfully. Top 1-5 is from left to right. Green box denotes to the
correct image. DESIGNCLIP can retrieve the image correctly.
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(a) Text query and ground truth image

(b) Retrieval results of CLIP

(c) Retrieval results of DESIGNCLIP

Figure 13: Text-image Retrieval example 2. Text query and ground truth image are shown in (a). (b) and (c) are top
5 retrieval results of CLIP and DESIGNCLIP respectfully. Top 1-5 is from left to right. Green box denotes to the
correct image. DESIGNCLIP can retrieve the image correctly.
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(a) Text query and ground truth image

(b) Retrieval results of CLIP

(c) Retrieval results of DESIGNCLIP

Figure 14: Text-image Retrieval example 3. Text query and ground truth image are shown in (a). (b) and (c) are top
5 retrieval results of CLIP and DESIGNCLIP respectfully. Top 1-5 is from left to right. Green box denotes to the
correct image. DESIGNCLIP can retrieve the image correctly.
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(a) Text query and ground truth image

(b) Retrieval results of CLIP

(c) Retrieval results of DESIGNCLIP

Figure 15: Text-image Retrieval example 4. Text query and ground truth image are shown in (a). (b) and (c) are top
5 retrieval results of CLIP and DESIGNCLIP respectfully. Top 1-5 is from left to right. Green box denotes to the
correct image. Both DESIGNCLIP and CLIP can retrieval the ground truth image, but DESIGNCLIP retrieve top 1
image correctly.
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