
Findings of the Association for Computational Linguistics: EMNLP 2025, pages 10433–10447
November 4-9, 2025 ©2025 Association for Computational Linguistics

Accelerating LLM Reasoning via Early Rejection with Partial Reward
Modeling

Seyyed Saeid Cheshmi1* Azal Ahmad Khan1*

Xinran Wang1 Zirui Liu1 Ali Anwar1

1University of Minnesota
{chesh014, khan1069, wang8740, zrliu, aanwar}@umn.edu

Abstract

Large Language Models (LLMs) are increas-
ingly relied upon for solving complex reason-
ing tasks in domains such as mathematics,
logic, and multi-step question answering. A
growing line of work seeks to improve reason-
ing quality by scaling inference time compute
particularly through Process Reward Models
(PRMs), used to reward the reasoning at in-
termediate steps. While effective, these meth-
ods introduce substantial computational over-
head, especially when generating large num-
bers of solutions in parallel. In this paper, we
investigate whether PRMs can be used mid-
generation to provide early signals that enable
the rejection of suboptimal candidates before
full generation of step is complete. We intro-
duce the hypothesis that PRMs are also Partial
Reward Models, meaning that the scores they
assign to partially completed reasoning step are
predictive of final output quality. This allows
for principled early rejection based on inter-
mediate token-level signals. We support this
hypothesis both theoretically, by proving that
the risk of discarding optimal beams decreases
exponentially with generation length and em-
pirically, by demonstrating a strong correlation
between partial and final rewards across multi-
ple reward models. On math reasoning bench-
marks, our method achieves up to 1.4×–9×
reduction in inference FLOPs without degrad-
ing final performance. These results suggest
that early rejection is a powerful mechanism
for improving the compute-efficiency of reason-
ing in LLMs. The code and implementation are
available at https://github.com/scheshmi/
accelerated-reasoning-ER-PRM.

1 Introduction

Large Language Models (LLMs) are at the fore-
front of AI capabilities due to their emerging ability
to perform complex reasoning tasks (Kojima et al.,

* Equal contributions (ordered via coin-flip).

2022; Chan, 2024; Cheng et al., 2025; Hazra et al.,
2025; Xu et al., 2025). They have demonstrated
significant success in domains such as mathemat-
ical problem solving, multi-hop question answer-
ing, and logical inference (Creswell et al., 2022;
Ahn et al., 2024; Akella, 2024). These advance-
ments are critical because they signal a shift from
surface-level pattern recognition to deeper, multi-
step deductive reasoning (Wei et al., 2022; Zhou
et al., 2022). Enhancing these reasoning abilities
is paramount for developing more capable, reliable
models that can operate across various domains.

Prior Works. As the scaling of model parame-
ters and pretraining data has started to become a
bottleneck, recent efforts have shifted toward in-
creasing compute at inference time to improve the
reasoning capabilities of LLMs (Snell et al., 2024).
Improving the reasoning capabilities of LLMs by
scaling compute at inference time has been pursued
through multiple strategies. A prominent approach
leverages Outcome Reward Models, which train
a separate evaluator to score the final output of
the LLM based on correctness or quality (Cobbe
et al., 2021; Hosseini et al., 2024; Mahan et al.,
2024; Zhang et al., 2024b). Another approach uses,
Process Reward Models (PRMs) to evaluate inter-
mediate steps or reasoning trajectories generated
during inference (Wang et al., 2023; Snell et al.,
2024; Zhang et al., 2024a; Luo et al., 2024). Under
this paradigm, the model generates multiple can-
didate reasoning paths, which are then evaluated
by the PRM that assigns rewards at the end of each
step. This step-wise evaluation enables the selec-
tion of promising trajectories for further expansion
while allowing the rejection of less promising ones,
thereby guiding the reasoning process more effi-
ciently. Techniques such as beam search, Monte
Carlo Tree Search (MCTS) guided by value mod-
els, and PRM-guided methods, exemplify this strat-
egy (Feng et al., 2023; Yao et al., 2023). In this

10433

https://github.com/scheshmi/accelerated-reasoning-ER-PRM
https://github.com/scheshmi/accelerated-reasoning-ER-PRM

Math Problem Math Problem

= Rej ect ed by PRM = Accpet ed by PRM = Rej ect ed at Par t i al Gener at i on

Process Reward Model
Process Reward Model

as Par t ial Reward Model

Figure 1: Process-Reward Model (PRM) at full length vs. PRM reused for early rejection. (Left) Every beam
is expanded to full depth before the PRM scores its complete solution, so all intermediate branches incur compute
even if they are were to fail. (Right) The same PRM is invoked mid-generation after each block of few tokens,
producing a partial reward that serves as an early-quality signal.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Partial Rewards

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Fin
al

 R
ew

ar
ds

R2 = 0.631

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Partial Rewards

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Fin
al

 R
ew

ar
ds

R2 = 0.716

Figure 2: Linear relationship between partial rewards
(reward calculated at half step completion) and full re-
wards (rewards calculated at full step completion) with
(left) Llemma-MetaMath-7b and (right) MathShepherd-
Mistral-7b as reward models.

paper, we focus specifically on the PRM paradigm
and explore how to improve its efficiency.

Challenges. While scaling test-time compute
using methods like PRMs can significantly en-
hance performance, it also introduces substantial
computational overhead, especially for long se-
quences where many generated beams contribute
little value (Chen et al., 2024; Hu et al., 2025; Wang
et al., 2025). To be competitive with state-of-the-
art post-training approaches, the number of beams
often needs to be scaled up to 1000–60000, re-
sulting in a large number of output tokens (Sun
et al., 2024). These output tokens are not only
computationally expensive to generate, but are also
produced sequentially, leading to considerable la-
tency (Yang et al., 2024). A natural solution is to
reject unpromising candidates early in the decod-
ing process, after only a few tokens, before commit-
ting to full step generation, a strategy we refer to
as Early Rejection.However, a major challenge in

early rejection is making sure that decisions based
on only part of the output don’t accidentally dis-
card high-quality completions. This is difficult
because the overall quality of a reasoning trace of-
ten depends on its full structure, which might not
be obvious from the first few tokens. As a result,
developing a reliable method that can make early
yet accurate decisions about which traces to keep,
based on partial generations, remains an important
and open research problem.

Hypothesis. To address this challenge, we
present the a hypothesis, Process Reward Models
are also Partial Reward Models. That is, for struc-
tured reasoning tasks, the partial scores assigned
by a PRM, when evaluated after a small but mean-
ingful fraction of the generation, are sufficiently
correlated with the final scores. This insight sug-
gests that PRMs, which are conventionally applied
at the end of a complete reasoning trace, can also
be used mid-generation to provide partial rewards
that act as early indicators of output quality. Fig-
ure 1 illustrates this distinction: while traditional
PRM usage scores complete reasoning paths only at
the end, our approach invokes the same PRM mid-
generation to score partial traces, enabling early
rejection of unpromising candidates. In doing so,
they enable principled early rejection based on in-
termediate token-level signals. Preliminary results,
as shown in Figure 2, reveal a consistent relation-
ship between partial and final rewards, modeled as
a monotonic mapping with added noise.

Contributions. This paper makes the following
key contributions: (C1) We introduce the hypoth-

10434

esis that Process Reward Models (PRMs) can be
used as Partial Reward Models to enable early
rejection of suboptimal beams. We support this hy-
pothesis by showing that partial rewards computed
after only a fraction of the generation are strongly
correlated with final rewards, allowing for reliable
early decisions in the reasoning process. (C2) We
provide theoretical guarantees that justify the use
of partial scores for early rejection. Specifically,
we prove that under mild assumptions, the proba-
bility of prematurely rejecting the optimal trajec-
tory decreases exponentially with the partial gener-
ation length. (C3) We empirically demonstrate that
early rejection guided by PRMs is both effective
and compute-efficient. On reasoning tasks such as
AIME, Math-500 and AGI Eval, our approach re-
duces inference-time FLOPs by 1.4×–9× when us-
ing a mid-sized PRM (7B parameters) without any
loss in task performance. Furthermore, when using
a smaller PRM (1.5B parameters), we achieve up
to 1.5×–4× reduction in FLOPs, demonstrating
that even lightweight evaluators can enable highly
efficient reasoning through early rejection.

2 Related Works

Generative Reward Models. Early approaches
to guiding machine learning models relied on hand-
crafted heuristics, but as models have grown more
complex, generative models have increasingly been
used for supervision and alignment (Mahan et al.,
2024). Generative models now serve as critics,
verifiers, and, most notably, as reward models in
RLHF (Mahan et al., 2024). Critics evaluate model
outputs by providing detailed feedback (Luo et al.,
2023; Lan et al., 2024; Lin et al., 2024; Du et al.,
2024), while verifiers check the factual correctness
or consistency of responses (Kouemo Ngassom
et al., 2024; Qi et al., 2024; Kirchner et al., 2024).
As reward models, they can be used to score ei-
ther the final outcome (outcome reward models,
ORMs) or provide feedback at intermediate steps
(process reward models, PRMs) (Lightman et al.,
2023a). ORMs deliver a single reward signal at the
end of generation, while PRMs offer denser, step-
wise supervision, which has been shown to improve
reasoning and generalization (Cobbe et al., 2021;
Wang et al., 2023; Hosseini et al., 2024; Zhang
et al., 2024b; Snell et al., 2024; Luo et al., 2024).
PRMs have also been shown to facilitate more inter-
pretable learning dynamics by providing actionable
feedback at each reasoning step, enabling finer-

grained control over model behavior and accelerat-
ing convergence during training (Lightman et al.,
2023a; Snell et al., 2024; Hosseini et al., 2024).

Early Rejection. In classification, confidence-
based rejection and selective prediction meth-
ods (Geifman and El-Yaniv, 2019) allow mod-
els to withhold outputs for ambiguous or out-
of-distribution inputs, while similar abstention
strategies are used in regression (Mozannar and
Sontag, 2020). In LLMs, early rejection began
with Best-of-N (BoN) decoding, where all can-
didates are fully generated and only the best is
selected (Cobbe et al., 2021; Zhou et al., 2022). Re-
cent advances show that integrating PRMs as step-
level re-rankers within beam search significantly
boosts both accuracy and compute efficiency, as
dense rewards allow for rejection of suboptimal
reasoning paths and more effective exploration of
diverse solutions (Wang et al., 2023; Snell et al.,
2024; Zhang et al., 2024a; Luo et al., 2024). Spec-
ulative Rejection proposed using ORMs for early
rejection in BoN by discarding weak candidates
mid-generation (Sun et al., 2024). In this work, we
study the principle of early rejection for PRMs and
demonstrate how it can be effectively integrated
into beam search methods.

3 Method

Beam Search for Reasoning. Beam search is a
widely used decoding strategy in LLMs for struc-
tured generation tasks such as mathematical prob-
lem solving and multi-step reasoning (Yao et al.,
2023; Feng et al., 2023; Snell et al., 2024). At
each decoding step, the model expands a fixed-
width set of N candidate beams by sampling mul-
tiple possible continuations and retaining only the
top-scoring ones based on a predefined heuristic
(e.g., log-probability or reward score). This iter-
ative expansion and rejecting process allows the
model to explore a larger space of possible outputs
than greedy decoding, while remaining tractable
compared to exhaustive search. In PRM-guided
reasoning, each beam is scored at the end of every
reasoning step by a PRM, which evaluates the co-
herence or correctness of the generated step. The
highest scoring beams are then selected for further
expansion, enabling the model to gradually con-
struct a valid multi-step reasoning trace.

10435

3.1 Partial Scoring for Early Rejection

Standard inference-time reasoning with LLMs and
PRMs involves generating multiple candidate rea-
soning trajectories, typically using beam search or
tree-based strategies, and scoring each trajectory af-
ter every step generation. Based on these step-wise
scores, a subset of beams is selected and expanded
further. While this strategy has been instrumental
in advancing long-horizon reasoning, it incurs sub-
stantial computational overhead, as all candidate
steps must be fully generated before evaluation,
regardless of their quality.

We introduce a modification to this pipeline by
reusing the same PRM mid-step generation. A
compact overview is shown in Algorithm 3, where
instead of waiting for a full step to complete, we
compute partial rewards after first block of τ to-
kens at each step. These intermediate scores serve
as early indicators of downstream quality. Beams
with low partial scores are rejected before com-
pleting the full step. The surviving beams are
then completed to the end of the current step, af-
ter which expansion proceeds as in the standard
pipeline. Early rejection is applied again at the
next step. This process ensures that computation is
focused on the most promising candidates, reduc-
ing the number of unnecessary tokens generated
and minimizing redundant PRM evaluations. A full
version of the algorithm, along with the standard
PRM-guided baseline, is provided in Appendix A
for reproducibility and implementation details.

Algorithm 1 Beam Search with Early Rejection
1: Initialize N beams
2: for each beam do
3: Generate up to τ tokens and compute par-

tial reward using PRM
4: end for
5: Select top N/M beams by partial reward and

complete remaining beams to full step
6: Expand each remaining beam with M new

beams
7: Repeat scoring, early rejection, and expansion

until stopping condition is met
8: return Best final sequence

Figure 3: Overview of beam search with early rejection.

3.2 Efficiency Gains from Early Rejection

This early rejection strategy is focused on reduction
in the number of tokens generated. By rejecting
weaker candidates after a partial generation, we
avoid expending compute on beams unlikely to
contribute to the final output. The impact of this
optimization on both generation cost and reward
model evaluation is summarized below:

Early rejection reduces compute

Rejecting beams after generating first τ to-
kens leads to FLOPs reduction for each step
generation and during PRM evaluation.

Beyond reducing total compute, early rejection
also improves throughput through a two-tiered
batching strategy. Since rejected beams only re-
quire τ tokens to be generated, they occupy signif-
icantly less memory. This enables to increase the
batch size during the initial generation phase with-
out getting OOM error. We then switch to a smaller
batch size for completing the remaining beams, bal-
ancing exploration with memory efficiency. This
batching decoupling is summarized below:

Two-tiered batching improves throughput

We use a larger batch size for generating
the first τ tokens, taking advantage of their
lower memory cost, and a smaller batch size
for completing the step to avoid OOM error.

4 Theoretical Guarantees

Background and Notation. At each decoding
step, which we define as a block of τ tokens, a
width of N beams is maintained. For beam i, let
Pi denote its partial reward after the first τ tokens
and Fi its final reward after completing the step.
Our preliminary results in Figure 2 indicate that
the final reward is related to the partial reward via
a monotonic mapping with added noise:

Fi = g(Pi) + ηi

where g: [0, 1] −→ [0, 1] is a monotonic increasing
function; which need not be linear and ηi is a noise
term with zero mean and variance σ2 that can cause
deviations from a perfect linear relationship. After
the PRM assigns partial rewards, we keep only the
top N

M beams and expand each of them into M new
beams, restoring the total width N . Let p = N

M ,
the selection threshold T is the (1−1/M) quantile
of the partial-reward distribution (i.e., we keep the

10436

top N/M beams). Therefore, a beam survives only
if Pi ≥ T .

Let the beam that would eventually yield the
highest final score be

i∗ = argmax
i∈N

Fi

Guarantee under noisy, nonlinear conditions.
Although the mapping between Pi and Fi need
not be linear, we assume (i) the noise terms ηi
are independent and σ-sub-Gaussian, and (ii) the
expected partial scores preserve the ordering of the
expected final scores. Let

∆ = min
j ̸=i∗

(
E[Pi∗]− E[Pj]

)
> 0

denote the smallest expected gap between the best
beam i∗ and any other beam. Thus

Pr
(
Pi∗ < T

)
≤ Pr

(
∃ j ̸= i∗ : Pj > Pi∗

)

≤ (N − 1) exp
(
− ∆2

4σ2

)
,

where the last step applies a sub-Gaussian tail
bound to each pairwise difference Pi∗−Pj and then
takes a union bound over the N − 1 non-optimal
beams. The bound decays exponentially in ∆2/σ2;
thus, when the expected gap is appreciable and the
noise is modest, the risk of pruning the optimal
beam is negligible even for large beam widths.

8 16 32 64 128 256 512
Decision Tokens

0.0

0.2

0.4

0.6

0.8

1.0

Ke
nd

al
l's

 Ta
u

Co
rre

la
tio

n
Co

ef
fic

ie
nt

8 16 32 64 128 256 512
Decision Tokens

0.0

0.2

0.4

0.6

0.8

1.0

Pe
ar

so
n

Co
rre

la
tio

n
Co

ef
fic

ie
nt

Figure 4: (Top) Kendall’s Tau and (Bottom) Pearson’s
correlation coefficient for the partial and final rewards.

Best τ for Early Rejection. A common toy
model is to treat each token’s (log-)score as an i.i.d.
random variable. For beam i, let Xi,1, . . . , Xi,L be
i.i.d. with mean µi and variance σ2

i , where L de-
notes the final sequence length (number of tokens
at completion) and 1 ≤ τ ≤ L. The partial reward
after τ tokens is Pi =

∑τ
t=1Xi,t, while the final

reward is Fi =
∑L

t=1Xi,t. Under this model the
Pearson correlation reads

ρ(Pi, Fi) =
Cov(Pi, Fi)√

Var(Pi)
√

Var(Fi)
=

√
τ

L
.

The shared first τ tokens drive the entire covari-
ance: as τ→L the correlation approaches 1 mean-
ing the partial score is an almost perfect proxy,
whereas as τ → 0 it vanishes. Figure 4 shows
that this

√
τ/L trend, tightening toward 1 as τ

increases, is also true empirically.
If we require the correlation to exceed a target

level ρ∗, then

ρ(Pi, Fi) =
√

τ
L

≥ ρ∗ =⇒ τ ≥ (ρ∗)2L.

For example, attaining ρ∗ = 0.8 demands τ ≥
0.64L.

Connection to the Sub-Gaussian Bound. Our
rejection guarantee hinges on

Pr
(
Pi∗ < T

)
≤ (N − 1) exp

(
− ∆2

4σ2

)
,

where ∆ = minj ̸=i∗
(
E[Pi∗]− E[Pj]

)
is the ex-

pected partial-score gap and σ is the sub-Gaussian
parameter of the per-token noise.

A high correlation ρ(Pi, Fi) does not automati-
cally imply a large gap ∆, but it does indicate that
beams ranking highly under the partial reward tend
to rank highly under the final reward. In practice,
choosing τ so that

ρ(Pi, Fi) =
√

τ
L

≥ ρ∗

ensures the partial scores are sufficiently predic-
tive; once this condition is met, the tail bound above
tells us the probability of mistakenly pruning the
optimal beam is exponentially small in ∆2/σ2. In
practice, after fixing τ we measure the empirical
gap ∆ on a held-out set and confirm it comfortably
exceeds the estimated noise scale σ.

10437

0 10 20 30 40 50 60 70 80
Total FLOPs (x 10e18)

32

34

36

38

40

42

SA
T-

M
at

h
Ac

cu
ra

cy
4

8
16

32

64

4

8

16

32

64

4

8

16

32

64

4

8
16

32

64
Llama-3.2-3B-Instruct w/ MathShepherd-Mistral-7B

0 5 10 15 20 25 30 35 40
Total FLOPs (x 10e18)

34

36

38

40

42

44

46

SA
T-

M
at

h
Ac

cu
ra

cy

4
8

16
32

64

4

8

16

32

64

4
8

16

32

64

4
8

16
32

64
Llama-3.2-3B-Instruct w/ Skywork-PRM-1.5B

0 25 50 75 100 125 150 175
Total FLOPs (x 10e18)

37.5

40.0

42.5

45.0

47.5

50.0

52.5

55.0

57.5

SA
T-

M
at

h
Ac

cu
ra

cy

4

8

16
32

64

4
8

16

32

64

4
8

16

32

64

4
8

16

32

64
Qwen-2.5-3B-Instruct w/ MathShepherd-Mistral-7B

0 20 40 60 80
Total FLOPs (x 10e18)

35

40

45

50

55

SA
T-

M
at

h
Ac

cu
ra

cy

4

8

16

32

64

4

8

16

32
64

4

8

16

32
64

4

8

16 32
64

Qwen-2.5-3B-Instruct w/ Skywork-PRM-1.5B

Vanilla ER (= 32) ER (= 64) ER (= 128)

Figure 5: We evaluate our implementation of Early Rejection (ER) on the SAT-MATH dataset from AGIEval
benchmark using two different LLMs and PRMs. The numbers indicate that ER rejection achieves performance
similar to Vanilla Beam Search with while consuming far less compute.

5 Experiments

We evaluate our method on three challenging
math-reasoning benchmarks, MATH-500 (Light-
man et al., 2023b), SAT-MATH from AGIEval
(Zhong et al., 2023), and AIME 2024. For genera-
tion we use the instruct variants of two open-source
LLMs, Llama-3.2-3B (Meta, 2024) and Qwen-2.5-
3B (Qwen et al., 2024), selected for their strong rea-
soning ability at modest scale. Process evaluation
is performed with two PRMs of different capaci-
ties, MathShepherd-Mistral-7B (Wang et al., 2023)
and Skywork-PRM-1.5B, allowing us to study the
impact of early rejection for PRMs of different
sizes. Early rejection is triggered after a prefix of
τ ∈ 32, 64, 128 tokens. These thresholds are mo-
tivated by preliminary analysis (Figure 4), which
shows that partial-reward scores at these lengths
are already highly correlated with final rewards. At
each decoding step we sample N ∈ 4, 8, 16, 32, 64
candidate beams and retain the top M = 4, mirror-
ing prior PRM-guided search settings (Snell et al.,
2024). We compare our early-rejection decoder
with the conventional pipeline that scores only fully
completed beams, reporting average answer accu-
racy and total inference FLOPs for each run. All
experiments are conducted on an HPC cluster, with
each run executed using four NVIDIA A100 GPUs
(40 GB memory each).

5.1 Experimental Results

Experimental results in Figure 5 on SAT-MATH
dataset and 6 on Math-500 and AIME 2024 datasets
highlight the effectiveness of Early Rejection (ER)
in reducing compute while preserving end-task ac-
curacy across different PRMs, LLMs, and τ values.
For the results we observe that across all configu-
rations, early rejection acts as a safe and compute-
efficient strategy that adapts well to LLM character-
istics and PRM granularity. Appendix A provides
a comprehensive breakdown of accuracy and com-
pute trade-offs across all datasets, τ values, beam
sizes, and LLM–PRM configurations. Building on
these results, we articulate five key observations
that our subsequent experiments directly address.

Observation ❶: Partial PRM scores at very
short prefixes reliably predict final scores. Our
empirical analysis confirms that partial rewards
become highly predictive of final rewards after sur-
prisingly short prefixes. Figure 4 shows as we
sweep the decision prefix τ from 8 to 512 tokens.
The two correlations rise monotonically and follow
the

√
τ/L and at τ = 32 tokens ρ already exceeds

0.78 and τ = 64 pushes both metrics above 0.9,
after which they plateau. A complementary view is
given in Figure 2, where a linear fit between half-
step partial rewards and full-step rewards achieves
R2 = 0.63 with the MetaMath-7B PRM and R2 =

10438

0 25 50 75 100 125 150 175 200
Total FLOPs (x 10e18)

40

42

44

46

48

50

52

M
at

h-
50

0
Ac

cu
ra

cy
4

8

16

32

64

4
8

16

32
64

4

8

16

32 64

4

8

16
32

64
Llama-3.2-3B-Instruct (Math-500)

0 100 200 300 400 500
Total FLOPs (x 10e18)

45.0

47.5

50.0

52.5

55.0

57.5

60.0

62.5

65.0

M
at

h-
50

0
Ac

cu
ra

cy

4
8

16

32

64

4

8

16
32

64

4 8
16

32

64

4

8
16

32

64
Qwen2.5-3B-Instruct (Math-500)

0.0 0.5 1.0 1.5 2.0 2.5
Total FLOPs (x 10e18)

0

2

4

6

8

10

12

AI
M

E
Ac

cu
ra

cy

4

8 16

32

64

4

8 16

32

64

4
8

16 32

64

4

8

16

32 64
Llama-3.2-3B-Instruct (AIME)

0 1 2 3 4 5
Total FLOPs (x 10e18)

4

6

8

10

12

14

16

AI
M

E
Ac

cu
ra

cy

4

8
16

32

64

4

8 16

32 64

4 8

16

32 64

4 8

16

32

64
Qwen2.5-3B-Instruct (AIME)

Vanilla ER (= 32) ER (= 64) ER (= 128)

Figure 6: We evaluate our implementation of Early Rejection (ER) on the Math-500 and AIME datasets using
two different LLMs with MathShepard-7b as reward model. The numbers indicate that ER rejection achieves
performance similar to Vanilla Beam Search with while consuming far less compute.

0.72 with MathShepherd-7B, demonstrating that
the effect generalizes across reward models . These
findings validate our Partial Reward Model hypoth-
esis that even a one-third length prefix offers a
stable ranking signal, and the probability of incor-
rectly rejecting the optimal beam decays exponen-
tially once the expected partial-score gap ∆ dom-
inates the sub-Gaussian noise σ, as formalized in
Section 4. Practically, this means we can invoke
early rejection after the first 32–64 tokens with neg-
ligible risk while removing 60–85% of downstream
PRM calls and generation FLOPs.

Observation ❷: Smaller PRMs can match or
exceed larger PRMs in accuracy while saving
more compute, especially on well-structured out-
puts. The smaller Skywork-PRM-1.5B achieves
equal or higher end-task accuracy than the
MathShepherd-Mistral-7B baseline, while also
enabling a higher number of FLOP reductions.
Across both Llama-3.3-3B and Qwen2.5-3B, Sky-
work yields a 0.7–2.1% accuracy gain for smaller
beam sizes and stays within 0.3% elsewhere, con-
tradicting the common intuition that “bigger judge
= better answers” (Leike et al., 2018). We also
observe a greater number of FLOP reductions with
Skywork-PRM-1.5B, primarily because the 3B-
sized LLM becomes the computational bottleneck,
and early rejection allows us to skip costly comple-

tions, thereby saving compute more frequently.
Another key observation is that smaller

PRMs benefit from more well-structured answers.
Skywork-PRM-1.5B generally performs better
with Llama-3.3-3B than with Qwen2.5-3B, as
Llama tends to produce more structured and
instruction-following responses compared to Qwen.
Although both LLMs are instruction-tuned, Llama
adheres to instructions more faithfully, making it
easier for the smaller PRM (Skywork) to evaluate
intermediate steps accurately. In contrast, larger
PRMs like MathShepherd-Mistral-7B are more ro-
bust to such variations in LLM behavior.

Observation ❸: Early rejection yields large
accuracy gains for exploratory LLMs at small
beam widths but offers diminishing accuracy re-
turns for deterministic LLMs and wider beams.
Qwen2.5-3B often generates long, exploratory rea-
soning traces, so many beams appear weak after
the first τ = 32–64 tokens, even though some of
them would eventually reach correct solutions. In
such cases, the partial reward filter discards the
clearly unpromising beams early. Here early rejec-
tion frees up beam slots for new candidates. This
allows the search to explore a broader set of reason-
ing paths, effectively expanding the search space
without increasing the beam width N .

In contrast, Llama-3.2-3B tends to produce

10439

Llama+MathLlama+Skywork Qwen+Math Qwen+Skywork0

10

20

30

40

50

60

70

FL
OP

S
(×

10
18

)

3.7

19.79
13.22

19.22

27.51

6.06

67.19

8.08

Vanilla

Llama+MathLlama+Skywork Qwen+Math Qwen+Skywork0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

5.73
7.54 7.46

12.17

16.27

2.29

18.27

5.12

Early Rejection (=32)

Llama+MathLlama+Skywork Qwen+Math Qwen+Skywork0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

4.62
5.67

7.54

10.8910.23

1.96

17.27

5.06

Early Rejection (=64)
Language Model Process Reward Model

Figure 7: Total FLOPs consumed across different LLM–PRM combinations with and without Early Rejection. We
observe consistent and substantial reductions in compute, with τ = 64 yielding up to 9× savings. Larger prefix
lengths enable more reliable pruning, significantly lowering overall inference cost without compromising accuracy.

shorter, more deterministic traces where the top-p
beams already rank highly from the start. As a re-
sult, early rejection removes fewer low-quality can-
didates and provides limited additional exploration.
Empirically, early rejection improves Qwen’s accu-
racy by up to 3.5% at N = 4 and 1.6% at N = 8,
whereas Llama sees at most a 0.3% gain. Once
the beam width is sufficiently large (N ≥ 32), the
baseline search already explores the space well, so
the benefits of early rejection shift from accuracy
gains to compute savings.

Observation ❹: At τ = 64 tokens, early rejec-
tion achieves higher accuracy while lesser com-
pute than τ = 32 tokens. Although we always
retain the same number of beams per step (the top
N/M), their quality improves significantly as we
increase the prefix length τ . At τ = 32, the cor-
relation between partial and full rewards is about
0.78. This means around 20% of the beams are in-
correctly ranked, so some low-quality beams make
it through and have to be fully generated and evalu-
ated, wasting compute. At τ = 64, the correlation
exceeds 0.90 and flattens out, meaning nearly all
retained beams are genuinely promising. Very few
low-quality beams slip through. As a result, even
though we keep the same number of survivors, the
number of bad survivors and the FLOPs spent on
them, drops when increasing τ from 32 to 64.

Observation ❺: Language model behavior
(not size) drives compute, and early rejection is
most effective when it blocks exploratory fail-
ures early. Figure 7 shows that Qwen2.5-3B incurs
significantly higher total FLOPs than Llama-3.2-
3B under identical early rejection settings. While
both models are similar in size, their generation
behaviors differ: Qwen tends to produce longer,
exploratory chains of thought, whereas Llama gen-
erates more concise, deterministic outputs. As a

result, when early rejection fails to prune a weak
Qwen beam, it often leads to a long and costly
completion, inflating total compute. Early rejec-
tion is most effective in these exploratory settings,
where catching bad completions early prevents
large downstream FLOPs. This explains why Qwen
exhibits larger absolute FLOP reductions, espe-
cially when paired with a lightweight PRM like
Skywork-1.5B. In contrast, Llama’s beams tend
to converge quickly, offering fewer opportunities
for savings. These results highlight that the struc-
ture of the generation process, not just model size,
governs the impact of early rejection on efficiency.

6 Conclusion

We demonstrate that PRMs can be effectively repur-
posed as Partial Reward Models, enabling a single
mid-generation evaluation to provide a reliable ac-
cept or reject signal. This allows weak beams to
be pruned early, well before full reasoning steps
are completed, thereby reducing unnecessary com-
putation without sacrificing final accuracy. Un-
der mild noise assumptions, we provide theoretical
guarantees showing that the probability of mistak-
enly discarding the optimal beam decays exponen-
tially with prefix length, offering formal safety for
early rejection. Extensive experiments across SAT-
MATH, Math-500, and AIME confirm the practi-
cal benefits: early rejection reduces inference-time
FLOPs by 1.4×–9× when using a mid-sized PRM
(7B parameters), with no degradation in task per-
formance. Even with a smaller PRM (1.5B), we ob-
serve 1.5×–4× compute savings, highlighting that
lightweight evaluators are sufficient for effective
and efficient reasoning. Together, these findings es-
tablish early rejection as a simple, model-agnostic
plug-in that narrows the gap between compute-

10440

heavy tree search and fast single-pass decoding,
offering state-of-the-art compute efficiency with-
out compromising solution quality.

Limitations

Our approach relies on the monotonicity and cal-
ibration of PRM scores, if partial rewards corre-
late weakly with final quality, as might occur in
tasks with delayed or non-monotonic utilities (e.g.,
code synthesis with backtracking or creative writ-
ing), early rejection can mis-reject the eventual best
beam. The study is confined to text-only, math-
centric benchmarks. Larger models specially for
multimodal tasks, or domains with sparse positive
signals may exhibit different trade-offs. While we
report FLOP reductions, we do not quantify the
memory overhead of storing intermediate PRM
states after τ tokens are generated. Finally, the the-
oretical guarantees assume independent step-wise
noise and fixed τ , leaving open questions about
adaptive τ schedules and integration with policy-
learning frameworks such as RLHF or DPO.

Ethical Considerations

While Early Rejection reduces inference compute
by up to 9×, this efficiency could also facilitate
misuse, such as the automated generation of spam
or disinformation. The method’s safety relies on
the assumption that PRM scores are monotonic
with respect to final output quality. However, this
assumption may not hold beyond the math-focused
benchmarks evaluated in this work, particularly
for tasks involving delayed or non-monotonic re-
wards. As a result, the algorithm risks discarding
high-quality candidates prematurely or reinforcing
hidden biases.

Acknowledgments

The work of Azal Ahmad Khan was supported in
part by the Amazon Machine Learning Systems
Fellowship and the UMN GAGE Fellowship. Xin-
ran Wang and Ali Anwar were supported by the 3M
Science and Technology Graduate Fellowship and
the Samsung Global Research Outreach Award.

References
Janice Ahn, Rishu Verma, Renze Lou, Di Liu, Rui

Zhang, and Wenpeng Yin. 2024. Large language
models for mathematical reasoning: Progresses and
challenges. arXiv preprint arXiv:2402.00157.

Amogh Akella. 2024. Improving math problem solving
in large language models through categorization and
strategy tailoring. arXiv preprint arXiv:2411.00042.

Emunah Chan. 2024. Understanding logical reasoning
ability of large language models. Available at SSRN
4943448.

Zhaorun Chen, Zhuokai Zhao, Zhihong Zhu, Ruiqi
Zhang, Xiang Li, Bhiksha Raj, and Huaxiu Yao.
2024. Autoprm: Automating procedural supervision
for multi-step reasoning via controllable question de-
composition. arXiv preprint arXiv:2402.11452.

Fengxiang Cheng, Haoxuan Li, Fenrong Liu, Robert van
Rooij, Kun Zhang, and Zhouchen Lin. 2025. Empow-
ering llms with logical reasoning: A comprehensive
survey. arXiv preprint arXiv:2502.15652.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian,
Mark Chen, Heewoo Jun, Lukasz Kaiser, Matthias
Plappert, Jerry Tworek, Jacob Hilton, Reiichiro
Nakano, and 1 others. 2021. Training verifiers
to solve math word problems. arXiv preprint
arXiv:2110.14168.

Antonia Creswell, Murray Shanahan, and Irina Higgins.
2022. Selection-inference: Exploiting large language
models for interpretable logical reasoning. arXiv
preprint arXiv:2205.09712.

Jiangshu Du, Yibo Wang, Wenting Zhao, Zhongfen
Deng, Shuaiqi Liu, Renze Lou, Henry Peng Zou,
Pranav Narayanan Venkit, Nan Zhang, Mukund Sri-
nath, and 1 others. 2024. Llms assist nlp researchers:
Critique paper (meta-) reviewing. arXiv preprint
arXiv:2406.16253.

Xidong Feng, Ziyu Wan, Muning Wen, Stephen Marcus
McAleer, Ying Wen, Weinan Zhang, and Jun Wang.
2023. Alphazero-like tree-search can guide large lan-
guage model decoding and training. arXiv preprint
arXiv:2309.17179.

Yonatan Geifman and Ran El-Yaniv. 2019. Selec-
tiveNet: A deep neural network with an integrated
reject option. In Proceedings of the 36th Interna-
tional Conference on Machine Learning, volume 97
of Proceedings of Machine Learning Research, pages
2151–2159. PMLR.

Rishi Hazra, Gabriele Venturato, Pedro Zuidberg Dos
Martires, and Luc De Raedt. 2025. Have large
language models learned to reason? a character-
ization via 3-sat phase transition. arXiv preprint
arXiv:2504.03930.

Arian Hosseini, Xingdi Yuan, Nikolay Malkin, Aaron
Courville, Alessandro Sordoni, and Rishabh Agar-
wal. 2024. V-star: Training verifiers for self-taught
reasoners. arXiv preprint arXiv:2402.06457.

Pengfei Hu, Zhenrong Zhang, Qikai Chang, Shuhang
Liu, Jiefeng Ma, Jun Du, Jianshu Zhang, Quan
Liu, Jianqing Gao, Feng Ma, and 1 others. 2025.
Prm-bas: Enhancing multimodal reasoning through

10441

prm-guided beam annealing search. arXiv preprint
arXiv:2504.10222.

Jan Hendrik Kirchner, Yining Chen, Harri Edwards,
Jan Leike, Nat McAleese, and Yuri Burda. 2024.
Prover-verifier games improve legibility of llm out-
puts. arXiv preprint arXiv:2407.13692.

Takeshi Kojima, Shixiang Shane Gu, Machel Reid, Yu-
taka Matsuo, and Yusuke Iwasawa. 2022. Large lan-
guage models are zero-shot reasoners. Advances in
neural information processing systems, 35:22199–
22213.

Sylvain Kouemo Ngassom, Arghavan Moradi Dakhel,
Florian Tambon, and Foutse Khomh. 2024. Chain of
targeted verification questions to improve the reliabil-
ity of code generated by llms. In Proceedings of the
1st ACM International Conference on AI-Powered
Software, pages 122–130.

Tian Lan, Wenwei Zhang, Chen Xu, Heyan Huang,
Dahua Lin, Kai Chen, and Xian-Ling Mao. 2024.
Criticeval: Evaluating large-scale language model as
critic. Advances in Neural Information Processing
Systems, 37:66907–66960.

Jan Leike, David Krueger, Tom Everitt, Miljan Martic,
Vishal Maini, and Shane Legg. 2018. Scalable agent
alignment via reward modeling: a research direction.
arXiv preprint arXiv:1811.07871.

Hunter Lightman, Vineet Kosaraju, Yura Burda, Harri
Edwards, Bowen Baker, Teddy Lee, Jan Leike,
John Schulman, Ilya Sutskever, and Karl Cobbe.
2023a. Let’s verify step by step. arXiv preprint
arXiv:2305.20050.

Hunter Lightman, Vineet Kosaraju, Yuri Burda, Harri-
son Edwards, Bowen Baker, Teddy Lee, Jan Leike,
John Schulman, Ilya Sutskever, and Karl Cobbe.
2023b. Let’s verify step by step. In The Twelfth
International Conference on Learning Representa-
tions.

Zicheng Lin, Zhibin Gou, Tian Liang, Ruilin Luo,
Haowei Liu, and Yujiu Yang. 2024. Criticbench:
Benchmarking llms for critique-correct reasoning.
arXiv preprint arXiv:2402.14809.

Liangchen Luo, Zi Lin, Yinxiao Liu, Lei Shu, Yun
Zhu, Jingbo Shang, and Lei Meng. 2023. Critique
ability of large language models. arXiv preprint
arXiv:2310.04815.

Liangchen Luo, Yinxiao Liu, Rosanne Liu, Samrat
Phatale, Meiqi Guo, Harsh Lara, Yunxuan Li, Lei
Shu, Yun Zhu, Lei Meng, and 1 others. 2024. Im-
prove mathematical reasoning in language models
by automated process supervision. arXiv preprint
arXiv:2406.06592.

Dakota Mahan, Duy Van Phung, Rafael Rafailov,
Chase Blagden, Nathan Lile, Louis Castricato, Jan-
Philipp Fränken, Chelsea Finn, and Alon Albalak.
2024. Generative reward models. arXiv preprint
arXiv:2410.12832.

Meta. 2024. Llama 3.2: Revolutionizing edge ai and
vision with open, customizable models.

Hussein Mozannar and David Sontag. 2020. Consis-
tent estimators for learning to defer to an expert. In
Proceedings of the 37th International Conference
on Machine Learning, volume 119 of Proceedings
of Machine Learning Research, pages 7076–7087.
PMLR.

Jianing Qi, Hao Tang, and Zhigang Zhu. 2024. Verifierq:
Enhancing llm test time compute with q-learning-
based verifiers. arXiv preprint arXiv:2410.08048.

Team Qwen, Baosong Yang, B Zhang, B Hui, B Zheng,
B Yu, Chengpeng Li, D Liu, F Huang, H Wei, and
1 others. 2024. Qwen2 technical report. arXiv
preprint.

Charlie Snell, Jaehoon Lee, Kelvin Xu, and Aviral Ku-
mar. 2024. Scaling llm test-time compute optimally
can be more effective than scaling model parameters.
arXiv preprint arXiv:2408.03314.

Hanshi Sun, Momin Haider, Ruiqi Zhang, Huitao
Yang, Jiahao Qiu, Ming Yin, Mengdi Wang, Peter
Bartlett, and Andrea Zanette. 2024. Fast best-of-n
decoding via speculative rejection. arXiv preprint
arXiv:2410.20290.

Peiyi Wang, Lei Li, Zhihong Shao, RX Xu, Damai
Dai, Yifei Li, Deli Chen, Yu Wu, and Zhifang Sui.
2023. Math-shepherd: Verify and reinforce llms step-
by-step without human annotations. arXiv preprint
arXiv:2312.08935.

Teng Wang, Zhangyi Jiang, Zhenqi He, Wenhan Yang,
Yanan Zheng, Zeyu Li, Zifan He, Shenyang Tong,
and Hailei Gong. 2025. Towards hierarchical multi-
step reward models for enhanced reasoning in large
language models. arXiv preprint arXiv:2503.13551.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten
Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny Zhou,
and 1 others. 2022. Chain-of-thought prompting elic-
its reasoning in large language models. Advances
in neural information processing systems, 35:24824–
24837.

Fengli Xu, Qianyue Hao, Zefang Zong, Jingwei Wang,
Yunke Zhang, Jingyi Wang, Xiaochong Lan, Jiahui
Gong, Tianjian Ouyang, Fanjin Meng, and 1 others.
2025. Towards large reasoning models: A survey
of reinforced reasoning with large language models.
arXiv preprint arXiv:2501.09686.

Yuqing Yang, Yuedong Xu, and Lei Jiao. 2024. A
queueing theoretic perspective on low-latency llm
inference with variable token length. arXiv preprint
arXiv:2407.05347.

Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran,
Tom Griffiths, Yuan Cao, and Karthik Narasimhan.
2023. Tree of thoughts: Deliberate problem solving
with large language models. Advances in neural
information processing systems, 36:11809–11822.

10442

https://ai.meta.com/blog/llama-3-2-connect-2024-vision-edge-mobile-devices/
https://ai.meta.com/blog/llama-3-2-connect-2024-vision-edge-mobile-devices/

Dan Zhang, Sining Zhoubian, Ziniu Hu, Yisong Yue,
Yuxiao Dong, and Jie Tang. 2024a. Rest-mcts*: Llm
self-training via process reward guided tree search.
Advances in Neural Information Processing Systems,
37:64735–64772.

Lunjun Zhang, Arian Hosseini, Hritik Bansal, Mehran
Kazemi, Aviral Kumar, and Rishabh Agarwal. 2024b.
Generative verifiers: Reward modeling as next-token
prediction. arXiv preprint arXiv:2408.15240.

Wanjun Zhong, Ruixiang Cui, Yiduo Guo, Yaobo Liang,
Shuai Lu, Yanlin Wang, Amin Saied, Weizhu Chen,
and Nan Duan. 2023. Agieval: A human-centric
benchmark for evaluating foundation models. arXiv
preprint arXiv:2304.06364.

Denny Zhou, Nathanael Schärli, Le Hou, Jason Wei,
Nathan Scales, Xuezhi Wang, Dale Schuurmans,
Claire Cui, Olivier Bousquet, Quoc Le, and 1 oth-
ers. 2022. Least-to-most prompting enables complex
reasoning in large language models. arXiv preprint
arXiv:2205.10625.

10443

A Appendix

Algorithm 2 Beam Search with Process Reward Models
1: Input: LLM Model, PRM Model, Beam count N , Beam width M , Temperature T , Stopping criterion,

EOS token or max search depth, Batch Size b
2: Initialize a set of N candidate beams
3: for each beam do
4: Sample N independent steps using the LLM with temperature T
5: Apply the stopping criterion (e.g., new line or double new line)
6: end for
7: Score each sampled step using the PRM
8: Select the top N/M steps with the highest scores
9: Expand the selected steps:

10: for each selected step do
11: Sample M next steps
12: end for
13: while EOS token not reached and max search depth not exceeded do
14: Repeat steps 7 - 12
15: end while
16: return The best sequence found

Algorithm. Algorithm 2 shows the conventional PRM-guided beam search and Algorithm 3 shows our
early-rejection variant. Both algorithms maintain the same top-level structure of iterative beam expansion,
but differ critically in how and when PRM scores are computed. The standard method evaluates only
fully completed beams, resulting in redundant computation on unpromising candidates. In contrast,
our early-rejection variant computes partial rewards after just τ tokens using the same PRM, enabling
efficient early rejecting. This architectural shift introduces a two-tiered batching scheme, larger batch size
for partial generations and smaller batch size for step completion, yielding significant compute savings
without degrading performance, as shown in our experimental results.

Results. To supplement the main results presented in Section 5, we provide detailed tables reporting the
accuracy and compute trade-offs for every combination of language model (LLM), process reward model
(PRM), beam size, and early rejection threshold τ . These results span three math reasoning benchmarks:
SAT-MATH, Math-500, and AIME.

Table 1 reports the results on the SAT-MATH dataset from AGIEval. For each LLM–PRM pair, we
compare standard decoding ("Vanilla") with our early rejection method across multiple τ values. Each
cell reports both the accuracy and the total FLOPs used for inference. We observe that early rejection
achieves similar or higher accuracy at significantly reduced compute, especially with exploratory LLMs
like Qwen-2.5B.

Table 2 extends the analysis to the Math-500 and AIME 2024 benchmarks, using MathShepherd-
Mistral-7B as the PRM. Again, we observe consistent trends across datasets: as τ increases, early rejection
becomes more selective and cost-efficient, with only minor losses (if any) in final accuracy.

Table 3 aggregates FLOP consumption across all LLM–PRM combinations under three decoding
regimes: Vanilla, ER(τ=32), and ER(τ=64). The results reveal that early rejection with τ = 64
consistently achieves the lowest compute cost without compromising output quality, yielding up to 9×
reduction in total inference FLOPs.

Together, these tables validate the scalability and robustness of our early rejection method across
models, evaluators, datasets, and rejection thresholds.

10444

Table 1: SAT-MATH results comparing vanilla decoding and Early Rejection (ER) across multiple beam sizes and τ
values. Each cell reports (top) accuracy and (bottom) total inference FLOPs (×1018).

Model PRM Setting Number of Samples (τ)

4 8 16 32 64

Llama-3.2
-3b

MathSheperd
-7b

Vanilla 37.14 38.76 39.55 41.16 43.12
1.32 7.48 15.47 31.21 80.34

ER (τ = 32) 30.84 33.94 35.14 40.36 42.13
0.24 2.73 9.40 21.99 55.94

ER (τ = 64) 32.57 35.82 38.81 40.76 42.87
0.24 1.08 4.34 14.85 49.55

ER (τ = 128) 34.55 38.25 39.07 38.31 40.65
0.21 0.85 3.86 13.11 45.90

Skywork
-1.5b

Vanilla 40.38 41.28 42.57 43.87 45.64
1.25 3.49 10.83 25.85 39.60

ER (τ = 32) 32.77 35.30 39.67 38.54 44.14
0.21 1.29 4.54 9.38 22.13

ER (τ = 64) 38.54 39.17 41.93 42.97 44.61
0.13 0.83 4.85 7.63 19.92

ER (τ = 128) 32.24 33.33 37.21 39.09 39.55
0.11 0.57 4.23 6.75 16.31

Qwen2.5
-3b

MathSheperd
-7b

Vanilla 37.93 40.59 46.31 47.20 51.47
2.42 15.70 37.35 80.41 190.35

ER (τ = 32) 41.46 42.14 45.62 47.95 50.18
0.86 1.96 8.85 25.73 106.77

ER (τ = 64) 45.66 46.36 48.50 51.04 53.51
0.53 1.37 7.91 24.81 100.61

ER (τ = 128) 47.13 48.54 50.91 53.11 56.84
0.49 1.12 5.76 17.33 79.98

Skywork
-1.5b

Vanilla 31.63 40.49 44.51 47.29 50.98
1.37 4.77 10.37 27.31 88.77

ER (τ = 32) 37.13 43.13 45.19 49.59 51.33
0.33 1.36 6.67 17.29 47.43

ER (τ = 64) 40.67 43.26 47.88 51.41 53.88
0.31 1.28 6.40 15.95 42.45

ER (τ = 128) 42.26 46.55 51.82 52.61 55.09
0.25 0.60 2.40 7.50 25.33

10445

Table 2: Results on Math-500 and AIME datasets with MathShepherd-Mistral-7B as the PRM. Each configuration
shows accuracy (top) and total FLOPs (bottom) for different beam sizes and τ thresholds.

Dataset Model Setting Number of Samples (τ)

4 8 16 32 64

M
at

h-
50

0

Llama-3.2
-3b

Vanilla 46.20 48.00 49.06 50.81 51.44
5.04 27.51 33.22 137.54 202.27

ER (τ = 32) 39.63 40.30 44.60 46.60 47.21
1.68 10.15 27.42 92.15 189.23

ER (τ = 64) 42.00 43.20 48.67 50.43 51.19
1.50 8.67 23.45 101.17 184.71

ER (τ = 128) 45.46 46.80 48.74 50.29 51.34
0.60 3.21 18.91 77.46 138.63

Qwen2.5
-3b

Vanilla 51.67 53.25 54.08 56.73 58.80
14.02 47.48 65.32 250.03 536.10

ER (τ = 32) 45.87 49.59 51.41 52.80 55.60
2.41 10.58 56.49 134.12 354.91

ER (τ = 64) 53.88 54.19 55.60 57.11 59.34
2.10 9.28 42.33 112.46 263.08

ER (τ = 128) 55.21 59.43 60.40 62.61 66.13
1.61 7.45 32.54 94.52 195.23

A
IM

E Llama-3.2
-3b

Vanilla 3.33 6.67 6.67 10.00 13.33
0.10 0.25 0.72 1.56 2.61

ER (τ = 32) 0.00 3.33 3.33 6.67 10.00
0.05 0.16 0.46 1.14 2.13

ER (τ = 64) 3.33 3.33 10.00 10.00 13.33
0.02 0.09 0.41 0.72 1.89

ER (τ = 128) 3.33 6.67 10.00 13.33 13.33
0.02 0.04 0.38 0.61 2.01

Qwen2.5
-3b

Vanilla 6.67 10.00 10.00 13.33 16.67
0.13 0.31 1.19 2.68 5.51

ER (τ = 32) 3.33 6.67 6.67 10.00 10.00
0.05 0.21 0.63 1.34 3.35

ER (τ = 64) 6.67 6.67 10.00 13.33 13.33
0.04 0.12 0.47 0.93 2.36

ER (τ = 128) 6.67 6.67 10.00 13.33 16.67
0.02 0.09 0.39 0.77 2.12

10446

Algorithm 3 Beam Search with Early Rejection

1: Input: LLM Model, PRM Model, Beam count N , Beam width M , Temperature T , Stopping criterion,
EOS token or max search depth, b1 > b2

2: Initialize a set of N candidate beams
3: for each beam do
4: Sample N independent steps using the LLM with temperature T and batch size b1
5: Apply the stopping criterion (τ tokens generated or EOS token.)
6: end for
7: Score each sampled step using the PRM
8: Select the top N/M steps with the highest scores
9: Complete the selected steps:

10: for each selected step do
11: Complete the step until EOS token with batch size b2.
12: end for
13: Expand the selected steps:
14: for each selected step do
15: Sample M next steps
16: end for
17: while EOS token not reached and max search depth not exceeded do
18: Repeat steps 7 - 16
19: end while
20: return The best sequence found

Table 3: Total FLOPs (×1018) for each LLM–PRM combination under vanilla decoding and early rejection at
τ = 32 and τ = 64. Early rejection consistently reduces compute, with Qwen-based configurations showing the
largest savings.

Model Combination Vanilla Early Rejection (τ=32) Early Rejection (τ=64)

LLM PRM LLM PRM LLM PRM

Llama+Math 3.70 27.51 5.73 16.27 4.62 10.23
Llama+Skywork 19.79 6.06 7.54 2.29 5.67 1.96
Qwen+Math 13.22 67.19 7.46 18.27 7.54 17.27
Qwen+Skywork 19.22 8.08 12.17 5.12 10.89 5.06

10447

