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Abstract

This paper investigates compositionality in
chemical language models (ChemLLMs). We
introduce STEP, a benchmark with composi-
tional questions that reflect intricate chemical
structures and reactions, to evaluate models’
understanding of chemical language. Our ap-
proach focuses on identifying and analyzing
compositional patterns within chemical data, al-
lowing us to evaluate how well existing LLMs
can handle complex queries. Experiments
with state-of-the-art ChemLLMs show signifi-
cant performance drops in compositional tasks,
highlighting the need for models that move be-
yond pattern recognition. By creating and shar-
ing this benchmark, we aim to enhance the
development of more capable chemical LLMs
and provide a resource for future research on
compositionality in chemical understanding.

1 Introduction

Recent advances in large language models (LLMs)
have significantly accelerated progress in com-
putational chemistry, with applications ranging
from molecular property prediction to reaction de-
sign and drug discovery (Schwaller et al., 2018,
2021; Livne et al., 2024; Kuznetsov et al., 2025).
Domain-specific adaptations such as ChemLLMs
built on architectures like T5 (Raffel et al., 2020)
and LLaMA (Touvron et al., 2023) have enabled
models to interface with molecular representations
(e.g., SMILES (Weininger, 1988)) and operate ef-
fectively on datasets such as ZINC-15 (Sterling and
Irwin, 2015b), PubChem (Kim et al., 2016), and
USPTO-50KK (Lowe, 2012).

Despite these successes, a fundamental question
remains underexplored: Can chemical language
models work with compositionally? That is, can
they combine known chemical concepts to solve

*These authors contributed equally to this work. The order
of author names was randomly determined.

novel, multi-step problems? This capability is cru-
cial for tasks that require generalization beyond
memorized patterns such as predicting the activity
of the product of a previously unseen reaction or
estimating the activity of a compound generated
via hypothetical synthesis. Current benchmarks
such as USPTO-50K (Lowe, 2012), and CHEBI-
20 (Edwards et al., 2021) in chemical NLP largely
focus on single-step tasks, e.g., predicting products
from reactions, generating molecular descriptions,
or estimating individual properties. While these
tasks provide valuable evaluation signals, they do
not capture the multi-faceted, compositional nature
of real-world chemical reasoning. Consequently,
it is unclear whether ChemLLMs truly understand
chemical concepts or simply exploit surface-level
correlations (Ganeeva et al., 2024a,b).

To address this gap, we introduce STEP (Struc-
tured Tasks for Evaluating and Promoting compo-
sitionality), a benchmark and framework designed
to systematically evaluate compositional reason-
ing in chemical LLMs. STEP transforms standard
datasets into two-step tasks that require chaining
atomic reasoning steps, for example, predicting a
reaction product and then describing its activity.
By evaluating state-of-the-art ChemLLMs across
these tasks, we identify substantial performance
drops in compositional settings, revealing critical
limitations in their generalization abilities.

Our contributions are as follows. We propose
STEP, a benchmark that evaluates compositionality
in ChemLLMs via structured tasks. We curate a
dataset spanning several chemical subdomains, in-
cluding synthesis, property prediction, and molec-
ular description, and transform them into compo-
sitional queries. We showed that most models per-
formed well on isolated tasks but struggled with
compositional generalization, especially on out-of-
distribution inputs.

By addressing the critical need for rigorous eval-
uation, our work advances the understanding com-
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positionality by ChemLLMs, with implications for
drug discovery, materials science, and beyond.

2 Methodology

Existing chemical language models (ChemLMs)
are primarily evaluated on narrow, single-domain
tasks (e.g., reaction prediction or property esti-
mation). However, real-world chemical reason-
ing often requires integrating knowledge across
domains—for example, predicting the environmen-
tal impact of a reaction product demands under-
standing both reaction mechanisms and physico-
chemical properties. To bridge this gap, we pro-
pose STEPS (Structured Tasks for Evaluating
and Promoting Compositionality), a framework
that trains and evaluates ChemLMs on composi-
tional tasks where complex questions are solved by
combining simpler subtasks. Below, we formalize
STEPS and its design principles.

2.1 Framework Design

STEPS operationalizes the principle of
compositionality—the idea that complex ex-
pressions derive meaning from their constituent
parts and the rules combining them. The frame-
work decomposes chemical problems into two
foundational task types (Figure 1): Atomic tasks,
which are single-domain problems with determin-
istic answers (e.g., predicting a reaction product)
and Composite tasks, which are multi-domain
problems requiring sequential or parallel reasoning
over atomic tasks (e.g., predicting a reaction
product and its activity).

By systematically combining atomic tasks into
novel composites, STEPS evaluates whether mod-
els can generalize to unseen combinations of do-
mains, a key marker of compositional reasoning.

2.2 Task Taxonomy

Atomic Tasks (TA) Atomic tasks have unique,
verifiable answers. Let TA = {T1, T2, . . . , Tn} de-
note tasks such as: Reaction prediction: Given
reactants and conditions, output the product’s
SMILES notation (a string-based molecular repre-
sentation); Molecular captioning: Generate a tex-
tual description of a molecule’s properties; InChI
naming: Produce the IUPAC-compliant InChI
identifier for a molecule; Heavy atom counting:
Predict the number of non-hydrogen atoms in a
compound; Activity prediction: Determine bio-
logical activity metrics (e.g., IC50 values).

Composite Tasks (TC) We construct composi-
tional tasks by chaining atomic tasks with explicit
dependencies between steps. One-step tasks: Sin-
gle atomic tasks (e.g., "Describe molecule M1").
Two-step tasks: Chain of Reaction prediction task
and another atomic task (e.g., "Predict the activity
of reaction R product").

2.3 Evaluation Metrics

For each atomic task, we employ task-specific
metrics to ensure rigorous assessment: Reaction
prediction: Exact match of predicted SMILES
strings (1 if correct, 0 otherwise). This ensures
precise evaluation of molecular structure genera-
tion. Molecular captioning: ROUGE-L scores
(F1) to measure lexical overlap between generated
descriptions and ground truth. InChI naming: Ex-
act match accuracy for InChI identifiers, as these
follow strict IUPAC formatting rules. Heavy atom
counting: Accuracy calculated as the percentage
of exact matches for the number of non-hydrogen
atoms. Activity prediction: Accuracy for the ac-
tivity classification task (e.g., active/inactive). For
compositional task we provide the metrics for the
last step to compare.

3 Models and Datasets

Dataset Compilation To create a benchmark
for compositional reasoning, we compile and
modify existing chemical datasets: CHEBI-20,
MoleculeACE, USPTO-50k, and PubChem (see
Tab. 3). We randomly select 10,000 re-
actions, 3,000 description-reaction pairs and
10,000 reaction-properties pairs sharing the same
molecules. By combining these datasets, we gen-
erate composite examples where the input consists
of compositional questions (see Fig. 1).

Evaluated models We evaluated SoTA genera-
tive LLMs that were finetuned for chemical tasks
and compile reaction prediction, molecule caption-
ing or scietific QA tasks. This includes Text2Chem-
standard and its augmented variant Text2Chem-
augm, both based on a T5 architecture and intro-
duced in (Christofidellis et al., 2023). Several
models in the LLaMA family were also evalu-
ated, including Chemical-LLaMA, LLaMA-3.2-
1B-IT-Chemistry-Assistant, LLaMA-Finetuned-
Chemistry, LLaMA-3.1-8B-Instruct-SFT-Chem,
LLaMA-7B-Instruct-Base-Chem, and LLaMA-3.2-
3B-IT-Chemistry, all based on the foundational
architecture introduced in (Touvron et al., 2023).
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Figure 1: Our benchmark provides compositional questions for one-to-one, one-to-many and many-to-many tasks.
By combining one-step tasks we create 2-steps compositional questions which enrich the data for model evaluation
and training.

Among these, we further fine-tuned LLaMA-3.2-
3B-IT-Chemistry on our STEP benchmark to ob-
tain LLaMA-3.2-3B-IT-Chemistry-2Step, a com-
positional reasoning–oriented variant introduced in
this work. In addition to LLaMA variants, we in-
cluded ChemLLM-7B-Chat (Zhang et al., 2024), a
dialogue-oriented chemistry model; ChemQwen2-
vL (Bai et al., 2023), a large-scale model from
the Qwen series; and ChemDFM-v1.5-8B (Zhao
et al., 2024), a domain-specific foundation model
for drug discovery and molecular property predic-
tion. Full list of models is provided in Tab. 2. We
evaluate these models to understand their composi-
tional reasoning and identify areas for improvement
in the development of ChemLLMs.

4 Evaluation results

This section presents the results of our evaluation
of various ChemLLMs across a range of compo-
sitional reasoning tasks. The findings are summa-
rized in Table 1, which reports performance metrics
on one-step and compositional tasks commbine of
reaction prediction, molecular description, property
estimation, and multi-step generation.

Two-Step Generation and Compositionality
Tasks requiring two-step generation, such as pre-
dicting the product of a reaction and then gener-
ating its description (‘react+desc‘), generally re-
sulted in lower performance compared to single-
step tasks. For example, while Text+Chem T5-
standard achieved an accuracy of 45.03% on reac-
tion prediction (‘react‘), its performance dropped
significantly to 22.07% on the two-step task (‘re-
act+desc‘). This trend highlights the challenge
of maintaining accuracy across multiple composi-
tional steps, where errors accumulate due to the
sequential nature of the task. The drop in per-
formance underscores the importance of compo-

sitional reasoning in handling multi-step tasks, that
indicating a reliance on surface-level pattern recog-
nition rather than compositional understanding.

Molecular Captions and Linguistic Alignment
Molecular captions generated by the models were
evaluated using ROUGE metrics. As expected,
T5-based models performed best in this cate-
gory, achieving ROUGE scores of 63.03% and
60.46%, respectively. These models were specif-
ically trained for descriptive tasks, aligning well
with the expected format and linguistic style. In
contrast, LLaMA-based models produced seman-
tically appropriate descriptions but deviated from
the expected format, resulting in lower scores. For
instance, LLaMA-7b-instruct-base-chem achieved
a ROUGE score of 53.67%, which is competitive
but still lower than T5-based models. This discrep-
ancy can be attributed to the free-form nature of
LLaMA’s outputs, which may lack the structured
format preferred by evaluation metrics. Despite
this, the semantic correctness of LLaMA’s descrip-
tions suggests that it treats "Give me a description
of this molecule" as a form of scientific question an-
swering (QA), demonstrating versatility even with-
out task-specific training.

Compositionality in Property Estimation Prop-
erty estimation tasks, such as predicting the num-
ber of heavy atoms (‘atoms‘) or activity potential
(‘activity‘), yielded consistently high performance
across models. For example, LLaMA-finetuned-
chemistry achieved an RMSE of 85.03% for atom
prediction and 75.3% for activity estimation. These
results indicate that short-answer tasks, which re-
quire concise numerical outputs, are less prone to
errors and thus better suited for evaluating model
performance. The success of these models on prop-
erty estimation tasks reflects their ability to handle
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Model react desc react+desc inchi react+inchi activity react+activity atoms react+atoms

Text+Chem T5-standard 45.03 63.03 22.07 39.86 41.6 50.73 44.09 60.08 65.73
Text+Chem T5-augm 40.34 60.46 20.2 39.61 41.3 50.45 43.87 59.83 65.48
chemical-LLaMA 25.76 38.09 31.8 54.97 39.03 61.67 46.9 71.24 66.27
LLaMA-3.2-1b-it-chemistry-assistant 23.85 33.85 28.8 48.45 35.09 75.3 41.7 85.03 80.1
LLaMA-finetuned-chemistry 29.73 44.94 39.9 48.91 35.42 75.75 42.1 85.38 80.43
LLaMA-3.1-8B-Instruct-sft-chem 29.71 48.62 40.3 48.12 34.87 74.9 41.45 84.78 79.8
LLaMA-7b-instruct-base-chem 32.79 51.34 39.77 51.35 37.12 78.5 44.8 88.27 83.4
LLaMA-3.2-3b-it-chemistry 29.48 50.18 41.74 48.21 34.95 75.05 41.52 84.85 79.93
LLaMA-3.2-3b-it-chemistry-2step 30.41 53.67 41.79 48.78 35.31 75.60 41.95 85.27 80.31
ChemLLM-7B-Chat 38.55 61.86 49.91 46.78 36.89 73.2 43.1 87.65 81.3
ChemQwen2-vL 39.79 65.40 51.76 45.92 37.45 72.6 44.5 88.13 82.46
ChemDFM-v1.5-8B 37.5 50.89 47.88 53.05 32.87 80.4 38.9 82.78 76.29

Table 1: Model performance on STEP tasks: one-step vs. two-step evaluation. Cell shading intensity reflects
performance, darker blue indicates better scores.

simple compositional structures. However, their
performance on more complex tasks, such as multi-
step generation, suggests that true compositional
reasoning remains a challenge.

Impact of Training Data on Compositionality
Models pre-trained on diverse scientific corpora,
demonstrated stronger generalization capabilities
compared to those trained on narrower datasets.
For example, LLaMA-3.1-8B-Instruct-sft-chem
achieved a balanced performance across tasks, scor-
ing 48.62% on molecular descriptions (‘desc‘) and
40.3% on two-step generation (‘react+desc‘). This
highlights the importance of data diversity in im-
proving model robustness and compositional rea-
soning. In contrast, models trained on special-
ized datasets, such as Text+Chem T5-standard, ex-
celled in specific tasks but struggled with broader
applications. For instance, while Text+Chem
T5-standard achieved the highest ROUGE score
(63.03%) for molecular descriptions, its perfor-
mance on two-step generation (‘react+desc‘) was
subpar (22.07%). This trade-off between special-
ization and generalization underscores the need for
training strategies that balance task-specific exper-
tise with broad applicability.

Fine-tuning on compositional tasks The
LLaMA-3.2-3b-it-chemistry model (3 billion
parameters) was selected for training experiments
due to its compact size and competitive baseline
performance across tasks, we call the resulting
model LLaMA-3.2-3b-it-chemistry-2step. The
results are shown in Table 1. We see several
improvements in 2-step tasks, but the difference
is marginal. The latter suggest the need for better
fine-tuning and reasoning techniques.

Challenges with Out-of-Distribution Inputs
Across all models, performance dropped signifi-
cantly when presented with out-of-distribution in-
puts. For example, ChemQwen2-vL achieved a
high ROUGE score of 65.40% for molecular de-
scriptions (‘deck‘) but struggled with multi-step
tasks (‘react+desc‘: 51.76%). This indicates a re-
liance on pattern recognition rather than true com-
positional reasoning, as models fail to generalize
beyond their training distribution.

Linguistic Explanation of Results The discrep-
ancies in performance can often be attributed to
linguistic factors. Models trained on specific for-
mats (e.g., T5 for molecular descriptions) exhibit
better alignment with evaluation metrics, whereas
models which generate free-form text, may pro-
duce semantically correct but stylistically divergent
outputs. For example, LLaMA-7b-instruct-base-
chem achieved a high ROUGE score of 53.67%
for molecular captions, but its deviation from the
expected format decreased its score. This high-
lights the importance of aligning model outputs
with evaluation criteria to ensure fair comparisons.

5 Conclusion

The results of our study reveal that current Chem-
ical LLMs struggle with compositional reason-
ing, particularly in multi-step tasks and out-of-
distribution (OOD) scenarios. While specialized
models excel in specific tasks, general-purpose
models demonstrate adaptability but falter when
integrating information across multiple steps. Key
findings include significant performance drops in
multi-step tasks, highlighting a reliance on surface-
level pattern recognition rather than true compo-
sitional understanding. These insights highlight
the need for better architectures and training to im-
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prove compositional reasoning, with a promising
direction being the integration of external tools into
LLM prompts for hybrid reasoning.

Limitations

First, we evaluated models that are publicly
available on HuggingFace (HF) (details in
Appendix A). Notably, there are other pop-
ular models such as Chemformer (https://
github.com/MolecularAI/Chemformer), Mol-
former (https://github.com/IBM/molformer),
and T5Chem (https://github.com/
HelloJocelynLu/t5chem), which could not
be integrated due to the lack of HF checkpoints.
Second, the evaluated models predominantly focus
on compositional reasoning within sequence-based
representations of molecules, but it is crucial to
explore other formats in the future, such as 3D
structures, which also hold significant importance
for chemical reasoning. Third, we emphasize that
the evaluated models were developed for research
purposes and may contain unintended biases;
any molecules generated by these models should
undergo thorough evaluation through standard
clinical testing.

Ethics Statement

The models and datasets used in this work are pub-
licly available for research purposes. The incor-
poration of AI into applied chemistry introduces a
variety of risks and ethical dilemmas. First, the di-
rect implementation of AI-generated predictions—
particularly those involving potentially hazardous
or dangerous compounds—without rigorous vali-
dation could result in human injuries, casualties,
or damage to laboratory facilities. Second, the ab-
sence of proper oversight could lead to the misuse
of chemical language models and AI in general,
potentially facilitating the production of dangerous
or illegal chemical compounds, with significant eth-
ical and societal consequences. To address these
concerns, it is essential to develop and implement
robust ethical guidelines for the development and
deployment of AI in chemistry. Additionally, fos-
tering transparency in model design, training data,
and evaluation methodologies can help mitigate
potential risks and ensure responsible use of these
technologies.
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A Models

Model Size Molecule
Captioning

Reaction
Prediction

Property
Prediction

Scientific
Q&A

Text2Chem-standard 223M ✓ ✓ × ×
Text2Chem-augm 223M ✓ ✓ × ×
chemical-llama 6.74B × ✓ ✓ ✓
llama-3.2-1b-it-chem-assist 1.24B × × × ✓
llama-finetuned-chemistry 8.03B × ✓ ✓ ✓
Llama-3.1-8B-Instruct-sft-chem 8.03B × ✓ ✓ ✓
llama-7b-instruct-base-chem 6.22B × × × ✓
Llama-3.2-3b-it-chemistry 1.24B × × × ✓
ChemLLM-7B-Chat 7.74B × × × ✓
ChemQwen2-vL 2.21B × × × ✓
ChemDFM-v1.5-8B 8.03B ✓ ✓ ✓ ✓

Table 2: Summary of Chemical Language Models. The
✓ and × symbols indicate whether the model was
trained on the corresponding task or not.

Dataset Size Task

CHEBI-20 33,000 Molecules Molecule Captioning
USPTO-50k 55,000 Reactions Reaction Prediction
PubChem 119M Compounds

328M Substances
Molecule properties

MoleculeACE 35,000 Molecules Activity prediction

Table 3: Summary of used datasets. MoleculeACE was
proposed in (Van Tilborg et al., 2022).

Text2Chem is a T5-architecture model de-
signed for molecule captioning and reaction pre-
diction. Built upon pre-trained language models,
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Text2Chem is fine-tuned on annotated datasets de-
rived from scientific articles and patents. By lever-
aging domain-specific annotations, Text2Chem
demonstrates strong performance in molecule de-
scription generation, reactions, and properties
within textual data. The model was trained on a
large corpus of chemical patents, scientific papers,
and datasets such as USPTO-MIT (Jin et al., 2020)
and ChEMBL (Gaulton et al., 2017), making it
well-suited for chemistry-specific applications.

Chemical-LLaMA is a variant of the LLaMA
series fine-tuned for chemistry-specific tasks. By
incorporating domain knowledge through pre-
training on chemical corpora, Chemical-LLaMA
demonstrates strong performance in tasks such as
reaction prediction, molecule captioning, property
prediction, and scientific question answering. The
model is fine-tuned on a combination of general-
purpose text data and chemistry-specific datasets,
ensuring its versatility in handling both generic and
domain-specific queries.

Llama-2-Finetuned-Chemistry is a fine-tuned
version of Llama-2 for chemistry-related tasks.
Building upon the robust capabilities of Llama-2,
this model incorporates domain-specific knowledge
through fine-tuning on chemistry-specific datasets.
It is particularly effective in tasks such as reaction
outcome prediction, molecular property estimation,
and scientific question answering, making it a valu-
able tool for evaluating compositional reasoning in
the chemistry domain.

Meta-Llama-3.1-8B-Instruct-sft-re-
chemprot-1209 is an instruction-tuned version
of the LLaMA 3.1 8B series, further refined for
chemistry-specific tasks. This model incorporates
supervised fine-tuning (SFT) and reinforcement
learning techniques to improve performance.
Trained on a combination of general-purpose text
data and chemistry-specific datasets, it includes
additional fine-tuning on benchmarks such as
ChemProt (Wei et al., 2012). As a result, it excels
in tasks requiring precise instructions, such as
reaction prediction, property prediction, and
scientific reasoning.

The Text+Chem T5-Standard model is a
domain-specific adaptation of the T5 (Text-to-
Text Transfer Transformer) architecture (Raffel
et al., 2020), tailored for chemical applications.
It leverages the standard T5 architecture with
encoder-decoder capabilities, enabling it to han-
dle tasks such as molecular property prediction,
reaction generation, and chemical text summariza-

tion. This variant uses the base configuration of
T5, featuring approximately 220 million param-
eters. The model is pre-trained on a combina-
tion of general-purpose text corpora and chemistry-
specific datasets, ensuring strong performance in
both linguistic and chemical domains. [Link]

The Text+Chem T5-Augm model extends
the capabilities of the standard T5 architecture
by incorporating augmentations specifically de-
signed for chemical data. These augmenta-
tions include specialized tokenizers for SMILES
strings and additional training on chemical reaction
datasets (Christofidellis et al., 2023). With around 3
billion parameters, this augmented variant demon-
strates superior performance in multi-step reason-
ing tasks compared to its standard counterpart. The
model’s enhanced architecture allows it to better
capture complex relationships between functional
groups and reaction pathways. [Link]

Chemical-LLaMA is a domain-adapted version
of Meta’s LLaMA series (Touvron et al., 2023),
fine-tuned for chemical applications. Built upon the
foundation of LLaMA’s causal language modeling
architecture, this model contains approximately 7
billion parameters and is trained on a diverse set
of chemical datasets, including ZINC (Sterling and
Irwin, 2015a) and PubChem (Kim et al., 2016).
Its architecture supports zero-shot and few-shot
learning, making it highly versatile for tasks like
molecular design and reaction prediction. [Link]

This model, LLaMA-3.2-1B-IT-Chemistry-
Assistant, is a lightweight variant of the LLaMA
series, specifically optimized for interactive chem-
istry tasks. With approximately 1 billion param-
eters, it balances computational efficiency with
performance, making it suitable for real-time ap-
plications such as chatbots or virtual assistants in
chemistry education and research. The model is
fine-tuned on Italian-annotated chemical datasets,
enhancing its multilingual capabilities (Touvron
et al., 2023). [Link]

LLaMA-Finetuned-Chemistry is a fine-tuned
version of the original LLaMA model, adapted
for chemical tasks through extensive finetuning
on domain-specific datasets (Touvron et al., 2023).
Featuring 13 billion parameters, this model ex-
cels in tasks requiring deep understanding of chem-
ical concepts, such as retrosynthesis and drug dis-
covery. Its architecture retains the robustness of
the LLaMA series while incorporating specialized
knowledge from sources like ChemBL (Gaulton
et al., 2016). [Link]
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The Meta-LLaMA-3.1-8B-Instruct-
ChemProt model is an instruction-tuned
variant of LLaMA, specifically designed for
chemical protein interaction tasks. With approx-
imately 8 billion parameters, it is trained on
curated datasets related to cheminformatics and
biochemistry, enabling it to predict interactions
between small molecules and proteins with high
accuracy (Touvron et al., 2023). This model is
particularly useful for drug-target interaction
studies. [Link]

LLaMA-7B-Instruct-Base-Chem is a 7-billion-
parameter model derived from the LLaMA se-
ries, fine-tuned for general chemical tasks using
instruction-based learning (Touvron et al., 2023).
It combines the strengths of LLaMA’s large-scale
pretraining with domain-specific instructions, al-
lowing it to perform well in tasks like molecular
property prediction and reaction classification. The
model’s versatility makes it a popular choice for re-
searchers working across various subfields of chem-
istry. [Link]

The LLaMA-3.2-3B-IT-Chemistry model is
a compact, Italian-language variant of LLaMA,
designed for multilingual chemical applications.
With approximately 3 billion parameters, it is op-
timized for tasks involving chemical nomenclature
and descriptions in Italian (Touvron et al., 2023).
This model bridges the gap between linguistic and
chemical knowledge, making it valuable for educa-
tional and professional settings where multilingual
support is required. [Link]

ChemLLM-7B-Chat is a conversational model
built on a 7-billion-parameter architecture, specif-
ically designed for interactive chemical discus-
sions (Zhang et al., 2024). Trained on a mix of sci-
entific literature and dialogue datasets, this model
excels in generating human-like responses to chem-
ical queries. Its focus on conversational AI makes
it ideal for use cases such as virtual labs, tutoring
systems, and collaborative research environments.
[Link]

ChemQwen2-vL is part of the Qwen series de-
veloped by Alibaba Cloud, with a specialization
in chemical applications (Bai et al., 2023). This
large-scale model contains over 17 billion param-
eters and is trained on extensive chemical datasets,
including reaction databases and material science
corpora. Its architecture supports advanced reason-
ing tasks, such as predicting reaction outcomes and
designing novel compounds. The "vL" variant em-
phasizes visual and linguistic integration, enabling

it to process multimodal inputs. [Link]
ChemDFM-v1.5-8B is a domain-specific model

developed for drug discovery and formulation mod-
eling, featuring approximately 8 billion parame-
ters (Zhao et al., 2024). Based on the DFM (Drug
Formulation Modeling) framework, this model in-
tegrates deep learning techniques with chemical
knowledge graphs to enhance predictive accuracy.
Its architecture is optimized for handling complex
molecular structures and predicting formulation sta-
bility, making it a powerful tool for pharmaceutical
research. [Link]
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