LongWeave: A Long-Form Generation Benchmark Bridging Real-World
Relevance and Verifiability

Zikai Xiao'"', Fei Huang? , Jianhong Tu?, Jianhui Wei', Wen Ma!, Yuxuan Zhou?,
Jian Wu', Bowen Yu?, Zuozhu Liu'", Junyang Lin*

1Zhejiang University, 2Qwen Team, Alibaba Inc.
zuozhuliu@intl.zju.edu.cn, junyang.ljy@alibaba-inc.com

Abstract

Generating long, informative, and factual
outputs remains a major challenge for Large
Language Models (LLMs). Existing bench-
marks for long-form generation typically
assess real-world queries with hard-to-verify
metrics or use synthetic setups that ease
evaluation but overlook real-world intricacies.
In this paper, we introduce LongWeave, which
balances real-world and verifiable assessment
with Constraint-Verifier Evaluation (CoV-Eval).
CoV-Eval constructs tasks by first defining
verifiable targets within real-world scenarios,
then systematically generating corresponding
queries, textual materials, and constraints
based on these targets. This ensures that tasks
are both realistic and objectively assessable,
enabling rigorous assessment of model
capabilities in meeting complex real-world
constraints. LongWeave supports customizable
input/output lengths (up to 64K/8K tokens)
across seven distinct tasks. Evaluation on 23
LLMs shows that even state-of-the-art models
encounter significant challenges in long-form
generation as real-world complexity and output
length increase. Our codes are available at
https://github.com/ZackZikaiXiao/LongWeave.

1 Introduction

Large Language Models (LLMs) have significantly
enhanced their capabilities to process long inputs
(Yang et al., 2024a, 2025b; Grattafiori et al., 2024;
Team et al., 2023) through architectural design
(Dao, 2024) and data engineering (Fu et al., 2024;
Gao et al., 2024). However, achieving robust long-
sequence generation remains highly challenging
(Que et al., 2024; Bai et al., 2024b). Several re-
search efforts have attempted to optimize LLMs
for long-form output generation (Pham et al., 2024;
Bai et al., 2024b; Yang et al., 2024b; Xiong et al.,
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Figure 1: The performance across the seven tasks in
LongWeave. For better visualization, performance
scores have been normalized to a range of 0.3 to 0.7.

2025). However, the generated content often lacks
adequate informativeness, comprehensiveness, and
factuality (Qi et al., 2024; Pradeep et al., 2024;
Song et al., 2024). The inherent complexity of
long-form sequences further complicates accurate
assessment of these qualities, highlighting the ne-
cessity for more reliable evaluation benchmarks.

Long-form generation with real-world queries is
typically evaluated using similarity metrics (e.g., a-
nDCG, Self-BLEU) or LL.M-as-a-Judge (Bai et al.,
2024b). While straightforward to implement, di-
rect evaluation struggles with the inherent long-
sequence complexity. To address this, another line
of work breaks long-text evaluation into a set of ver-
ifiable sub-tasks, which can include factual claims
(e.g., a statement like "the Earth orbits the Sun")
or aspects (e.g., completeness, logical consistency).
Checklists are constructed through expert-curated
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Figure 2: Three evaluation paradigms for long-form generation. LongWeave is grounded in real-world scenarios
and based on objective, verifiable scoring with built-in ground truth, reducing subjectivity and inconsistencies.

guidelines (Tan et al., 2024; Que et al., 2024) or
automated methods leveraging LLMs to extract
claims from outputs for factual verification via
search engines (Song et al., 2024; Wei et al., 2024;
Samarinas et al., 2025) or fixed databases (Samari-
nas et al., 2025). A critical challenge lies in op-
timizing the degree of specificity scope: overly
broad checklists produce vague claims that hinder
verification, while overly detailed ones tend to over-
complicate verification processes by attempting to
cover all corner cases.

To enhance verifiability, some approaches use
synthetic data rather than real-world data-for in-
stance, combining short questions from datasets
like MMLU (Liu et al., 2024c¢) into longer ones,
and then checking each segment individually.
Other benchmarks conduct procedural simulation
or utilize objective question-answering (QA) tasks
where fixed answers are associated with precise
constraints to limit the response scope (Wu et al.,
2025; Ye et al., 2025). Though these methods sim-
plify verification, they generally sacrifice realism
in real-world scenarios.

To bridge real-world relevance with verifiabil-
ity, we implement decomposition at the verification
stage through a new Constraint-Verifier Evalua-
tion (CoV-Eval) mechanism, as illustrated in Fig-
ure 2. Rather than extracting checklists from raw
materials, which is error-prone and hard to control,
CoV-Eval reverses the test construction process:
it begins with predefined verifiable checklist ob-
jectives (Verifiers) grounded in real-world tasks,
then synthesizes corresponding inference queries
(including Constraints and materials). The Con-
straint acts as a constrained input that causally
guides models toward generating the predefined
Verifier, enabling measurable verification and eval-

uation. Each Constraint-Verifier (CV) pair in CoV-
Eval maintains a deterministic one-to-one relation-
ship under structurally defined rules, systematically
linked to source materials. CoV-Eval contains a
series of CV pairs, where each pair is linked to
the corresponding material. These pairs can take
various forms, such as a question (C) and answer
(V) in QA tasks, or a triplet (C) and corresponding
sentence (V) in knowledge-to-text generation, as
discussed in Section 2.3.

Based on CoV-Eval, we introduce LongWeave,
a new benchmark evaluating five challenge sce-
narios of long-form generation through seven real-
world relevant tasks (Figure 1). LongWeave sup-
ports customizable input lengths (up to 64K tokens)
and output lengths of 1K, 2K, 4K, and 8K tokens,
with adjustable difficulty settings for each task as
detailed in Table 1.

Our evaluation of 23 LLMs on LongWeave re-
veals critical limitations in long-form generation:
even top models (DeepSeek-R1) reach a perfor-
mance ceiling of 54.56%, with performance declin-
ing for 8K-token outputs (Figure 1). Furthermore,
models exhibit input-output disconnect; while sup-
porting inputs up to 64K tokens, they fail to effec-
tively synthesize inputs into coherent long-form
responses. Expanding input context windows (e.g.,
to 1M tokens) does not fundamentally solve long-
generation challenges and may even degrade perfor-
mance. Moreover, large-scale reasoning-oriented
LLMs consistently outperform general-purpose
counterparts, but often suffer from failure to ter-
minate the reasoning phase, leading to truncated
outputs. Our main contributions are:

* We introduce the long-form generation bench-
mark LongWeave, with CoV-Eval that
bridges real-world relevance with verifiability.
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Table 1: Comparison between long-context benchmarks. ‘Open-ended’ indicates whether the task allows for
diverse, creative responses. ‘Deterministic’ means the task produces step-by-step, logically structured outputs. Our
Constraint-Verifier Evaluation (CoV-Eval) is a constrained open-ended evaluation that synthetically constructs tasks
to ensure real-world relevance. Color highlights indicate strengths (green) or challenges (orange). The length refers
to the number of tokens under the c1100k tokenizer. The v* symbol denotes that the characteristic is present in a

subset of the benchmark’s tasks.

Benchmark [ Input Len Output Len Open-ended Deterministic Evaluator
Benchmarks for Long Input

LongBench (Bai et al., 2024a) ~16k ~100 vk vV Similarity

RULER (Hsieh et al., 2024) ~128k ~100 X v Rules

HELMET (Yen et al., 2025) ~128k ~100 V' V' LLM-as-a-Judge

InfiniteBench (Zhang et al., 2024) Infinite ~100 X v Rules

Benchmarks for Long Generation

LongWriter-Bench (Bai et al., 2024b) ~100 ~5k ve X LLM-as-a-Judge
LongGenBench[1] (Liu et al., 2024c) ~1k ~4k X v Similarity
LongGenBench[2] (Wu et al., 2025) ~100 ~8k v v LLM-as-a-Judge
Hello Bench (Que et al., 2024) ~300 ~8k v X LLM-as-a-Judge
LongProc (Ye et al., 2025) ~32k ~8k X v Rules
LongWeave 64k 8k vFE vFE Constraint-Verifier Pairs

* We design seven tasks, with long input sizes
(up to 64K tokens), long output requirements
(1-8K), and varying difficulty levels.

 Evaluation of 23 LLMs reveals critical limita-
tions and highlights future directions in long-
form generation and evaluation.

2 The LongWeave Benchmark

In this section, we first introduce the overall
pipeline of LongWeave, followed by a detailed for-
mulation of our Constraint-Verifier Evaluation and
a description of the individual tasks.

2.1 Pipeline of LongWeave

As shown in Figure 3, the LongWeave pipeline con-
sists of three steps: Construction, Evaluation, and
Scoring. In Construction, task-specific attributes
are systematically sampled through deterministic
rule-based algorithms to generate perfectly aligned
triples: (1) raw material, (2) constraint, and (3)
verifier. The LLM processes the material and con-
straints during Evaluation to produce a response
that meets constraints. Finally, in the scoring phase,
the output is compared to the target and then ag-
gregated to calculate the total score. Finally, in
Scoring, the output is compared to the verifier us-
ing a scoring function and aggregated to calculate
the total score.

2.2 Constraint-Verifier-Based Evaluation
(CoV-Eval)

Formulation of Basic Evaluation. We formulate
long-form constrained generation as the task where

an LLM, denoted as £, must produce an output
sequence Ogen. The input consists of a potentially
lengthy raw material X;,w, and task-specific in-
struction Ii,g¢, which specifies criteria for the target
output’s length | Ogen |, content accuracy, struc-
tural formatting, and logical coherence. The gener-
ation process is modeled as:

Ogen - £(XraW7 Itask) (1)

The primary challenge lies in ensuring Oge, ad-
heres to all facets of Ii,q, especially as the input
and output lengths increase, and as Ii,sx becomes
more complex.

Data Construction Stage of CoV-Eval. To ensure
the benchmark is both realistic and verifiable, we
introduce a construction process that jointly gener-
ates the raw material X,,y, the constraint C, and
the corresponding Verifier V. The entire construc-
tion process is formalized as:

(XraW7 C7 V) — fgen(0)7 Where 0 ~ C"‘) (2)

The process is driven by a Generator (fge,)—a set
of task-specific, deterministic, rule-based scripts,
which can be seen in the bottom part of Figure 3.
The generator’s behavior is controlled by structured
Attribute Seeds (6), which are sampled from a
predefined attribute space © and specify properties
like material scale, reasoning complexity, and con-
straint strictness. CoV-Eval combines deterministic
generation with explicit attribute control, guaran-
tees that every Constraint—Verifier pair is grounded
in its material, and can be automatically verified.

Evaluation Stage. The input instruction incorpo-
rates both the material and the constraint, while
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Figure 3: Illustration of the LONGLEAVE evaluation pipeline. Attribute seeds define task scenarios, and the task
generator creates long-form generation tasks paired with constraint—verifier sets. Model outputs are then evaluated
by matching against verifiers with length and instruction-following checks.

the output is evaluated based on whether it cor-
rectly reflects the verifier V' associated with the
constraint C. Specifically, the generation process
is modeled as shown in Eq. (1): Specifically, un-
der CoV-Eval, the generation process is updated as
shown in Eq. (3):

Ogen — »C(XraW7 Itaska C)a (3)

then the quality S of Oge, is quantified by a
task-specific scoring function Score, as shown in
Eq. (4):

S = Score(Ogen, V). “)

LongWeave evaluates LLMs by measuring S
across diverse tasks that vary in input/output
lengths and task complexity.

2.3 Tasks

We now introduce each task, where the Con-
straint—Verifier pair varies by task. We indicate
Material as Xy, Constraint as C', and Verifier as
V. We use rule-based scripts to generate X;ay, C'
and V. For AP Style News Writing, we use LLM
to generate news topics and statements. For Para-
graph Reordering, original texts are from QreCC
documents (Anantha et al., 2021).

Code Fixing. This task requires LLMs to fix
Python code with Flake8 style violations (line
length, indentation) while ensuring the code re-
mains runnable. We design the code polluter to
inject Flake8 violations into a randomly generated
runnable Python code, forming a polluted code
(Xtaw). The LLM is prompted to fix the code. The
part code required repair is C. The repaired code
can be automatically checked by FlakeS8 toolkit(1).

KG to Text Biography Generation (BioG). This
task evaluates LLMs’ ability to generate coher-
ent and factual biographies based on given knowl-
edge graph (KQG) triples. The designed knowledge
graph generator creates a large set of task relation-
ships around a central person, then extracts triples
(subject-predicate-object) and corresponding sen-
tences starting from the nearest nodes. The evalu-
ated model needs to incorporate all triples (C') into
a fluent narrative within the specified word count.
The verifier (V') is a rule-based natural language
statement derived from these triples. The model is
evaluated on its ability to accurately integrate all
triples into the generated text, with penalties for
missing or fabricated information.

CSYV Sales Report Analysis (SR). This task eval-
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Table 2: LongWeave Tasks: A summary of the tasks, outlining their names, abbreviations, core challenges, important
configuration settings, and evaluation metrics. Metric types are color-coded as described in the table’s legend. Red
refers to LLM-as-a-Judge metrics. Blue indicates length scores. Purple represents other rule-based metrics.

Task Name Abbrev.  Challenge Configuration Metrics
Code Fixing with CF Coding violation_prob = 0.85 Runnability
Flake8 Compliance error_lines o< gen_len Style score
length score

KG to Text Biography BioG Structured Data triple_count  gen_len Coverage Rate.
Generation Analysis
CSV Sales Report SR Structured Data record_count o gen_len Coverage Rate
Analysis Analysis target_count o< gen_len Correctness Rate
AP Style News NW  Article Writing ~ fact_counts ccgen_len ~ Coverage Rate
Writing ap_stylebook_rules Style Score
KV Dictionary KVG ~ Instruction ~ entry_countoccgen len  Existence Score
Generation Following key_length = 32 Length score

value_length = 32 Position score
State Machine SMS Instruction num_states = 3 Step Match Ratio
Simulation Following input_size =3

output_size =3
el __________steplengthocgenlen
Paragraph Reordering PR Document para_length o gen_len Kendall’s Tau.

Processing

uates LLMs’ ability to generate a sales report and
answer predefined, specific questions based on a
transaction table. We designed a sales report gen-
erator that synthesises the transaction table (Xi,y),
while generating natural language questions (C')
and corresponding answers (V7). Evaluation fo-
cuses on both coverage and accuracy of the an-
SWers.

AP Style News Writing (NW). This task evalu-
ates LLMs’ ability to write a news article following
the Associated Press Stylebook (AP Style) (Gold-
stein, 1998). Given a news topic (Xaw), GPT-40-
2024-11-20 generates correct fact statements (V)
together with corresponding flawed statements (C')
that violate AP Style rules. The evaluated LLM
is then required to write an article on the topic,
integrating all statements in their correct form.

KYV Dictionary Generation (KVG). This task, the
inverse of KV Retrieval in (Hsieh et al., 2024), eval-
uates LLMs’ ability to generate a dictionary string
with a target key—value pair placed at the correct
index, following formatting rules (e.g., keys in up-
percase with underscores); the query specifying the
key—value pair and index is the Constraint (C'), and
a rule-based script verifies placement and format-
ting as the Verifier (V).

State Machine Simulation (SMS). This task re-
quires simulating state transitions of a finite state
machine (FSM) (Lee and Yannakakis, 1996) step

by step. Here, the transition table serves as the raw
material (X;,y), the initial state and input string
constitute the Constraint (C'), and an FSM valida-
tion script acts as the Verifier (V') by checking the
generated sequence against the correct state tran-
sitions and signals. Models are evaluated by their
match ratio and overall accuracy in reproducing all
steps without errors.

Paragraph Reordering (PR). This task requires
LLMs to reorder shuffled paragraphs (C) into the
coherent sequence (V). The material consists of
randomly sampled paragraphs, with the constraints
being the shuffled order and the verifier being the
correct sequence. Evaluation uses Kendall’s Tau to
measure the consistency of the predicted order (Liu
et al., 2020; Shen and Baldwin, 2021).

2.4 Input Length Statistic

Generative tasks with long input contexts are crit-
ical yet underexplored. To reduce hallucinations,
users often provide extensive context for generating
complex outputs. Unlike prior benchmarks capped
at 1k tokens(Bai et al., 2024b; Wu et al., 2025; Liu
et al., 2024c; Que et al., 2024), LongWeave sup-
ports up to 64k-token inputs, enabling evaluation
in real-world scenarios like structured file analysis
and document processing. We provide the input
length distribution of LongWeave in Figure 4.
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Figure 4: Input length distribution of LongWeave

2.5 Output Length Control

LongWeave controls target output length through
a multi-faceted strategy. First, the scale and com-
plexity of input materials—such as the number of
data records or code lines—are procedurally gen-
erated to be proportional to each target length tier
(1K, 2K, 4K, 8K tokens). Second, prompts provide
models with explicit instructions specifying the de-
sired output length. Finally, the evaluation protocol
enforces these constraints by directly penalizing
length deviations.

2.6 Evaluation Metrics

The evaluation metrics include LL.M-as-a-Judge
for CoV-Eval, length-related metrics, and others.
Each task’s final score is the harmonic mean of sub-
metrics, ensuring that poor performance in one area
cannot be offset by better performance in another.
LLM-as-a-Judge use LLM-as-a-Judge to check
whether verifiers, corresponding to defined con-
straints, are accurately reflected in the model’s out-
put. These include style, factual coverage, and
question answering. The Style Score measures ad-
herence to Flake8 standards, penalizing unresolved
violations. The Factual Coverage Rate tracks the
proportion of knowledge graph triples in the text,
while the Answer Coverage Rate measures the pro-
portion of answered analytical questions. The Cor-
rectness Rate calculates answer accuracy, and the
Factual Statement Coverage Rate tracks recall of
required factual statements. The AP Style Score
quantifies adherence to AP Stylebook guidelines.
Length Score is used to test whether the model out-
puts according to the required length. The implicit
length score is applied when truncation occurs af-
ter exceeding the length, while the explicit length
score is used in CF and KVG, where the length
score is treated as a sub-score.

Rule-based metrics rely on deterministic code to

verify correctness, such as code runnability, exis-
tence and placement of target key—value pairs, and
Kendall’s Tau for paragraph reordering.

3 Experiments

3.1 Models and Inference Setup

We evaluated a range of LLMs using Long-
Weave, comprising proprietary and commercial
API-accessed models, open-source models, and
reasoning models. The long-generation mod-
els assessed include LongWriter-glm4-9B (GLM
et al., 2024; Bai et al.,, 2024b). The open-
source models include the Llama-3-series, Llama-4-
series (Grattafiori et al., 2024), Phi-4-mini-instruct,
Qwen2.5-series (3B, 7B, 14B, 72B, QWQ-Plus)
(Yang et al., 2024a), and the newer Qwen3 series
(4B, 8B, 14B-Think/Non-Think, 32B-Think/Non-
Think) (Yang et al., 2025a). Additionally, we evalu-
ated DeepSeek-V3 (Liu et al., 2024a). The commer-
cial models include GPT-40-2024-11-20 (Achiam
et al., 2023), Gemini-2.0-flash (Team et al., 2023),
and Qwen-long. Specialized reasoning models,
such as 03-mini-2025-01-31 and DeepSeek-R1
(Guo et al., 2025), were also included in the evalu-
ation. The open-source model uses VLLM deploy-
ment on A100.

3.2 Task Configurations

LongWeave evaluates LLMs across seven distinct
tasks, each with four variants targeting output
lengths of 1k, 2k, 4k, and 8k tokens. For each
variant, 200 test samples are used, resulting in
a total of 5,600 samples per model. We primar-
ily used Qwen2.5-72B-Instruct for LLM-as-a-
Judge evaluations. To control output length, we ad-
just the configuration as illustrated by the "gen_len"
configurations in Table 2. Furthermore, Long-
Weave supports task difficulty control through ad-
justments to input complexity (e.g., key_length in
KVG), the strictness of constraints (e.g., AP style-
book rules in NW), and structural requirements of
the target output (e.g., step_length, para_length).

3.3 Main Results

The results are summarized in Table 3. In the ta-
ble, we have divided all the models into standard
models and reasoning models. We have listed the
average performance across seven tasks at four dif-
ferent input lengths, as well as the overall average
performance across all tasks at four lengths.
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Table 3: Model performance summary (task-average and length-average scores). The highest model performance
for each task and score is bolded, and for the overall performance, models in the top 5 are bolded.

Task scores Length scores Overall
Model CF BioG SR NW KVG  SMS PR 1k 2k 4k 8k Avg
LongWriter-glm4-9B 29.67 67.27 18.23 14.62  4.48  3.68 13.99 24.55 23.11 20.69 18.48  21.71
Phi-4-mini-Instruct 0.02 69.86 10.50 18.30  3.62  3.25 39.51 23.64 20.27 20.58 18.40  20.72
Llama3-1-8B-Instruct 46.76  60.66 13.93 20.29 1597  3.82 52.46 40.11 34.75 27.13 20.25  30.56
Llama3-1-70B-Instruct 58.45  69.36 20.04 24.08 40.35  6.43 60.26 53.58 46.92 33.85 25.07  39.85
Llamad-scout-17B-16e-Instruct ~ 33.24  76.38  24.47 2825 33.32  6.20 67.88 48.65 37.55 37.22 30.72  38.53
Llamad-17b-128e-Instruct 64.63 84.09 2294 27.96 55.11  9.84 9151 55.81 54.93 50.61 42.12  50.87
Qwen?2.5-3B-Instruct 16.33  66.42  9.82 20.27 20.82  2.85 47.05 30.64 28.16 24.76 21.33  26.22
Qwen2.5-7B-Instruct 26.09 73.16 14.91 21.27 19.64  4.94 56.45 38.13 33.77 27.19 24.60  30.92
Qwen2.5-14B-Instruct 49.48 80.94 19.33 23.80 22.80  5.72 76.18 47.60 42.97 36.07 32.35  39.75
Qwen2.5-72B-Instruct 60.43 84.41 2448 3176 18.84 13.77 73.67 51.67 48.69 40.99 3429  43.91
Qwen3-4B 28.36 73.29 17.89 18.19 24.87 11.87 47.02 44.28 3592 27.18 19.18  31.64
Qwen3-8B 45.92 76.88 18.98 18.90 17.70 13.40 67.50 46.86 40.08 34.06 27.17  37.04
Qwen3-14B 59.10 79.00 21.96 22.12 33.88 18.45 86.43 56.87 49.34 42.28 34.91  45.85
Qwen3-32B 63.44  79.77 24.95 21.46 44.36 16.18 83.71 59.71 52.68 44.57 33.82  47.70
DeepSeek-V3 59.43 80.62 23.25 27.11 33.25 11.47 91.12 56.30 51.61 43.19 35.34  46.61
Qwen-long 35.78 77.65 24.87 26.67 27.78 12.68 78.88 49.50 44.03 39.15 29.78  40.62
GPT-40-2024-11-20 40.60 82.72 27.20 28.96 42.82  9.16 64.58 56.18 50.30 37.65 25.03  42.29
_ Gemini-2.0flash _ 56.93_ 88.58 28.22 2991 48.94 1346 86.68 6044 56.17  49.20 3575 _ 5039
DeepSeck-R1-Distil-Qwen-7B 0.00 47.197 ~477 T 1176 ~ B.62° ~ 2.39 ~ 30.50 1863 13.43° 14.2T ~ 12714 ~ 14760
DeepSeek-R1-Distill-Qwen-32B  54.14  66.65 22.25 21.31 14.54 886 73.70 45.06 39.59 3574 29.01  37.35
Qwen3-14B-Think 45.41 78.71 28.59 23.86 42.92 10.64 89.30 52.33 49.96 43.96 36.30  45.64
Qwen3-32B-Think 59.69 83.64 3567 20.86 52.40 13.89 88.38 57.71 56.89 49.54 38.45  50.65
DeepSeek-R1 7010 86.16 24.62 30.56 6014 19.60 90.73  63.86  59.25  52.85 4228  54.56
QWQ-plus-2025-03-05 57.22 80.71 26.66 25.66 40.96 26.10 85.04 62.40 51.82 44.20 37.21 4891
03-mini-2025-01-31 38.76 8930 28.06 24.21 43.51 3306 78.88 62.06 56.12 43.04 30.66  47.97
Owens-148 . Table 4: Distribution of failure patterns across 1,400
wenJ- Qwen3-32B
45 ° _Quent;s-72B analyzed samples, grouped by category.
o -
= Pia
§ % QwenZ'-S-MB = e L]amari.l—70B
8 Quer3-4B Failure Pattern Count Share
s
B35 e . .
z Qwen34B ng_;é’ Instruction-following errors
F 30 ',‘ e Selective instruction execution 375 30.4%
& openrsan Stepwise deviation 172 14.0%
L]
25 Incomplete factual coverage 156  12.7%
LongwgitersB Length control issues 153 12.4%
3B 10B 30B 100B .
Model Size (Billion Parameters) Numerical 'error‘?
Calculation failures 123 10.0%
Figure 5: Performance of different model sizes Content problems
Fabricated facts 27 2.2%
Redundancy / looping 17 1.4%
Existing models struggle in long form genera- Reasoning-specific failures
Failure to terminate reasoning 210 17.0%

tion. Frontier proprietary models demonstrate the
best performance. DeepSeek-R1, Gemini-2.0-flash,
and 03-mini-2025-01-31 achieve nearly 60% per-
formance at 1k length, but when generating 8k,
the performance drops to around 40%. GPT-4o-
2024-11-20 only achieves 42.99% while it tends to
generate short responses.

Increasing model size can improve long genera-
tion quality. Llama4-17b-128e achieves the best
performance due to having the largest number of
parameters. The three smallest models, Phi-4-mini,
Qwen-2.5-3B, and Qwen3-4b, all perform below
30%. We visualize the relationship between model
size and corresponding performance in Figure 5,
where the regression curve shows a positive corre-
lation between the two.

Performance of Reasoning Models on Long-
Sequence Generation. The very large reasoning

models (e.g., DEEPSEEK-R1) perform strongly
on long-sequence generation tasks (Table 3). In
contrast, smaller reasoning models often fail to ter-
minate the reasoning phase, repeatedly generating
large chunks of the input, which leads to truncation.

Performance Degradation when Input Context
is Long. As shown in Table 3, the quality of long
outputs deteriorates significantly with longer in-
puts. This is especially evident in tasks like Sales
Report Analysis and writing AP-style News Arti-
cles, which require handling long materials and de-
tailed guidelines. Despite this challenge, managing
both long inputs and outputs is crucial for practical
applications. By incorporating more relevant infor-
mation into the input window, hallucinations can be
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Table 5: Performance comparison across different tasks under varying sample sizes. Values represent mean
performance metrics with standard deviations (format: mean s¢q).

Task

Number of Samples

20 40 60 80 100

120 140 160 180 200

CF 36.2312.72 35.311+2.80 35.884250 36.121230 37.41+0.65 36.65+0.55 36.45+0.45 36.37+0.50 36.82+0.32 36.97+0.28

60.421+0.16 61.2110.18 61.10+£0.20 61.15+0.18 61.0310.28 61.0810.25 61.20+0.23 61.48+030 61.35+0.28 61.14+0.41

SR 13.1640.25 12.2640.30 12.6040.28 12.80+0.24 13.8140.20 13.50+0.22 13.6040.18 13.86+0.20 14.0540.16 14.13+0.14

NW 20.03+0.01

SMS 3.1940.07 3.6610.10 3.60+0.00 3.63+0.08

19.06+0.10 19.40+0.15 19.50+0.18 19.75+0.20 19.85+0.18 19.90+0.16 19.37+0.30 19.55+0.35 19.6210.48
14.5541.47 13.804+1.50 14.0041.40 14.3041.20 15.2940.17 14.6040.30 14.804+0.25 14.2040.30 14.95+0.45 15.2040.6s
3.69+0.03

3.70+0.02  3.74+0.02 3.74x0.02 3.7810.02 3.81+to0.01

PR 54.67i0.13 58.02i0.20 58410i0.15 5841510.12 574231(]‘86 57.901()‘80 58.1010_75 58.02i0,10 59.20io,15 60.05io,12

Overall 28.9240.30 29.0410.35 29.1040.40 29.3040.35 29.80+0.01 29.60+0.10 29.80+0.15 29.69+0.10 30.0540.12 30.13+0.11

minimized, offering a key direction for optimizing
long-sequence generation models.

3.4 Failure Pattern

To better understand where models fail, we ana-
lyzed 1,400 samples across seven tasks and four
target lengths (1k, 2k, 4k, and 8k; 200 samples
per task and 50 per length). Outputs were gener-
ated with Qwen3-32B in think mode (without think-
ing budgets). Failure types were first labeled with
GPT-5-2025-08-07 and then manually checked.
We observed eight common failure patterns, which
we group into four categories (Table 4).

Instruction-following errors are the most com-
mon. Selective instruction execution (30.4%)
means models handle the easy parts of a prompt
but ignore the harder constraints. Stepwise devi-
ations (14.0%) show that the ability to follow in-
structions gets worse as the output becomes longer.
Incomplete factual coverage (12.7%) often hap-
pens in structured tasks like BIOG, where some
required facts are dropped. Length control issues
(12.4%) also appear, with outputs not matching the
requested length.

Numerical errors (10.0%) mostly occur in quan-
titative tasks like SR, where models miscalculate
percentages, averages, or growth rates. These er-
rors suggest that reliable number handling may
require tool support.

Content problems include fabricated facts (2.2%),
where models add unsupported information, and re-
dundancy or looping (1.4%), where outputs repeat
content or drift into filler text.

Reasoning-specific failures are unique to reason-
ing models. In 17.0% of cases, the reasoning phase
did not stop: models produced very long “thinking”
traces, often repeating large chunks of the input,
leaving too little budget for the final answer and
causing truncation.

Table 6: Evaluation of LLM-as-Judge Stability in CoV-
Eval using Different Scoring Models

Scoring Models
Qwen-2-5 Qwen2.5 Qwen-2-5

DeepSeek-  o3- 4o-

Tasks V3 Mini 1120 72B 32B 14B
CF 51.64 452 40.96 46.76 3.53 0.76
BioG 59.86 59.87 60.13 60.66 58.01 57.88
SR 13.52 13.6  11.7 13.93 13.7 21.71
NwW 19.95 104 28.88 20.29 10.39 10.67
Total Score 31.75 30.14  31.27 30.56 23.27 24.04

4 Analysis

4.1 Stability of the Benchmark

To assess the stability of the benchmark, we con-
ducted multiple experiments using the Llama-3.1-
8B model with varying sample sizes (20-200), as
shown in Table 5. We found that as the sample size
increased, the total score gradually stabilized, and
the variance decreased from 0.3 to 0.11. Once the
sample size exceeded 100, the results converged
within a margin of 0.15. For the official evaluation,
we used 200 samples to ensure the stability of the
benchmark’s total score.

4.2 Stability of LLM-as-a-Judge

For the CF, BioG, SR, and NW tasks, we used the
Qwen-2.5-72B model as an LLM judge. To test the
reliability, we used other LLMs as evaluators. The
Llama-3.1-8B model was tested as the evaluated
model on 100 samples with different evaluation
models. As shown in Table 6, the results revealed a
performance fluctuation variance of 0.45 for mod-
els like DeepSeek-V3, GPT-40-2024-11-20, and
03-mini-2025-01-31.

4.3 Output Length Distribution

During inference, we provided the models with re-
quired word counts and analyzed the output word
lengths, categorizing them into four ranges: be-
low 1k, 1k-2k, 2k-4k, and 4k-8k, as shown in
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Meta-Llama-3.1-70B 662.1 1504.6 2613.9

Meta-Llama-3.1-8B 1148.6 1525.1 2003.6 2473.1

1780.2

2318.0

llama-4-maverick-17b 779.1 1160.0 1331.5

llama-4-scout-17b 953.6 1484.9 1888.5

Qwen2.5-72B 12429 18312 25155

Qwen2.5-14B 1360.8 2987.2

Qwen2.5-7B 1069.8 1669.7 23514

3

Qwen2.5-3B 1130.8 1558.7

Qwen3-32b 655.3 1354.9

Qwen3-14b 7278

Qwen3-8b 670.2 1552.8

1k 2k 4k
Required Generation Length

DS-R1-Distill-Qwen-32B 874.2 1271.8 1404.6 1585.3

DS-R1-Distill-Qwen-7B 1430.5 1731.6 1809.3

03-mini-2025-01-31
gemini-2.0-flash
£pt-40-2024-11-20 649.5 802.6 917.0 947.9
qwg-plus-2025-03-05 606.0 857.4 1263.6 16542

LongWriter-glmd-9b

3000

Deepseck-R1 559.3 746.5 1078.0 1558.4

Deepseek-V3 674.7 11203 1405.2 1696.3 2300

2000

- 1500

- 1000
qwen-long

Phi-4-mini

1k 2k 4k 8k
Required Generation Length

Figure 6: The heatmap visualizes the actual output lengths across four target length settings (1k, 2k, 4k, and 8k
tokens). Each row represents the model, while the column corresponds to the length.

Figure 6. It was observed that, with the excep-
tion of the 03-mini, other reasoning models tend to
generate shorter outputs after processing. In con-
trast, smaller open-source models tend to generate
longer outputs, despite their overall performance
scores not being as high, indicating that output
quality is not directly correlated with length. No-
tably, the Qwen-3 series demonstrates better length-
following ability compared to the Qwen-2.5.

4.4 Increasing the Context Window Does Not
Necessarily Improve Long Generation

We compared the performance of the Qwen2.5-14B
and 7B models with a 1M context window version,
as shown in Figure 7, there was little difference in
overall scores: long-input models performed better
than standard models at 1K, 2K, and 4K lengths
but showed decreased performance at 8K when
generating ultra-long sequences. It indicates that
although long input models and long generation
models share the same model structure, the perfor-
mance is inconsistent due to the training data.

90
80 BN Qwen2.5-14B
I Qwen2.5-14B-1M
70 BN Qwen2.5-7B
60 I Qwen2.5-7B-1M
LS50 i . T Overall Score
S
@ 40 B
30, BB
20

10

CF BioG SR

NW  KVG SMS PR

Figure 7: Input length distribution of LongWeave

5 Conclusion

Evaluating long, constrained LLM outputs is chal-
lenging. We introduce LongWeave, featuring CoV-
Eval to bridge real-world relevance with objective

verifiability. This suite spans seven tasks across five
domains with customizable input/output lengths.
Our evaluation of 23 LLMs using LongWeave
demonstrates that even top models falter for long
generations, with performance degrading signifi-
cantly as length rises; reasoning models, however,
navigate these challenges more effectively. Long-
Weave thereby provides a precise instrument to
diagnose these systemic issues and guide the devel-
opment of truly capable long-form generation.

Limitations

While LongWeave and CoV-Eval contain several
limitations that should be acknowledged: High
Cost for Inference. The nature of LongWeave, in-
volving long input materials (up to 64K tokens) and
the generation of long outputs (up to 8K tokens), in-
herently makes evaluating a wide range of models
computationally expensive. High Cost LLM-as-
a-Judge. Several tasks within LongWeave rely on
large LLMs (e.g., Qwen2.5-72B-Instruct) as judges,
which adds significant computational overhead and
cost. Limited Coverage of Creative Tasks. Long-
Weave currently focuses on factual accuracy and
structural correctness, but it could be expanded to
better assess creative tasks.
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A Appendix

A.1 Related Work

Long Input and Output Models Recent advance-
ments in LLMs have significantly improved long-
context input processing through techniques such
as efficient attention (e.g., Flash Attention (Dao,
2024), Ring Attention (Liu et al., 2024b)), sparse
attention methods (e.g., shifted sparse attention
in LongLoRA (Chen et al., 2024), dilated atten-
tion (Ding et al., 2023)), and memory mechanisms
like recurrent caching (Zhang et al., 2025; Bulatov
et al., 2023). For long output generation, methods
like Suri (Pham et al., 2024) have explored multi-
constraint instruction following, while LongWriter
(Bai et al., 2024b) introduced AgentWrite to enable
ultra-long outputs by decomposing tasks into sub-
tasks. Additionally, the Self-Lengthen framework
(Quan et al., 2024) iteratively expands initial out-
puts, training models to generate longer responses
without requiring auxiliary data. These innovations

enable LLMs to handle both long inputs and gener-
ate extended outputs, with parallel efforts focused
on improving inference efficiency (Dumitru et al.,
2025).

Long Generation Benchmarks Long generation
benchmarks typically rely on similarity-based met-
rics like a-nDCG and SelfBLEU, or LL.M-as-a-
Judge approaches (Que et al., 2024; Bai et al.,,
2024b), which struggle with longer texts due to
their complexity. An alternative is to decom-
pose evaluation into atomic statements, either ex-
tracted automatically using search engines or fixed
databases for factual accuracy (Song et al., 2024;
Wei et al., 2024; Samarinas et al., 2025), or manu-
ally designed through expert discussions (Tan et al.,
2024) or checklists (Que et al., 2024). However,
these methods face verification challenges due to
broad or trivial claims from automated extraction
and incompleteness from manual design. To ad-
dress this, objective tasks, such as MMLU (Liu
et al., 2024c¢) and procedural verification, provide
more controlled evaluations but often misalign with
real-world scenarios. While they support up to 4k
tokens, they remain limited for longer texts, high-
lighting the need for more fine-grained and special-
ized benchmarks across different domains (Wang
et al., 2025; Yang et al., 2025¢).

A.2 Answer Length

Our analysis of generated output lengths, detailed
in Table 7, reveals discrepancies between instructed
and actual token counts across all evaluated mod-
els. Key findings are as follows: First, most mod-
els exhibit poor adherence to explicit length con-
straints, with the deviation increasing for longer
targets (4k and 8k tokens). Second, distinct pat-
terns emerge based on model type. Reasoning-
oriented models (DeepSeek-R1) and certain propri-
etary models (GPT-40) consistently produce out-
puts substantially shorter than requested. In con-
trast, the Qwen3 series demonstrates more effective
length control than its predecessor, Qwen2.5. Cru-
cially, we find no direct correlation between output
length and overall task performance. Verbosity
does not equate to higher quality, as many models
that generate longer text achieve lower scores on
our benchmark’s core metrics.

A.3 AP Style Criteria

In our AP Style News Writing task, we assess a
model’s proficiency in adhering to complex, real-
world stylistic guidelines from the Associated Press
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Table 7: Average output length for each model across
four target length settings, highlighting models’ adher-
ence to length constraints.

Model Name 1k 2k 4k 8k
DeepSeek-R1-Distill-Qwen-32B 8742 1271.8 1404.6 1585.3
DeepSeek-R1-Distill-Qwen-7B 1430.5 1731.6 1931.0 1809.3
LongWriter-glm4-9B 1791.0 2156.1 2895.6 32774
Meta-Llama-3-70B Instruct 662.1 15046 2180.7 2613.9
Meta-Llama-3-8B Instruct 1155.8 1592.0 2119.5 2520.0
Phi-4-mini-instruct 2088.7 25943 26493 2606.7
Qwen?2.5-14B-Instruct 1360.8 2188.8 2744.8 2987.2
Qwen2.5-14B-Instruct (1M) 913.2 14773 16784 2092.7
Qwen2.5-3B Instruct 1130.8 1558.7 1938.7 2178.6
Qwen2.5-72B Instruct 12429 1831.2 2341.0 25155
Qwen2.5-7B Instruct 1069.8 1669.7 21934 23514
Qwen2.5-7B Instruct (1M) 933.1 1370.8 1666.8 2087.3
DeepSeek-R1 559.3 746.5 1078.0 1558.4
SeepSeek-V3 6747 11203 14052 1696.3
Gemini-2.0-flash 700.2 11394 17489 23853
GPT-40-2024-08-06 442.8 541.3 636.4 739.4
GPT-40-2024-11-20 649.5 802.6 917.0 947.9
Llama-4-maverick-17b-128e-instruct 779.1 1160.0 13315 1780.2
Llama-4-scout-17b-16e-instruct 953.6 14849 1888.5 2318.0
03-mini-2025-01-31 1057.0 2136.4 2958.8 2948.1
Qwen-long 647.4 952.8 13644 1733.8
Qwen3-14b 727.8 2208.0 2836.7 3750.7
Qwen3-32b 6553 13549 24112 32783
Qwen3-4b 658.5 1436.0 24558 32275
Qwen3-8b 670.2 1552.8 2666.7 3635.0
QWQ-plus-2025-03-05 606.0 8574 1263.6 1654.2

(AP) Stylebook. To ensure an objective and verifi-
able evaluation, we moved beyond holistic review
and focused on verifiable rules. The creation of our
test cases was guided by ten distinct categories of
AP Style rules, as detailed in Figure 8. For each
category, we generated Constraint-Verifier pairs
where the Constraint is a factual statement deliber-
ately crafted to violate a specific rule (e.g., writing
"7 apples"” instead of "seven apples"). The corre-
sponding Verifier is the same statement, corrected
to be fully compliant with AP style. The model is
then tasked with incorporating the factual informa-
tion from the incorrect Constraint into its generated
article, but in the stylistically correct form.

A4 Details of sample construction

CSYV Sales Report Analysis (SR): The methodol-
ogy facilitates the generation of synthetic transac-
tional sales data intrinsically correlated with corre-
sponding analytical conclusions. The process com-
mences with the definition of foundational sales
scenario parameters, including sales region, tar-
get fiscal period, currency, overarching sales tar-
gets, and antecedent period sales figures, along-
side a predefined corpus of sales representatives,
product lines, and operational cities. A pivotal as-
pect involves the stochastic injection of predefined
systemic biases during each operational instance;
these biases may pertain to overall target achieve-
ment (e.g., exceeding, meeting, or missing targets),
growth trajectory (positive, neutral, or negative),

the anomalous performance of specific sales repre-
sentatives or products, and variations in new cus-
tomer acquisition rates. These stochastically deter-
mined biases subsequently modulate the synthesis
of individual transactional records. Attributes of
each transaction, such as sales representative as-
signment, product selection, customer provenance
(new versus existing), and critically, the final trans-
action value, are probabilistically influenced by the
afore-mentioned biases. This ensures that the gen-
erated dataset not only achieves a specified volume
but also exhibits inherent, bias-driven characteris-
tics across multiple dimensions, thereby providing
a feature-rich foundation for subsequent analytical
procedures. Upon completion of data synthesis,
the resultant structured dataset is subjected to a
multi-dimensional analytical engine. This engine
emulates real-world business intelligence reporting
by performing comprehensive quantitative aggre-
gations and inferential processing across diverse
facets, including overall performance metrics (e.g.,
total sales versus target, period-over-period growth,
average transaction value), sales representative ef-
ficacy (e.g., top and bottom performers, target at-
tainment distributions), product performance (e.g.,
leading revenue generators, category contributions),
geographical sales distribution, and customer seg-
ment analysis (e.g., new versus existing customer
value, key account contributions). Key metrics
and identified trends derived from this analysis are
then articulated as concise, natural language analyt-
ical conclusions. To enhance utility and stimulate
further inquiry, each conclusion is systematically
paired with a relevant analytical query, designed to
prompt deeper investigation into the causal factors
underpinning the observed phenomena. The system
culminates in the delivery of two principal outputs:
the raw, granular transactional dataset (typically in
CSV format), which serves as the evidentiary basis
for analysis, and a structured compendium (typi-
cally in JSON format) containing metadata, key
performance indicators, and a curated, prioritized
set of "conclusion-query" pairings, offering directly
consumable insights for simulated business report-
ing. This integrated pipeline underscores a design
philosophy centered on the coherent synthesis of
data with its analytical interpretation.

Code Fixing with Flake8 Compliance (CF): The
system employs a generative methodology to syn-
thesize Python source code exhibiting a high den-
sity of nuanced linting violations, intended to serve
as challenging test instances for static analysis tools
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Table 8: Configuration of large language models, their backends and decoding parameters provided by different

suppliers
Provider  Backend Model Decoding Parameters
vLLM Meta-Llama-3.1-8B-Instruct / Meta- temperature: 0.7, top_p: 0.8,
Meta Llama-3.1-70B-Instruct max_tokens: 8192, stream: False
Alivun Dashscope llama-4-scout-17b-16e-instruct temperature: 0.7, max_tokens:
Y p 8192, stream: True
Ilama-4-maverick-17b-128e-instruct temperature: 0.7, max_tokens:
8192, stream: True
gpt-40-2024-11-20 temperature: 0.7, max_tokens:
OpenAl OpenAl API 8192, stream: True
03-mini-2025-01-31 temperature: 0.7, max_tokens:
8192, stream: True
gpt-40-mini-2024-07-18 temperature: 0.7, max_tokens:
8192, stream: True
OpenAl API gemini-2.0-flash temperature: 0.7, max_tokens:
Google
8192, stream: True
vLLM gemma-3-12b-it / gemma-3-27b-it temperature: 0.7, max_tokens:
8192, stream: False
Zhipu Al vLLM LongWriter-glm4-9b max_tokens: 8192, stream: False
Microsoft vLLM Phi-4-mini-instruct max_tokens: 8192, stream: False
DeepSeck Aliyun Dashscope  deepseek-v3 / deepseek-rl temperature: 0.7, max_tokens:
8192, stream: True
vLLM DeepSeek-R1-Distill-Qwen-32B max_tokens: 8192, stream: False
vLLM Qwen?2.5-14B-Instruct-1M max_tokens: 8192, stream: False
Aliyun Dashscope = qwen-long temperature: 0.7, max_tokens:
8192, stream: True
Alibaba
vLLM Qwen2.5-3B/7B/14B/72B-Instruct temperature: 0.7, top_p: 0.8,
max_tokens: 8192, stream: False
vLLM qwen3-14b-r temperature: 0.7, top_p: 0.8,
max_tokens: 32768, stream: False
Aliyun Dashscope  qwen3-14b temperature: 0.7, top_p: 0.8,
max_tokens: 8192
vLLM qwen3-32b temperature: 0.7, top_p: 0.8,
max_tokens: 8192, stream: False
Aliyun Dashscope  qwen3-8b / qwen3-14b / qwen3-32b temperature: 0.7, max_tokens:

8192, stream: True

Aliyun Dashscope

QWQ-plus / qwen-max series

temperature: 0.7, top_p: 0.8,
presence_penalty: 1.5, max_tokens:
8192, stream: True
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"Scoring_Criteria": "- Number writing rules:\n 1-9 should be written in words; 10 and above should use Arabic numerals.\n Always use
Arabic numerals for ages, amounts, percentages, dates, and times.\n- Ordinal numbers:\n Do not use 'st', 'nd', 'td', or 'th".\n- Plural forms:\n
Do not add an apostrophe to plural numbers (e.g., '7s").",

"Incorrect_Examples": "- 'T have 7 apples.'\n- "The event is on the 3rd day."\n- 'She is twenty-five years old."\n- 'All 7’s rolled.",
"Correct_Examples": "- 'I have seven apples.'\n- "The event is on the third day."\n- 'She is 25 years old."\n- 'All 7s rolled."

won

"Scoring_Criteria": "- Quotation marks:\n Periods and commas always go inside quotation marks.\n- Oxford comma:\n Avoid using the
Oxford comma in lists.\n- Space rules:\n Use only one space after a period.\n- Colons:\n Capitalize the first letter after a colon only if it starts
a complete sentence or is a proper noun.",

"Incorrect_Examples": "- He said, 'Let’s go'.\n- Red, white, and blue.\n- This is a sentence. Another one follows.\n- "The following: rules."',

"Correct_Examples": "- He said, 'Let’s go."\n- Red, white and blue.\n- This is a sentence. Another one follows.\n- "The following: Rules."

"Scoring_Criteria": "- Date rules:\n Do not use ordinal indicators like '1st'.\n Abbreviate months as Jan., Feb., Aug., Sept., Oct., Nov., Dec.

\n- Time rules:\n Use a.m./p.m. format and omit 00" for whole hours.\n Write 'midnight' and 'noon' instead of '12 a.m.’ or '12 p.m."",

"Incorrect_Examples": "- "The event is on July 3rd."\n- 'It starts at 8:00 p.m."\n- 'Meet me at 12 p.m."",
"Correct_Examples": "- "The event is on July 3.'\n- 't starts at 8 p.m."\n- 'Meet me at noon."
"Scoring_Criteria": "- Street address rules:\n Abbreviate 'Ave.', 'Blvd., 'St." but spell out 'Road'.\n- State name rules:\n Abbreviate state
names after city names (except Alaska, Hawaii, Idaho, etc.).\n- Direction rules:\n Use lowercase for directions like 'north' and 'south".",
"Incorrect_Examples": "- '1600 Pennsylvania Avenue'\n- 'Nashville, Tennessee'\n- 'We went to the East last year.",
"Correct_Examples": "-'1600 Pennsylvania Ave.'\n- 'Nashville, Tenn."\n- 'We went east last year."
"Scoring_Criteria": "- Title rules:\n Capitalize formal titles before a person's name; use lowercase after the name or when used alone.\n

Avoid courtesy titles like Mr., Mrs., Ms.\n- Gender-neutral language:\n Use gender-neutral terms (e.g., 'police officer' instead of 'policeman’).",

"Incorrect_Examples": "- President Joe Biden visited."\n- Joe Biden, President, spoke."\n- "The policeman arrived.",
"Correct_Examples": "- 'President Joe Biden visited.'"\n- 'Joe Biden, the president, spoke.'"\n- "The police officer arrived."
"Scoring_Criteria": "- Reference rules:\n Add quotation marks around titles of articles, books, movies, songs, etc.\n Do not use quotation

marks for newspaper or magazine names; capitalize them.\n Use website titles instead of URLs.\n- Reference format:\n Provide full
information on first mention; simplify subsequent mentions.",
"Incorrect_Examples": "- 'I read the New York Times today."\n- 'Check out www.google.com."\n- 'According to the study.",

"Correct_Examples": "-'I read The New York Times today."\n- 'Check out Google."\n- 'According to the study by Smith et al."

"Scoring_Criteria": "- Proper nouns:\n Capitalize specific names (e.g., places, institutions).\n- Seasons and directions:\n Only capitalize

seasons/directions in specific cases (e.g., 'Winter Olympics').\n- Abbreviations:\n Follow capitalization rules for abbreviations.",

"Incorrect_Examples": "- "The River flows north."\n- 'We went to the East last year."\n- "The study was conducted in the Summer.",
"Correct_Examples": "- "The river flows north."\n- 'We went east last year."\n- "The study was conducted in the summer.""
"Scoring_Criteria": "- Technical terms:\n Spell technical terms correctly (e.g., 'email', 'smartphone').\n Capitalize brand names like

'iPhone'.\n Write 'website' as one word and 'web page' as two words.\n- Spelling:\n Ensure accurate spelling of technical terms.",

"Incorrect_Examples": "- ' sent an E-mail."\n- 'Check out my new Iphone."\n- 'Visit our Webpage.",
"Correct_Examples": "-'I sent an email."\n- 'Check out my new iPhone."\n- 'Visit our web page."
"Scoring_Criteria": "- Brevity:\n Avoid long or complex sentences.\n- Readability:\n Use simple language suitable for general audiences.

\n- Consistency:\n Maintain consistent style throughout the text.",

"Incotrect_Examples": "- "The aforementioned individual arrived at the location."\n- "This is a highly technical subject matter.",
"Correct_Examples": "- "The person arrived at the site."\n- "This is a technical topic."
"Scoring_Criteria": "- Consistency:\n Maintain consistent style for numbers, punctuation, capitalization, etc.\n- Style:\n Avoid mixing

styles (e.g., APA, Chicago).\n- Structure:\n Ensure logical flow and clear paragraph transitions.",
"Incotrect_Examples": "- Mixed number formats (e.g., 'seven' and '8')\n- Inconsistent punctuation (e.g., 'quote.' vs. 'quote.)\n- Large jumps
between paragraphs.”,

"Correct_Examples": "- Unified number formats.\n- Consistent punctuation.\n- Smooth paragraph transitions."

Figure 8: Generation and Evaluation Rules for Constraints in the News Writing Task. Ten dimensions, each
containing rules, positive examples, and error cases that guided the creation of verifiable test instances.
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and code quality assessment. The generation pro-
cess is initiated by establishing global configuration
parameters, including stylistic targets (e.g., line
length) and complexity constraints (e.g., maximum
nesting depth, function length), alongside lexical re-
sources such as curated lists of nouns, verbs, and ad-
jectives for constructing semantically plausible, al-
beit potentially misleading, identifiers. A core com-
ponent is a dynamic scope management system,
which tracks variable definitions and usage across
nested lexical contexts. This enables the generation
of syntactically valid code where identifier-related
violations, such as improper naming conventions
(e.g., N-series violations from flake8-naming) or
unused variables (F841), are contextually embed-
ded. Identifier generation itself is a probabilistic
process, designed to stochastically introduce devia-
tions from Python Enhancement Proposal 8 (PEP
8) style guidelines, while also attempting to create
names that might subtly obscure their true purpose
or shadow existing identifiers in parent scopes. The
synthesis of executable code blocks and function
bodies is orchestrated through a weighted, proba-
bilistic selection of diverse code constructs. These
constructs range from simple assignments and print
statements to complex control flow structures like
conditional statements and loops. Each construct
generator is imbued with the capability to intro-
duce specific categories of violations. For instance,
conditional statement generators might create ex-
plicit boolean comparisons (SIM21x) or if-else pat-
terns amenable to ternary expressions (SIM108).
Loop generators may produce unconventional iter-
ator variable names or inefficient comprehensions
(C4xx series from flake8-comprehensions). Fur-
thermore, generators for function definitions are
specifically designed to introduce more complex
issues, such as mutable default arguments (BO06
from flake8-bugbear) or function calls within de-
fault argument expressions (B008), often obfus-
cated by the presence of other parameters and non-
trivial function bodies. Whitespace and formatting
violations (E-series and W-series) are pervasively
introduced at various granularities, from inconsis-
tent spacing around operators and after commas to
improper blank line usage and trailing whitespace.
The system also synthesizes a sequence of inter-
dependent functions, simulating a rudimentary pro-
gram flow (e.g., data loading, validation, analysis,
reporting), which are ultimately orchestrated within
a main execution block. This structural coherence
provides a more realistic backdrop for the embed-

ded violations, moving beyond isolated infractions
to scenarios requiring more holistic refactoring.
The overall probability of introducing a violation is
a configurable parameter, allowing for control over
the density of infractions, with the system actively
aiming to make these violations less trivial to au-
tomatically or manually remediate by intertwining
them with functional, albeit flawed, program logic.
The final output is a runnable Python script, replete
with these intentionally challenging, multi-category
linting issues.

KG to Text Biography Generation (BioG): sys-
tem synthesizes rich, protagonist-centric knowl-
edge graphs (KGs) and subsequently translates
salient subgraphs into natural language narra-
tives. The generative process for each KG com-
mences with the instantiation of a unique protag-
onist, whose attributes, including socio-economic
background and a randomly assigned character
archetype (e.g., Scientist, Artist, Entrepreneur), are
stochastically determined. These initial conditions
significantly influence the subsequent probabilistic
expansion of the KG. The protagonist’s lifespan
and historical era are also established to ensure
temporal coherence for related entities and events.
The KG is then incrementally constructed through
an iterative expansion process originating from the
protagonist. At each step, existing nodes are se-
lected for expansion based on their proximity to
the protagonist and predefined archetypal relation-
ship propensities. New nodes, representing persons,
organizations, places, creative works, or events, are
generated with contextually relevant attributes, or
existing nodes are connected, adhering to a set
of permissible relationship types defined within a
structured map. This map also dictates the likeli-
hood of specific relationships based on the source
node’s type and, for persons, their current life phase
(e.g., Childhood, Education, MidCareer). Attribute
generation for new entities, such as names, job
titles, or event descriptions, leverages procedural
generation techniques and controlled randomness,
often influenced by the protagonist’s established
background and archetype to foster narrative con-
sistency. Temporal plausibility is rigorously main-
tained by ensuring that dates associated with re-
lationships and events align with the lifespans of
involved entities. Once a KG reaches a target size
or expansion limits, a focused subgraph is extracted.
This subgraph typically comprises nodes within a
specified graph distance from the protagonist, rep-
resenting the most narratively relevant portion of
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the larger KG. This subgraph then serves as the di-
rect input for the text generation phase. Each node
attribute (excluding the primary name) and each
relationship within this subgraph, along with sig-
nificant attributes of these relationships (e.g., roles,
dates, specific details like degree or investment
amount), are systematically converted into individ-
ual descriptive sentences using predefined, tem-
plated linguistic patterns. These patterns map struc-
tural KG elements (subject-predicate-object triples,
or subject-attribute-value) to natural language con-
structs. The system’s output for each generated KG
is multi-faceted, including the full KG data, the
extracted subgraph data, and the derived natural
language sentences, typically stored in structured
JSON files. Optionally, visualizations of both the
full KG and the subgraph can be produced using
graph layout algorithms. Finally, as an aggrega-
tive step, the natural language sentences generated
from all individual KGs within a single execution
run are compiled into a consolidated dataset, facili-
tating larger-scale analysis or downstream natural
language processing tasks. This methodology em-
phasizes the creation of datasets where structured
knowledge and its textual manifestation are coher-
ently and traceably linked, grounded in simulated
sociological and temporal contexts.

AP Style News Writing (NW): The system under
discussion is designed to rigorously evaluate a large
language model’s (LLM) proficiency in generating
news reports that conform to the Associated Press
(AP) style guidelines. This evaluation is predicated
on the model’s ability to synthesize a coherent nar-
rative based on a given news topic query, integrate a
series of predefined factual statements, and adhere
to a specified target word count, all while meticu-
lously applying AP style conventions. The process
of generating verifiable test data, specifically the
factual statements, is a critical precursor to the eval-
uation. These statements are meticulously crafted
to serve as direct inputs that the LLM must incorpo-
rate into its generated news article. Crucially, each
statement is designed to test a specific facet of the
AP style guide; thus, many are intentionally formu-
lated to violate these rules. For instance, a state-
ment might employ incorrect number usage (e.g.,
writing out "eleven" instead of using the numeral
"11"), misuse punctuation (e.g., including an Ox-
ford comma), or improperly format dates, times, or
titles. Accompanying each such potentially flawed
statement in the test dataset is its corresponding
correct AP style expression and a clear rationale

explaining the nature of the original stylistic error.
This structured approach ensures that each state-
ment serves as a verifiable unit for assessing the
LLM’s capacity for rule-based stylistic correction.
The construction of the prompt provided to the
generative LLLM is a multi-component process. It
begins with the query, which defines the overarch-
ing news topic, often suggesting a narrative struc-
ture or specific angles to be explored. To this, the
complete AP style rubric—a comprehensive guide
detailing rules across numerous categories with il-
lustrative examples—is appended. A key element
of the prompt is a curated list of the aforementioned
factual statements. These statements, presented in
their original, potentially non-compliant form, are
explicitly designated as mandatory inclusions for
the generated article. The prompt also specifies the
target word count, imposing a length constraint on
the LLM’s output. This careful assembly of the
prompt creates a challenging scenario where the
LLM must not only generate fluent and relevant
content based on the query but also actively en-
gage with the AP style guide to identify and rectify
the stylistic infelicities within the provided state-
ments as they are woven into the narrative. The
verifiability of the task lies in the direct comparison
of the model’s treatment of these embedded state-
ments against their known correct AP style forms,
all within the context of the broader news writing
assignment.

A.5 Evaluation Efficiency

Given the scale of our evaluation (23 models across
5,600 samples), understanding these efficiency as-
pects is crucial.

For this analysis, we utilized two nodes, each
equipped with 8 NVIDIA A100 GPUs (totaling 16).
One node was dedicated to deploying the evaluator
model, Qwen2.5 72B, while the other hosted the
model under test, Llama3.1 8B. To establish a clear
baseline, we measured performance in a single-
threaded mode. We recorded the inference and
evaluation times for a single sample across seven
distinct tasks, varying the input context length at
four levels: 1k, 2k, 4k, and 8k tokens.

The results of this single-threaded performance
analysis are presented in Table 9. As shown, the
evaluation time can be a significant component
of the total processing time, particularly for tasks
like News Writing (NW), which involve complex
rubric-based assessments. For tasks such as Knowl-
edge Graph (KVG) and Sales Message (SMS), the
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Table 9: Efficiency analysis of the evaluation pipeline. Each value represents the time in seconds to process a single
sample in single-threaded mode. The analysis was conducted using Qwen2.5 72B as the evaluator and Llama3.1 8B

as the model being tested.

Metric (Input Length) CF BioG SR NW KVG SMS PR
Inference (1k) 29.72  20.58 16.29 45.10 139.20 13495 35.99
Evaluation (1k) 7.31 9.38 454 87.04 0.00 0.00 0.01
Inference (2k) 28.86  16.49 24.63 2244 12935 13346 23.75
Evaluation (2k) 5.34 242 8.89  120.05 0.00 0.00 0.00
Inference (4k) 41.12 12153 16.04 3295 161.03 14642 3142
Evaluation (4k) 254  20.13 12.17  155.70 0.00 0.00 0.01
Inference (8k) 106.56  33.62 36.04 3291 19331 149.92 90.09
Evaluation (8k) 549  30.32 1296 1439.32 0.00 0.00 0.01

evaluation is nearly instantaneous as it relies on
simple keyword matching. The full names for the
task abbreviations can be found in Table 2 of the
main paper.

To optimize efficiency in our main experiments,
we employed parallel processing. For inference,
we used 16 parallel threads. For the evaluation
stage, we utilized 5 parallel threads with appropri-
ate batch sizes tailored to the task (e.g., a batch
size of 5 for Sales Report and Knowledge Graph
tasks, and 10 for AP Style News). The evaluation
pipeline ran on eight A100 GPUs, while inference
was performed either on a separate set of eight
A100 GPUs for local models or via API calls for
proprietary models. This parallelized setup signifi-
cantly reduced the overall wall-clock time required
for our large-scale benchmark.

A.6 Additional Data Examples

To provide a concrete understanding of the tasks
within the LongWeave benchmark, this section
presents illustrative examples of the input prompts
used during evaluation. These examples showcase
the structure of the input materials, the detailed
instructions, and the specific constraints that mod-
els must follow. The figures below cover all seven
tasks: KG to Text Biography Generation (Figure 9);
Code Fixing (Figure 10 and 11); AP Style News
Writing, which includes the topic, factual state-
ments, and style rubric (Figure 12,13, and14); Para-
graph Reordering (Figure 15); State Machine Sim-
ulation and KV Dictionary Generation (Figure 16);
and CSV Sales Report Analysis, which details the
data and questions (Figure 17 and 18). Collectively,

these examples demonstrate the diversity of chal-
lenges posed by LongWeave and provide insight
into the practical implementation of CoV-Eval.

A.7 Details of Task Generator

To ensure transparency and reproducibility, all test
samples in LongWeave are synthetically generated
through rule-based pipelines. The generation pro-
cess for each task, illustrated in Figures 19 to 25,
follows a consistent three-stage process. First,
Attribute Sampling defines the core parameters
and complexity of each task instance. Second,
Joint Generation uses these attributes to procedu-
rally create the aligned triad of Material (X;aw),
Constraint (C'), and Verifier (V). Finally, the
third stage in each figure provides a concrete ex-
ample of the generated Material, Constraint,
and Verifier.
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Example of Task: KG to Text Biography Generation Generation (BioG)

Model Input

Role: Biographer / Content Write

Task: Write a coherent and readable biography about the entity associated with the slug '00006_ambassador_cathy_allen'.
Your biography must be based exclusively on the factual statements provided below in Subject-Predicate-Object (Triple)
format. Combine the facts naturally into a narrative.

Input Facts (Triples):

o A Manifesto for Incubate Impactful E-Markets - authored by - Ambassador Cathy Allen
« A Manifesto for Incubate Impactful E-Markets - publication year - 1874

o« Ambassador Cathy Allen - participated in - Major Promotion (1821)

o Ashley Bell - birth year - 1961

e Barry Ballard - birth year - 1979

« Barry Ballard - job - Merchandiser, retail

e Barry Ballard - socioeconomic background - Middle Class

Writing Style:
Produce a well-structured paragraph or paragraphs. Ensure smooth transitions between facts where possible. The tone
should be informative and neutral.

Required Content:
Ensure that the core information from each of the input triples is included in your generated biography.

Length Specifications (TARGET WORD COUNT):
o The biography should be around 1024 words. Strive for this length, but prioritize covering all facts accurately.

You may now begin writing the biography based on the provided triples around 1024 words:

LLM-as-a-Judge
eval prompt = f"""
**Task:** Evaluate if the core factual information conveyed by each numbered 'Target Sentence' below

is accurately and adequately covered or represented, either directly or semantically, within the
provided 'Generated Biography Text'.

**Generated Biography Text:**
—-- START BIOGRAPHY ---
{biography text}

—-- END BIOGRAPHY ---

**Target Sentences (Facts to find):**

{numbered_sentences}

**Evaluation Criteria:**

For each numbered target sentence (from 1 to {batch_size}), determine if its essential factual
statement is present in the 'Generated Biography Text'. Exact wording is not required, but the core fact
must be included in the biography. Judge based *only* on the presence of the information, not the
writing style or fluency. Answer 'true' if the fact is present, 'false' otherwise.

**Qutput Format:**

Respond ONLY with a single JSON list containing boolean values (true/false), corresponding *in
order* to the numbered Target Sentences (1 to {batch_size}). The list must have exactly {batch_size}
elements. Do not include any explanations or other text outside the JSON list.

**Example Output (if batch_size was 3):**

[true, false, true]

**Your JSON Output:**

Figure 9: An illustrative example for the KG to Text Biography Generation (BioG) task.
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Example of Task: Code Fixing with Flake8 Compliance (CF)

Model Input

Role: Python Developer

Task: You are given a Python code file that may contain syntax errors or violate style quidelines. Your goal is to fix the code
so that it isrunnable and complies with the following coding standards:

FLAKE8 CATEGORIES TO CHECK:

e E/ W - pycodestyle
Basic PEP 8 formatting errors (E) and warnings (W), such as inconsistent indentation (E111), extra spaces (E221), or line
length violations (E501).

o F - Pyflakes
Potential runtime issues, e.g., undefined names (F821) or unused imports/variables (F401).

« B - flake8-bugbear
Code patterns prone to bugs or pitfalls, like modifying a list while iterating (BO07) or using mutable default arguments
(B00S).

e N - pep8-naming
Naming convention violations, such as function names not in snake_case (N802) or class names not in CamelCase
(N801).

o SIM - flake8-simplify
Suggestions to simplify and streamline code, for instance redundant if x == True checks (SIM102) or favoring
dict.get over manual key checks (SIM108).

« C4 - flake8-comprehensions
Best practices around comprehensions: avoid unnecessary list() wrappers (C400) or use dict comprehensions instead of
dict() calls with generator expressions (C401).

Input Python Code:
--- START OF CODE ---

def LoadDataSource(source_path):
"""Retrieve and parse input stream.
print('Parse Data:',sourcepath)
raw_data_struct = [

{
'handle":-35,
'id" : 'ID_100',
'fetch':"OtSAP5Bn0',
'generate_log':False,
'save':False

4

def MainEntryPoint():
InputDataset=LoadDataSource('./data/source.json")
filtered_data=ValidateRecords(InputDataset)
computed_metrics=CalculateStats(filtered_data)
print_summary_report(computed_metrics)
UpdateGlobalState() # Modify global state
unusedRecord=None
LongVariableName838 = 'result status product status event cache record log state result id user report status cach’
CalculateStats_1(update_global_flag) # Call existing func

ifname == "main"
MainEntryPoint()
)

Figure 10: An illustrative example for the Code Fixing (CF) task (Part 1/2).
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Example of Task: Code Fixing with Flake8 Compliance (CF)

LLM-as-a-Jude

eval_prompt = f£"""
**Task:** Evaluate if 'FIXED CODE' is a relevant and complete code response to the 'ORIGINAL CODE'.

**Evaluation Criteria:**

1. **Content Relevance (Answering the Request):**

* **Relevant (true):** The 'FIXED CODE' directly attempts to modify, fix, or refactor the provided
'ORIGINAL CODE'. It addresses the implicit request to correct or improve the original snippet.

* **Not Relevant (false):** The 'FIXED CODE' does not address the original code. It might be
unrelated code, a refusal, a question, an explanation *instead* of code, or generic template/placeholder

code not adapted to the original.

2. **Code Completeness (Providing Full Code):**

* **Complete (true):** The 'FIXED CODE' provides a full, runnable (or intended to be runnable)
Python code snippet that represents the proposed modification or fix. It's not just a fragment, comment,
or instruction.

* **Incomplete (false):** The 'FIXED CODE' is not a complete code solution. It might be:

* Only an explanation or commentary about the fix.
* A code fragment (e.g., only a single corrected line without context).
* Instructions on how to fix the code (e.g., "You should change line 5 to...").

& An empty response or placeholder like "# [Your corrected code here]".

**0Overall Judgment:**
Return “true” ONLY IF BOTH criteria (Content Relevance AND Code Completeness) are met. Otherwise, return

“false™.

**ORIGINAL CODE: **

XXX

**FIXED CODE:**

XXX

**Qutput:** Respond ONLY with JSON: {{"is_relevant_ and_complete": true/false}}

wan

Figure 11: An illustrative example for the Code Fixing (CF) task (Part 2/2).
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Example of Task 6: AP Style News Writing (NW)

Model Input (Part 1)

Write a news report titled 'BioLumina Forests: A Bold Experiment in Genetic Engineering and Environmental Restoration.'
Cover:

1. The Project: Introduce the fictional nation of 'Aurora’ and its groundbreaking 'BioLumina Forest Initiative,' which uses
genetically modified plants to emit natural light, reduce energy consumption, and combat climate change.

2. The Science: Explain how fluorescent proteins from deep-sea organisms are used to create glowing trees that absorb
CO2, purify air, and glow softly at night, creating a surreal, dreamlike environment.

3. Controversy : Highlight debates over potential ecological risks, including disruption of native species, unintended
consequences for food chains, and concerns about over-reliance on technological fixes.

4. Pilot Results : Discuss early successes in degraded areas—improved air quality and tourism—but note declines in local
wildlife populations, raising questions about habitat impact.

5. Philosophical Reflection : Explore the broader implications of using advanced technology to restore nature—does it
represent progress or hubris? Is humanity truly ready to manage such interventions responsibly?

Creative Details: Use elements like 'Aurora,' 'BioLumina Forest," and vivid imagery of glowing landscapes to craft an engaging
narrative balancing hope with caution.

You MUST strictly adhere to the AP News Style guidelines provided below.
Your article will be evaluated on two equally-weighted dimensions: (1) Recall** of ALL required information, and (2)
Compliance with the AP Style rules.**

IMPORTANT: Each AP Style category includes example sentences that violate its rules. Rewrite and include all of
them in your article, following AP Style and keeping their meaning. Missing or uncorrected items will reduce your
score.

=== CLARITY AND BREVITY ===
Scoring Criteria:

e Brevity:

Avoid long or complex sentences.
« Readability:

Use simple language suitable for general audiences.
+ Consistency:

Maintain consistent style throughout the text.

Incorrect Examples:

« 'The aforementioned individual arrived at the location.’
o 'This is a highly technical subject matter."'

Correct Examples:

e 'The person arrived at the site.'
« 'This is a technical topic.'

Content Requirements for 'Clarity and Brevity": Include and Rewrite EACH of the following statements to comply
with the 'Clarity and Brevity' AP Style guidelines detailed above.

1. The BioLumina Forest Initiative, launched by the fictional nation of Aurora, uses genetically modified plants to emit
natural light, reduce energy consumption, and combat climate change.

2. The glowing trees, created by inserting fluorescent proteins from deep-sea organisms, not only absorb CO2 but also
purify the air, creating a surreal, dreamlike landscape that glows softly at night.

3. While the BioLumina project has shown early success in improving air quality and boosting tourism, it has also raised
concerns about declines in local wildlife populations.

4. Critics argue that the project could disrupt local ecosystems by introducing genetically modified species, potentially
upsetting the balance of food chains.

5. In addition to its environmental benefits, the glowing trees offer an innovative solution to reducing energy use, but they
also spark debates on the ethics of genetic engineering.

6. The BioLumina Forest project represents a bold attempt to blend environmental restoration with cutting-edge
technology, but its long-term effects on biodiversity remain uncertain.

Figure 12: An illustrative example for the AP Style News Writing (NW) task (Part 1/3).
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Example of Task 6: AP Style News Writing (NW)

Model Input (Part 2)

7. Supporters of the initiative believe it could provide a model for sustainable development, but critics worry it may be a
technological fix that overshadows deeper ecological issues.
8. As the project expands, the need for careful oversight grows, as many question whether humanity is ready to manage
such large-scale genetic interventions in nature.
9. While the BioLumina initiative holds promise, it brings to light the ongoing struggle between technological progress and
the need for responsible environmental stewardship.
10. Ultimately, the future of the BioLumina Forests depends on finding a balance between technological innovation and
environmental conservation, a challenge that requires global cooperation and careful planning.

=== PUNCTUATION ===

Scoring Criteria:

« Quotation marks:
Periods and commas always go inside quotation marks.
« Oxford comma:
Avoid using the Oxford comma in lists.
e Space rules:
Use only one space after a period.
e Colons:
Capitalize the first letter after a colon only if it starts a complete sentence or is a proper noun.

Incorrect Examples:

e He said, 'Let’s go'.

« Red, white, and blue.

e This is a sentence. Another one follows.
« 'The following: rules.'

Correct Examples:

« He said, 'Let’s go.'

« Red, white and blue.

e This is a sentence. Another one follows.
« 'The following: Rules.'

Content Requirements for 'Punctuation’: Include and Rewrite EACH of the following statements to comply with the
'Punctuation’ AP Style guidelines detailed above.

11. The nation of Aurora unveiled its BioLumina Forest Initiative, a project that uses glowing trees to reduce energy
consumption and combat climate change.

12. Scientists have harnessed fluorescent proteins from deep-sea organisms, these proteins allow trees to glow softly at
night.

13. Critics argue that the project could disrupt native species, harm food chains, and create an over-reliance on technology.

14. Early results show improved air quality and increased tourism, however, local wildlife populations have declined.

15. The glowing forests of Aurora are described as surreal dreamlike environments that captivate visitors.

16. Does this bold experiment represent progress or hubris? The answer remains unclear.

17. Aurora's BioLumina Forests emit light absorb CO2, and purify the air all at once.

18. Local residents report mixed feelings about the initiative, some praise its innovation while others fear ecological risks.

19. Tourists flock to see the glowing landscapes, they describe them as otherworldly and awe-inspiring.
20. The philosophical debate centers around whether humanity can responsibly manage such interventions, the stakes are high.

Length Specifications:
« TARGET WORD COUNT: Aim foraround 1024 words.

Begin writing your ~1024-word AP-style article below:

Figure 13: An illustrative example for the AP Style News Writing (NW) task (Part 2/3).
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Example of Task 6: AP Style News Writing (NW)

Model Output

The nation of Aurora unveiled its BioLumina Forest Initiative, a project that uses glowing trees to reduce energy
consumption and combat climate change. The initiative, launched by the fictional country, has sparked global interest and
controversy. Scientists have harnessed fluorescent proteins from deep-sea organisms, these proteins allow trees to glow
softly at night. The glowing trees, created by inserting fluorescent proteins from deep-sea organisms, not only absorb CO2
but also purify the air, creating a surreal, dreamlike landscape that glows softly at night. The BioLumina Forest Initiative,
launched by the fictional nation of Aurora, uses genetically modified plants to emit natural light, reduce energy
consumption, and combat climate change.

Aurora, a fictional nation known for its commitment to environmental innovation, has taken a dramatic step toward
sustainability with its BioLumina Forests. These forests, unlike any seen before, are not just green spaces but glowing ...

LLM-as-a-Judge

evaluation_prompt = (

"Please read the article and complete the EVALUATION TASK below:\n\n"
f"=== ARTICLE CONTENT ===\n{response}\n\n"

f"=== SCORING CRITERIA FOR '{category}' ===\n"
f"Scoring Criteria:\n{rubric['Scoring Criteria']}\n"
f"Incorrect Examples:\n{rubric['Incorrect_Examples']}\n"

f"Correct Examples:\n{rubric['Correct Examples']}\n\n"

"EVALUATION TASK:\n"

"For each statement listed below, perform the following evaluations:\n"

"1l. Determine whether the statement exists in the article (verbatim or semantically equivalent).
If it exists, extract the exact matching content from the article.\n"

"2. If the statement exists, determine whether it follows the AP rules as per the scoring
criteria.\n"

"3. Provide clear reasoning for your evaluation.\n\n"

"Output format (JSON):\n"

"{\n"
" {\n'

! "statement_id": "Unique ID of the statement",\n'

! "statement": "Original statement",\n'

! "matched_content": "Exact matching content from the article (or empty string if not

found)",\n"'

"thinking": "Explanation of the evaluation process and reasoning",\n'
"exists_in_article": true/false,\n'

"follows_rules": true/false\n'

" 3

" cooNm’

"}\n\n"

"Do NOT include any additional text or explanations outside the JSON array.\n"

"Ensure that the JSON is valid and can be directly parsed by a JSON parser.\n\n"

"STATEMENTS TO EVALUATE:\n"

for i, stmt in enumerate(stmts, start=1):
evaluation prompt += (
f"Statement {i}: {stmt['Statement']}\n"
£" Why This Is Incorrect: {stmt['Reason_for_ Deduction']}\n"

£ How It Should Be Written: {stmt['Correct Expression']}\n\n"

evaluation prompt += "Please provide the evaluation results."

Figure 14: An illustrative example for the AP Style News Writing (NW) task (Part 3/3).
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Example of Task 7: Paragraph Reordering (PR)

Model Input

Please rearrange the following paragraphs into a logically coherent article:

[[Segment 0]]

In the end, implied powers was used as justification for finishing the deal. [3] Later, directly borrowing from Hamilton, Chief
Justice John Marshall invoked the implied powers of government in the United States Supreme Court case, McCulloch v.
Maryland. [4] In 1816, the United States Congress passed legislation creating the Second Bank of the United States. The state
of Maryland attempted to tax the bank. The state argued the United States Constitution did not explicitly grant Congress the
power to establish banks. In 1819, the Court decided against the state of Maryland. Chief Justice Marshall argued that
Congress had the right to establish the bank, as the Constitution grants to Congress certain implied powers beyond those
explicitly stated. In the case of the United States Government, implied powers are powers Congress exercises that the
Constitution does not explicitly define, but are necessary and proper to execute the powers. The legitimacy of these
Congressional powers is derived from the Taxing and Spending Clause, the Necessary and Proper Clause, and the
Commerce Clause. Implied powers are those that can reasonably be assumed to flow from express powers,[5] though not
explicitly mentioned. This theory has flown from domestic constitutional law[6] to International law,[7] and European Union
institutions have accepted the basics of the implied powers theory. [8] A They implied powers into the united states. ... ...

[[Segment 1]]

Language links are at the top of the page across from the title. What links hereRelated changesUpload fileSpecial
pagesPermanent linkPage informationCite this pageWikidata item In the United States, implied powers are powers that,
although not directly stated in the Constitution, are implied to be available based on previously stated powers. When George
Washington asked Alexander Hamilton to defend the constitutionality of the First Bank of the United States against the
protests[1] of Thomas Jefferson, James Madison, and Attorney General Edmund Randolph, Hamilton produced what has

now become the doctrine of implied powers. [2] Hamilton argued that the sovereign duties of a government implied the
right to use means adequate to its ends. Although the United States government was sovereign only as to certain objects, it
was impossible to define all the means it should use, because it was impossible for the founders to anticipate all future
exigencies. Hamilton noted that the "general welfare clause" and the "necessary and proper clause" gave elasticity to the
Constitution. Hamilton won the argument and Washington signed the bank bill into law. Another instance of the usage of
implied powers was during the Louisiana Purchase, where, in 1803, the United States was offered $15 million for French
territory. James Monroe was sent by Thomas Jefferson to France to negotiate, with permission to spend up to $10 million on
the port of New Orleans and parts of Florida. However, a deal to purchase the entirety of French territory in the United
States for $15 million was reached, even though this exceeded the given amount of $10 million. Although the decision was
very popular and widely praised, it was unknown whether or not Jefferson had the power to negotiate the territory without
the permission of Congress.

[[Segment 2]]

A Also outside President and Congress: for the Judiciary, see Incidental or Implied Powers of Federal Courts, by Harris,

Robert Jennings, Chapter Il, 1 Judicial Power of the United States (1940). A Especially in the common law legal community: see
Sagar Arun, Notes towards a Theory of Implied Powers in (Indian) Constitutional Law, NUJS Law Review, Vol. 7, Issue 3-4
(2014), pp. 249-262. A International Legal Personality and Implied Powers of International Organizations, by Rama-Montaldo,
Manuel, British Yearbook of International Law, Vol. 44, pp. 111-156 (1970). A Andrea Giardina, Rule of Law and Implied
Powers in the European Communities, The Italian Yearbook of International Law, Vol. 1, pp. 99-111. Categories:
Constitutional lawDeductive reasoningLegal doctrines and principlesHidden categories: Articles with short descriptionShort
description matches WikidataArticles with J9U identifiersArticles with LCCN identifiers This page was last edited on 2 March
2023, at 12:05(UTC). additional terms may apply. By using this site, you agree to the Terms of Use and Privacy Policy.
Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc. , a non-profit organization.

Requirements:

1. Keep the original content of paragraphs unchanged, only adjust their order
2. Use [[Segment X]] to identify original paragraph numbers, starting from 0 up to 2.

Figure 15: An illustrative example for the Paragraph Reordering (PR) task.
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Example of Task: State Machine Simulation (SMS)

Model Input

Your task is to simulate a state transition process based on the following rules.
The input string for this simulation is: '2020112011201010121112012102100022202000222211212010110'".

The state machine operates with the following configuration:

1 Initial State: SO
2 State Transition Rules:
Current State | Input | Next State | Output Signal
SO [0 |SO |0
50 1T Is1 |1
SO | 2 | S2 | 2
s1 1o Is1 |1
s1 11 Is2 |2
S1 [2 ]SO |0
52 o Is2 |2
S2 |1 | SO | 0
52 12 Is1 |1

Here is an example of a valid state transition process:
Assume the input string is '202'. The state transition process would be as follows:

Current State | Input | Next State | Output Signal

SO [2 |S2 |2
S2 [0 [S2 |2
S2 [2 |S1 |1

Note: The above example is dynamically generated based on the state transition rules and the input string. The actual
output may vary depending on the specific input string.

Based on the above rules, please generate a simulated state transition process for the input string
'2020112011201010121112012102100022202000222211212010110".

Display the current state, input, next state, and output signal for each step.

Ensure that the generated process strictly adheres to the state machine rules.

Important: _ must list all steps.
Do NOT generate any code or explanatory text. 2. Do NOT use any form of truncation. You

Only provide the state transition process in the following format:

Current State | Input | Next State | Output Signal

<State> | <Char>| <NextState>| <Output>
Example of Task 5: KV Dictionary Generation (KVG)
Model Input

Generate a Python dictionary with the following requirements:
« Total entries: 20

¢ MUST include the entry: 'DKUNULZASGUKBXPBVUNROMKQMOKMTFBC": 'iwidrO1birzxfv6s8hkdxysaoyw8ce4i'
« The special entry should be placed at index 12
« Other keys and values must follow these rules:

o Keys must be random strings of length 32, consisting ONLY of uppercase letters (A-Z) and underscores ()
o Values must be random strings of length 32, consisting ONLY of lowercase letters (a-z) and digits (0-9)
o Keys and values MUST NOT contain any special characters (e.g., /, =, $, @, :, etc.) or spaces

o Output ONLY the dictionary in the following format (as a single-line string):
{"...":"..." ..., 'DKUNULZASGUKBXPBVUNROMKQMOKMTFBC": 'iwidrO1birzxfv6s8hkdxysaoyw8ce4i’, ..., "...". "..."}
« Ensure the dictionary string is valid JSON and can be parsed by json.loads() without errors.

¢ DO NOT include any code or explanations. Only return the dictionary string.

Figure 16: Illustrative examples for the State Machine Simulation (SMS) and KV Dictionary Generation (KVG).

10411



Example of Task: CSV Sales Report Analysis (SR)

Model Input

Role:

Senior Business Analyst
Task:

You are provided with raw sales transaction data in CSV format. Your goal is to perform a detailed analysis based only on this
data and generate a comprehensive sales performance report.
Input Sales Data (CSV Format):

OrderlD  OrderDate Region City SalespersonID  SalespersonName  SalespersonTarget CustomerlD CustomerName IsNewCustomer ProductlD
ORD-
2025- East CUST-9151-

2025-04-07 as. Philadelphia EMP008 Meghan Rodriguez 130000 Tran-Griffith False PROD-001 ...
04- Region 371
00001
ORD-
2025- East CUST-3153- Mullen, Joh

2025-04-29 -°'  pittsburgh  EMP009 Danielle Hart 93000 il e | o PROD-S03 ...
04- Region 277 and Sosa
00002

Analysis Structure Guidance:

Please structure your sales performance report logically. Start with an overall performance summary, then delve into
analyses of sales representative performance, product performance, and any other relevant insights identified from the data.
Use a narrative style suitable for a management report, ensuring all insights are directly derived from the provided CSV data.
Required Content - Address These Specific Questions:

Within your structured analysis, ensure you specifically attempt to answer the following questions based only on the
provided data:

« Question 1: Who was the top sales representative by revenue and what was their contribution?
« Question 2: What was the average deal size across all transactions?
e Question 3: Which product generated the most revenue and what was its contribution?
« Question 4: How many sales representatives met or exceeded their sales targets?
e Question 5: Which product had the highest sales volume in units?
... (and 15 more questions)

Length Specifications (TARGET WORD COUNT):
The report should be around 1024 words. The deviation from this length may affect your evaluation.
You may now begin your analysis and write the approximately 1024 words report:

Model Output

In April 2025, the East Region generated $1,526,782.59 in revenue from 200 transactions, with an average
deal size of $7,633.91. Performance varied greatly among staff: Kimberly Odonnell MD (EMP016) led with
$195,079.78 in sales, while Jeffrey Wagner (EMP018) was the lowest performer with $59,904.92. Only 6 of
20 reps met their targets. The top product by revenue was the 'Network Switch Pro' ($143,438.37), with
hardware and software being the dominant sales categories...

LLM-as-a-Jude

Task: Evaluate the 'SALES REPORT' against a list of 'Question/Target Answer' pairs.
For each item, determine:

1. Answered: Did the reportattemptto answer the specific 'Question'? (true/false)
2. Correct: If the question was answered, does the answer provided in the report align with the 'Target
Answer'? (true/false). If the question was not answered, this MUST be false.

Figure 17: An illustrative example for the CSV Sales Report Analysis (SR) task (Part 1/2).

10412




Example of Task: CSV Sales Report Analysis (SR)

Evaluation Guidance:

« Focus on thesubstanceof the question and answer, not exact wording.

« 'Answered' means the report addresses the core topic of the question, even briefly.

e 'Correct' means the information given in the report matches themeaning of the 'Target Answer'. Minor
phrasing differences are acceptable. Numerical values should be reasonably close if applicable.

« If the report doesn't mention the topic of the question at all, 'answered' is false and 'correct’ is
automatically false.

Question/Target Answer Pairs:

-—- START PAIRS ---

Item 1:

Question: Who was the top sales representative by revenue and what was their contribution?
Target Answer: Chris Allen (EMP014) led the team with USD 948,895 in sales (31.6% of total).

Item 2:
Question: How many sales representatives met or exceeded their sales targets?
Target Answer: 10 out of 20 reps with targets met or exceeded their goal (10 exceeded).

Item 3:
Question: What was the average deal size across all transactions?
Target Answer: The average deal size across 200 transactions was USD 14,993.

--- END PAIRS ---

SALES REPORT:

—-—— START REPORT ---

In April 2025, the East Region generated $1,526,782.59 in revenue from 200 transactions, with an average
deal size of $7,633.91. Performance varied greatly among staff: Kimberly Odonnell MD (EMP016) led with
$195,079.78 in sales, while Jeffrey Wagner (EMP018) was the lowest performer with $59,904.92. Only 6 of
20 reps met their targets. The top product by revenue was the 'Network Switch Pro' ($143,438.37), with
hardware and software being the dominant sales categories...

-—— END REPORT ---

Output Format:
Respond ONLY with a single JSON list containing exactly 5 objects. Each object must correspond in order to
the 'ltem' number above and have two keys: "answered" (boolean) and "correct” (boolean).

Example Output (for 2 items):

[

{"answered": true, "correct": true},
{"answered": false, "correct": false}

]

Figure 18: An illustrative example for the CSV Sales Report Analysis (SR) task (Part 2/2).
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1. Attribute Sampling: 6 ~ ©

« rubric_path: "./rubric/..."
« data_path: "./data/News_AP_Stype/.."
» sample_id: "AP_STYLE_WRITING/1k 7" —0n

L Provides a determinisiic seed
« evaluation_model: 'Qwen2-72B'

« test_length: 1024 (words)

L Determines sampling of 2 style
categories for this task.

AP Style

2. Joint Generation (fgen)

A: Load & Sample Components
1. Load topic {Query) and the rulebook (Rubric).

2. Sample AP style categories based on the seed
and “test_length™ from attributes (8).
{e.g., 'Technical Terms', ‘Clarity’)

3. Load pre-defined error snippets for the topic.

Sampled components

B: Construct Anchor (A) & Material (X_raw)

The generator script assembles the Anchor:
« Position the main topic instruction first.

* For each sampled category:
- Insert relevant rules (Scoring Criteria).
- Insert carresponding error snippets to be fixed.

This forms a structured prompt with constraints.

Structured prompt data

C: Synthesize Target (T)
The ground-truth Target is created deterministically:

1. Identify arror shippets from the Anchor.
{e.g., lowercase ‘linkedin’)

2. Apply rule-based corrections to generate the
correct text fragments.

3. Weave fragments into a coherent article, which
serves as the verifiable Target (T).

3. Aligned Triples: (X.aw, C, 1)
Material (X_raw)

Foundational inputs

Topic {(Query):
"Write a news article titled
'The Rise of Digital...'"

Rulebook {Rubric):
"Category": "Technical Terms"
"Criteria": "Capitalize brand
names like 'iPhone'..."

Constraint (C)

Task-Specific Instructions

=== TECHNICAL TERMS ===
Scoring Criteria: Spell tech
terms correctly... Capitalize
brand names...

wkContent Requirements. ..k

1. ...platforms like Facebook
and linkedin.

Verifier (V)

Ground-Truth Output

...Digital communities emerged
alongside the expansion of the
internet, offering spaces...
Platforms like Facebook and
LinkedIn have played a pivotal
role...

Figure 19: Overview of the data generation pipeline for the AP Style News Writing (NW) task.

1. Attribute Sampling: 6 ~ ©

Violation Probability: 385.0%

Controls the density of injected defects.

Vocabulary (NOUNS, VERBS):

‘customer', 'process', ‘validate'...
--lines: 690

--output: 'code.py'
MAX_NESTING: 4

MAX_FUNC_LINES: 48

Define overall scale and structural
constraints of the output code.

Code Fixing with Flake8 Compliance (CF)

2. Joint Generation (fgen)

A: Initialization
Initializes scope basad on attributes (8).

B: Atomic Code Generation
A main loop iteratively calls sub-generators.

Weighted selection of sub-generators

generate_assignment ()
generate_if_statement ()
generate_redundant_comprehension() [C4xx]
generate_mutable_default_arg_func{) [BROS5]

C: Structural Orchestration
Assembles blocks into functions.

D: Finalization & Synthesis
Applies formatting and writes to file.

3. Aligned Triples: (Xaw,C, 1)
Material (X_raw)

import datetime

defprocess_with_mutable(
config _param,
mutable_log=[] # BO®E violation

if config_param > @:

mutable_log.append( ' processed’)
return mutable_log

Constraint (C)
Verification Query
"Locate all instances of mutable
default arguments (B006)."

Verifier (V)

Ground-Truth Answer
Line 298: mutable_log=[]

Figure 20: Overview of the data generation pipeline for the Code Fixing (CF) task.
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1. Attribute Sampling: 6 ~ ©

Task Configuration:

Randomized Biases:

cverall target: 'excaad’

top_rep bias: 'EMP019'
TIMPC20"
'PROD-HO4'

botzom_rep_bi

top product b

Sales Report Anal,

2. Joint Generation (fgen)

Step A: Synthesize Raw Material {X_raw)
gonarate_sales_data()
1. Generate transaction records according to the specified

bias attributes (e.g., boosting 'EMP019" sales).
2. Qutput the records as a raw CSV file.

Generated CSV

Step B: Analyze Data & Derive {A, T) Pair
znalyze and extriet_pzir()

1. Input: The synthesized CSV data (X_raw).
2. Analyze the data to extract a verifiable fact
{2.9., the top-performing salesperson).
3. This fact becames the Target (T).
4. A corresponding guestion is set as the Anchor {A).
5. Qutput: The aligned (A, T) pair.

3. Aligned Triples: (X,aw,C, V)
Material (X_raw)

orderIl, ..., SalespersonlD, ., TotalZale

ORL-001, ..., EMPOG/, ., 8500.00

ORD-002, ., EMP019, ., 120000.00

ORLC-002, ., EMPOlZ, ., 1500.00
Constraint (C)

Question:

"Wha was the top sales representative
by revenue and what was their
contribution?"

Verifier (V)
Correct Answer:
"Toni Higgins (EMP019) led the
team with USD 1,093,253 in sales
{21.0% of total).”

Figure 21: Overview of the data generation pipeline for the CSV Sales Report Analysis (SR) task.

1. Attribute Sampling: 8 ~ ©

* num_records: Total records to generate

* output_dir: Path for output files

» archetype: Protagonist type {e.g., Scientist)
« size: Target number of hodes per KG

ARCHETYPES :

'Scientist': {'rel_boost': ...}
'Artist': {'rel_boost': ...}
'Entrepreneur': {'rel_boost': ...}

SOCIO_ECONOMIC_BACKGROUNDS :
'Underprivileged': {'edu_boost': ...
'Middle Class': {'edu_boost': .
'Upper Class': {'edu_boost': ...

These configurations shape the
narrative and sociological depth of
the generated data.

KG to Text Biography (BioG)

2. Joint Generation (fgen)

Step A: Synthesize Full Knowledge Graph

Procedurally generates a complex and temporally
coherent knowledge graph based on the
sampled attributes 8.

f_gen: generate_fictional_kg_rich{)

Full KG|(in-memory)

Step B: Extract Protagonist Subgraph

Extracts a local subgraph centered around the
protagonist, serving as the sole source for all

ClITTITREN S, f_gen: get_node_distances{)

Focused Subgraph|(Ground Truth)

Step C: Parallel Transformation (Joint Derivation)

The subgraph is processed in parallel to generate
semantically aligned Anchor and Target pairs.

Structured Elxtraction Natural Lang‘uage Conversion
Generate Anchor {A) Generate Target (T)
Converts subgraph nodes and Uses templates to convert the
relations into structured exact same triple information
{S, P, O) triples. into fluent natural languags.
f_gen: kg_to_sentences{)
f_gen: extract_triples_from_subgraph{)

3. Aligned Triples: (X,aw,C, V)
Material (X_raw)

The structured subgraph data.

"node
{ i nl", "type": "Person",
"name Professor Eleonora"},
£ Mid": "n2", "type": “Work",
"name": "Theory of Fields"} ...

[P
"edges": [ { "source": "nl", "target": "n2",
"relation": "authored"} ]

Constraint (C)

A machine-readable callection of triples directly extracted from X_raw.

Subject Predicate Object

Professor Eleonora authored Theory of Fields
Professor Elecnora birth_year 1955
Theory of Fields publication_year 1992

Verifier (V)

Natural language text that is semantically identical to the Anchar.

"sentences": [
"Professor Eleonora authored the work
'Theory of Fields'.",
"Professor Eleonora was born in 1955.",
Theory of Fields' was published in 1992.",

Figure 22: Overview of the data generation pipeline for the KG to Text Biography (BioG) task.
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1. Attribute Sampling: 8 ~ ©

_Static Configuration
Define initial control parameters

» num_entries: 20
+ key_length: 32
« value_length: 32

Dynamic Attributes
Deferministically sampled in "generate_prompi()”
1. sample_id = Deterministic Seed
2. Sample target position percentage:

Target_peroent - 70%
3. Calculate target index:

Zarget_facex - round(S.) ¥ (20-1;) - 13
4. Generate target key-value pair for Anchor

2. Joint Generation (fgen)

Step A: Construct Anchor {A) and Target (T)

1. Dynamic attributes are packaged into a
structured Anchor {A).

2. The Target {T) is implicitly defined as
the ideal output satisfying all constraints in A.

Define Anchorl& Targst

Step B: Construct Raw Material {X;,,)

1. Anchor {A) is embedded into the task
instruction {}zsx).

2. Rules for background data are also included,
forming the Raw Material (X5,

3. The final prompt integrates Xw, fasi, and A.

3. Aligned Triples: (Xraw,C, V)
Material (X_raw)

Rules for background data (in prompt)
20

be random strings...
mast ke random stzings. ..

- Total entries:

Constraint (C)

Structured constraints to be met

.'target_key': 'GX...ZA’,
S tarqet_value': 'ka...q57,
'target_index': 13

Verifier (V)

The ideal, ground-truth output

Thbbb...', )
. (... 12 other cntrigh ..
SUEX...ZRA': 'kS...q5',

Figure 23: Overview of the data generation pipeline for the KV Dictionary Generation (KVG) task.

1. Attribute Sampling: 6 ~ ©

input_path = "./data/source.json"
num_docs = 1601

seed = 42

max_tokens_mapping = { ... }

Documents are classified into bins based on
character length, determining the final structure.

classify_by_length{):
if len <= €@00: return "1K"

Paragraph Reordering (PR)

2. Joint Generation (fgen)

Step A: Raw Data Preprocessing

Documents are sampled from a source dataset
and classified by length.

Step B: Paragraph Recombination & Segmentation

Paragraphs are merged, then re-segmented based on
“max_tokens to create the ordered Raw Material.
Ordered Segments (Xay)
Step C: Joint Derivation of Anchor & Targst

From the same Raw Material {X.ay):

1. Identity Transformation: The original order is

preserved as the Target (7).

2. Permutation {Shuffle): A copy is shuffled to

generate the verifiable Anchor (A).

3. Aligned Triples: (X,aw,C, V)
Material (X_raw)

Ordered base content generated from the source.

Segment 1

Segment 2

Segment 3

Constraint (C)

Verifiable query derived by shuffling X,

| Permutation (Shuffle)
'

Segment 2

Segment 3

Segment 1

Verifier (V)

Ground-truth answer corresponding to the Anchor.

Segment 1

Segment 2

Segment 3

Figure 24: Overview of the data generation pipeline for the Paragraph Reordering (PR) task.

10416




State Machine Simulation (SMS)

2. Joint Generation (fgen)

Step A: Generate Raw Material (X;aw)

Generate the full state machine definition.

generate_transition_table()

1. Attribute Sampling
+ num_states: Total number of states
+ input_size: Size of input alphabet Generate a prompt with a specific input.
+ output_size: Size of output alphabet generate_prompt()
« input_string_length: Length of input string
+ sample_id: Seed for reproducible generation.

generate_seed_from_id(id)

Step B: Generate Anchor (A)

Step C: Generate Target (T)

Process the Anchor's input with the state
machine to produce the verifiable Target.

state_machine.process_input{)

3. Aligned Triples: (Xiaw,C, V)
Material (X_raw)

The complete definition of the state machine.
Transition Rules: {
'$0': {'2': {'next':'S2', ‘output':'2'} },

'S1': {'1': {'mext':'s2', 'output':'1'} },
¥

Constraint (C)

The prompt containing the input string.
Initial State:'SQ’

"Your task is to simulate 2 state transition..."
“Based on the input string:‘219...'"

Verifier (V)
The unique, correct trace from X,y and A.

Current State | Input | Next State | Output

S0 |2 S2 | 2
20158 |@

Figure 25: Overview of the data generation pipeline for the State Machine Simulation (SMS) task.
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