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Abstract

Generating radiology reports from medical im-
ages has garnered sufficient attention in the
research community. While existing methods
have demonstrated promise, they often tend to
generate reports that are factually incomplete
and inconsistent, fail to focus on informative
regions within an image, and impose strong
annotation assumptions, such as bounding box
annotations, image level annotations (which
can be challenging to obtain) for model train-
ing. In this paper, we propose MediVLM, a
vision language model (VLM) for radiology
report generation from medical images. The
proposed model consists of a pre-trained ob-
ject detector to extract the salient anatomical
regions from the images, an image encoder, a
text encoder, a module to align the visual and
text representations, a cross attention layer to
fuse the two representations and finally, a trans-
former based decoder to generate the final re-
port. MediVLM can generate radiology reports
even when no reports are available for training;
this is an extremely useful feature, as curating
such reports is a labor-intensive task. Further,
it computes a severity score (depicting the seri-
ousness of a patient’s medical condition) from
the generated radiology reports, which can be
used to prioritize patients who need immedi-
ate medical attention. Our extensive empirical
analyses on three benchmark datasets corrob-
orate the promise and potential of our method
against competing baselines. Our code is open-
sourced in our project webpage at: https:
//sites.google.com/view/medivim/home

1 Introduction

Clinical radiology (such as X-rays, MRI scans etc.)
is a common type of medical imaging examina-
tion and is critical for identifying common diseases
such as pneumonia and lung cancer (Johnson et al.,
2019; Raoof et al., 2012). Given a radiograph, radi-
ologists manually examine the different anatomical
regions and describe both the normal and abnor-

MediVLM: Heart size is normal.
The lungs is clear. costophrenic are
clear. The bony thorax is grossly
intact. The chest is normal

GT: Heart size is normal. The lungs
and costophrenic XXXX are clear.
The bony thorax is grossly
intact.Normal chest.

Severity Score: 0.18

Figure 1: For a given medical image, MediVLM gener-
ates a free text radiology report, together with a severity
score denoting the seriousness of the patient’s medical
condition. Best viewed in color.

mal findings in a textual report (Goergen et al.,
2013). This is a time-consuming and tedious pro-
cess, given the large volume of radiology images
that need to be examined in daily clinical prac-
tice; the shortage of trained radiologists in many
healthcare systems further aggravates the problem
(Rimmer, 2017; Rosenkrantz et al., 2016). To ad-
dress these challenges, radiology report generation
(automatically generating a free-text description for
a clinical radiograph) has attracted significant re-
search attention in recent years (Wang et al., 2024).
It has the potential to expedite the automation of
workflows, alleviate the manual labor of radiolo-
gists, and improve the overall quality of healthcare.

While existing techniques for automated report
generation have depicted encouraging performance,
they often tend to generate reports that are incom-
plete (miss important observations in the images)
or inconsistent (contain factually incorrect infor-
mation) (Miura et al., 2021). Another drawback of
current methods is that most of them utilize image-
level visual features to generate reports and as a
result, fail to focus on specific regions within an
image that contain anatomical abnormalities (Xu
et al., 2021; Chen et al., 2020; Yeasin et al., 2024).
Further, some methods require specialized anno-
tations for report generation. The ICON method
(Hou et al., 2024) is based on lesion extraction and
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requires image-level annotations for model train-
ing, which can be challenging to obtain in certain
medical settings. The Region-Guided Radiology
Report Generation (RGRG) method requires fine-
grained annotations, such as bounding boxes, for
radiology report generation (Tanida et al., 2023),
which are expensive to obtain given the dearth of
trained radiologists.

In this paper, we propose MediVLM, a vision lan-
guage model for radiology report generation from
medical images to alleviate these challenges. Our
proposed method first extracts salient anatomical
regions from the given input images using a pre-
trained object detector. A visual encoder is then
used to extract spatial features from these patches;
at the same time, a language model is used as a
tokenizer to embed the input radiology reports into
latent representations. The image and text embed-
dings are aligned using contrastive learning and
fused together with a trainable cross attention mod-
ule. Finally, a transformer based language model
(decoder), with trainable attention layers, is used to
generate the medical report. MediVLM is trained
end-to-end using a loss function consisting of a
cross entropy loss term and a contrastive loss term.

The proposed MediVLM framework can be
trained in an unsupervised manner (when no reports
are available for training). We exploit a pseudo-
labeling strategy to address the absence of ground
truth reports and train the MediVLM using the gen-
erated reports, without requiring any architectural
modifications. This is an extremely useful feature,
as curating radiology reports is an expensive pro-
cess in terms of time, labor and human expertise.
Further, experienced radiologists are busy, which
further underscores the challenge of obtaining high
quality radiology reports for model training. Our
model also generates a severity score S for each
generated report, which depicts the criticality of
the patient’s medical condition. This score can be
taken into consideration while scheduling doctors’
appointments and can potentially mitigate the long
waiting times for patients with serious medical con-
ditions. Figure 1 depicts a sample output of our
system for a given medical image.

Our contributions in this paper can be summa-
rized as follows:

* We propose MediVLM, a VLM architecture to
generate radiology reports from medical images,
that consistently depicts impressive performance
against competing baselines.

* While existing methods require images together
with corresponding reports, our method can be
trained in an unsupervised manner (when no re-
ports are available for training). This is an ex-
tremely useful feature as obtaining reports is a
labor-intensive, tedious task and experienced ra-
diologists are rare and busy.

* Our MediVLM is also equipped with a capability
to compute a severity score corresponding to each
generated report, that quantifies the seriousness
of the patient’s medical condition, which can be
used to prioritize patients who need immediate
medical attention.

* We conduct extensive empirical studies on three
benchmark datasets; our results demonstrate the
efficacy of our method over competing baselines.

2 Related Work

Automatic radiology report generation has attracted
significant research attention in recent years; please
refer to (Wang et al., 2024) for a detailed survey.
Conventional methods: Earlier efforts adopted
CNN-RNN architectures to analyze medical im-
ages and generate diagnostic reports (Jing et al.,
2019, 2018; Li et al., 2018). More recent studies
have used the transformer model due to its effec-
tiveness (Vaswani et al., 2017). Chen et al. (Chen
et al., 2020) proposed a memory-driven transformer
(R2Gen) to generate radiology reports, which in-
troduces a memory module and a memory-driven
conditional layer normalization module into the
transformer decoder architecture. The design of
the memory module and layer normalization in-
spired several subsequent research. Chen et al.
(Chen et al., 2021) proposed cross-modal memory
networks (CMN) to enhance the encoder-decoder
framework for radiology report generation, where
a shared memory was designed to record the align-
ment between images and texts so as to facili-
tate the interaction and generation across modali-
ties. A few strategies have been exploited to bet-
ter attend to abnormal regions in an image, such
as iteratively aligning visual features and disease
tags (You et al., 2021), contrasting normal and ab-
normal images (Liu et al., 2021b) and exploiting
medical knowledge graphs (Liu et al., 2021a). A
radiologist-minded report generation framework,
X-RGen, was proposed by Chen ef al. (Chen
et al., 2024), which mimics the behavior of hu-
man radiologists by breaking the entire process
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down into four principal phases: initial observa-
tion, cross-region analysis, medical interpretation
and report generation. Yeasin et al. (Yeasin et al.,
2024) developed a transformer-based system called
Auto-Rad for Lumbar Spinal Stenosis diagnostics
and reporting. Hierarchical approaches have also
been studied (Johnson et al., 2016; Liu et al., 2019;
Nooralahzadeh et al., 2021), in which high-level
concepts are first extracted from the image and sub-
sequently decoded into individual sentences. Wang
et al. (Wang et al., 2022) introduced a multi-head
transformer that was applied to patch features from
a CNN backbone, with each head assigned to a
specific anatomical region, generating sentences
exclusively for that region. Along similar lines,
Tanida et al. (Tanida et al., 2023) proposed an
explainable framework called Region-Guided Ra-
diology Report Generation (RGRG) method that
detects anatomical regions and generates individual
descriptions for each.

Other methods: Reinforcement learning (RL)
based methods have also been exploited for radiol-
ogy report generation and improving clinical accu-
racy (Nishino et al., 2022; Delbrouck et al., 2022).
Qin and Song (Qin and Song, 2022) proposed an
RL approach over a cross-modal memory (CMM)
to better align visual and textual features for radi-
ology report generation. Multiple instance learn-
ing has also been used for histopathology report
generation by aligning whole slide images and di-
agnostic reports from local and global granularity
(Guo et al., 2024). Data augmentation techniques
like mixup have been used in this context to en-
sure that the representations of the semantically
equivalent lesions align with the same attributes, so
as to maintain inter-report consistency (Hou et al.,
2024). A line of research has focused on exploit-
ing the temporal structure, i.e. prior images and
reports (if available) for report generation (Bannur
et al., 2023; Hou et al., 2023). Researchers have
also studied the problem of report generation in
the unpaired setting (where paired image-report
data is unavailable for training) by leveraging in-
formation in two distinct datasets, one containing
reports and the other containing images (Hirsch
et al., 2024b,a).

While these methods have depicted encouraging
performance, they often tend to generate reports
that are inaccurate and incomplete (Miura et al.,
2021), fail to focus on the informative anatomical
regions in the images (Chen et al., 2020; Yeasin
et al., 2024; Xu et al., 2021) and impose strong an-

notation constraints, such as image-level or bound-
ing box annotations (Tanida et al., 2023; Hou et al.,
2024).

Image Captioning: Radiology report genera-
tion is largely inspired by research in image cap-
tioning (Vinyals et al., 2015; Xu et al., 2015; You
et al., 2016). However, while the key ideas from
the image captioning domain can be applied to radi-
ology report generation, there are a few important
differences: (i) radiology reports are much longer
and more diverse than typical image captions, due
to the multiple anatomical regions within an image;
(77) generating descriptions of specific but crucial
abnormalities is challenging due to the heavy data
imbalance towards normal images and normal re-
ports.

3 Method

3.1 Overview

Figure 2 depicts an overview of the MediVLM ar-
chitecture. It consists of five modules, which are
described in detail next. We also discuss the loss
function used to train the VLM and how MediVLM
computes a severity score for each generated report.
One of the features of our framework is that it can
generate reports when only images and no reports
are available for training. This is achieved by using
a frozen Clinical BERT encoder and a fine-tuned
BioT5 decoder to derive coherent pseudo-reports
from the informative patches identified by Faster
R-CNN, and then using the pseudo-reports as sur-
rogate supervision to fine-tune a GPT-2 decoder.
Our framework is modular, allows seamless inte-
gration of other image / text encoders and decoder
components (depending on the application) and can
be trained in an unsupervised manner to generate
lucid medical reports.

3.2 Modules

(1) Object detector (frozen): Given a medical
image, we first applied a Faster R-CNN object de-
tection model (Ren et al., 2015), pre-trained on
the MS-CXR dataset (Boecking et al., 2022) with
a ResNet-34 backbone. Faster R-CNN consists
of a region proposal network (RPN), which gener-
ates object proposal bounding boxes of potential
anatomical regions. The image patches correspond-
ing to these bounding boxes were used for further
analysis. This allows the model to focus on the
important regions of interest within the image for
generating the report.
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Figure 2: The proposed MediVLM architecture

(2) Image encoder (frozen): We used the p most
confident patches (produced by Faster R-CNN),
which were cropped and resized into fixed dimen-
sions. A CLIP-ViT model (Radford et al., 2021)
was then used as the image encoder to extract spa-
tial features from these patches. While our model
extracts Region of Interest (ROI) from the images,
it does not discard spatial position information. The
bounding box coordinates (x,y,w, h) generated
by Faster R-CNN were encoded to capture the spa-
tial location of each cropped and resized patch by
normalizing these coordinates and passing them
through a Multi-Layer Perceptron (MLP) to pro-
duce fixed-size vectors matching CLIP’s embed-
ding dimensions. These position embeddings were
then concatenated with CLIP’s image embeddings
to provide the GPT-2 decoder (detailed below) with
clinically interpretable spatial priors.

(3) Text encoder (frozen): We used Clinical BERT
(Huang et al., 2020) as the text encoder to tokenize
the input radiology reports and embed them into
latent representations. Clinical BERT is a BERT
model specifically designed for clinical text pro-
cessing, and is thus well-suited for our application.
The model is pre-trained on a large corpus of clin-
ical notes from the Medical Information Mart for
Intensive Care III (MIMIC-III) dataset. Our initial
experiments revealed that using ClinicalBERT as
the text encoder, rather than the CLIP text encoder,
produces much better text embeddings, which im-
prove the overall performance of the model. Our
analysis also revealed that the input radiology re-
ports often contain partial / incomplete sentences
and incoherent text. To address this, we applied a
BioT5 (Zhang et al., 2023b) decoder (fine-tuned
with both clinical labels and partial reports from

MIMIC-CXR) on the encoded text, to produce a
refined embedding that corresponds to a concrete
and coherent textual report.

(4) Image-text alignment and fusion (trainable):
As mentioned before, we used CLIP-ViT as the
image encoder and Clinical BERT as the text en-
coder. As these models are pre-trained on different
datasets, it is necessary to align the image and text
representations before attempting to fuse them. Af-
ter the image and text were encoded, we sampled N
(image-text) pairs (v;, t;), % = 1,... N in a training
mini-batch. The i** image-text pair was aligned
using the contrastive loss function (Radford et al.,
2021):

Lo XP({vi i) /7)
N exp((vi, ;) /7)

where (.) denotes cosine similarity and 7 is a tem-
perature parameter. The goal of this loss term
was to learn modified image and text representa-
tions, such that positive (image-text) pairs were
encoded to similar (closer) representations and neg-
ative pairs were encoded to different (farther) rep-
resentations. This alignment is conducted in the
projection layer (Figure 2). Following (Chang and
Venkataraman, 2025), the modified visual and text
representations (after alignment) were passed on to
a cross attention layer to fuse the two into a latent
representation:

ey

A _
contrast —

F = CrossAttention(Vyiigned, Tatigned) — (2)

The final fused representation F was fed into a
language model for report generation.
(5) Language model (fine-tuned): We used the
following layers from the pre-trained GPT-2 model
(Radford et al., 2019), as our language decoder.
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Multi-Head Self-Attention (MHSA): Trans-
former models adopt the scaled dot-product atten-
tion, where the output is a weighted sum of the val-
ues (), where the weight assigned to each value
is determined by the dot-product of the query (Q)
with all the keys (K') (Vaswani et al., 2017):

NG

The multi-head mechanism enables the model to
run through the scaled dot-product attention mul-
tiple times in parallel, and jointly attend to infor-
mation from different representation subspaces at
different positions (Vaswani et al., 2017). The in-
dependent attention outputs are concatenated, fol-
lowed by linear transformation:

KT
Attention(Q, K, V') = softmax (Q > vV 3

MHSA(Q, K, V') = Concat(head , . . . , head;, ) W
“4)

where each attention head is computed as:
head; = Attention(QW<, KWX VW) (5)

where WZ»Q, WZK , WZV and WO are parameter ma-
trices to be learned. Attention dropout is added for
better generalization.

Feed-Forward Network (FFN): The feed-
forward network (FFN) operates on the output of
the multi-head attention and is used to further pro-
cess the attention outputs and capture more com-
plex transformations. The FFN consists of two
fully connected layers with the non-linear GELU
activation function applied between them.

Residual Connection and Layer Normaliza-
tion: Layer normalization stabilizes the inputs to
each transformer layer by normalizing the hidden
unit activations within the layer, ensuring they have
zero mean and unit variance. Residual connections
add the input of a layer back to its output, creating
a shortcut for the gradient during backpropagation.
Residual connections prevent vanishing or explod-
ing gradients by enabling gradients to flow more
directly through the network, especially in deep
models like GPT-2. Layer normalization and resid-
ual connections are applied after the multi-head
self-attention and feed-forward network stages to
ensure stability and efficient learning.

As shown in Figure 2, these layers constitute
one transformer block; we concatenated four such
blocks in MediVLM, which were fine-tuned using
our training data.

Report generation: After the input tokens pass
through all the stacked transformer blocks, we get
a refined set of hidden representations, one for each
token in the input sequence. The fully connected
layer takes this hidden state of each token from the
final transformer block and maps it to the size of the
vocabulary, producing logits. The logits are then
passed through a softmax function, which trans-
forms them into a probability distribution, allowing
the model to predict the most likely next token in
the sequence, thus generating the final report.

3.3 Loss Function

To train MediVLM, we used the cross entropy loss
between the predicted tokens in the generated re-
port and the ground truth tokens:

K
Lop=—Y yrlog(pr)
k=1

(6)

where y;, is the true value, and py is the predicted
probability for token k. We also included a con-
trastive loss term (as depicted in Equation (1)). The
overall loss function is given by:

L= )\IECE + A2£comtmzst (7)
where A\; and \g are weights governing the relative
importance of the two terms. Note that, the cross
entropy loss was used to train the cross attention
fusion module, as well as fine-tune the transformer
blocks in the GPT-2 decoder. The contrastive loss
was used to align the visual and text embeddings
(from the respective encoders) within the projection
layer, before passing them on to the cross attention
fusion module.

3.4 Severity Score Computation

One of the useful features of MediVLM is that it
computes a severity score corresponding to each
generated report, depicting the seriousness of the
patient’s medical condition. The severity score of
areport d was computed using the term frequency-
inverse document frequency (TF-IDF) score (Sam-
mut and Webb, 2011). The TF-IDF score of a term
t in a document d is a metric that measures how rel-
evant the term is to the document. We constructed a
set Ts = {t1,ta,...,t,} containing a collection of
terms relevant to severity. T might include terms
like “severe”, “critical”, “unstable”, “emergency”,
“shock” etc. The severity score for a report d was
computed as the sum of the TF-IDF scores of the
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severity-related terms 7 in d:

S(d) = »_ TF-IDF(t;,d) ®)
t;€Ts

We normalized the severity scores across all the
generated reports to derive a score between 0 and
1. Our empirical results demonstrate that such a
simple strategy of computing the severity score
can be useful in understanding the criticality of a
patient’s medical condition.

3.5 Unsupervised Training of MediVLM

We propose a novel unsupervised learning frame-
work for radiology report generation that operates
in the absence of annotated reports during training,
thereby addressing a critical bottleneck in med-
ical Al, where expert-curated reports are expen-
sive to acquire. Given an image z;, the Faster R-
CNN detector produces semantic label and box
pairs (I;, b;); the label [; is passed as an input to
the frozen ClinicalBERT model to produce an em-
bedding. As with supervised training, a BioT5 de-
coder is used to produce concrete clinical sentence
embeddings based on the ClinicalBERT encoded
output, and refine the clinical text via autoregres-
sive decoding to generate a pseudo-report. Un-
like existing methods that rely on fully supervised
data, our method learns to produce coherent and
diagnostically relevant pseudo-reports from raw
semantic labels or partially observed text. As be-
fore, the image and text embeddings are aligned
via contrastive learning and passed as input to
a GPT-2 decoder, to generate reports autoregres-
sively. The training targets are the pseudo-reports
generated from the pseudo-labeling pipeline, and
the decoder is optimized to minimize the token-
level cross-entropy loss between the generated se-
quence and the pseudo-report. To the best of our
knowledge, this is the first framework to combine
CLIP-style (image - text) alignment, Clinical BERT-
based encoding, and BioT5-driven modeling in a
self-supervised medical imaging pipeline. This
setup enables our GPT-2 model to learn to gener-
ate clinically coherent reports even in the complete
absence of annotated training reports.

4 Experiments and Results

Datasets. We used three benchmark datasets to
study the performance of MediVLM: (7) IU X-Ray
(Demner-Fushman et al., 2016), a public radiog-
raphy dataset collected by Indiana University; (i)

CASIA-CXR (Metmer and Yang, 2024), consist-
ing of high-resolution chest radiographs accompa-
nied by narrative reports written in French (we used
the Pneumonia category in our experiments); (i4i)
MIMIC-CXR (Johnson et al., 2019), the largest
publicly available dataset of chest radiographs with
free-text radiology reports. The statistics of these
datasets are shown in Section A.2 of the Appendix.
Evaluation Metrics. We evaluated the perfor-
mance of our model on widely used natural lan-
guage generation (NLG) metrics such as BLEU (Pa-
pineni et al., 2002), METEOR (Banerjee and Lavie,
2005) and ROUGE-L (Lin, 2004), which measure
the similarity between the generated and reference
reports. We also evaluated the performance of our
model using metrics that assess the clinical / diag-
nostic relevance of Al generated medical reports,
such as BERTScore(Zhang et al., 2019), RadGraph-
F1(Yu et al., 2023) and RaTEScore(Zhao et al.,
2024).

Comparison Baselines. We used five recent meth-
ods as comparison baselines in our work: (%)
R2Gen (Chen et al., 2020); (ii) X-RGen (Chen
et al., 2024); (i7i) CMN (Chen et al., 2021); (iv)
HistGen (Guo et al., 2024); and (v) RL (Qin and
Song, 2022). These baselines were selected to
cover a wide range of report generation techniques,
including memory-driven transformers, methods
that mimic the behavior of human radiologists,
methods based on multiple instance learning and
reinforcement learning. For the MIMIC-CXR
dataset, we used several other comparison base-
lines, as detailed in Table 1.

Implementation Details. Please refer to Section
A.1 of the Appendix for our implementation and
training parameter details.

4.1 Main Results

The results are depicted in Table 1. For the IU
X-Ray dataset, MediVLM comprehensively out-
performs all the baselines and achieves the highest
scores in terms of all the metrics. This shows the
efficacy of our method and its ability to outperform
recently proposed methods like HistGen and X-
RGen. For the CASIA-CXR (Pneumonia) dataset,
R2Gen achieves the highest BLEU-4 score and
X-RGen achieves the highest BLEU-3 score. Medi-
VLM achieves the best results in the other 4 metrics.
These results are particularly encouraging as they
corroborate that MediVLM can depict promising
results even when the radiology reports are pro-
vided in a language other than English. We com-
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Dataset Method Year BLEU-1 BLEU-2 BLEU-3 BLEU-4 METEOR ROUGE-L
R2Gen(Chen et al., 2020) 2020 0451 0288 0212  0.167  0.183 0.362
X-RGen(Chen et al., 2024) 2024 0454 0290 0210  0.161 0.187 0361
U X-Ray CMN(Chen et al., 2021) 2021 0408 0242 0160  0.113 0.165 0313
HistGen(Guo et al., 2024) 2024 0427 0249 0172 0.128 0.161 0.335
RL(Qin and Song, 2022) 2022 0280  0.35 0064  0.029 0.119 0.220
Ours 0471 0296 0231  0.170 0.194 0.375
R2Gen(Chen et al., 2020) 2020 0623 0568 0530  0.498 0.357 0.614
X-RGen(Chen et al., 2024) 2024 0.642 0578 0531 0492 0352 0.615
. CMN(Chen et al., 2021) 2021 0565 0501 0458  0.424 0313 0.536
CASIA-CXR (Pneumonia) HistGen(Guo et al., 2024) 2024 0587 0525 0488 0455 0315 0.541
RL(Qin and Song, 2022) 2022 0182 0133 0107  0.088 0.142 0.186
Ours 0.673 0582 0510 0476 0.371 0.628
R2Gen(Chen ct al., 2020) 2020 0353 0218 0.145  0.103 0.142 0277
CMN (Chen et al., 2021) 2021 0353 0218 0148  0.106 0.142 0278
PPKED(Liu et al., 2021a) 2021 0360 0224 0149  0.106 0.149 0.284
M?2 TR. PROG. (Nooralahzadeh et al., 2021) 2021 0378 0232 0.154  0.107 0.145 0272
MIMIC-CXR AlignTransformer(You et al., 2021) 2021 0.378 0.235 0.156 0.112 0.158 0.283
KnowMat(Yang et al., 2022) 2022 0363 0228  0.156  0.115 . 0.284
CMCA(Song et al., 2022) 2022 0360 0227 0156  0.117  0.148 0.287
RAMT(Zhang et al., 2023a) 2023 0362 0229 057  0.113 0.153 0.284
MedCycle(Hirsch et al., 2024a) 2024 0352 0.194  0.114  0.070 0.132 0.241
MedRAT(Hirsch et al., 2024b) 2024 0365 ; . 0.086 0.132 0.251
Ours 0377 0246 0158  0.123 0.149 0.293

Table 1: Performance comparison of MediVLM on the IU X-Ray, CASIA-CXR and MIMIC-CXR datasets. For [U
X-Ray and CASIA-CXR, the results of the baselines were obtained using the official codes provided by the authors.
The results of the baselines for MIMIC-CXR were cited from (Tanida et al., 2023; Hou et al., 2024; Hirsch et al.,
2024a,b). The best results are marked in bold and the second best results are underlined.

Dataset BLEU-1 BLEU-2 BLEU-3 BLEU-4 METEOR ROUGE-L
IU X-Ray 0.241 0.158 0.124 0.077 0.09 0.188
CASIA-CXR (Pneumonia) 0.378 0.278 0.227 0.294 0.191 0.293
MIMIC-CXR 0.203 0.121 0.096 0.059 0.104 0.168

Table 2: Performance of MediVLM in the unsupervised setup (only images, no reports available for training) on

the IU X-Ray, CASIA-CXR, and MIMIC-CXR datasets.

pared the performance of our method against sev-
eral recent baselines for the MIMIC-CXR dataset.
MediVLM achieves the highest scores across 4 met-
rics and the second highest score across 1 metric.
These results corroborate the promise and potential
of MediVLM to generate high quality radiology
reports from medical images, and address the real-
world challenge of the shortage of trained radiolo-
gists in many healthcare systems.

4.2 Results using Clinical / Diagnostic
Relevance Metrics

Table 3 reports the results of MediVLM and several
recent baseline methods on the IU X-Ray dataset,
using 3 metrics based on clinical / diagnostic rele-
vance: BERTScore, RadGraph-F1 and RaTEScore.
MediVLM comprehensively outperforms all the
baselines in terms of all the three metrics. X-RGen
produces the second best results and MediVLM
outperforms X-RGen by 0.093, 0.019 and 0.036 in
terms of the three metrics respectively. This corrob-

orates the efficacy of MediVLM to generate reports
that capture clinically relevant information.

4.3 Unsupervised Training Results

Table 2 reports the results of MediVLM in the chal-
lenging setting where only images and no reports
are available during training. As expected, the
values are lower than those in the completely super-
vised setup (Table 1). However, our unsupervised
method outperforms the RL baseline (supervised)
for the CASIA-CXR dataset in terms of all the met-
rics. It also outperforms the RL baseline in terms
of the BLEU-2, BLEU-3 and BLEU-4 metrics for
the IU X-Ray dataset. This shows the efficacy of
our pseudo-labeling pipeline (detailed in Section
3.5) to generate pseudo-reports and address the
challenge of training MediVLM in the absence of
ground truth radiology reports. These results are
particularly encouraging, considering the shortage
of trained radiologists for the labor-intensive task
of report transcription from medical images.
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Method BERTScore RadGraph-F1 = RaTEScore
R2Gen(Chen et al., 2020) 0.487 0.251 0.603
X-RGen(Chen et al., 2024) 0.523 0.387 0.686
CMN(Chen et al., 2021) 0.509 0.281 0.603
HistGen(Guo et al., 2024) 0.466 0.205 0.559
RL(Qin and Song, 2022) 0.331 0.228 0.389
RGRG(Tanida et al., 2023) 0.437 0.223 0.620
VLCI(Chen et al., 2023) 0.455 0.288 0.679
RadFM(Wu et al., 2023) 0.459 0.230 0.627
RaDialog(Pellegrini et al., 2023) 0.444 0.205 0.586
CvT2DistilGPT2(Nicolson et al., 2023) 0.482 0.265 0.620
Ours 0.616 0.406 0.722

Table 3: Performance comparison of MediVLM on the IU X-Ray dataset using clinical / diagnostic relevance
metrics (BERTScore, RadGraph-F1 and RaTEScore). The results of the first 5 baselines were obtained using the
official codes provided by the authors. The results of the next 5 baselines were cited from https://rexrank.ai/
?utm_source=chatgpt.com. Best results are marked in bold and the second best results are underlined.

ClinicalBERT  Selective Patching BLEU-1 BLEU-2 BLEU-3 BLEU-4 METEOR ROUGE-L
v X 0.426 0.222 0.18 0.145 0.138 0.311
X v 0.396 0.204 0.191 0.136 0.120 0.307
v v 0.471 0.296 0.231 0.170 0.194 0.375

Table 4: Ablation study results . Best results are marked in bold.

Performance Analysis. Medical reports are often
known to contain language complexities like abbre-
viations, unfinished sentences etc. which can de-
grade the performance of models trained to gener-
ate reports. MediVLM leverages a pre-trained Clin-
icalBERT text encoder (that is specifically trained
for clinical text processing) and a fine-tuned BioT5
decoder that refines clinical text via autoregressive
decoding and produces coherent sentence embed-
dings from partially observed / incomplete text,
thereby mitigating the aforementioned issues. Fur-
ther, MediVLM uses a pre-trained Faster R-CNN
model to extract the salient patches from an input
medical image that enable the model to focus on
the clinically relevant portions, and avoid irrele-
vant / redundant details. These factors result in the
improved performance of MediVLM in terms of
both natural language generation metrics, as well
as clinical / diagnostic relevance metrics, as evident
from Tables 1 and 3 respectively.

4.4 Ablation Studies

We conducted ablation studies on the IU X-Ray
dataset to study the effects of two components in
our MediVLM architecture: (i) extracting the im-
age patches containing the salient anatomical re-
gions using the Fast R-CNN model; and (77) using
the Clinical BERT as the text encoder to tokenize
the input radiology reports. The results are reported
in Table 4. We note that, if we pass the entire im-

age to the visual encoder (instead of passing only
the salient anatomical regions), the performance
degrades in terms of all the metrics. This shows
that extracting the salient image patches for the
model to focus on, results in a performance im-
provement. We also note that using the CLIP text
encoder (instead of Clinical BERT) to tokenize the
reports, results in a performance drop in terms of
all the metrics. This shows the utility of Clinical-
BERT, which is specially trained for clinical text
processing, as the text encoder of MediVLM. A
general purpose text encoder like CLIP may not
be able to aptly capture the information specific
to medical reports. The best results are obtained
when both the components are included, as in our
MediVLM architecture.

S Visual Hlustrations: Unsupervised
Training of MediVLM

Figure 3 depicts a couple of low severity exam-
ples on the IU X-Ray dataset, when MediVLM is
trained in an unsupervised manner (only images
and no reports are available for training). For the
first image, the GT report mentions that the heart
size is normal, the lungs are clear with no signs of
consolidation, the hilar and mediastinal contours
are normal, and there are no acute abnormalities.
All these findings are appropriately captured in the
MediVLM report. Further, since there are no abnor-
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GT: Heart size is normal.

Severity Score: 0.22

MediVLM(Unsupervised): The heart is of normal size with no abnormalities.
. The structures around the lungs, including the mediastinum and hilar regions are
normal. Overall, there are no acute or concerning findings.

pneumothoraces. The hilar and mediastinal contours are normal. Normal pulmonary vascularity. No acute abnormality.

. No pleural effusions or

Severity Score: 0.23

MediVLM(Unsupervised): The heart is normal size and the contours of the mediastinal area are unremarkable. The
lungs appear clear with no visible signs of infection, fluid accumulation. The rib structures are intact with no evidence of
fractures or dislocations. Overall, the examination reveals

GT: Heart size and cardiomediastinal contours are normal. Lungs are clear without focal airspace opacity, pleural
effusion, or pneumothorax. No displaced rib fracture.

Figure 3: Low severity examples on the IU X-Ray dataset. Report generated using unsupervised training of
MediVLM (only images, no reports available for training). Matching texts in the ground truth report and the
generated output are highlighted with the same color. Best viewed in color.

malities, this has been designated as a low severity
case (score = 0.22). The same observations are
evident for the second image, where MediVLM
correctly captures the important findings and des-
ignates it to be a low severity case, as there are no
significant abnormalities.

These examples demonstrate that MediVLM can
appropriately capture the important findings in a
medical image even when no radiology reports are
available for training. It can also compute a severity
score which appropriately reflects the seriousness
of a patient’s medical condition, even when it is
trained in an unsupervised manner. These results
are extremely important from a practical standpoint,
given the shortage of trained radiologists to conduct
the labor-intensive task of report transcription.

We include an analysis of the values of different
parameters (Section A.3) and more visual illustra-
tions demonstrating the performance of MediVLM
and the severity scores (Section A.4) in the Ap-
pendix.

6 Conclusion

In this paper, we proposed MediVLM, a vision
language model for radiology report generation
from medical images. Apart from report genera-
tion, MediVLM also furnishes a severity score for
each generated report, depicting the seriousness of
the patient’s medical condition, which can be used
to prioritize patients who need immediate medical
attention. Further, it can also generate reports when
only images and no reports are available for train-
ing; this is an extremely useful feature, as curating
such reports is a labor-intensive task. Our exten-

sive empirical results on three benchmark datasets
(including a dataset where the reports are provided
in French) corroborated the promise and potential
of our framework against competing baselines.

7 Limitations

Although our framework has depicted promising
performance, it still has some limitations. The tex-
tual reports and severity scores generated by Medi-
VLM were not validated by medical professionals
for their correctness (this is an integral part of our
ongoing research). A qualitative user study with
domain experts will further validate the usefulness
of MediVLM for clinical applications. Further, our
framework generates radiology reports from Chest
X-ray images; future investigations should extend
its applicability to other types of medical images.
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A Appendix

In this Appendix, we provide the following:

* The implementation and training parameter
details (Section A.1)

* The split (train / val / test) used to train our
models for each dataset (Section A.2)

* Parameter value analysis (Section A.3)

* Visual illustrations depicting the performance
of MediVLM (Section A.4)

A.1 Implementation Details

Each input image was resized to 224 x 224 pix-
els. Patches of size 28 x 28 were then extracted
using the Fast R-CNN object detector. We used the
top 8 patches with the highest confidence scores,
which were passed to the CLIP-ViT-L/14 model
for visual feature extraction. The ClinicalBERT
text encoder was used to tokenize the input report.
The BioT5 decoder was used in conjunction with
Clinical BERT and was fine-tuned to refine clinical
text to produce coherent sentence embeddings. The
GPT-2 decoder model was fine-tuned with learning
rate of 2.7 and a batch size of 32. The fine-tuning
converges between 30 and 50 epochs. We used the
AdamW optimizer to fine tune the GPT-2 decoder.
The same parameters were used to train the cross at-
tention layer. The values of A; and A2 in Equation
(7) were taken as 1 and 0.7 respectively. The value
of the temperature parameter 7 in Equation (1) was
taken as 0.07. We used Python’s Natural Language
Toolkit (NLTK) to capture tokens from the input
radiology reports, and NLTK’s SentimentAnalyzer
to identify the positive and negative tokens. The
negative tokens were used to construct the set 7’
for severity computation. Our code will be made
publicly available upon acceptance of our paper.
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A.2 Dataset Splits

The number of samples in the training, validation
and test sets for the IU X-Ray, CASIA-CXR and
MIMIC-CXR datasets are reported in Table 5.

A.3 Parameter Value Analysis

In this section, we study the effects of different
parameters on the performance of MediVLM.
Number of patches. We conducted an experiment
to study the effect of the number of patches selected
by the Faster R-CNN model, which are passed onto
the image encoder. The results on the IU X-Ray
dataset for 6, 8,12 and 16 patches are reported in
Table 6. We note that using 8 patches produces the
best results across most of the metrics; we therefore
used this value in our experiments.

Number of sentences. We also conducted an ex-
periment to study the effect of the number of sen-
tences (maximum number of allowable tokens) in
the report generated by MediVLM. The results on
the IU X-Ray dataset with 60, 77 and 80 maximum
allowable tokens (which correspond to 3, 4 and 5
sentences respectively) are reported in Table 7. We
used 77 max tokens (4 sentences) in our experi-
ments, as it produces the best results across most
of the metrics.

Weight parameters. We further conducted an ex-
periment to study the effects of the weight parame-
ters A1 and As in the training loss function (Equa-
tion (7)). The results on the IU X-ray dataset with
different combinations of the parameter values are
presented in Table 8. We note that A\; = 1 and
Ao = 0.7 produces the best results across most of
the metrics. We therefore uses these values in our
experiments.

A.4 Visual Hlustrations

A.4.1 MediVLM vs. Baselines

Figure 4 provides comparative visual illustrations
of the reports generated by all the methods for two
given medical images from the IU X-Ray dataset.
For the first image, the GT report mentions four
major findings: (i) the lungs are clear (with no
effusion or pneumothorax); (ii) the heart size is
normal; (iii) the bony thorax is unremarkable;
and (iv) cardiopulmonary abnormalities are ab-
sent. The baseline methods capture some of these
findings, but fail to capture all four. For instance,
RL only captures information about the clear lungs.
HistGen mentions about the normal heart and no
pleural effusion. R2Gen and X-RGen capture infor-

mation about normal heart, clear lungs and no effu-
sions. CMN captures information about the normal
heart and lungs, with no pleural effusions and no
bony findings. MediVLM is the only method that
correctly captures all these four findings (evident
from the matching colors in the text).

The same observation is evident for the second
image, where MediVLM aptly captures all the im-
portant findings mentioned in the GT report (nor-
mal heart size, prominent right paratracheal soft
tissue density, rounded mass with correct measure-
ment in the right middle lobe, absence of pleural
effusions, intact bony thorax, right mid lung mass
with mild right paratracheal soft tissue), and even
recommends a further imaging with a CT scan of
the chest. The baseline methods each capture only
a subset of the findings, but not all of them. These
results further corroborate the efficacy of Medi-
VLM over the competing baselines and account for
its superior performance in Table 1.

A.4.2 MediVLM: Severity Scores

Visual illustrations of a few low severity cases on
the IU X-Ray dataset are show in Figure 5. For
the first image, for instance, the GT report men-
tions that the cardiac and mediastinal contours are
within normal limits, the lungs are clear, the bony
structures are intact and there are no acute findings
overall. Each of these findings is captured correctly
in the MediVLM report. This has been designated
as a low severity case (score = 0.18) as there are no
acute abnormalities. The same pattern is evident
in all the other images, where MediVLM captures
the primary findings mentioned in the GT report.
Further, these reports are mostly normal with few
serious concerns and are thus designated as low
severity cases.

Visual illustrations of a few high severity cases
on the IU X-Ray dataset are shown in Figure 6.
For the first image, for instance, the GT report
mentions that the heart is mildly enlarged, the
lung volumes are low, the bony structures are
within normal limits and there is no free air under
the diaphragm. A mild amount of abnormality
is visible in the transverse colon. Overall, there
are no acute cardiopulmonary findings. All of
these findings are aptly captured in the report
generated by MediVLM. This has been designated
as a moderately high severity case (score = 0.69)
due to the mildly enlarged heart and the presence
of an abnormality in the transverse colon. A
similar pattern is evident for all the examples
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Datasets

Splits 1y X-Ray MIMIC-CXR  CASIA-CXR®
Image Report Image Report Image Report

Train 52K 28K 369.0K 222.8K 1.8k 1.8k

vVal 07K 04K 3.0K 1.8K 0.1k 0.1k

Test 15K  0.8K 5.2K 33K 0.1k 0.1k

Table 5: Details of the IU X-RAY, MIMIC-CXR, and CASIA-CXR*(Pneumonia only) datasets

No. of patches BLEU-1 BLEU-2 BLEU-3 BLEU-4 METEOR ROUGE-L
6 0.437 0.269 0.228 0.167 0.165 0.348
8 0.471 0.296 0.231 0.170 0.194 0.375
12 0.477 0.279 0.227 0.199 0.181 0.350
16 0.473 0.283 0.226 0.197 0.179 0.353

Table 6: Study of the effect of the number of patches used for visual encoding on the IU X-Ray dataset. Best results

are marked in bold.

No. of sentences BLEU-1 BLEU-2 BLEU-3 BLEU-4 METEOR ROUGE-L
3 (60 tokens) 0.463 0.257 0.201 0.169 0.165 0.351
4 (77 tokens) 0.471 0.296 0.231 0.170 0.194 0.375
5 (80 tokens) 0.471 0.249 0.211 0.192 0.170 0.346

Table 7: Study of the effect of the maximum number of allowable tokens (number of sentences) in the generated
report on the IU X-Ray dataset. Best results are marked in bold.

A1 (CE) Ao (Contrastive)‘BLEU—l BLEU-2 BLEU-3 BLEU-4 METEOR ROUGE-L

1 0.5 0.438  0.267 0.21 0.158 0.189 0.367

1 1 0463 0292 0225 0.172 0.19 0.373

1 2 0.389  0.247  0.191 0.135 0.154 0.316

0.5 1 0.378  0.241 0.187  0.136 0.158 0.321

Ours 1 0.7 0471 0296 0.231 0.170 0.194 0.375

Table 8: Study of the effects of the weight parameters A1 and Aq in the training loss function (Equation (7)) on the

IU X-Ray dataset. Best results are marked in bold.

where MediVLM captures the important findings
mentioned in the GT report. Due to the presence of
notable abnormalities, all of these are designated
as high severity cases (with high severity scores).

These examples further demonstrate that
MediVLM can capture the important medical
information from images and generate high
quality reports summarizing the findings. It can
also compute a meaningful severity score which
appropriately determines the severity of a patient’s
medical condition, which can be used to identify
patients that need immediate medical attention.

A.4.3 MediVLM: Unsupervised Training

A couple of high severity examples on the IU X-
Ray dataset are depicted in Figure 7, when Medi-
VLM is trained in an unsupervised manner (only
images and no reports are available for training).
For the first image, the GT report mentions that
the lung volumes are low, the heart size is bor-
derline enlarged; otherwise, no typical findings
of pulmonary edema are noted. These are all cor-
rectly captured in the report generated by Medi-
VLM. This has been designated as a moderately
high severity case (score = 0.46) due to the enlarged
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R2Gen: Heart size normal. Lungs are clear. No pneumonia effusions edema pneumothorax adenopathy
nodules or masses.

X-RGen: The heart is normal in size. The lungs are clear. There is no pleural effusion or pneumothorax .
RL: The lungs are clear. No pleural effusion or pneumothorax.

HistGen: The cardiomediastinal silhouette is normal in size and contour and contour. There is no
pneumothorax pleural effusion or focal air space opacity.

CMN: The cardiomediastinal silhouette and pulmonary vasculature are within normal limits in size. The lungs
are clear of focal airspace disease pneumothorax or pleural effusion. There are no acute bony findings.

MediVLM: The lungs appear normal without any signs of infection, fluid buildup, or collapsed areas. The heart is of normal size, indicating no visible
enlargement or abnormalities. The bones of the chest do not show any significant issues. Overall, there are no signs of any acute heart or lung

problems.

GT: Lungs are clear without focal consolidation, effusion, or pneumothorax. Normal heart size. Bony thorax grossly unremarkable. Negative for acute
cardiopulmonary abnormality.

R2Gen: The heart is normal in size. The mediastinum is stable. the lungs are clear.
X-RGen: The heart is normal in size. The lungs are clear. There is no pleural effusion or pneumothorax.
RL: The heart is normal in size. The lungs have some problems. There is no pleural effusion or pneumothorax .

HistGen: Lateral views of the chest were obtained. The heart is normal in size and contour. There is no acute
bony abnormality.

CMN: The heart is normal in size. The mediastinum is unremarkable. The lungs are clear.

MediVLM: The heart is normal in size, but there is a prominent right paratracheal soft tissue density. A rounded mass measuring approximately 4.6
cm x 3.7 cm is seen in the right middle lobe, with mild surrounding airspace disease or atelectasis. No pleural effusions are noted, and the bony thorax
appears intact. The right mid-lung mass, along with the paratracheal soft tissue, may indicate associated lymphadenopathy, and further imaging with
a CT scan of the chest is recommended.

GT: The heart is normal in size. Prominent right paratracheal soft tissue density. Rounded mass in the right middle lobe measures approximately 4.6
cm x 3.7 cm. There is mild surrounding airspace disease and/or atelectasis. No pleural effusions noted. The visualized bony thorax appears grossly
intact. Right mid lung mass with mild right paratracheal soft tissue may be secondary to associated lymphadenopathy. Further imaging with CT of the

chest is recommended.

Figure 4: Visual illustration of MediVLM vs. the baselines on the IU X-Ray dataset. Best viewed in color.

heart size and low lung volumes. The same obser-
vations are evident for the second image, where
MediVLM correctly captures the important find-
ings and designates it to be a high severity case
(score = 0.61).

These examples further demonstrate that Medi-
VLM can appropriately capture the important find-
ings in a medical image even when no radiology
reports are available for training, corroborating its
usefulness in real-world applications, where there
is a shortage of trained radiologists to conduct the
labor-intensive task of report transcription.
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MediVLM: The cardiac and mediastinal contours are normal. The lungs are clear with no signs of infection or
abnormalities. The bony structures are intact. Overall, there are no acute findings.

GT: Cardiac and mediastinal contours are within normal limits. The lungs are clear. Bony structures are intact.No acute
findings.

Severity Score: 0.18

MediVLM: The heart is of normal size, but the aorta appears tortuous and slightly dilated. The lungs are clear with no
signs of infection, fluid buildup, or air leakage. The bones are intact with no fractures or abnormalities. Overall, there

are no acute heart or lung issues detected.

GT: The heart is normal in size. The aorta is tortuous and ectatic. The lungs are clear without focal airspace opacity,
pleural effusion, or pneumothorax. The osseous structures are intact.No acute cardiopulmonary findings.

Severity Score: 0.33

MediVLM: The heart size is normal, and the lungs appear clear, although lung volumes are low. There is no evidence of
pneumothorax or large pleural effusion. Overall, there are no acute heart or lung abnormalities detected.

GT: Heart size is normal. Lungs are clear. Low lung volumes. There is no pneumothorax or large pleural effusion.No
acute cardiopulmonary findings.

Severity Score: 0.17

MediVLM: The heart size and pulmonary vascularity are normal, and the lungs show no signs of focal airspace disease.
There is no pleural effusion or pneumothorax. Levoscoliosis of the thoracolumbar spine is noted, but there is no evidence
of active disease in the chest.

GT: Heart size and pulmonary vascularity appear within normal limits. The lungs are free of focal airspace disease. No
pleural effusion or pneumothorax is seen. Levoscoliosis of the thoracolumbar spine is present. No evidence of active
disease.

Severity Score: 0.22

Figure 5: Low severity examples on the IU X-Ray dataset.Best viewed in color.
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MediVLM: The heart appears mildly enlarged, and lung volumes are reduced. There are no signs of infection, lung
collapse, or significant fluid buildup around the lungs. The

, and there is a mild amount of XXXX noted in the transverse colon. Overall, there are no acute issues with
the heart or lungs.

GT: The heart is mildly enlarged. Lung volumes are low. There is no focal consolidation, pneumothorax, or large pleural
effusion. . There is a mild amount of

XXXX seen in the transverse colon. No acute cardiopulmonary findings.

Severity Score: 0.69

MediVLM: The heart size and pulmonary vascularity are normal, and the lungs are clear with no signs of focal
airspace disease. There is no pleural effusion or pneumothorax present. Degenerative changes are observed in
the spine, and a stent is noted in the abdomen. The thoracic aorta is tortuous, and calcified granulomas are seen,
but there is

GT: The heart size and pulmonary vascularity appear within normal limits. The lungs are free of

focal airspace disease. No pleural effusion or pneumothorax is seen. Degenerative changes are present in the
spine. Stent is noted in the abdomen. The thoracic aorta is tortuous. Calcified granuloma are noted.1.

Severity Score: 0.80

MediVLM: The frontal view shows a kyphotic and rotated posture, with low lung volumes and bronchovascular
crowding. There are no clear signs of infection, lung collapse, or fluid buildup around the lungs. Due to technical
| [factors, the heart size appears borderline enlarged. There are in the lungs or heart.

GT: Frontal view kyphotic and rotated, low lung volumes with bronchovascular crowding. Otherwise, no definite
airspace consolidation or pleural effusion. Accounting for technical factors heart size XXXX borderline
enlarged.Low lung volumes, otherwise, .

| | Severity Score: 0.81

MediVLM: A left-sided medication injection device is in place, with its tip positioned at the cavoatrial junction.

,and the heart is of normal size. There is extensive bronchiectasis, cystic changes, and lung scarring,
consistent with the patient's history of cystic fibrosis, without significant change from prior imaging. No signs of new
infection, fluid buildup, large pneumothorax, or acute bony abnormalities are present.

GT: Left-sided medication injection XXXX has its tip projecting at the cavoatrial junction.

. Extensive bilateral bronchiectasis, cystic changes, and scarring represents sequela from the patient's cystic
fibrosis. No evidence of focal pulmonary infiltrate or pleural effusion. No large pneumothorax has developed in the
interim. The overlying bony structures reveal no acute abnormalities. The heart size is normal.1. Extensive pulmonary
bronchiectasis and scarring from cystic fibrosis, not significantly XXXX from prior. 2. Left-sided medication injection
XXXX has its tip projecting over the cavoatrial junction.

Severity Score: 0.74

Figure 6: High severity examples on the IU X-Ray dataset.Best viewed in color.
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MediVLM(Unsupervised): The lung volumes appear slightly reduced, affecting the overall visualization of structures. No
significant fluid accumulation or other concerning findings are noted. The heart size appears slightly prominent, though
this may be related to imaging technique. A tracheostomy tube is positioned in a stable location within the airway.

GT: Low lung volumes with bronchovascular crowding. Otherwise, no focal alveolar consolidation, no definite pleural
effusion seen. No typical findings of pulmonary edema. Heart size borderline enlarged for technique, tracheostomy tube

tip approximately 4.7 cm above the carina.

Severity Score: 0.46

MediVLM(Unsupervised): There is a region of structural change in the right upper lung with the rest of the lungs clear.
No unusual fluid accumulation or air pockets are seen. The heart and central structures maintain a normal appearance.
Overall, no other significant abnormalities are detected in the evaluation.

GT: Right upper lobe airspace disease consistent with pneumonia given patient's history. The lungs are otherwise clear.
No pleural effusions or pneumothoraces. Heart and mediastinum of normal size and contour.Right upper lobe
pneumonia.

Severity Score: 0.61

Figure 7: High severity examples on the IU X-Ray dataset. Report generated using unsupervised training of
MediVLM (only images, no reports available for training). Best viewed in color.
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