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Abstract

With the rapid development of large language
models (LLMs) in math reasoning, the accu-
racy of models on existing math benchmarks
has gradually approached 90% or even higher.
More challenging math benchmarks are hence
urgently in need to satisfy the increasing eval-
uation demands. To bridge this gap, we pro-
pose HighMATH. Problems in HighMATH are
collected according to 3 criteria: problem com-
plexity, knowledge domain diversity and fine-
grained annotations. We collect 5,293 prob-
lems from Chinese senior high school math-
ematics exams published in 2024, covering 8
subjects and 7 levels of difficulty, with each
problem involving an average of more than
2.4 knowledge points. We conduct a thor-
ough evaluation of latest LLMs on the curated
HighMATH, including o1-like models. Eval-
uation results demonstrate that the accuracy
of advanced LLMs on HighMATH is signifi-
cantly lower than that on previous math rea-
soning benchmarks. This gap even exceeds
30%. Our results also suggest that properly
trained smaller LLMs may have great poten-
tial in math reasoning. Our data is available at
https://github.com/tjunlp-lab/HighMATH.

1 Introduction

LLMs have achieved significant progress in math
reasoning (Li et al., 2024). When the challenging
MATH (Hendrycks et al., 2021b) benchmark was
initially proposed for evaluation, the accuracy of
LLMs did not reach 20%. However, in just three
years, LLMs are capable of achieving over 60%
accuracy (Yang et al., 2024). Recently, with the
emergence and application of techniques such as
automatic process supervision (Wang et al., 2024),
test-time scaling (Qi et al., 2024; Chen et al., 2024),
and reinforcement learning (Rafailov et al., 2023;
Ouyang et al., 2022), many models even achieve
or exceed 90% accuracy on MATH (DeepSeek-AI

*Corresponding author

Each Problem Each Subject Each Difficulty Level
Comparison Dimensions

0

5

10

15

20

25

30

35

A
ve

ra
ge

 N
um

be
r 

of
 K

no
w

le
dg

e 
Po

in
ts MATH

HighMATH

Figure 1: Comparison of HighMATH vs MATH. We
count the number of knowledge points in each problem,
subject, and difficulty level in the problems sampled
from HighMATH and MATH. It can be seen that High-
MATH contains a higher average number of knowledge
points than MATH.

et al., 2025). This rapid development of LLMs in
math reasoning indicates that existing math bench-
marks are no longer sufficient to evaluate and dif-
ferentiate latest LLMs.

Particularly, commonly used benchmarks, such
as GSM8K (Cobbe et al., 2021), MATH
(Hendrycks et al., 2021b), CMATH (Wei et al.,
2023), and GAOKAO (Zhang et al., 2023), all
suffer from these limitations. GSM8K, CMATH
and FineMATH (Liu et al., 2024), which originate
from elementary school math, present problems
that are simple and do not allow for complex rea-
soning, making it difficult to deeply evaluate ad-
vanced LLMs. MATH, sourced from American
high school math competitions, is quite challeng-
ing but typically presents problems with limited
knowledge points, thus lacking the ability to eval-
uate LLMs in integrating multiple mathematical
subjects. GAOKAO, C-EVAL (Huang et al., 2023),
M3KE (Liu et al., 2023), and other comprehensive
benchmarks (Hendrycks et al., 2021a; Zhong et al.,
2024) are designed for multidisciplinary evaluation,
where math is only one of these subjects, featuring
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Benchmarks MATH GAOKAO C-EVAL M3KE Ours
Language En Zh Zh Zh Zh
Size 5,000 936 669 796 5,293

Problem Type
MCQ

MWP Fill-in-the-Blank MCQ MCQ MWP
MWP

Question Len. 191.13 185.92 76.28 46.24 158.63
Solution Len. 519.96 305.86 - - 603.16
Subject/Level Label

Table 1: Comparison of our benchmark against previous math benchmarks. MWP: Math Word Problem, MCQ:
Multi-choice Questions. Question Len. and Solution Len. are the average character lengths we count.

fewer problems and coarser granularity.
To mitigate these challenges, we propose new

Chinese math benchmark HighMATH. Our dataset
offers a comprehensive and challenging assessment
of LLMs in math reasoning by meticulously inte-
grating a wide range of mathematical concepts, and
knowledge into math problems with multiple rea-
soning steps. It contains 5,293 math problems, with
each problem containing an average of more than
2.4 knowledge points, as shown in Figure 1. It
covers all major areas of high school mathemat-
ics, including 8 domains, i.e., Function Derivatives,
Counting Principles, Trigonometric Functions and
Triangle Solutions, Plane Analytic Geometry, Se-
quences, Solid Geometry, Statistics and Probabil-
ity, and others (Logic, Sets, Inequalities, Complex
Numbers reasoning). In addition to subject annota-
tion, we categorize problems into difficulty levels
from 1 to 7. We also collect problems with multi-
ple sub-questions into a subset called HighMATH-
HARD. The average number of characters of prob-
lems and their solutions in HighMATH-HARD are
249 and 1,201 respectively, posing great challenges
to LLMs in math reasoning.

We evaluate 14 LLMs (including both open- and
closed-source models) on HighMATH. Compared
to MATH, all models exhibit a significant drop in
accuracy on HighMath, with even the latest rea-
soning language model, o1-mini, achieving only
52.53% accuracy. The o1-like model, DeepSeek-
R1-distill-Qwen-32B, achieves only 31.22%. We
also evaluate LLMs under the majority voting,
pass@N settings, and with the assistance of a
Python executor. However, these can only improve
reasoning performance to a certain extent, indicat-
ing the difficulty of our benchmark.

Our contributions are summarized as follows.

• We propose a new challenging bechmark for

evaluating LLMs in math reasoning. The
dataset covers a wide range of mathemati-
cal concepts and typically examines multiple
mathematical knowledge points in a single
problem. Additionally, it has a sufficient num-
ber of problems, requires complex reasoning,
and is finely annotated.

• We conduct thorough evaluations of the lat-
est LLMs, including both o1-like models and
those specifically trained for mathematical rea-
soning.

• We carry out an in-depth analysis of the evalu-
ation results. The results show that the poten-
tial of small LLMs for mathematical reason-
ing is enormous. The pass@8 accuracy of the
1.5B model even surpasses that of many 7B
models.

2 Related Work

Mathematical Reasoning Benchmarks. Our
work is most closely related to MATH. We carefully
analyze data in MATH (Hendrycks et al., 2021b)
and find that, although it originates from American
high school math competitions, it includes simple
questions as well, such as those from the AMC10
competition, which contains ninth-grade mathemat-
ics. In terms of subject division, algebra content is
categorized into prealgebra, intermediate algebra,
and algebra, making up three of the seven cate-
gories. Additionally, almost all current LLMs use
MATH training dataset to train their models. Pre-
vious analyses on contaminated samples discover
that some existing training datasets, including the
MATH training dataset, contain a significant num-
ber of problems that are highly similar in concept
or structure to those in the test datasets (Yang et al.,
2024). We speculate that these limitations may
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gradually render the MATH dataset inadequate for
meeting the evaluation needs of LLMs. Detailed
comparison of our benchmark to MATH is pre-
sented in Figure 1 and Table 1.

Datasets for evaluating mathematical reasoning
in Chinese context are usually integrated into mul-
tidisciplinary or knowledge evaluation benchmarks
or suites (Guo et al., 2023; Liu et al., 2025), such as
the GAOKAO benchmark (Zhang et al., 2023). The
GAOKAO benchmark collects questions from past
college entrance examination papers, gathering 936
questions by the year 2024. The questions are cate-
gorized into multiple-choice questions, fill-in-the-
blank questions, and math word problems. Other
benchmarks, like C-EVAL (Huang et al., 2023),
M3KE (Liu et al., 2023), etc., broadly include var-
ious levels of math questions, such as elementary
and advanced mathematics. These mathematical
reasoning evaluation datasets suffer from three is-
sues. First, the scale is relatively small; the number
of problems is usually fewer than 1K. Second, the
evaluation data are not meticulously categorized
and divided, making the evaluation results less use-
ful for understanding different mathematical rea-
soning abilities and levels. Third, unlike the MATH
dataset, where all questions are math word prob-
lems, the above datasets mainly consist of single-
choice and fill-in-the-blank questions, with a lim-
ited number of math word problems. We conduct a
statistical analysis on the character length of prob-
lems and solutions in the above datasets. Results
are shown in Table 1. The datasets that contain
only multi-choice questions, such as C-EVAL and
M3KE, have the shortest average question length.
The average length of solutions in HighMATH is
about twice that of GAOKAO, indicating that the
problems in our dataset are more complex and re-
quire more reasoning steps.

Transformed Datasets. Currently, mathemat-
ical reasoning evaluations often use static bench-
marks, which are prone to data contamination. To
prevent or bypass this issue, efforts have been ded-
icated into (1) new datasets in different formats,
(2) dynamic benchmarks and (3) synthetic datasets.
MathVista collects multimodal math problems (Lu
et al., 2024). Work (Zhu et al., 2023) attempt to
develop dynamic test sets. However, unlike elemen-
tary mathematics, more challenging math problems
are difficult to implement in dynamic evaluations.
Other efforts (Mirzadeh et al., 2024; Gulati et al.,
2024; Wei et al., 2023; Zhang and Xiong, 2025a,b;
Wu et al., 2025) modify the original information

in the questions of the GSM8K or other datasets,
such as variable names or numeric values, using
templates to generate variants of the original prob-
lems for evaluation. Among these methods, adding
information unrelated to the questions can cause
model performance to drop by as much as 65%.
Our dataset shows that even with pure text, without
data synthesis, LLMs still face challenges when
performing mathematical reasoning.

3 Benchmark Curation

3.1 Motivation

Our work is motivated by the limitations of existing
math benchmarks. Therefore, our design aims to
create a dataset with appropriate difficulty, broad
coverage of mathematical knowledge points, and
fine-grained annotations. To this end, we decide to
focus on math exams related to the Chinese college
entrance, i.e., senior high school math exams.

Compared to elementary and middle school
math, senior high school math covers knowledge
about different mathematical concepts and presents
a certain level of difficulty. We specifically col-
lect questions that test Chinese high school senior
students’ mastery of comprehensive mathematical
knowledge. These questions are often examining a
variety of knowledge points within a single prob-
lem. Additionally, we choose math word problems
as the test format. Although multiple-choice ques-
tions are easy to standardize and convenient for
evaluation, the probability of selecting the correct
answer is relatively high. Evaluation results hence
may not accurately reflect the true reasoning ca-
pability of models. Therefore, during data collec-
tion, besides the original math word problems, we
also convert valuable multiple-choice and fill-in-
the-blank questions into math word problems for
evaluation.

3.2 Data Collection

Subject Division. Based on the 2019 Chinese col-
lege entrance examination mathematics syllabus,
we organize the collected data into eight subjects,
which basically cover all the outlined knowledge
points in the syllabus. The specific subjects and
their corresponding mathematical contents are pre-
sented in Table 2.

Data Sources. HighMATH collects data from
various sources, mainly from joint provincial exam-
inations and mock exam papers from educational
institutions published between January and May
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Subject Category Category Content Size

Counting Principle Permutations, combinations, binomial theorem, etc. 194

Logic Set Inequality
Complex

Includes common operations, basic set operations, inductive proofs, linear programming,
and proofs of inequalities, etc.

783

Function Derivative Includes derivatives of one-variable functions and their applications, basic elementary
functions and their properties, etc.

955

Solid Geometry Relationships of points, lines, and planes in space, volumes of cylinders, spheres, inscribed
spheres, circumscribed spheres, sectional problems, etc.

548

Trigonometric Func-
tions and Triangle
Solving

Includes trigonometric functions, trigonometric identity transformations, solving triangles,
plane vectors, etc.

787

Plane Analytical Ge-
ometry

Includes conic sections, lines and circles, plane vectors, etc. 1081

Sequences Arithmetic sequences, geometric sequences, etc. 609

Statistics Probability Random variables and their distributions, random events and probabilities, distribution
tables and hypergeometric distributions, data statistical analysis, etc.

336

Table 2: A comprehensive overview of mathematical subjects and their specific contents is provided. The number
of problems each subject contains is listed in the Size column.

2024. Both of the selected papers are designed to
assess the senior high school students’ mastery of a
variety of mathematical knowledge and reasoning
capabilities. The problems in those papers are care-
fully selected or created by experienced teachers
and exam setters to ensure quality. The diverse
range of sources not only enhances the represen-
tativeness and challenge of the dataset, but also
reflects the breadth of the college entrance exami-
nation. Moreover, to further reduce the risk of data
contamination, we select papers saved in scanned
PDF format rather than formats that can be directly
crawled or parsed.

Data Processing. After collection, all files un-
dergo automatic recognition followed by a review
by a human annotator. Specifically, all the papers
are first processed by OCR to recognize the prob-
lem and solution text, then math expressions are
converted into LaTeX format using Mathpix. After
that, the LaTeX expressions are compiled into a
human-readable form. They are manually proof-
read for accuracy before being organized into the
final standardized dataset. Annotators are also re-
sponsible for assigning difficulty levels ranging
from 1 (easiest) to 7 (most difficult). All anno-
tators are college students who have passed the
college entrance examination and have rich experi-
ence and intuition with these problems. After the
initial standardization of the data is completed, the
leader of the annotators conducts multiple screen-
ings and corrections to ensure annotation accuracy
and consistency, thus ensuring the dataset’s quality

for efficient and precise use. The other detailed
information on data processing, data review crite-
ria, difficulty divisions, manual quality control, and
HighMATH-HARD is listed in Appendix A. The
annotated information and the final standardized
format are illustrated in an example in Table 3.

3.3 Data Statistics

In order to demonstrate that HighMATH covers a
rich variety of mathematical concepts and more
knowledge points assessed by a single problem, we
sample instances and conduct an analysis for com-
parison with MATH. The MATH dataset contains
7 categories and 5 difficulty levels, from which we
randomly sample 70 problems. The HighMATH
dataset includes 8 categories and 7 difficulty lev-
els, resulting in 108 sampled problems. Annotators
label the core knowledge points assessed by these
sampled problems and the number of knowledge
points that exist. After labeling, we analyze the re-
sults from three perspectives. First, we analyze the
average number of knowledge points per problem.
The MATH dataset averages 1.59 knowledge points
per question, while the HighMATH dataset aver-
ages 2.4. Second, we evaluate the average number
of knowledge points across subjects and difficulty
levels. Results are shown in Figure 1. In both
subject categories and difficulty levels, the average
number of knowledge points in HighMATH ex-
ceeds those in the MATH dataset. Specifically, the
average number of knowledge points is 2.07 times
that of the MATH dataset for each subject, and
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Information Example in Chinese English Translation

Question: 在
(
2x3 − 1

x

)6
的展开式中, x2 项的系数为? In the expansion of

(
2x3 − 1

x

)6
, what is the coeffi-

cient of the x2 term?

Solution: 【分析】由二项式展开式的通项公式写出其通
项公式 Tk+1 = (−1)k × 26−k × Ck

6 × x18−4k,
令 18 − 4k = 2 确定 k 的值, 然后计算 x2 项的
系数即可.【详解】展开式的通项公式 Tk+1 =

Ck
6

(
2x3

)6−k (− 1
x

)k
= (−1)k × 26−k × Ck

6 ×
x18−4k,令 18− 4k = 2可得, k = 4,则 x2 项的系
数为 (−1)4 × 26−4 × C4

6 = 4× 15 = 60.

【Analysis】Using the general term formula of bi-
nomial expansion, write out the general term for-
mula Tk+1 = (−1)k × 26−k × Ck

6 × x18−4k, Set
18 − 4k = 2 to determine the value of k, then cal-
culate the coefficient of the x2 term. 【Detailed
Solution】 The general term formula of the expan-
sion is: Tk+1 = Ck

6

(
2x3

)6−k (− 1
x

)k
= (−1)k ×

26−k × Ck
6 × x18−4k Setting 18− 4k = 2, we get

k = 4 Therefore, the coefficient of the x2 term is:
(−1)4 × 26−4 × C4

6 = 4× 15 = 60.

Subject: 计数原理 Counting Principle

Level: 2

Answer: 60

Table 3: Illustration of annotated math word problems in HighMATH.

the average number of knowledge points is 1.69
times that of the MATH dataset for each difficulty
level. Additionally, we conduct a manual evalua-
tion to compare the breadth of knowledge points
covered in HighMATH and MATH. We asked un-
dergraduate students majoring in mathematics to
evaluate the two datasets. The evaluation results
show that, compared to MATH, HighMATH cov-
ers a more comprehensive range of knowledge, es-
sentially encompassing all aspects of high school
mathematics. Other evaluation opinions are shown
in Appendix B. All manual annotations will be
published along with the datasets.

4 Experiments

We conducted extensive experiments on High-
MATH to evaluate 20 latest LLMs, including both
open- and closed-source models. Among them, o1-
like models were also evaluated. We divided all the
problems from HighMATH into two categories for
evaluation. The first category consists of problems
that contain only one question, totaling 4,100 prob-
lems, and the second includes problems with mul-
tiple questions, totaling 1,193 problems (labeled
“HighMATH-HARD” in Table 4). As shown in the
results in Table 4.

4.1 Models

We evaluate four types of models: The first
group of models includes open-source mod-
els designed for general purposes (Qwen-2.5-
Instruct, Llama-3-Instruct); the second type com-
prises open-source LLMs that are fine-tuned

for math reasoning (Qwen-2.5-Math, Qwen-2.5-
Math-Instruct, deepseek-math-instruct, deepseek-
math-rl, Mathstral-v0.1); for the third type, we
evaluated some recently released o1-like open-
source LLMs specifically designed for complex
reasoning (Skywork-o1-Open-Llama-3.1, QwQ-
32B-Preview, Qwen3-235b-a22b, DeepSeek-R1-
Distill-Qwen, DeepSeek-R1-671B). Additionally,
we evaluate closed-source models accessed through
APIs (OpenAI o1-mini, GLM-Z1-AirX, hunyuan-
t1-20250521, SparkX1, Doubao-1-5-thinking-pro-
250415). We evaluated models of different sizes
within the same open-source model series when-
ever possible, with model sizes ranging from 1.5B
to 72B parameters. We follow the recommended
settings outlined in the model documentation and
configuration file for each tested model. For more
detailed settings and prompt usage, please refer to
Appendix C.

4.2 Evaluation Strategies

We employed four evaluation settings to provide a
comprehensive analysis of model performance on
HighMATH.

Zero-shot Evaluation: Zero-shot evaluation
refers to the process where the model makes predic-
tions on inputs and directly performs the evaluation
task without having seen any specific samples be-
fore. During the evaluation, we only give the model
a system prompt instructing it to write the final an-
swer in a box, and directly provide the problem in
the user prompt. This method is the most direct
and widely used evaluation approach.
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MODEL HighMATH HighMATH-HARD Major Vote Pass@8 Python Executor

General Purpose Open-Source LLMs

Qwen-2.5-Instruct-7B 21.71 5.87 43.34 57.00 -

Llama-3-Instruct-8B 6.49 1.34 8.90 20.73 -

Mathematics Open-Source LLMs

Qwen-2.5-Math-Instruct-1.5B 16.05 5.20 48.29 58.11 42.11

Qwen-2.5-Math-7B 9.15 0.42 28.83 42.05 -

Qwen-2.5-Math-Instruct-7B 43.71 18.44 51.76 60.44 46.41

Qwen-2.5-Math-Instruct-72B 51.56 24.48 - - 50.62

deepseek-math-7b-instruct 15.73 3.10 19.22 35.93 -

deepseek-math-7b-rl 8.15 1.93 16.78 24.68 -

Mathstral-7B-v0.1 21.12 5.53 29.73 48.98 -

o1-like Open-Source LLMs

Skywork-o1-Open-Llama-3.1-8B 45.80 17.94 51.20 61.49 -

QwQ-32B-Preview 45.41 12.57 54.61 59.90 -

Qwen3-235b-a22b 70.07 - - - -

DeepSeek-R1-Distill-Qwen-7B 29.68 5.53 43.44 45.07 -

DeepSeek-R1-Distill-Qwen-32B 31.22 6.87 45.53 47.24 -

DeepSeek-R1-671B 68.93 - - - -

Closed-Source LLMs

o1-mini 52.53 - - - -

GLM-Z1-AirX 65.73 - - - -

hunyuan-t1-20250521 66.56 - - - -

SparkX1 67.34 - - - -

Doubao-1-5-thinking-pro-250415 71.02 - - - -

Table 4: Main results. “HighMATH” and “HighMATH-HARD” are evaluated via zero-shot evaluation. Except for
closed-source LLMs, other models have set the maximum generation length to 2048 for evaluation efficiency. We
also list statistics on their completion of responses in Table 7 in the Appendix C for reference; if the “\boxed{}”
marker is found in the response, it indicates that the model has completed the answer. “-” indicates that related
experiments were not performed due to resource limitations.

Majority Vote Mechanism: The majority vote
(Wang et al., 2022) mechanism involves selecting
the most frequent answer from multiple inference
responses (eight in our experiment) as the final de-
cision, which is then compared to the ground truth.
This approach helps assess the model’s consistency
and reliability in providing correct answers over
multiple runs.

Pass@N: Pass@N is a metric used to evaluate
the model’s ability to find at least one correct an-
swer within the top N most likely generated an-
swers (eight in our experiment). It is commonly
used to measure the model’s recall capability and
the diversity of generated responses. As an eval-
uation standard, Pass@N reveals the model’s per-

formance when generating multiple candidate an-
swers, emphasizing its ability to cover a wide range
of possibilities.

Solving with Python Executor: This evaluation
method involves using the Python Executor to en-
hance the logic and computational accuracy of
LLM’s responses. During experiments, we evalu-
ated Qwen models, which provide relevant inter-
faces using this method. Specifically, after generat-
ing a response, the model sends the response to a
relevant agent, which then regenerates and provides
the final response.
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5 Main Result

The main result of our work is that we found
models that originally achieved high accuracy on
MATH all experienced significant drops in accu-
racy on our benchmark. For example, Qwen2.5-
Math-1.5B/7B/72B-Instruct achieve 79.7%, 85.3%,
and 87.8% respectively on the MATH benchmark
using TIR (Yang et al., 2024), while Qwen2.5-
Math-1.5B/7B/72B-Instruct only achieve 42.11%,
46.41%, and 50.62% respectively on our bench-
mark using TIR.

HighMATH can provide good discrimination
among LLMs. Doubao-1-5-thinking-pro-250415
performs best in handling single-question prob-
lems, with an accuracy rate of 71.02%, which
greatly surpasses other models. To ensure ef-
ficiency, we set a maximum generation length
of 2048 tokens for all models except for closed-
source LLMs. We discovered that R1’s overly
long reasoning process prevented it from com-
pleting the reasoning within the limit, thereby
affecting its accuracy. After re-evaluating the
model using its official recommended settings,
the accuracy of DeepSeek-R1-Distill-Qwen-7B im-
proved to 53.32%. It can be seen that Qwen-
2.5-Instruct, Qwen-2.5-Math, and Qwen-2.5-Math-
Instruct, which are based on the same 7B base
model, show significant differences. Comparing
Qwen-2.5-Instruct and Qwen-2.5-Math, it is ev-
ident that even though Qwen-2.5-Math has been
trained with a substantial new mathematical corpus,
its performance is greatly influenced by whether
the model has undergone instruction-following tun-
ing. Qwen-2.5-Math-Instruct, which combines the
advantages of the two previous models, achieves
the best results, indicating that both factors are im-
portant in model training. For Qwen-Math-Instruct
models, as model size increases, performance on
HighMATH does not improve a lot. Comparing
the 7B model with the 72B model, there is only
an 8% improvement in single-question problems’
evaluation.

The accuracy of all models drastically decreases
in the evaluation of multi-question problems. The
best-performing model, Qwen-2.5-Math-Instruct,
has an accuracy in multi-question problems that
is less than half of its accuracy in single-question
problems. Models that perform poorly on single-
question problems tend to perform even worse
on multi-question problems. Among the o1-like
models, the accuracy of QWQ-32B-Preview on

multi-question problems is surprisingly 5.87%
lower than that of Qwen-2.5-Math-Instruct 7B. Be-
sides Skywork-o1-Open-Llama-3.1-8B, other o1-
like models also fail to meet the expected results,
which may indicate that a more complex reasoning
process does not necessarily improve accuracy.

The majority vote and pass@8 evaluation set-
tings significantly improve the accuracy of each
model in reasoning on single-question problems,
although the degree of improvement varies. The
most noticeable increases occur in models that orig-
inally have lower accuracies. For example, the
pass@8 accuracy of the Qwen 1.5B model even
surpasses that of many 7B models. These results
may indicate that these smaller LLMs already pos-
sess strong mathematical reasoning abilities, but
the responses they generate in a single pass are very
unstable, leading to poor accuracy performance.
Using a Python executor can effectively mitigate
this issue. However, it is worth noting that there
is an upper limit to the accuracy achievable with
majority vote, pass@8, or using a Python executor
on HighMATH. The highest accuracy is achieved
by Skywork-o1-Open-Llama-3.1 under the pass@8
evaluation setting, reaching only 61.49%.

6 Analysis of Problem Subjects and
Difficulty Levels

We conducted an analysis of performance across
problem subjects and difficulty levels between
o1-mini, QWQ-32B-Preview, Qwen-2.5-Math-
Instruct-72B, Skywork-o1-Open-Llama-3.1-8B,
and the Meta-Llama-3-8B-Instruct model. All com-
parisons are conducted under the evaluation results
of single-question problems.

6.1 Problem Subjects

The left radargrame in Figure 2 shows that the
compared models generally perform consistently
across different categories of math problems. Ope-
nAI o1-mini not only outperforms other models in
overall accuracy on HighMATH but also performs
best in five subjects of math problems, though it is
slightly inferior in two categories. This indicates
that OpenAI o1-mini is still demonstrates compet-
itiveness in the current evaluation tasks. Clearly,
compared to the Meta-Llama-3-8B-Instruct model,
the Skywork-o1-Open-Llama-3.1-8B model shows
significant improvements in accuracy across all cat-
egories. This finding again highlights that, with
effective training and optimization strategies, even
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Figure 2: Analysis of question types and difficulty levels.

relatively smaller models can exhibit reasoning
abilities on par with larger models.

We also observe that the models perform well in
subjects such as Counting Principle, Sequences,
and Statistics. We speculate that mathematical
problems in these fields often exhibit strong struc-
tural characteristics, including clear rules and logic.
The models can leverage a large number of math-
ematical formulas, derivation processes, and rules
to perform calculations, making accurate reason-
ing more achievable. Furthermore, the richness
of the training data and the standardized nature of
the problems make these areas particularly advan-
tageous for complex reasoning models to demon-
strate their strengths. However, models perform
poorly in subjects such as Solid Geometry and
Plane Analytic Geometry. We believe that these
subjects require the models to possess strong spa-
tial imagination, complex geometric reasoning abil-
ities, and a deep understanding of geometric trans-
formations and shapes.

6.2 Difficulty Level
The accuracy of all models decreases as the diffi-
culty level increases. OpenAI o1-mini surpasses
other models in accuracy for problems at Level 4
and above, demonstrating its advantage in complex
mathematical reasoning. Overall, performance dif-
ferences below Level 3 are not significant. How-
ever, for more difficult problems, performance
aligns with the scaling law principle. As model size
increases (e.g., Qwen QWQ-32B-Preview, Qwen-
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Figure 3: The accuracy of reasoning varies across prob-
lems with different numbers of knowledge points.

2.5-Math-72B-Instruct), larger models progres-
sively outperform smaller ones in high-difficulty
problems, indicating a positive correlation between
model size and performance on challenging tasks.

7 Challenges of LLMs in Associating
Multiple Math Concepts

From the evaluation results presented above, it is
evident that although the mathematical knowledge
tested in both the MATH and HighMATH exams
originates from the high school level, there is a sig-
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Dataset MATH MATH500

Qwen-2.5-Math-Instruct-7B 76.6 75

Table 5: Evaluate Qwen-2.5-Math-Instruct-7b on
MATH and MATH500.

Dataset 1000-Zh 1000-En

Qwen-2.5-Math-Instruct-7B 40.7 38.6

Table 6: The impact of language on mathematical eval-
uation.

nificant regression in performance on HighMATH.
As demonstrated in Figure 1, HighMATH contains
a higher average number of knowledge points com-
pared to MATH. We conducted further analysis to
examine whether LLMs face challenges in associ-
ating multiple math concepts. We used 70 samples
from MATH and 108 samples from HighMATH, all
of which have core knowledge points annotated as
mentioned in Section 3.3. As seen in Figure 3, the
range of the number of knowledge points annotated
in both MATH and HighMATH varies between 1
and 4. In MATH, the majority of problems con-
tain only one or two knowledge points, whereas in
HighMATH, the majority of problems contain two
or three knowledge points. In MATH, the accuracy
of reasoning shows little variation across problems
with one to three knowledge points. However, in
HighMATH, the accuracy of reasoning varies more
significantly across problems with different num-
bers of knowledge points, showing a clear down-
ward trend as the number of knowledge points in-
creases. This suggests that LLMs may indeed face
difficulties in associating multiple math concepts,
which also highlights the evaluative advantage of
HighMATH.

8 Ablation Study

To demonstrate the effectiveness of our dataset, we
conducted identical tests on the Qwen-2.5-Math
model using both MATH and MATH-500. As
shown in Table 5, both MATH and MATH-500
achieve a 75% accuracy under the zero-shot evalu-
ation setting. Under the same settings, HighMATH
achieves an accuracy of 43.71%, showing a signif-
icant difference of 31.29 percentage points com-
pared to the other datasets. This difference validate
the effectiveness of using HighMATH for evalua-
tion.

To test whether language affects mathematical

reasoning, we extracted 1,000 questions propor-
tionally from the eight subjects of HighMATH
and translated them into English using GPT-4-
0613 for testing the Qwen-2.5-Math-Instruct-7B.
Experimental results, shown in Table 6, indicate
that the accuracy slightly decreases with the trans-
lated questions, but the change is not significant.
Therefore, although HighMATH is based on a Chi-
nese context, it remains relevant for testing models
trained in other languages.

9 Conclusion

We propose a new mathematical reasoning dataset,
HighMATH, for LLM evaluations. HighMATH
features a comprehensive inclusion of different
subjects of mathematical concepts, with multiple
knowledge points integrated into each problem. Ad-
ditionally, HighMATH includes fine-grained anno-
tations, divided into 8 categories and 7 difficulty
levels, totaling 5,293 problems. Based on High-
MATH, we have conducted a comprehensive evalu-
ation of the most recent popular LLMs. The evalua-
tion results confirm the effectiveness of our dataset,
with the best model achieving an accuracy of 62%.
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Limitations

While our benchmark provides a comprehensive
evaluation of LLMs’ math reasoning abilities at the
high school level, it has some limitations. First, it
does not cover university-level mathematics or ad-
vanced Olympiad problems, focusing instead only
on high school content. Additionally, considering
the current progress in reasoning capabilities of
models like o1 and DeepSeek-R1, we believe that
it is equally crucial to evaluate each reasoning step
generated by the model, not just focusing on the
final answer. This may help to more accurately
measure the model’s performance in complex logi-
cal reasoning processes.
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10 Appendix

A Detailed Information on Data
Processing

Nine annotators collected and annotated 7,223
problems over two months. For these problems,
we first performed deduplication using the dif-
flib.SequenceMatcher algorithm to remove dupli-
cate problems (the threshold was set to 0.925 af-
ter testing). Next, we conducted some screening,
which included checking if the annotations met the
standards, removing irrelevant information from
the problems, eliminating open-ended questions,
and discarding problems with incomplete infor-
mation. These steps eliminated 1,320 problems,
leaving 5,903. Finally, through real evaluation (us-
ing the MetaMath evaluation script), we removed
problems that included Chinese descriptions in the
answers and those with improperly marked golden
answers, based on whether the evaluation script
could correctly extract the golden answer. This
step removed 610 problems, leaving a final total of
5,293 problems.

A.1 Data Review Criteria

According to our data annotation manual, anno-
tators first need to compare the information from
automatic recognition with the content in the PDF
to ensure the completeness of the problem. Anno-
tators also need to confirm whether the problem is
usable. For example, if a solid geometry problem
includes both text and image descriptions, annota-
tors must check that the information in the image is
already included in the text description and that the
question can be answered without the image; other-
wise, the problem will be discarded. For problems
that need modification, annotators must simultane-
ously modify the question and its solution to ensure
consistency and smoothness. Most importantly, an-
notators must confirm the correctness of the LaTeX
code for mathematical formulas.

A.2 Difficulty Division

We follow three criteria for assessing difficulty:

• We use the difficulty level of the college en-
trance examination in China as a reference
standard. We consider the hardest problems in
the college entrance exam as difficulty level 7,
and the basic problems, such as the first prob-
lem in multiple-choice or fill-in-the-blank sec-
tions, as difficulty level 1. Additionally, col-

lege entrance exam simulation papers usually
have a fixed structure, where the last problem
is typically the hardest.

• We assume that the longer the solution steps
for a problem, the relatively harder it is.

• The determination of difficulty is based on
the comparison of problems within the same
category, rather than entirely on the subjective
judgment of the annotators.

A.3 Selection Criteria for HighMath-HARD
HighMATH-HARD selects some of the last prob-
lems listed in the exam papers we have collected.
Those exam papers usually follow a fixed struc-
ture, with the last few problems typically being
the hardest and containing multiple sub-questions.
The problems in HighMATH-HARD each con-
tain at least two sub-questions. Compared to
problems that contain only one question, those
in HighMATH-HARD better evaluate the model’s
complex reasoning abilities because these problems
are interconnected. The model can only solve the
next question based on solving the previous one,
and it is considered correct only if it completely
answers the last sub-question correctly. This poses
very high demands on the model’s capabilities.

B Human Evaluation Opinions on
HighMATH and MATH

• Problems in MATH are simpler and more di-
rect, lacking integration of knowledge points,
which means they do not combine two or more
knowledge points for examination.

• Problems in HighMATH are more obscure,
requiring people to engage in logical thinking
to understand the meaning of the questions.

• The HighMATH dataset covers a more com-
prehensive range of knowledge, essentially
encompassing all aspects of high school math-
ematics.

C Experiment Settings

During the evaluation, we follow the recommended
settings outlined in the model documentation and
configuration file for each tested model. We
have set a uniform maximum generation length
(max_tokens=2048) for open-source LLMs. Statis-
tics on their completion of responses can be found
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Models \boxed{} Num Acc
Qwen-2.5-Instruct-7B 4140 21.71
Llama-3-Instruct-8B 3982 6.49
Qwen-2.5-Math-Instruct-1.5B 3902 16.05
Qwen-2.5-Math-7B 1637 9.15
Qwen-2.5-Math-Instruct-7B 4105 43.71
Qwen-2.5-Math-Instruct-72B 4305 51.56
deepseek-math-7b-instruct 4116 15.73
deepseek-math-7b-rl 1944 8.15
Mathstral-7B-v0.1 4398 21.12
QwQ-32B-Preview 2929 45.41
Skywork-o1-Open-Llama-3.1-8B 4096 45.80
DeepSeek-R1-Distill-Qwen-7B 1768 29.68
DeepSeek-R1-Distill-Qwen-32B 1856 31.22
DeepSeek-R1-Distill-Qwen-7B

3673 53.32
w/o max_tokens

Table 7: Statistics on models’ response completion.

Difficulty Count
Level 1 49
Level 2 112
Level 3 167
Level 4 250
Level 5 199
Level 6 112
Level 7 46

Table 8: The incorrectly answered problems cover vari-
ous difficulty levels.

in table 7 (if \boxed{} is found in the response, it
indicates that the model has completed the answer).
We use the evaluation code open-sourced by Meta-
Math (Yu et al., 2023) to ensure uniform evaluation
rules.

The two formats of prompts that we use are listed
below, and we choose which to use based on the
recommendations in the model documentation.

messages = [ "role": "system", "content":
"Please reason step by step, and put your final an-
swer within \boxed{}.", "role": "user", "content":
problem ]

messages = [ "role": "user", "content": problem
+ "\n" + "Please reason step by step, and put your
final answer within \boxed{}." ]

D Extended Error Analysis

We have started to compare the results of all the
models we have evaluated (we chose the evaluation
results of pass@8 with the highest accuracy for this

Subject Count
Counting Principle 19
Function Derivative 189
Logic Set Inequality Complex 135
Plane Analytic Geometry 187
Sequence 127
Solid Geometry 165
Statistics Probability 35
Trigonometric Functions

78
and Triangle Solving

Table 9: The incorrectly answered problems cover vari-
ous categories.

analysis). The results show that 935 problems were
not answered correctly by any model. These prob-
lems cover various difficulty levels and categories,
as shown in Table 8 and Table 9.
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