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Abstract

With the rapid advancement of large language
models (LLMs), natural language process-
ing (NLP) has achieved remarkable progress.
Nonetheless, significant challenges remain in
handling texts with ambiguity, polysemy, or
uncertainty. We introduce the Fuzzy Reason-
ing Chain (FRC) framework, which integrates
LLM semantic priors with continuous fuzzy
membership degrees, creating an explicit in-
teraction between probability-based reasoning
and fuzzy membership reasoning. This transi-
tion allows ambiguous inputs to be gradually
transformed into clear and interpretable deci-
sions while capturing conflicting or uncertain
signals that traditional probability-based meth-
ods cannot. We validate FRC on sentiment
analysis tasks, where both theoretical analysis
and empirical results show that it ensures sta-
ble reasoning and facilitates knowledge transfer
across different model scales. These findings
indicate that FRC provides a general mecha-
nism for managing subtle and ambiguous ex-
pressions with improved interpretability and
robustness.

1 Introduction
With the rapid advancement of large-scale language
models (LLMs) (Guo et al., 2025; Devlin et al., 2019),
natural language processing (NLP) has achieved remark-
able progress across various domains. However, reason-
ing with texts that exhibit ambiguity, polysemy, and
uncertainty remains a significant challenge. In tasks
such as sentiment analysis, ethical judgment, and secu-
rity review, texts often contain complex emotions, such
as "Though dissatisfied, still acceptable.", which con-
vey both negative sentiment and a degree of acceptance.
This complexity makes traditional approaches, based on
fixed labels or static rules, inadequate for capturing the
multidimensional semantics (Pang et al., 2008; Bradley
and Lang, 1994).

Current fuzzy reasoning approaches quantify ambigu-
ity through membership degrees; however, their reliance
on manually defined rules limits their adaptability to

*Corresponding authors.
†Equal contribution.

dynamic and evolving contexts (Taboada et al., 2011).
Although Chain-of-Thought (CoT) reasoning enhances
transparency, its discrete decision-making process often
struggles with complex texts, such as those containing
sarcasm and contradictions (Fei et al., 2023; Wei et al.,
2022; Wang et al., 2023). Consequently, both fuzzy
reasoning and CoT methods face limitations when ad-
dressing fuzzy and uncertain texts, underscoring the
need for a more adaptive, stable, and transparent reason-
ing framework.

In this paper, we propose the Fuzzy Reasoning Chain
(FRC) framework to address challenges arising from am-
biguous and uncertain text, as illustrated in Fig. 1. FRC
follows the standard step-by-step reasoning procedure
typical of sentiment analysis and extends conventional
chain-of-thought approaches by replacing discrete prob-
ability assignments with continuous fuzzy membership
degrees. This transition from probability-based reason-
ing to fuzzy membership-based reasoning, which we
refer to as the probability-to-membership collision, is
the core methodological innovation. By capturing con-
flicting and ambiguous signals that probabilities alone
cannot express, FRC enables a more nuanced and robust
representation of sentiment while naturally identifying
“Other” or unspecified categories. This fuzzy-to-clear
reasoning paradigm ensures stability and transparency.
We analyze the convergence behavior of FRC and cor-
roborate its practical utility through comprehensive ex-
periments, demonstrating its effectiveness on complex,
fuzzy texts and potential for reasoning transfer across
model scales.

The main contributions of FRC are as follows:

• Core Methodological Innovation:FRC integrates
discrete probability reasoning with continuous
fuzzy membership, enabling clearer interpretation
of ambiguous inputs and capturing conflicting or
uncertain signals that traditional probability-based
methods cannot. This makes it the first framework
to combine fuzzy membership with LLM reason-
ing in this way.

• Convergence Analysis: Ensures stable reasoning
by analyzing robustness, monotonicity, and seman-
tic completeness, supported by both theoretical
analysis and experimental validation.

• Empirical Validation and Generalization: Ex-
periments demonstrate that FRC enhances model
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Figure 1: Comparison of Chain-of-Thought (CoT, left) and Fuzzy Reasoning Chains (FRC, right) in sentiment
analysis. Both follow the same reasoning steps for fairness, reflecting typical sentiment analysis procedures
and highlighting the interaction between probability-based reasoning and fuzzy membership. Unlike CoT, FRC
membership degrees are unconstrained and do not need to sum to one, which allows any sentiment not explicitly
covered in the prompt to be assigned to an “Other” category, capturing ambiguity and uncertainty that probability-
based CoT cannot represent. FRC refines sentiment weights using fuzzy membership. In the first example, CoT
shows balanced probabilities (0.5 each), while FRC captures strong conflicting sentiment (0.905 each). In the
second example, CoT remains neutral (0.5 each), whereas FRC indicates a fuzzy sentiment state (0.425 each),
enabling a transition from fuzzy to clear sentiment analysis.

performance on uncertain and ambiguous inputs,
reflecting its generalization capacity and potential
in lightweight knowledge transfer scenarios.

2 Related Work

2.1 Sentiment Analysis

Sentiment analysis is a fundamental task in NLP that
aims to identify and classify the sentiment polarity of
text (Pang et al., 2008). Research has explored senti-
ment dictionaries, machine learning, deep learning, and
large model approaches. The use of emotion dictio-
naries enhances the original English (Whissell, 2009)
and Chinese emotion dictionary, thereby increasing its
applicability to natural language samples. Support Vec-
tor Machines (SVM), Bayesian methods, ridge regres-
sion, and other classical machine learning techniques
are also employed in natural language analysis (Jemai
et al., 2021; Hourrane et al., 2019). After the emer-
gence of deep learning, it has become widely utilized

in natural language sentiment analysis (Zhang et al.,
2018; Tang et al., 2015; Felbo et al., 2017). Numerous
methods employing Long Short-Term Memory (LSTM)
networks and attention mechanisms have been proposed
in this field. Regularized LSTM (Qian et al., 2017) and
Sentiment-Aware Bidirectional LSTM (SAB-LSTM)
(Kumar and Chinnalagu, 2020) integrate linguistic re-
sources, such as sentiment dictionaries, negative words,
and intensity words, into the LSTM framework to more
accurately capture emotional nuances in sentences. At-
tention mechanisms effectively capture the significance
of each contextual word in relation to a specific target
aspect (Lei et al., 2016; Tiwari and Nagpal, 2022). The
BERT (Devlin et al., 2019) model is a groundbreaking
advancement in machine reading comprehension and
can be applied across various fields, including sentiment
analysis.

In recent years, large language models (LLMs)
have propelled advancements in unsupervised and self-
supervised sentiment analysis, significantly enhancing
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performance on sentiment classification tasks (Devlin
et al., 2019; Yinhan et al., 2019; Chen and Xiao, 2024;
Zhang et al., 2024a). The literature (Zhang et al., 2024b)
emphasizes the importance of contextual information
in enhancing the sentiment estimation of LLMs. Deep
prompt tuning and low-rank adaptation effectively en-
hance the performance of large models in sentiment
analysis (Peng et al., 2024). Chain-of-Thought (CoT)
are an effective strategy for enhancing the performance
of LLMs and are also utilized for emotion classification
(Fei et al., 2023; Duan and Wang, 2024). In addition to
CoT reasoning that relies solely on textual information
(Fei et al., 2023), audio and visual modalities are also
taken into account to propose a cross-modal filtering and
fusion (CMFF) module, which facilitates multi-modal
sentiment analysis (Li et al., 2024). The generative CoT
strategy is employed for zero-shot and few-shot emotion
classification tasks (Gu et al., 2024; Wu et al., 2025; Liu
et al., 2024b). However, these LLMs still predominantly
depend on static labeling systems, making it difficult to
handle complex sentiment conflicts and mixed emotions
in texts effectively.

2.2 Fuzzy Reasoning
These sentiment analysis methods rely on discrete clas-
sification labels such as "positive", "negative", or "neu-
tral", which struggle to address ambiguity, uncertainty,
and mixed sentiment expressions (Bing, 2012). To
overcome these limitations, fuzzy reasoning approaches
have been explored. Multi-dimensional sentiment mod-
els have been employed to capture the complex emo-
tional components of text (Bradley and Lang, 1994).
Fuzzy clustering simulates the continuous nature of sen-
timent distributions, providing a more nuanced approach
to sentiment analysis (Peizhuang, 1983). Lexicon-based
sentiment classifiers have been enhanced with fuzzy
logic to create sentiment distributions more accurately
reflect human cognitive processes in uncertain cases
(Taboada et al., 2011). There are also scholars who inte-
grate the learning capabilities of deep learning with the
uncertainty processing abilities of fuzzy logic to offer
users more accurate emotional predictions (Chaturvedi
et al., 2019; Sweidan et al., 2022; Do et al., 2024; Wang
et al., 2025). The emotion enhancement inference model
integrates word embedding, an emotion dictionary, and
fuzzy inference (Yan et al., 2022). However, mainstream
approaches still struggle with transparency in the reason-
ing process and lack dynamic adjustment of sentiment
labels during inference.

2.3 Chain-of-Thought (CoT)
CoT reasoning has emerged as a technique to enhance
the interpretability and performance of LLMs by facil-
itating step-by-step reasoning (Wei et al., 2022). This
method has proven effective in alleviating data bottle-
necks and improving model performance on complex
tasks, such as mathematical reasoning, commonsense
reasoning, and planning (Wei et al., 2022; Wang et al.,
2023). CoT allows models to decompose problems

into logical intermediate steps, providing greater inter-
pretability compared to traditional end-to-end models
(Santoro et al., 2017; Xu et al., 2024). Several tech-
niques have been proposed to enhance CoT reason-
ing, including few-shot CoT (Wei et al., 2022), self-
consistency (Wang et al., 2023), and Auto-CoT (Zhang
et al., 2023). Furthermore, strategies like least-to-most
prompting (Zhou et al., 2023), AutoHint (Sun et al.,
2023), and result entropy optimization (Wan et al., 2023)
have been developed to simplify problem-solving and
enhance reasoning accuracy. Specialized approaches
like MathPrompter (Imani et al., 2023) for mathemati-
cal problem-solving and Meta-prompting (Suzgun and
Kalai, 2024) for a refined prompt generation have fur-
ther expanded the capabilities of CoT.

Recent research, such as THOR (Fei et al., 2023), in-
troduced a CoT reasoning approach to enhance the accu-
racy and interpretability of sentiment inference through
step-by-step reasoning. However, within the realms of
fuzzy reasoning and sentiment analysis, the application
of CoT is still in its nascent stages. Recent investigations
into Zero-Shot-CoT (Jin et al., 2024) have demonstrated
that large models can engage in step-by-step reasoning
even in the absence of task-specific fine-tuning, present-
ing a promising avenue for dynamic sentiment inference
within a CoT framework. By utilizing CoT, sentiment
evaluations can be adjusted dynamically during the in-
ference process, rather than depending solely on static
classification systems (Dong et al., 2024). Despite the
potential of CoT for fuzzy sentiment analysis, several
challenges persist, including the dependence on discrete
reasoning and the insufficient integration with continu-
ous fuzzy membership modeling (Liu et al., 2023; Liang
et al., 2018).

3 Fuzzy Reasoning Chain

In this section, we introduce the Fuzzy Reasoning Chain
(FRC) framework, which addresses the unclear reason-
ing in traditional Chain-of-Thought (CoT) methods and
the rigidity of fixed-rule fuzzy reasoning, providing a
fuzzy-to-clear inference approach. A comparison be-
tween CoT and FRC is shown in Fig. 1, where FRC
refines sentiment analysis through fuzzy membership
degrees, facilitating a smoother transition from fuzzy to
clear sentiment analysis. Observations of LLMs(Guo
et al., 2025; Liu et al., 2024a; Yang et al., 2024; Hurst
et al., 2024) reveal key characteristics in the generated
semantic membership degrees, particularly in sentiment
analysis:
⋄ Approximate Robustness: Small changes in input

result in bounded variations in membership degrees
when context and syntax remain stable.

⋄ Conditional Monotonicity: Sentiment intensity cor-
relates monotonically with membership degrees, except
during abrupt context shifts.
⋄ Dynamic Completeness: Contextual mechanisms

ensure full capture of essential semantic elements and
their interactions.
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Based on these characteristics, FRC consists of three
main steps: Continuous Membership Degree, Multi-
Granular Semantic Parsing, and Global Decision Fu-
sion.

3.1 Continuous Membership Degree
Let C represents the sentiment class (e.g., positive or
negative), and X denotes a given text unit. For senti-
ment analysis, large language models are capable of
computing membership degrees reliably, which avoids
the need for manually defined membership functions.
The membership function µC(X) can therefore be com-
puted from the output of a large language model as
follows:

µC(X) = fLLM-prompt(X,C) ∈ [0, 1], (1)

This ensures approximate robustness to input changes,
where small variations in the input lead to bounded
changes in the membership degree when the context
and sentiment class remain stable.

3.2 Multi-Granular Semantic Parsing
We expect the large model to use hierarchical reasoning
for semantic decomposition and aggregation, ensuring
conditional monotonicity. The key steps are:

Keyword Membership Degree Calculation: We
begin by extracting sentiment keywords {ki} from the
input text X and calculating the corresponding member-
ship degrees for each keyword:

µC(ki) = fLLM-prompt(ki, C) ∈ [0, 1], (2)

where µC(ki) represents the membership degree of key-
word ki in sentiment class C.

Local Semantic Aggregation: After extracting the
keywords, the next step is to apply a weighted aggrega-
tion scheme to the sub-units Xj of the text. A sub-unit
is defined as a portion of the text without emotional
overlap, whose membership degree is computed as:

µC(Xj) = max
ki∈Ij

µC(ki), (3)

where Ij is the set of keywords ki in sub-unit Xj , and
the maximum membership degree of the keywords is
taken as the membership degree for the sub-unit. This
ensures that the strongest sentiment influence from the
keywords determines the sentiment of the sub-unit.

3.3 Global Decision Fusion
The large language model integrates information from
sub-units Xj to determine the overall sentiment mem-
bership degree for input text X . Before the final deci-
sion, the model dynamically adjusts the weight based
on context, sentiment intensity, and shifts. Key factors
considered include, but are not limited to, the following:

⋄ Language Phenomena: Shifts in tone, irony, or
implication influencing sentiment strength or direction.

⋄ Sentiment Intensity: Changes in intensity requiring
weight adjustments.

⋄ Contextual Shifts: Context changes, e.g., from de-
scriptive to evaluative, triggering adjustments.

This adjustment ensures semantic completeness, cap-
turing relevant elements and interactions for a final sen-
timent assessment, as follows:

µC(X) =
m∑

j=1

αj,C · µC(Xj), (4)

where m is the total number of sub-units Xj , αj,C is
class-specific dynamic weight for sub-unit Xj under the
class C, satisfying

∑m
j=1 αj,C = 1 for each C.

By defining class-specific weight αj,C for sub-units
Xj and ensuring independence of membership degrees,
we can quantify fine-grained sentence emotions and
distinguish neutral or conflicting texts, which traditional
probability methods cannot do.

4 Convergence Analysis
This section presents the convergence properties of the
FRC framework, focusing on three key characteristics:
Approximate Robustness, Conditional Monotonicity,
and Dynamic Completeness. These properties con-
tribute to the stability and interpretability of sentiment
analysis results, even when the input data is uncertain
or imprecise.

4.1 Approximate Robustness
During the Keyword Membership Degree Calculation
and Local Semantic Aggregation stages, the sentiment
membership degree µC(X) for each subunit is deter-
mined based on the strength of sentiment-bearing key-
words. Minor input changes, such as syntactic varia-
tions or synonym substitutions, lead to smooth, bounded
changes in µC(X), thereby ensuring stable and bounded
sentiment analysis.

Bounded Analysis: Consider two input texts, X and
X ′, with d(X,X ′) representing their semantic distance.
Assuming that the LLM preserves local smoothness
in its semantic mappings, and referencing Eq.(4), the
difference in membership degrees between X and X ′

can be expressed as:

|µC(X)−µC(X
′)| =

∣∣∣∣∣∣

m∑

j=1

g(αj,C , Xj)− g(α′
j,C , X

′
j)

∣∣∣∣∣∣

where g(αC , X) = αC ·µC(X). Focusing on the dif-
ference in membership degrees for each subunit Xj , we
recognize that while the output of the language model
for each keyword ki may not strictly adhere to a con-
tinuity constraint, it generally exhibits approximate ro-
bustness to small input perturbations. This behavior is
especially prominent when the context and syntax of the
input remain stable. We hypothesize that the language
model demonstrates local stability with respect to minor
input variations, so these changes do not cause dispro-
portionately large shifts in the output. Specifically, for
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each subunit Xj , the difference in its membership de-
grees relative to X ′

j can be bounded as:

|µC(Xj)− µC(X
′
j)| ≤ L · d(Xj , X

′
j), (5)

where L is a constant that reflects the model’s stability
with respect to small input variations, depending on
the properties of both the keywords and the context.
By summing over all subunits and accounting for the
weight adjustments, we derive the final relationship:

|µC(X)− µC(X
′)| ≤ K · d(X,X ′), (6)

where K =
∑m

j=1 αj,C · L. This bounded property en-
ables FRC to exhibit approximate Lipschitz continuity, a
phenomenon commonly observed in deep learning mod-
els (Fazlyab et al., 2019; Kim et al., 2021; Shang et al.,
2021), indicating that the FRC framework demonstrates
stability and robustness to small perturbations.

4.2 Conditional Monotonicity
In the Local Semantic Aggregation stage, the member-
ship degree µC(Xj) for each subunit is determined by
the sentiment strength s(Xj) of the relevant keywords.
As sentiment strength increases, the membership degree
also increases, maintaining a consistent, monotonic re-
lationship. This is preserved in the Global Decision
Fusion, where the final sentiment membership degree
µC(X) is derived by aggregating the weighted member-
ship degrees of each subunit, as defined in Eq. 4.

Given the text X , consider binary sentiment analysis
(positive and negative). Traditional Chain-of-Thought
(CoT) methods output probabilities, as shown in Fig. 1
(left), where the relationship between sentiment strength
and the final output is linearly predictable. Specifically,
for a positive sentiment change ∆spositive, the proba-
bilities of both positive and negative classes change
proportionally:

∆P (positive) = fCoT(∆spositive),

∆P (negative) = fCoT(∆spositive),

where fCoT is a linear function. The changes are sym-
metric and linear, ensuring predictable monotonicity.

In contrast, the Fuzzy Reasoning Chain (FRC) inde-
pendently assigns weights to subunits for each sentiment
class, as shown in Fig. 1 (right). The membership de-
grees for the positive and negative classes µpositive(X)
and µnegative(X) are determined separately, which may
result in different responses to sentiment changes:

∆µpositive(X) = fFRC-positive(∆spositive),

∆µnegative(X) = fFRC-negative(∆snegative).

Here, fFRC-positive and fFRC-negative are monotonic map-
ping functions specific to each sentiment class. As sen-
timent changes, the impact on the positive and negative
classes may differ, leading to less predictable relation-
ships between sentiment intensity and global member-
ship degree. This suggests that FRC’s monotonicity

might not always follow a linear pattern and could vary
across classes.

While CoT typically exhibits a linear, predictable
monotonicity, FRC offers more flexibility, potentially
allowing for more nuanced relationships between sen-
timent and class membership. This flexibility could
enable FRC to better capture complex sentiment dy-
namics, although its global monotonicity may not be as
straightforward as that of traditional CoT methods

4.3 Dynamic Completeness
The Dynamic Completeness property ensures that all
essential semantic elements are captured and appropri-
ately weighted in the final sentiment decision. In FRC,
each subunit Xj represents a critical semantic fragment,
and its importance is determined dynamically based on
its context. The weights αj,C are adjusted based on the
relevance of each subunit, ensuring that all relevant se-
mantic information contributes to the final membership
degree µC(X). This is reflected in Eq.(4). By doing
so, FRC captures not only individual sentiment influ-
ences but also the interactions between these influences,
ensuring a comprehensive sentiment analysis.

4.4 Summary
Through the analysis of Approximate Robustness, Con-
ditional Monotonicity, and Dynamic Completeness, the
FRC framework appears to effectively handle fuzzy
inputs, facilitating stable and consistent sentiment anal-
ysis. These properties contribute to smooth transitions
from uncertainty to clarity, supporting reliable and in-
terpretable results.

5 Experiments
To validate the effectiveness of the Fuzzy Reasoning
Chain (FRC) framework in sentiment analysis, we con-
duct experiments on both English and Chinese datasets.
The evaluation focuses on robustness, monotonicity,
and classification performance in comparison with CoT-
based and direct prompting methods.

5.1 Datasets
In this section, we describe the datasets used in our eval-
uation. The datasets are divided into two categories: the
original datasets used for standard sentiment classifica-
tion, and the perturbed datasets, which are generated by
extending the original datasets for the analysis of FRC
convergence and do not require class labels.

5.1.1 Original Datasets
We adopt two well-known datasets for sentiment analy-
sis tasks, selected to ensure both linguistic diversity and
domain representation:

- SemEval-2016 Task 4 (English): A widely used
benchmark for sentiment analysis, specifically focused
on the evaluation of fine-grained sentiment in social
media. It contains a collection of labeled tweets, span-
ning multiple sentiment classes (5 classes, ranging from
negative to positive). The dataset includes over 9,000
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labeled tweets, providing a balanced mix of different
sentiment categories and domains. The test set consists
of 1,791 tweets.

- Takeout Review Dataset (Chinese): This propri-
etary dataset is collected from online food delivery re-
views and consists of over 10,000 labeled reviews in
Chinese. It includes text paired with sentiment labels
(positive and negative), focusing on the sentiment ex-
pressed in the context of food and restaurant experiences.
The large size of this dataset allows for comprehensive
training and testing in a real-world application setting.

5.1.2 Perturbed Datasets
To evaluate the robustness and monotonicity of our FRC,
we generate perturbed versions of the original datasets
using the GPT-4o (Hurst et al., 2024) API through
prompt engineering techniques. These perturbations
are designed to test the FRC’s ability to handle differ-
ent levels of changes in the input while preserving core
sentiment or adjusting sentiment intensity. The pertur-
bations are divided into two main categories:

- Robustness Perturbations These perturbations are
designed to preserve the original sentiment and meaning
while modifying surface-level expressions. Three levels
of perturbations are applied:

Low: Simple synonym replacements (1-2 words) to
test the FRC’s resilience to slight lexical changes.

Medium: Sentence restructuring and multiple word
replacements to evaluate the FRC’s ability to handle
moderate perturbations.

High: Full sentence rewriting that retains the senti-
ment but significantly alters sentence structure.

- Monotonicity Perturbations: These perturbations
modify sentiment intensity by replacing sentiment-
bearing words or adding adverbial modifiers to shift
sentiment intensity. The goal is to evaluate the FRC’s
sensitivity to changes in sentiment intensity, either posi-
tive or negative. The labels are used as follows: -1 in-
dicates a more negative sentiment, +1 indicates a more
positive sentiment, and 0 indicates no change in senti-
ment.

- Quality Assurance: GPT-4o’s strong performance,
combined with manual spot checks, ensures the high
quality of the perturbed datasets.

5.2 Evaluation Metrics
To assess the effectiveness of FRC, we propose the
following metrics:

- Robustness Score (RS): Measures the stability of
membership degrees or probabilities under perturba-
tions. Given an original text X and its perturbed coun-
terpart X ′, we define:

RS = 1− 1

N

N∑

i=1

|µC(Xi)− µC(X
′
i)| ,

where µC(X) is the sentiment membership degree (or
probability for CoT) of text X , and N is total test sam-
ples. Higher values indicate greater robustness.

- Monotonicity Score (MS): Evaluates whether in-
creasing sentiment intensity in perturbations leads to
a corresponding increase (or decrease) in membership
degree. It is computed as:

MS =
1

N

N∑

i=1

I(sgn(µC(X
′
i)− µC(Xi)) = Yi,C),

where Yi,C is the sentiment shift direction label corre-
sponding to the monotonic perturbation data relative to
class C (+1 for more aligned with C, -1 for moving
away from C, 0 for no change), I(·) is the indicator
function (1 if the condition is holds, 0 otherwise). A
higher MS value indicates better performance, as it sig-
nifies that the model consistently reflects the expected
sentiment shift direction.

- F1-score: Standard metric for sentiment classifica-
tion.

5.3 Baseline Methods

We compare FRC against two baselines:
- Direct Prompting (DP): Asking LLMs directly for

sentiment classification without reasoning steps.
- CoT: A CoT-base method that follows reasoning

steps similar to FRC for fairness but outputs probabili-
ties instead of membership degrees. The prompt design
is referenced in the left part of Fig. 1.

5.4 Experimental Convergence Analysis

Theoretical Foundation: In Sec.4, we performed a
preliminary convergence analysis of FRC, which indi-
cated that, underpinned by robustness and monotonicity,
the FRC framework inherently possesses dynamic com-
pleteness.

Experiment Setup: Building upon the theoretical
foundation, we aim to further investigate the empirical
aspects of robustness and monotonicity through targeted
experiments. For this purpose, we selected three ver-
sions of DeepSeek R1 (32b, 14b, and 7b)(Guo et al.,
2025) alongside Qwen2.5 32b (Yang et al., 2024) for
evaluation. To ensure a more accurate assessment of
FRC’s convergence, we employed a mixed-language
dataset, incorporating both source and perturbed data in
Chinese and English, thereby eliminating language as a
confounding factor.

Comparison Objective: CoT was chosen as a fairness
comparison method to highlight FRC’s unique advan-
tages in the context of perturbation-induced sentiment
shifts. Metrics: The Robustness Score (RS) was used
as the evaluation metric, with higher values indicating
better performance.

5.4.1 Robustness Evaluation
Following the approximate robustness analysis in
Sec.4.1, we focus on the experimental examination of
FRC’s robustness. Robustness ensures that small pertur-
bations in input data do not cause significant fluctuations
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Table 1: Robustness Comparison across Models via RS
Metric - Higher values indicate better performance.

Model Method Low Medium High Avg

Qwen2.5-32b CoT 0.91 0.81 0.68 0.80
FRC 0.94 0.87 0.80 0.87

DeepSeek-32b CoT 0.92 0.83 0.72 0.82
FRC 0.95 0.89 0.82 0.89

DeepSeek-14b CoT 0.89 0.78 0.65 0.77
FRC 0.93 0.85 0.78 0.85

Table 2: Monotonicity Evaluation across Models -
Higher Monotonicity Score (MS) indicates better per-
formance.

Model Method Positive Negative Avg MS

Qwen2.5-32b CoT 0.84 0.82 0.83
FRC 0.93 0.89 0.91

DeepSeek-32b CoT 0.86 0.84 0.85
FRC 0.94 0.90 0.92

DeepSeek-14b CoT 0.81 0.79 0.80
FRC 0.91 0.87 0.89

in the output, reinforcing the stability of FRC’s reason-
ing process. As shown in Table 1, FRC consistently
outperforms CoT across all models and perturbation
levels (Low, Medium, High). The average robustness
scores reveal a clear performance advantage for FRC.

For example, DeepSeek-32b achieved an average
score of 0.89 with FRC, compared to 0.82 for CoT,
resulting in an 8.5% improvement. Similarly, DeepSeek-
14b showed a 10.4% improvement with FRC (0.85) over
CoT (0.77), while Qwen2.5-32b demonstrated an 8.8%
improvement with FRC (0.87) over CoT (0.80).

These results are consistent across models with differ-
ent parameter sizes, showcasing FRC’s robustness even
when scaling down to smaller models like DeepSeek-
14b. While the theoretical analysis highlighted FRC’s
inherent convergence from fuzziness to clarity, these
experimental results further validate its superior robust-
ness, even though the convergence is not absolute. Over-
all, the findings emphasize FRC’s stability and its ability
to handle perturbations that challenge traditional meth-
ods like CoT, with particular strength in the robustness
of the approximation.

5.4.2 Monotonicity Evaluation
In addition to robustness, monotonicity is another key
characteristic that influences FRC’s convergence prop-
erties. This section investigates how the sentiment in-
tensity of input perturbations correlates monotonically
with the changes in membership degrees, and how FRC
leverages this relationship to refine its reasoning and
sentiment analysis.

The results for monotonicity evaluation across models
are provided in Table 2. FRC demonstrates superior
performance in capturing both positive and negative
sentiment shifts, as shown by higher average MS scores
across all models. For example, DeepSeek-32b with
FRC achieved an average MS of 0.92, compared to 0.85
for CoT, indicating a significant improvement in the

model’s ability to reflect sentiment changes. Similarly,
DeepSeek-14b and Qwen2.5-32b showed similar gains
in MS with FRC.

5.5 Sentiment Classification

We evaluate DP, CoT, and FRC on the SemEval-2016
Task 4 and Takeout Review datasets, which provide pos-
itive and negative labels, with Task 4 also including neu-
tral cases. Some samples exhibit inherently ambiguous
sentiment, leading conventional prompt-based methods
to produce unstable or neutral predictions. Using FRC’s
coarse positive/negative assessment, we observed that
the membership degree differences for these samples
are typically within 0.3. Based on this, we divide the
data into Clear cases, with differences above 0.3, and
Ambiguous cases, with differences at or below 0.3. This
allows us to retain the original labels while enabling
more detailed analysis. Even without relying on the
ground-truth labels, finer distinctions, such as strong
versus weak sentiment conflicts, can be examined by
comparing membership degrees. For evaluation, the
predicted label is assigned according to the higher mem-
bership degree, with equal values considered neutral.
The Average category then reports overall performance
across both Clear and Ambiguous cases.

Table 3: Sentiment Classification Results on SemEval-
2016 Task 4 (English) using F1 Score, divided into
Clear, Ambiguous, and Average categories.

Model Method Clear Ambiguous Avg

Qwen2.5-32b
DP 0.86 0.81 0.84
CoT 0.88 0.82 0.85
FRC 0.90 0.85 0.88

DeepSeek-32b
DP 0.83 0.75 0.79
CoT 0.85 0.77 0.81
FRC 0.89 0.84 0.87

DeepSeek-14b
DP 0.77 0.72 0.75
CoT 0.79 0.73 0.76
FRC 0.83 0.78 0.81

Table 4: Sentiment Classification Results on Takeout
Review Dataset (Chinese) using F1 Score, divided into
Clear, Ambiguous, and Average categories.

Model Method Clear Ambiguous Avg

Qwen2.5-32b
DP 0.84 0.79 0.81
CoT 0.86 0.80 0.83
FRC 0.88 0.83 0.86

DeepSeek-32b
DP 0.81 0.74 0.77
CoT 0.84 0.76 0.80
FRC 0.89 0.84 0.87

DeepSeek-14b
DP 0.73 0.68 0.70
CoT 0.75 0.71 0.74
FRC 0.79 0.74 0.77

The experimental results demonstrate that FRC con-
sistently outperforms both DP and CoT across all mod-
els and datasets.
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SemEval-2016 Task 4: As shown in Table 3. , FRC
achieves the highest F1 scores in both the Clear and
Average categories, showing substantial improvements
over CoT and DP.

Takeout Review Dataset: On the Takeout Review
Dataset (Chinese), as shown in Table 4, FRC also outper-
forms the baseline methods in both Clear and Average
categories, indicating its superior ability to distinguish
sentiment in diverse languages.

The results show that the difference in performance
between FRC and the other methods is particularly pro-
nounced in the Clear category, where FRC demonstrates
more robust sentiment classification. This is consistent
with FRC’s ability to process sentiment shifts and han-
dle fine-grained sentiment distinctions more effectively.

Furthermore, the model size appears to have a posi-
tive impact on FRC’s performance, with larger models
such as DeepSeek-32b and Qwen2.5-32b consistently
achieving better performance across both datasets.

5.6 Knowledge Transfer from Large to Small
Models

To evaluate the knowledge transfer capability of the
FRC framework from large to small models, we con-
duct prompt-based experiments by injecting intermedi-
ate reasoning results, specifically keyword knowledge
and sub-unit knowledge, extracted from the DeepSeek-
R1 32b model into the prompts of smaller models, in-
cluding the 7b and 1.5b models. This strategy, similar
to retrieval-augmented generation, provides structural
reasoning guidance without modifying any model pa-
rameters. As shown in Table 5, the injected knowledge
leads to substantial improvements in the 7b model’s
F1-score.

Table 5: Knowledge Transfer from DeepSeek-R1 32b
to Smaller Models via FRC (F1-Score Results)

Prompt Configuration 1.5b 7b
No injection (baseline) 0.62 0.76

Injecting Keyword Knowledge 0.68 0.79
Injecting Sub-unit Knowledge 0.72 0.81

Injecting Keyword & Sub-unit Knowledge 0.75 0.83

Analysis: The baseline 1.5b and 7b models achieve
F1-scores of 0.62 and 0.76, which are substantially
lower than the 32b model, which reaches 0.87. This
gap indicates the limitations of smaller models in han-
dling long prompts, maintaining global context, and per-
forming complex reasoning. By injecting fine-grained
keyword and sub-unit knowledge derived from the 32b
model, these deficiencies are effectively mitigated. In
particular, the 1.5b model reaches 0.75 F1-score, cor-
responding to a relative improvement of 21 percent,
while the 7b model achieves 0.83 F1-score. These re-
sults demonstrate that smaller models can narrow the
performance gap without any parameter updates.

The improvements obtained by injecting keyword
knowledge alone, sub-unit knowledge alone, and their

combination indicate that multi-level knowledge com-
ponents complement each other in enhancing reasoning
performance. Moreover, this offline knowledge transfer
mechanism enables small models to process new sen-
tences independently by querying a pre-built knowledge
base or leveraging offline-enhanced training, without
requiring online invocation of large models. This ap-
proach allows for efficient and low-cost deployment
while maintaining robust reasoning capability.

6 Conclusion

In this work, we propose the Fuzzy Reasoning Chain
(FRC) framework to address the challenge of reason-
ing over ambiguous and uncertain texts. FRC extends
conventional probability-based reasoning by integrat-
ing continuous fuzzy membership degrees, providing a
structured mechanism for translating fuzzy information
into interpretable decisions. We provide a preliminary
exploration of the framework’s properties, and empir-
ical results demonstrate its effectiveness on sentiment
analysis tasks. The transition from probabilities to mem-
bership degrees allows FRC to capture conflicting or
uncertain signals that traditional approaches cannot, and
also facilitates knowledge transfer between models of
different scales. Future work may explore applying
FRC to other fuzzy reasoning tasks such as security re-
view and ethical judgment, integrating richer external
knowledge sources, and further improving robustness
and efficiency for practical deployments.

7 Limitations

While the proposed Fuzzy Reasoning Chain (FRC)
framework shows promising results, several limitations
remain to be addressed in future work.

First, current large language models still face chal-
lenges in precisely executing the FRC prompting pro-
cess end-to-end. Similar to many existing prompt-based
tasks(Kojima et al., 2022), practical deployment often
requires manual interpretation of intermediate outputs
or multiple rounds of interaction with the model , which
may limit efficiency and scalability.

Second, although we focus on sentiment analysis
for evaluation, other fuzzy reasoning tasks—such as
security review, ethical judgment, and culturally sen-
sitive scenarios—pose additional complexities due to
their context-dependent semantics and domain-specific
knowledge requirements. Careful task-specific adapta-
tion and thorough empirical validation are needed before
applying FRC to these areas.

Third, the generalization of FRC beyond sentiment
analysis remains to be systematically explored. Dif-
ferent fuzzy tasks may have distinct ambiguity types
and semantic structures, which could impact the frame-
work’s reasoning stability and interpretability.

Fourth, the reliance on large language models as se-
mantic priors implies a dependency on the inherent bi-
ases and knowledge limitations of these models. This
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may affect the robustness of FRC’s reasoning in sce-
narios with underrepresented or evolving language phe-
nomena.

Finally, while FRC facilitates knowledge transfer via
prompt injection, the granularity and optimal design
of transferable reasoning components warrant deeper
investigation to maximize cross-model efficacy.

Addressing these limitations will be crucial for fur-
ther enhancing FRC’s applicability and robustness in
diverse fuzzy reasoning domains.

8 Ethics and Impact Statement

This paper presents the Fuzzy Reasoning Chain (FRC)
framework designed to improve the interpretability and
robustness of sentiment analysis through fuzzy logic-
based reasoning. By enabling models to handle ambigu-
ous or uncertain emotional expressions more effectively,
our work aims to enhance natural language understand-
ing in real-world scenarios.

While we do not identify immediate ethical concerns
inherent to our methodology, we acknowledge that sen-
timent analysis technologies can influence user experi-
ence and decision-making in various applications such
as content moderation, recommendation systems, and
social media analysis. It is therefore important that
future work applying FRC continues to consider fair-
ness, privacy, and the avoidance of biased or misleading
interpretations.

Our goal is to support the development of more nu-
anced and reliable sentiment analysis tools that better
reflect human emotional complexity, ultimately benefit-
ing users and society.
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