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Abstract

Large language models (LLMs) are increas-
ingly used to automate data analysis through
executable code generation. Yet, data science
tasks often admit multiple statistically valid
solutions, e.g. different modeling strategies,
making it critical to understand the reasoning
behind analyses, not just their outcomes. While
manual review of LLM-generated code can
help ensure statistical soundness, it is labor-
intensive and requires expertise. A more scal-
able approach is to evaluate the underlying
workflows—the logical plans guiding code gen-
eration. However, it remains unclear how to
assess whether an LLM-generated workflow
supports reproducible implementations.

To address this, we present AIRepr, an
Analyst–Inspector framework for automatically
evaluating and improving the reproducibility
of LLM-generated data analysis workflows.
Our framework is grounded in statistical prin-
ciples and supports scalable, automated assess-
ment. We introduce two novel reproducibility-
enhancing prompting strategies and benchmark
them against standard prompting across 15
analyst-inspector LLM pairs and 1,032 tasks
from three public benchmarks. Our findings
show that workflows with higher reproducibil-
ity also yield more accurate analyses, and
that reproducibility-enhancing prompts sub-
stantially improve both metrics. This work
provides a foundation for transparent, reliable,
and efficient human-AI collaboration in data
science. Our code is publicly available1.

1 Introduction

Large language models (LLMs) are increasingly
used to automate data analysis by generating ex-
ecutable code (Zhu et al., 2024; Gu et al., 2024;
Nejjar et al., 2025; Jansen et al., 2025). With recent

*These authors contributed equally to this work.
†Corresponding author: qunhua.li@psu.edu.
1https://github.com/Anonymous-2025-Repr/LLM-DS-

Reproducibility

advances in reasoning (Guo et al., 2025) and tool
use (Gao et al., 2023; Schick et al., 2023), LLMs
are achieving impressive performance on a wide
range of data science tasks, from exploratory anal-
ysis (Ma et al., 2023) to predictive modeling (Chi
et al., 2024; Jiang et al., 2025), often approach-
ing or even surpassing human-level accuracy on
benchmark datasets (Zhu et al., 2024).

However, data science is not just about produc-
ing an answer. Many tasks admit multiple valid ana-
lytical paths (Gelman and Loken, 2013; Dragicevic
et al., 2019): different statistical tests, feature selec-
tion, or modeling strategies can yield distinct yet
equally defensible conclusions (Silberzahn et al.,
2018). Even when ground truth labels exist, rigor-
ous analysis is necessary to avoid critical pitfalls
such as missing preprocessing choices or inappro-
priate distributional assumptions (Moscovich and
Rosset, 2022; Moreno-Torres et al., 2012). Conse-
quently, accuracy alone is an insufficient metric of
the quality of a data science solution. Understand-
ing how an answer is reached, i.e. the workflow
of the analysis, is essential for ensuring validity,
transparency, and reproducibility (Sandve et al.,
2013).

Human data scientists are trained to uphold high
standards of reproducibility (Davidson and Freire,
2008; National Academies, 2018, 2019), not only
by writing correct code but by documenting their
analytical steps and rationales (e.g. data processing
steps, model specifications) in methods sections or
technical reports (Goodman et al., 2016; Munafò
et al., 2017). These practices reflect a broad view of
reproducibility – one that values transparency, clar-
ity, and completeness of the information necessary
for others to replicate and verify the work, just as
much as correctness. Though LLMs can generate
syntactically valid code and articulate underlying
high-level reasoning, verifying the soundness of
these outputs still demands time-intensive manual
inspection by experts.
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Figure 1: A human-in-the-loop pipeline for AI-generated data analysis. Given a data analysis task, an AI Analyst
generates a workflow (analysis steps), code, and conclusion. An independent AI Inspector takes the workflow to
generate new code and a new conclusion. If the AI Analyst’s conclusion is independently reproducible—meaning
the workflow provides complete and sufficient details for the generated code—then human analysts can focus on
evaluating the soundness of the workflow without manually verifying the code. However, if the AI solution fails the
reproducibility check, the solution needs to be revised before being submitted for human review.

A more scalable alternative is to focus on eval-
uating the underlying workflow – the structured
sequence of reasoning steps and details that com-
pose an analysis – over the code itself (Figure 1).
If workflows are expressed clearly and accurately,
they can serve as a reproducible and inspectable
artifact in their own right, enabling reviewers or
collaborators to assess methodological soundness
without sifting through implementation details (Ex-
ample in Table 1). However, whether LLM-derived
workflows are sufficiently detailed to support this
kind of inspection and independent replication re-
mains an open question.

To bridge this gap, we propose the analyst-
inspector framework to automatically evaluate
and enhance the reproducibility of LLM-generated
data analysis workflows, reducing dependence on
manual code verification. In this framework, an
independent inspector model attempts to reproduce
the analysis based solely on the workflow produced
by the analyst model. If the inspector can repro-
duce functionally equivalent code and arrive at the
same conclusion, this indicates that the workflow
contains all necessary details without relying on im-
plicit assumptions or analyst-specific knowledge.

Our analyst-inspector framework offers a prac-
tical and principled approach for evaluating LLM-
generated data science workflows, with several key
advantages. (A) Human-aligned and intuitive: it
reflects how human reviewers typically evaluate
analyses by reading methodological descriptions
rather than inspecting code line-by-line. (B) Sta-
tistically grounded: the framework requires work-

flows not only to be faithful (Lyu et al., 2024), ac-
curately reflecting the analysis steps, but also to sat-
isfy the classical statistical properties of sufficiency
and completeness (Lehmann, 1983; Casella and
Berger, 2024), meaning they must include all nec-
essary information (sufficiency) while excluding
irrelevant or extraneous details (completeness). (C)
Generalizable and lightweight: the core mecha-
nism of checking whether one LLM can indepen-
dently reproduce another’s analysis based on its
generated workflow is broadly applicable across
tasks and domains, without requiring labeled train-
ing data or complex infrastructure.

Using this framework, we systematically eval-
uate 15 combinations of five LLMs as analysts
and three LLMs as inspectors across 1,032 diverse
data analysis tasks drawn from three benchmark
datasets. We propose two novel reproducibility-
enhancing prompting strategies and benchmark
them against two standard baselines to assess their
impact on analysis reproducibility and accuracy.
Our study finds that increased reproducibility sig-
nificantly correlates with higher accuracy in LLM-
generated analyses, and that prompts explicitly em-
phasizing reproducibility improve analysis quality.
These findings provide strong directions for advanc-
ing transparent and robust human-AI collaboration
in data science.

2 Related work

2.1 LLM-Assisted Data Science
LLMs are increasingly applied to automate data sci-
ence tasks across the analytical pipeline, including
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data preprocessing (Zhang et al., 2023), exploratory
data analysis (Ma et al., 2023), visualization gen-
eration (Wang et al., 2025; Yang et al., 2024), fea-
ture engineering (Hollmann et al., 2023), and au-
tomatic machine learning (Guo et al., 2024; Chi
et al., 2024; Jiang et al., 2025). Early work focused
on single-turn prompting to generate runnable code
for straightforward questions like “What is the cor-
relation between X and Y?” (Wei et al., 2022; Zhu
et al., 2024). More recent efforts leverage multi-
step reasoning, tool usage, and action execution
(Yao et al., 2022; Hong et al., 2024; Majumder
et al., 2024), enabling LLMs to dynamically adjust
to data characteristics and solve complex problems.

2.2 Reproducibility in Data Science
Prior work shows that reproducible data analysis
requires not only access to code and data, but also
clear documentation of the analyst’s reasoning and
choices. (Goodman et al., 2016; Kale et al., 2019).
Unlike procedural tasks in software engineering or
typical code generation settings (Hong et al., 2023;
Qian et al., 2023; Islam et al., 2024), data analy-
sis frequently involves multiple, equally justifiable
paths, each potentially leading to different results
(Gelman and Loken, 2013; Steegen et al., 2016;
Simonsohn et al., 2020). This analytical multi-
plicity, known as “the garden of forking paths”,
leads to substantial variation in outcomes even
among experts analyzing the same data (Silberzahn
et al., 2018; Bastiaansen et al., 2020). It is preva-
lent across domains (Botvinik-Nezer et al., 2020;
Menkveld et al., 2024). and complicates efforts to
assess an analysis’s validity from outputs alone.

These prior findings highlight the importance
of generating well-structured workflows that trans-
parently communicate the analyst’s plan, rationale,
and execution steps, enabling independent verifica-
tion and allowing reproducibility.

2.3 Consistency of LLM Outputs
Most existing work on reproducibility in LLMs
centers on output consistency, i.e. whether an LLM
produces the same output across repeated runs or
prompt variations within similar conditions (Errica
et al., 2024; Raj et al., 2025; Ahn and Yin, 2025).
For instance, Wang and Wang (2025) systemati-
cally evaluates the consistency of LLM outputs
across a range of financial tasks, showing that the
consistency rate varies across tasks. Techniques
such as self-consistency (Wang et al., 2022; Chen
et al., 2023), which aggregate final answers from

Figure 2: Analyst-Inspector framework for assessing
LLM data analysis reproducibility.

multiple generations through majority voting, have
been proposed to enhance answer accuracy.

However, these approaches focus on output con-
sistency over repeated trials of one LLM rather than
whether the underlying reasoning is explicit and
complete enough for independent reproduction – a
crucial aspect in data science, central to our work.

3 Workflow Reproducibility

Reproducibility in data analysis depends on trans-
parent workflows that clearly document key steps,
such as data processing, modeling choices, and pa-
rameter settings, so others can reproduce results
through independent implementation (Davidson
and Freire, 2008; National Academies, 2019). We
define workflow reproducibility as a property of the
workflow reflecting how well it supports indepen-
dent generation of code that faithfully implements
the original analysis it describes. That is, it cap-
tures the alignment between what the workflow
describes and what is actually implemented.

To evaluate workflow reproducibility, we intro-
duce an analyst-inspector framework for LLM-
generated workflows: an LLM analyst produces
a data science solution, and a separate LLM in-
spector attempts to independently reproduce the
results using only the workflow and minimal con-
text (e.g., dataset filepaths). Workflows that enable
successful reproduction demonstrate strong fidelity
between documentation and implementation. This
mirrors the reproducibility standard for publish-
ing scientific research, where Methods sections
must be sufficient for independent replication, and
facilitates human-AI collaboration by shifting hu-
man oversight from labor-intensive manual code
inspection to high-level reasoning about logic and
assumptions made in the workflow (Figure 1).

3.1 The Analyst-Inspector Framework
Our formal reproducibility framework (Figure 2)
is defined as follows. Let D represent a data sci-
ence task, consisting of input data, contextual in-
formation, and a data science question (e.g. finding
correlation). Let A be an AI analyst that gener-
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ates analysis solutions according to probabilistic
distribution fA induced by the model’s architecture
and learned parameters, from which its statistical
reasoning and code generation capabilities emerge.

When responding to task D, analyst A produces
a solution tuple (WA, CA), where
• WA ∼ fA(W | D) denotes the workflow, a

structured summary encapsulating A’s reasoning
and analysis plan for solving D.
• CA ∼ fA(C | D,WA) denotes the corre-

sponding code implementation following WA.
To assess the reproducibility of A’s solution, we

introduce an independent AI inspector I that evalu-
ates whether the workflow WA allows I to repro-
duce the analysis conclusion by generating a new
code implementation CI from WA,

CI ∼ fI(C | WA),

where fI is I’s probabilistic distribution for gen-
erating code given input text. We then define the
criterion for a reproducible solution as follows.

Definition. Given a task D, workflow WA is repro-
ducible if and only if CA ≡ CI , where ≡ holds if
CA and CI produce the same result with respect
to D. If WA is reproducible, then its correspond-
ing code implementation CA is also reproducible
making the analysis (WA, CA) reproducible.

In our framework, CA ≡ CI denotes functional
equivalence, meaning that the outcomes derived
from their deterministic code execution, OA =
o(CA) and OI = o(CI), are consistent, even if CA

and CI differ textually.

3.2 Statistical Interpretations of Workflow
Reproducibility

Our reproducibility framework is grounded in the
classical statistical principles of sufficiency and
completeness (Casella and Berger, 2024; Lehmann,
1983), which characterize how well a summary
statistic (here, WA) captures essential information
for a given task. Sufficiency ensures that the work-
flow contains all necessary information to repro-
duce the result; completeness ensures that it ex-
cludes extraneous information that could distort
replication.

Our definition of reproducibility (Section 3.1)
requires that the code distribution of an indepen-
dent inspector given workflow matches that of the
analyst given both data and workflow

fA(C | D,WA) = fI(C | WA).

This condition enforces that WA contains exactly
the information necessary to generate functionally
equivalent code – no more, no less.

Completeness is reflected in the fact that irrele-
vant or ambiguous content in WA would cause the
inspector’s code distribution to diverge from the
analyst’s, leading to inconsistencies and violating
the equality. A complete workflow avoids such
derailment by eliminating non-essential detail.

Sufficiency is expressed in two ways. First,
when the inspector differs from the analyst ( fA ̸=
fI ), this condition ensures the workflow general-
izes across agents, guarding against idiosyncratic
or agent-specific reasoning (National Academies,
2019). Second, in the special case where the ana-
lyst and inspector are the same, the condition re-
duces to:

fA(C | D,WA) = fA(C | WA),

which is equivalent to conditional independence
C ⊥ D | WA. That is, the workflow sufficiently
captures the relevant task context and renders the
original data uninformative for code generation.

In this way, our formalization of reproducibil-
ity not only aligns with practical concerns around
transparency and transferability, but also satisfies
the foundational statistical properties of sufficiency
and completeness.

3.3 Reproducibility Enhancing Prompts

We propose two novel prompting strategies
that explicitly aim to improve the repro-
ducibility of LLM-generated data science work-
flows: Reproducibility-of-Thought (RoT) and
Reproducibility-Reflexion (RReflexion). RoT
extends Chain-of-Thought (CoT) prompting (Wei
et al., 2022) by adding an instruction that explic-
itly emphasizes both sufficiency and completeness:
“Make sure a person can replicate the action input
by only looking at the workflow, and the action
input reflects every step of the workflow.” This
encourages the LLM to generate workflows that
are complete and confined by the implementation.
RReflexion, inspired by Shinn et al. (2024), intro-
duces an iterative feedback mechanism: when a
solution fails a reproducibility check by the inspec-
tor, the analyst is prompted to revise or regenerate
the solution. This mirrors the human-in-the-loop
process shown in Figure 1 and simulates a cycle of
feedback-driven refinement.
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4 Experiment Design

4.1 Datasets

To evaluate the performance of LLMs in data anal-
ysis, we compiled a diverse set of 1,032 question-
answer (QA) pairs (Table 2) sourced from three
data science benchmarks: DiscoveryBench (Ma-
jumder et al., 2024), QRData (Liu et al., 2024),
and StatQA (Zhu et al., 2024). 1) The Discov-
eryBench benchmark comprises 264 tasks from
real-world scientific problems and 903 synthetic
tasks, covering 6 domains. We focused on the 239
real-world tasks in the ‘test’ set. 2) The QRData
benchmark tests advanced quantitative reasoning
using 411 questions paired with data sheets from
textbooks, online learning materials, and academic
papers. For our evaluation, we removed 18 flawed
multiple-choice questions as detailed in Appendix
A. 3) The StatQA benchmark, designed for statis-
tical analysis, contains 11,623 tasks spanning five
categories: descriptive statistics (DS), correlation
analysis (CA), contingency table tests (CTT), distri-
bution compliance tests (DCT), and variance tests
(VT). From its ‘mini-StatQA subset’, consisting
of 1,163 tasks, we randomly selected 80 tasks per
category for balanced representation and to manage
computational cost.

We used these benchmarks to assess LLMs’ per-
formance on various aspects of data analysis and
statistical reasoning. Examples are provided in Ap-
pendix Table 3. We classified all QA pairs into
three categories: ‘Numerical’, ‘Categorical’, and
‘Textual’ (Appendix A).

4.2 LLM Models and Prompting Strategies

We evaluated five LLMs in combination with
four prompting strategies. Specifically, LLMs
included GPT-4o (GPT-4o-2024-11-20) (OpenAI
et al., 2024), Claude-3.5-sonnet (v2) (Anthropic,
2024), o3-mini (o3-mini-2025-01-31) (OpenAI,
2025), Llama-3.3-70B (Grattafiori et al., 2024),
and DeepSeek-R1-70B (Guo et al., 2025).

We evaluated four prompting strategies: two es-
tablished baselines that do not explicitly enforce
reproducibility, Chain-of-Thought (CoT) prompt-
ing (Wei et al., 2022) and ReAct (Yao et al., 2022),
and our two reproducibility-enhancing methods,
RoT and RReflexion (Section 3.3). CoT follows
the approach introduced in Wei et al. (2022), us-
ing the line “let’s think step-by-step” to elicit rea-
soning. ReAct, a widely used agent-style prompt-
ing framework that interleaves reasoning with tool

use (Yao et al., 2022), serves as our agent-based
baseline for evaluating how well iterative decision-
making supports reproducibility practices. As de-
scribed in Section 3.3, RoT is CoT with an addi-
tional reproducibility-enhancing instruction, thus
the comparison between RoT and CoT provides a
direct assessment on the effect of reproducibility-
enhancing instruction. RReflexion extends CoT
by incorporating inspector feedback from repro-
ducibility check. In all the above prompts, we pro-
vide essential context, including detailed dataset de-
scriptions and metadata, and any available relevant
domain knowledge. All prompting strategies were
equipped with the same code execution tool. Imple-
mentation constraints, including maximum number
of LLM calls and code executions per sample for
each prompting strategy are detailed in Table 4.

4.3 Evaluation and Performance Analysis

We assess each LLM-generated analysis using two
binary metrics: accuracy and reproducibility. Ac-
curacy measures whether the final answer matches
the benchmark ground truth, e.g. ‘X is significantly
larger than Y’. Reproducibility is assessed via our
analyst-inspector framework (Section 3). Solutions
with inexecutable code are automatically marked as
inaccurate and irreproducible. We use GPT-4o as
the evaluator for both accuracy and reproducibility
and validate its evaluations against those of a hu-
man expert on 350 samples, randomly drawn from
each task category (Appendix E). To assess frame-
work robustness, we also test Claude-3.5-sonnet
and o3-mini as the inspectors (Section 5.6).

To analyze factors influencing performance, we
fit a linear regression model:

Y = β0 + βLLLM + βpPrompt+ βdTask

where Y is accuracy or reproducibility, and predic-
tors include model, prompting strategy, and task
type. Full specification and results are in Table 8.

4.4 Human Data Collection

To contextualize the performance of LLMs, we
establish a human analyst baseline using the Dis-
coveryBench dataset. Two experienced postgrad-
uate data analysts independently solved half of
the tasks following the instructions in Appendix
Table 5. Each analyst spent approximately 120
hours developing comprehensive workflows and
code solutions. We assessed these solutions using
the methodology outlined in Section 4.3.
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Figure 3: Accuracy comparison between reproducible
(R = 1) and irreproducible (R = 0) solutions
across LLMs and datasets using CoT prompting. Non-
executables are excluded from the R = 0 group. The x-
and y-axes show the proportion of accurate solutions in
each group. The diagonal line indicates equal accuracy
between the two groups. A one-sided t-test evaluates
whether reproducible solutions are significantly more
accurate.

5 Results

5.1 Reproducible Analyses are more Accurate

To evaluate the relationship between reproducibil-
ity and correctness of the LLM-generated analy-
ses, we compared accuracy between reproducible
and irreproducible solutions for each LLM-dataset
combination. As shown in Figure 3, reproducible
solutions were significantly more accurate than ir-
reproducible ones (mean 64.4% vs. 53.5%; one-
sided paired t-test, p < 0.001). This pattern held
consistently across prompting strategies (Figure
9), suggesting that workflows detailed enough to
support independent replication are more likely to
reflect sound analytical reasoning.

5.2 Impact of Prompting Strategies

Prompting strategies that explicitly enforce re-
producibility—RoT and RReflexion—substantially
improved both reproducibility and accuracy across
models and datasets. Compared to the baseline
CoT strategy, RoT increased reproducibility rates
most of the time. For instance, on DiscoveryBench
with GPT-4o, reproducibility rose from 42.68%
(CoT) to 48.54% (RoT), and RReflexion further in-
creased it to 58.58% (Table 6). Similarly, o3-mini
improved from 55.23% (CoT) to 60.25% (RoT),
peaking at 71.55% with RReflexion. Regression
analysis confirmed that RReflexion had a statisti-
cally significant positive effect on reproducibility
across all datasets (Table 8).

These improvements in reproducibility were ac-
companied by gains in analytical correctness. RoT

outperformed its baseline CoT counterpart across
nearly all settings (Tables 6 and 7). RReflex-
ion yielded a significant (p = 0.007, paired t-test)
4.15% average accuracy gain on reanalyzed sam-
ples over CoT. These findings further underscore
reproducibility as a practical and reliable proxy for
analytical quality.

Notably, the accuracy improvements were more
pronounced on benchmarks with higher accuracy,
such as QRData and StatQA. For example, on QR-
Data, GPT-4o’s accuracy increased from 48.85%
(CoT) to 50.89% (RoT) and 51.15% (RReflexion),
while o3-mini improved from 58.52% (CoT) to
62.09% under RoT. In contrast, gains were more
modest on DiscoveryBench. These results imply
that, although reproducibility-focused prompts en-
hance alignment between reasoning and execution,
they alone aren’t enough to address the harder sta-
tistical challenges posed by more complex tasks.

We also assessed ReAct, an agent-style prompt-
ing framework that interleaves workflow reasoning
and code execution. Consistent with prior work
(Yao et al., 2022), ReAct often improved accu-
racy over CoT, particularly for Claude-3.5-sonnet
and DeepSeek-R1-70B (Figure 4). However, Re-
Act sometimes reduced reproducibility. For in-
stance, Llama-3.3’s reproducibility on Discovery-
Bench dropped from 23.85% (CoT) to 12.97% (Re-
Act). This decline appears to result from incom-
plete workflows, as models occasionally referenced
prior steps without rearticulating them, despite ex-
plicit instructions to produce complete workflows
(Appendix C). Nonetheless, ReAct, by leveraging
iterative tool feedback, markedly reduced execu-
tion errors and delivered the highest proportion of
executable code (Figure 8).

5.3 Comparison Across LLMs
Comparing performance across the three bench-
mark datasets (Appendix B), all LLMs performed
best on StatQA (mean accuracy 75.91%), followed
by QRData (54.9%), with the lowest performance
on DiscoveryBench (28.72%). Variations in re-
producibility (Figure 4) were less striking, but fol-
lowed the same trend. This pattern reflected the
varying level of task complexity across the datasets
(easiest to hardest: StatQA, QRData, Discovery-
Bench).

As analysts, different LLMs demonstrate sub-
stantial variation in analytical correctness, work-
flow reproducibility, and code reliability. Among
them, o3-mini achieved the strongest overall per-
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Figure 4: Accuracy and reproducibility of LLMs across datasets for different prompting strategies. Solid line: the
average metric scores calculated from different LLMs for each prompting strategy.

formance: it topped accuracy on DiscoveryBench
(32.64%) and QRData (60.18%), achieved the
highest reproducibility across all datasets (up to
94.25%), and generated the most executable code
(Tables 6 and 7). Claude-3.5-sonnet often achieved
high accuracy, including the best score on StatQA
(80.56%), but consistently showed the lowest re-
producibility, indicating that its workflows often do
not support reliable reproduction. GPT-4o exhib-
ited inconsistent performance across benchmarks,
ranking among the best on StatQA, lowest on QR-
Data, and mid-level on DiscoveryBench. Llama-
3.3 showed steady mid-tier performance across all
metrics. DeepSeek-R1-70B performed the worst
overall, exhibiting low accuracy, and the lowest
rate of executable code.

5.4 Performance Across Task Types
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Figure 5: Accuracy and reproducibility of LLMs across
different statistical question categories in StatQA.

To evaluate how LLMs perform across differ-

ent types of analysis tasks, we examined results
by statistical question category within the StatQA
dataset (Figure 5, category details in Section 4.1).
Descriptive Statistics consistently yielded the high-
est accuracy (80.00–92.50%) and reproducibility
(71.25–98.75%), with o3-mini performing particu-
larly well (90.00–98.75%). DCT and VT tasks also
had high accuracy (77.50–93.75%), though repro-
ducibility differed widely across models, ranging
from 72.50–95.00% for o3-mini to 31.25–40.00%
for Claude-3.5-sonnet. In contrast, tasks involving
CTT and CA were more challenging, with accu-
racy ranged from 42.50–83.75%. Reproducibility
also varied widely: Claude-3.5-sonnet ranged be-
tween 36.25–51.25%, while o3-mini maintained
consistently high reproducibility (80.00–93.75%).

We also grouped the 1,032 QA tasks into three
data types—numerical, categorical, and textual—to
assess how data type affects model performance
(Figure 10). Regression analysis (Table 8) revealed
that while categorical and textual tasks had higher
accuracy than numerical ones, they were signifi-
cantly less reproducible.

5.5 Error Analysis for Irreproducibility

To better understand the causes of irreproducibil-
ity in LLM-generated workflows, we categorized
irreproducible workflows into three distinct types
according to their misalignment with the Analyst’s
code implementation (Appendix F): Sufficiency
Issue: Missing essential steps or details present in
the code. Mis-Specification Issue: All steps are
included but some diverge from the code’s logic
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— e.g., wrong statistical methods or misdefined
variables. Over-Specification Issue: Includes un-
necessary steps, constraints or assumptions not in
the code, introducing ambiguity. Demonstration
examples are provided in Figure 11.

Among these categories, sufficiency issues
(49.94%) were most common (Figure 12),
especially in outputs from Claude-3.5-sonnet
and Llama-3.3. Although less frequent, mis-
specification (33.02%) and over-specification
(17.04%) are more damaging, introducing incor-
rect procedures or a false sense of rigor through
non-implemented steps. Notably, reproducibility-
enhancing prompts, especially RReflexion, signifi-
cantly reduced all error types (Figure 6), highlight-
ing the value of inspector feedback in improving
workflow clarity and fidelity. RoT also yielded
significant gains (Figure 13).

5.6 Robustness to Inspector Choice

To assess the sensitivity of our framework to in-
spector choice, we re-evaluated reproducibility us-
ing two additional LLMs, Claude-3.5-sonnet and
o3-mini, on the QRData benchmark, which fea-
tures moderate analytical complexity. Their re-

producibility scores were strongly correlated with
those from GPT-4o across all analyst models and
prompting strategies (Figure 7), with only minor
score increases. We also assessed self-evaluation
bias. Claude-3.5-sonnet rated its own outputs con-
sistently higher than other inspectors did (Figure
14), suggesting potential bias. GPT-4o and o3-mini
showed no such tendency.

These findings support the robustness of our
framework across inspector choices and identify
GPT-4o and o3-mini as more consistent, unbiased
inspectors.

5.7 Human vs LLM Comparison

Comparing human expert solutions with LLM so-
lutions on DiscoveryBench, we observed a notable
performance gap in overall accuracy (Table 6 and
Appendix Table 9). Human analysts achieved an
overall accuracy of 66.53% and a reproducibility
rate of 66.53%, albeit at the cost of approximately
240 hours of manual effort. LLMs, while less accu-
rate overall (23.01–35.56%), demonstrated compet-
itive reproducibility under certain configurations.
Notably, o3-mini with RReflexion (71.6%) sur-
passed human reproducibility. These results sug-
gest that future enhancements in prompt design and
reproducibility practices could help narrow the gap
between automated and manual approaches.

6 Conclusion

In this work, we introduce AIRepr, an analyst-
inspector framework designed to rigorously eval-
uate and enhance the reproducibility of LLM-
generated data analysis workflows. Our system-
atic evaluation demonstrates that enforcing repro-
ducibility criteria on workflows can improve the
accuracy of analyses, underscoring the value of ex-
plicit and transparent reasoning in AI-driven data
science.

Embedding reproducibility principles through
our RoT and RReflexion strategies substantially
boosts both reproducibility and accuracy across
five LLMs, outperforming standard CoT prompt-
ing, and demonstrating that reproducibility is not
only a desirable property but a practical means
of improving performance. Error analysis further
revealed that inspector feedback in our RoT and
RReflexion strategies effectively reduces common
causes of irreproducibility, such as omissions, mis-
specifications, and unnecessary steps that introduce
ambiguity.
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We also find that AIRepr is robust to the choice
of Inspector model. While some models, like
Claude-3.5-sonnet, may overrate their own outputs,
others such as GPT-4o and o3-mini provide more
consistent and unbiased evaluations, making them
more suitable for inspection.

The AIRepr framework is broadly applicable to
LLM-based systems that generate both workflows
and executable code. By introducing an Inspector
to independently verify Analyst outputs, users can
implement a lightweight reproducibility check be-
fore relying on results. This approach may extend
to real-world tools with similar structures, such as
Microsoft Copilot Analyst or Perplexity Lab, as a
modular addition for improving trust and reliability
in automated data analysis.

Overall, AIRepr promotes more transparent, reli-
able, and efficient human-AI collaboration, enhanc-
ing the integrity and usability of automated data
analysis.
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8 Limitations

Our study has several limitations that suggest di-
rections for future work.

First, while we explored a wide range of prompt-
ing strategies to improve reproducibility, we did
not examine the potential of fine-tuning LLMs on
task-specific data or reproducibility-oriented objec-
tives. Fine-tuning could further enhance the quality
and consistency of generated workflows.

Second, although we use an independent Inspec-
tor model to assess reproducibility and incorporate
human verification, shared training data and align-
ment objectives across LLMs may still introduce
agreement artifacts. This could lead to inflated re-
producibility scores even when the outputs are not
independently correct. We acknowledge this risk
and note that future extensions to our framework
could include using a diverse ensemble of Inspector
models or more stringent validation strategies to
reduce such false positives.

Third, the benchmark datasets used in our evalu-
ation span diverse domains and task types, but they
may still fall short of representing the full complex-
ity, ambiguity, and domain-specific nuance found
in real-world data analysis workflows.

Finally, we acknowledge that many data science
tasks are inherently open-ended and may admit
multiple valid solutions. Our evaluation of accu-
racy relies on comparison to predefined benchmark
answers, which may not capture the full range of
defensible outcomes.

9 Ethics Statement

Existing Benchmark Licenses. Our work builds
upon publicly available datasets and models, en-
suring compliance with their respective licenses.
Below, we detail the licensing terms for the bench-
marks we used and our own contributions.

• DiscoveryBench (Majumder et al., 2024): Li-
censed under ODC-BY, permitting redistribu-
tion and modification with proper attribution.

• QRData (Liu et al., 2024): Licensed under
CC BY-NC 4.0, allowing non-commercial use
with attribution.

• StatQA (Zhu et al., 2024): Licensed under
GPL-3.0, requiring derivative works to adopt
the same license.

Our use of these datasets adheres to the terms spec-
ified by their respective licenses, and we use them
strictly for research purposes.

Codebase License. We release our code under
the MIT License, granting users permission to use,
modify, and distribute the code with proper attribu-
tion. This choice aligns with our goal of advancing
reliability of LLM-generated data analysis and re-
producibility of scientific research.

Potential Risks. Our evaluation indicates that
current LLMs are not yet fully reliable in gen-
erating reproducible and accurate data analyses.
We suggest that users carefully review any LLM-
generated solutions before using them to automate
data analysis tasks. Additionally, while repro-
ducible analyses are more likely to be correct, it is
possible that both the analyst and inspector agents
are incorrect in consistent ways due to shared
model biases or alignment artifacts. To mitigate
such false negatives, our framework supports mod-
ular extensions such as incorporating multiple in-
spectors to perform re-audits, flag disagreements,
or apply stricter consensus mechanisms (e.g., ma-
jority voting). Thus, the AIRepr framework is de-
signed as a human-in-the-loop system, as detailed
in our motivation and Figure 1, with the goal of
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reducing human workload while increasing trust in
LLM-assisted data analysis workflows.
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A Data Cleaning and QA Types

The questions removed from the QRData bench-
mark were 18 causal relationship questions with
one of the following two structures:

“Question: Which cause-and-effect relationship
is more likely?

Answer options:
A: [item] causes [item]
B: [item] causes [item]
C: The causal relation is double sided between

[item] and [item]
D: No causal relationship exists”
“ Question: Which cause-and-effect relationship

is more likely?
Answer options:
A: [item] causes [item]
B: [item] causes [item]
C: No causal relationship exists”
where all [item]’s are the same, rendering the

answer options meaningless and duplicated.

‘Numerical’ responses provide quantitative val-
ues; ‘Categorical’ responses consist of discrete la-
bels or classifications; ‘Textual’ responses involve
free-form language that delivers narrative descrip-
tions, interpretations, or explanations. Appendix
Table 3 provides examples for each QA type. For
StatQA, if the hypothesis test responses contradict
each other, the QA type is classified as ‘Textual’.

B Description of Results Tables and
Figures

Appendix Tables 6 and 7 were used to generate
Figures 4 and 3, along with Appendix Figures 8
and 9. Appendix Tables 10, 11, and 12 were used
to generate Figure 5. Appendix Tables 10, 11, and
12 showed the results of LLMs on different cate-
gories of StatQA tasks. Appendix Tables 13 and
14 showed the results of LLMs on Numerical, Cat-
egorical and Textural QA types.

C Prompt Templates

Templates for different prompting strategies are
provided in Appendix Tables 15, 16, 17, and 18:

• Appendix Table 15: CoT, RoT, and RReflex-
ion templates

• Appendix Tables 16, 17, 18: ReAct template

D Evaluation

To compute accuracy, analysis correctness was de-
termined by comparing the LLM analysis conclu-
sions to the benchmark ground truth. For numeri-
cal answers, the LLM conclusion agrees with the
ground truth if the deviation between LLM con-
clusion and the ground truth is within a predefined
error threshold (Table 19). As the majority of LLM
conclusions and ground truth answers are presented
in natural language, we employ an evaluator LLM
(GPT-4o-2024-11-20) to assess agreement with the
ground truth. Reproducibility is evaluated via the
procedure detailed in Section 3. Prompts for the
answer agreement evaluation and reproducibility
inspection are detailed in the below prompts.

For Llama-3.3, GPT-4o, Claude-3.5-sonnet, and
o3-mini, we used a regex parser to extract the work-
flow, code, and conclusion from the LLM output.
For DeepSeek-R1-70B, the parser extracted the
code and conclusion, and all reasoning text pre-
ceding the code was treated as the workflow. For
CoT and RoT, which generate a single iteration of
workflow and code, reproducibility was assessed
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on that output. For RReflexion and ReAct, which
are iterative, only the final workflow and code were
evaluated.

Evaluation prompt templates are provided in Ap-
pendix Tables 19, 20, 21, and 22:

• Appendix Table 19: Accuracy assessment

• Appendix Table 20: Workflow-to-code con-
version

• Appendix Table 21: Conclusion extraction
from code execution output

• Appendix Table 22: Reproducibility assess-
ment

E Assessing Alignment of LLM Evaluator
and Human Judgments

To validate the reliability of our automated evalua-
tion framework, we conducted a systematic human
validation study comparing manual scoring against
LLM-generated scores.

For accuracy assessment, we randomly selected
25 examples from each QA type (numerical, cate-
gorical, and textual) across all three datasets (Dis-
coveryBench, QRData, and StatQA) from the GPT-
4o CoT results. A human expert then independently
assessed the accuracy of the LLM’s predicted an-
swers. Overall, among 200 examples, we found a
98.5% agreement between the human evaluations
and the LLM scoring, underscoring the high relia-
bility of our automated accuracy assessment.

For reproducibility assessment, we randomly se-
lected 50 examples from each dataset in the GPT-4o
CoT results, resulting in a total of 150 samples. A
human expert manually evaluated these examples
using our established criteria in Section 3. The
evaluation showed a 98.7% agreement between the
human assessments and the LLM scoring, confirm-
ing that our automated reproducibility assessment
closely aligned with human judgment.

These high consistency rates (98.5% for accu-
racy and 98.7% for reproducibility) confirmed the
reliability of our automated evaluation and demon-
strated its suitability for large-scale assessments of
LLM performance in data science tasks.

F Irreproducibility Error analysis

To diagnose why certain AI-generated workflows
fail our reproducibility check, we classify each irre-
producible sample into one of three mutually exclu-
sive error categories: Workflow Sufficiency Issues,

Workflow Mis-Specification Issues, and Workflow
Over-Specification Issues.

We automate the category assignment using o3-
mini (high) with a dedicated prompt (Appendix
Table 23). For each irreproducible sample, we pro-
vide: 1) the analyst’s generated workflow, 2) the
analyst’s code implementation, 3) the workflow-
converted code by inspector, and 4) the reason why
the inspector thinks the sample is irreproducible.
Then we provide the definitions of the three irrepro-
ducibility categories with examples to clarify the
failure reason and guide the categories selection.

G Human Experts

The two human expert data analysts who provided
workflow and code solutions in this study were
postgraduates (PhD, MS) with extensive experi-
ence in data analysis and fluency in English. They
were recruited through the authors’ personal con-
nections. They were not paid, but instead credited
as co-authors of this work. They were provided
the instructions in Appendix Table 5 and were in-
formed how their analysis solutions would be used.

H Computational Resources and
Experimental Setup

We conducted our experiments on a mix of locally
hosted (open-source) and API-accessed (closed-
source) LLMs. The locally hosted models included
Llama-3.3-70B and DeepSeek-R1-70B, both of
which were run on a cluster of four NVIDIA A6000
GPUs. The total computational budget was approx-
imately 200 GPU hours for Llama-3.3-70B and
300 GPU hours for DeepSeek-R1-70B.

For consistency, we set temperature to 0 for
all models except o3-mini, which required a tem-
perature of 1 to ensure compatibility with the
LangChain AzureChatOpenAI package. The hyper-
parameters for each analyst model were as follows:

• Llama-3.3-70B: repetition_penalty =
1.18, num_ctx = 8192, num_predict =
2048

• DeepSeek-R1-70B: num_ctx = 8196 × 2,
num_predict = 6000

• GPT-4o: max_tokens = 2048

• Claude 3.5 Sonnet: max_tokens = 2048

• o3-mini: reasoning_effort = low,
max_completion_tokens = 4000
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We did not perform extensive hyperparameter
tuning beyond selecting reasonable values based on
prior literature and preliminary trials. Instead, we
focused on evaluating model performance on struc-
tured data analysis tasks under fixed conditions to
ensure a fair comparison across LLMs.

The LLM snapshots we used for the OpenAI
models were 2025-01-31 for o3-mini and 2024-11-
20 for GPT-4o. The Azure API versions used were
2024-12-01-preview for o3-mini and 2024-10-01-
preview for GPT-4o.

I Use of AI Assistants

We used GitHub Copilot for code completion and
Anthropic’s Claude web interface to assist with
debugging. Additionally, we used OpenAI’s Chat-
GPT web interface to refine the clarity and smooth-
ness of our writing.

All AI-generated content, whether in code or
text, was carefully reviewed, edited, and validated
by the authors to ensure accuracy and alignment
with our research objectives. No AI-generated
content was used without human verification, and
all final decisions regarding implementation and
manuscript writing remained with the authors.
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Workflow:
1. Load the CSV dataset ’Fruits_and_Vegetables_Prices_Dataset.csv’ into a pandas DataFrame.
2. Use a linear regression model (using statsmodels) where newyorkretail is the dependent variable
and both farmprice and averagespread are independent variables.
3. Print the summary of the fitted regression model.

Code 1:

import pandas as pd
import statsmodels.api as sm

# Load dataset
df = pd.read_csv('Fruits_and_Vegetables_Prices_Dataset.csv')

# Define independent variables and dependent variable
X = df[['farmprice', 'averagespread']]
y = df['newyorkretail']

# Fit the Ordinary Least Squares (OLS) regression model
X = sm.add_constant(X)
model = sm.OLS(y, X).fit()

# Display the summary of the regression model
print(model.summary())

Code 2:

import pandas as pd
import statsmodels.api as sm

# Step 1: Load the CSV dataset into a pandas DataFrame
dataset_path = 'Fruits_and_Vegetables_Prices_Dataset.csv'
data = pd.read_csv(dataset_path)

# Step 2: Define the dependent and independent variables
X = data[['farmprice', 'averagespread']] # Independent variables
y = data['newyorkretail'] # Dependent variable

# Add a constant to the independent variables for the intercept
X = sm.add_constant(X)

# Fit the linear regression model using statsmodels
model = sm.OLS(y, X).fit()

# Step 3: Print the summary of the regression model to view the coefficients
print(model.summary())

Table 1: An example where a reproducible workflow enables the functional equivalent reproduction of Code 1 via
Code 2.
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Dataset Num Cat Txt Total
DiscoveryBench 90 86 63 239
QRData 163 230 0 393
StatQA 75 249 76 400
Total 328 565 139 1032

Table 2: Distributions of QA pairs by dataset.

Dataset Question Conclusion Type

DiscoveryBench What is the relationship of amber
finds and number of monuments be-
tween 3400-3000 BCE?

Between 3400-3000 BCE,
there is a high number of
amber finds and a large
number of monuments.

Textual

QRData Which cause-and-effect relationship
is more likely? A. Lumbago causes
R S1 radiculopathy B. R S1 radicu-
lopathy causes Lumbago

B Categorical

StatQA What is the kurtosis of the distribu-
tion of the variable representing Base
Special Defense?

2.39175 Numerical

Table 3: Examples of different QA types.

Prompt
Max LLM

Call
Max Code
Execution

CoT 2 1
RoT 2 1
RReflexion 3 1
ReAct 4 3

Table 4: In data analysis, following code execution, the same LLM was reused solely to generate an answer to the
analysis question. Maximum number of LLM calls and code executions across different prompting strategies.

Could you help work out the workflow (analysis steps) and code solutions on DiscoveryBench
questions?
Below are the instructions:
To prepare solutions for given questions in a standardized format. Each solution should include:
1. A workflow explaining the steps and logic of the code.
2. Python code that computes the answer.

Additional Requirements:
1. The code should be written in a way that, when provided to another person, they can write a
workflow with the same level of detail and functionality as your workflow.
2. The workflow should be detailed and clear enough that, when provided to another person, they
can write functionally identical code solely based on the workflow.

Table 5: Instructions given to human experts for solving data analysis problems in DiscoveryBench dataset.
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Prompt Model
Overall

Accuracy
Overall

Reproducibility
Inexecutable

Code
Accuracy

(R=1)
Accuracy

(R=0)

CoT

Llama-3.3 28.87 23.85 23.85 61.4 27.2
DeepSeek-R1-70B 23.01 42.68 33.05 42.16 20.69
GPT-4o 25.94 42.68 16.74 39.22 22.68
Claude-3.5-sonnet 28.45 21.34 25.52 56.86 30.71
o3-mini 31.80 55.23 13.81 37.12 36.49

RoT

Llama-3.3 30.54 25.52 27.2 57.38 33.63
DeepSeek-R1-70B 24.27 43.10 31.80 42.72 23.33
GPT-4o 27.2 48.54 22.18 40.52 25.71
Claude-3.5-sonnet 28.45 28.03 21.76 53.73 26.67
o3-mini 33.05 60.25 15.90 43.06 29.82

RRefl.

Llama-3.3 28.03 30.54 22.18 54.79 23.89
DeepSeek-R1-70B 23.01 51.05 28.87 38.52 16.67
GPT-4o 26.36 58.58 18.83 37.14 20.37
Claude-3.5-sonnet 30.54 27.20 19.67 53.85 29.92
o3-mini 30.96 71.55 13.81 37.43 28.57

ReAct

Llama-3.3 28.87 12.97 8.37 64.52 26.06
DeepSeek-R1-70B 28.03 42.26 15.90 51.49 15
GPT-4o 26.78 37.24 9.62 38.20 23.62
Claude-3.5-sonnet 35.56 12.55 11.30 66.67 35.71
o3-mini 34.73 57.74 3.35 42.75 25.81

Human experts 66.53 66.53 0 71.07 57.50

Table 6: Model performance comparison on the DiscoveryBench dataset. Samples with inexecutable code are
excluded when calculating Accuracy (R=0).

Lla
ma-3

.3

Dee
pS

ee
k-R

1-7
0B

GPT-
4o

Clau
de

-3.
5-s

on
ne

t

o3
-m

ini

70

75

80

85

90

95

100

Pr
op

or
tio

n 
of

 E
xe

cu
ta

bl
e 

Co
de

DiscoveryBench

Lla
ma-3

.3

Dee
pS

ee
k-R

1-7
0B

GPT-
4o

Clau
de

-3.
5-s

on
ne

t

o3
-m

ini

QRData

Lla
ma-3

.3

Dee
pS

ee
k-R

1-7
0B

GPT-
4o

Clau
de

-3.
5-s

on
ne

t

o3
-m

ini

StatQA

CoT
RoT
RReflexion
ReAct

Figure 8: Proportion of executable code across datasets for various LLMs and agents.
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Prompt Model
Overall

Accuracy
Overall

Reproducibility
Inexecutable

Code
Accuracy

(R=1)
Accuracy

(R=0)

QRData

CoT

Llama-3.3 52.67 30.28 8.14 68.91 51.65
DeepSeek-R1-70B 53.69 55.47 12.47 63.76 57.14
GPT-4o 48.85 48.85 10.69 59.38 49.06
Claude-3.5-sonnet 54.45 31.3 6.62 59.35 57.79
o3-mini 58.52 75.06 2.54 58.31 65.91

RoT

Llama-3.3 54.2 37.15 6.36 71.23 49.1
DeepSeek-R1-70B 51.65 55.47 16.03 65.60 53.57
GPT-4o 50.89 51.4 7.38 64.85 42.59
Claude-3.5-sonnet 56.23 38.93 7.38 56.21 63.98
o3-mini 62.09 81.68 1.53 63.55 60.61

RRefl.

Llama-3.3 52.93 49.87 6.36 66.84 44.77
DeepSeek-R1-70B 55.73 66.41 10.43 61.69 63.74
GPT-4o 51.15 67.43 5.09 58.87 41.67
Claude-3.5-sonnet 58.02 45.04 3.31 59.89 60.1
o3-mini 59.54 90.33 1.27 59.72 66.67

ReAct

Llama-3.3 54.2 30.53 6.62 62.5 55.87
DeepSeek-R1-70B 56.23 46.31 7.89 68.68 53.33
GPT-4o 51.15 49.36 4.33 61.86 44.51
Claude-3.5-sonnet 55.22 27.23 2.8 53.27 58.18
o3-mini 60.56 56.74 0.25 64.13 56.21

StatQA

CoT

Llama-3.3 71.25 63.75 8.5 81.18 70.27
DeepSeek-R1-70B 69 66.75 16 84.64 72.46
GPT-4o 79 78.5 4 83.76 75.71
Claude-3.5-sonnet 78.25 48 11 89.58 85.98
o3-mini 77.5 81 3.5 80.56 79.03

RoT

Llama-3.3 72.5 67.75 7.5 80.07 73.74
DeepSeek-R1-70B 63.5 64.25 18.25 83.66 55.71
GPT-4o 79.25 81.75 3.75 85.02 67.24
Claude-3.5-sonnet 80.25 53.5 8 90.65 82.47
o3-mini 78.5 84.25 3 81.01 80.39

RRefl.

Llama-3.3 72.75 76.5 7.25 81.7 63.08
DeepSeek-R1-70B 74.25 77.75 9 83.92 67.92
GPT-4o 82 90.25 2 83.66 83.87
Claude-3.5-sonnet 79 51.5 9.25 88.35 85.35
o3-mini 79 94.25 1.5 80.37 76.47

ReAct

Llama-3.3 73.25 63.25 3.5 79.45 69.17
DeepSeek-R1-70B 72.5 68.25 5.5 80.95 65.71
GPT-4o 76.5 80.25 2.25 81.93 61.43
Claude-3.5-sonnet 84.75 47.75 1.25 90.05 81.86
o3-mini 75.25 83.5 0.75 77.25 68.25

Table 7: Model performance comparison on the QRData and StatQA datasets. Samples with inexecutable code are
excluded when calculating Accuracy (R=0).
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All Datasets StatQA All Datasets
(Prompt, LLM, Dataset) (Prompt, LLM, Category) (Prompt, LLM, Type)

Accuracy Repr. Accuracy Repr. Accuracy Repr.

RoT 0.75 3.79 -0.35 2.70 0.16 3.20
RReflexion 1.47 12.23*** 1.05 10.45*** 0.42 7.99**

ReAct 2.16 -3.25 -0.80 1.00 0.83 -3.29

DeepSeek-R1-70B -2.10 13.98*** 1.31 1.44 1.55 13.08***

GPT-4o 0.42 18.57*** 5.63*** 14.88*** 0.91 17.04***

Claude-3.5-sonnet 4.09** -6.63** 10.38*** -17.63*** 5.71*** -8.72**

o3-mini 5.12*** 31.64*** 4.56** 17.94*** 4.91*** 29.27***

QRData 26.18*** 12.10***

StatQA 47.19*** 31.49***

CTT 9.94*** 1.69
DS 27.38*** 16.50***

DCT 28.69*** -1.38
VT 29.00*** -2.38

Categorical 1.63* -4.27*

Textual 2.06** -15.09***

Table 8: Coefficients of linear regression models across three settings. Each column represents a response
variable, and each row represents a dependent variable. Empty cells indicate that the variable is not present in
the corresponding model. *: 0.01 ≤ p < 0.05, **: 0.001 ≤ p < 0.01, ***: p<0.001. CoT is the baseline of the
prompts. Llama-3.3 is the baseline of LLMs. DiscoveryBench is the baseline of datasets. CA is the baseline for
statistical question categories. Numerical is the baseline for QA types.
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Figure 9: Comparison of accuracy across datasets for RoT, RReflexion, and ReAct prompting strategies using LLM
models at varying reproducibility levels. For accuracy calculations at R=0, samples containing inexecutable code
are excluded. The p values of paired one-sided t-tests are all less than 0.001.

10188



Question: In which century did the Depots peak?
LLM (Error Category - Sufficiency):
1. Load the time series data from both files
2. Focus on the Depot-related columns
3. Find the century with the highest Depot value
4. Convert the time period to century format for better understanding
Human:
1. Import pandas as pd and matplotlib.pyplot as plt
2. Load the CSV file time_series_data.csv into a Pandas DataFrame
3. Select the relevant columns (CE, Depot_inter) and drop rows with missing values
4. Identify the year of peak depot importance by finding the row with the maximum value in
the column Depot_inter
5. Extract the corresponding year (CE) for the peak depot importance
6. Print the year when depots peaked

Table 9: An example showing the difference between LLM-generated and human-written workflow.
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Figure 10: Accuracy and reproducibility of LLMs for different QA types across all three benchmark datasets.
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Category Model Prompt
Overall

Accuracy
Overall

Reproducibility
C

or
re

la
tio

n
A

na
ly

si
s

Llama-3.3 CoT 48.75 57.50
Llama-3.3 RoT 55.00 61.25
Llama-3.3 RRefl. 51.25 72.50
Llama-3.3 ReAct 42.50 67.50
DeepSeek-R1-70B CoT 60.00 60.00
DeepSeek-R1-70B RoT 47.50 57.50
DeepSeek-R1-70B RRefl. 63.75 75.00
DeepSeek-R1-70B ReAct 55.00 63.75
GPT-4o CoT 63.75 77.50
GPT-4o RoT 61.25 78.75
GPT-4o RRefl. 67.50 90.00
GPT-4o ReAct 55.00 80.00
Claude-3.5-sonnet CoT 65.00 36.25
Claude-3.5-sonnet RoT 68.75 51.25
Claude-3.5-sonnet RRefl. 62.50 45.00
Claude-3.5-sonnet ReAct 70.00 46.25
o3-mini CoT 62.50 80.00
o3-mini RoT 67.50 80.00
o3-mini RRefl. 61.25 93.75
o3-mini ReAct 53.75 91.25

C
on

tin
ge

nc
y

Ta
bl

e
Te

st

Llama-3.3 CoT 61.25 57.50
Llama-3.3 RoT 62.50 63.75
Llama-3.3 RRefl. 58.75 67.50
Llama-3.3 ReAct 63.75 61.25
DeepSeek-R1-70B CoT 70.00 65.00
DeepSeek-R1-70B RoT 66.25 61.25
DeepSeek-R1-70B RRefl. 71.25 71.25
DeepSeek-R1-70B ReAct 70.00 62.50
GPT-4o CoT 65.00 76.25
GPT-4o RoT 66.25 78.75
GPT-4o RRefl. 70.00 87.50
GPT-4o ReAct 62.50 75.00
Claude-3.5-sonnet CoT 81.25 58.75
Claude-3.5-sonnet RoT 82.50 60.00
Claude-3.5-sonnet RRefl. 83.75 61.25
Claude-3.5-sonnet ReAct 80.00 55.00
o3-mini CoT 67.50 80.00
o3-mini RoT 66.25 85.00
o3-mini RRefl. 67.50 90.00
o3-mini ReAct 65.00 81.25

Table 10: Results for Correlation Analysis and Contingency Table Test in StatQA
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Category Model Prompt
Overall

Accuracy
Overall

Reproducibility
D

es
cr

ip
tiv

e
St

at
is

tic
s

Llama-3.3 CoT 82.50 85.00
Llama-3.3 RoT 82.50 82.50
Llama-3.3 RRefl. 85.00 90.00
Llama-3.3 ReAct 83.75 72.50
DeepSeek-R1-70B CoT 80.00 82.50
DeepSeek-R1-70B RoT 80.00 86.25
DeepSeek-R1-70B RRefl. 83.75 91.25
DeepSeek-R1-70B ReAct 86.25 82.50
GPT-4o CoT 90.00 81.25
GPT-4o RoT 88.75 85.00
GPT-4o RRefl. 88.75 92.50
GPT-4o ReAct 86.25 93.75
Claude-3.5-sonnet CoT 92.50 73.75
Claude-3.5-sonnet RoT 91.25 78.75
Claude-3.5-sonnet RRefl. 86.25 76.25
Claude-3.5-sonnet ReAct 92.50 71.25
o3-mini CoT 87.50 90.00
o3-mini RoT 87.50 91.25
o3-mini RRefl. 87.50 98.75
o3-mini ReAct 87.50 90.00

D
is

tr
ib

ut
io

n
C

om
pl

ia
nc

e
Te

st

Llama-3.3 CoT 87.50 61.25
Llama-3.3 RoT 86.25 72.50
Llama-3.3 RRefl. 87.50 77.50
Llama-3.3 ReAct 90.00 52.50
DeepSeek-R1-70B CoT 83.75 53.75
DeepSeek-R1-70B RoT 82.50 51.25
DeepSeek-R1-70B RRefl. 87.50 75.00
DeepSeek-R1-70B ReAct 77.50 62.50
GPT-4o CoT 87.50 82.50
GPT-4o RoT 88.75 82.50
GPT-4o RRefl. 90.00 91.25
GPT-4o ReAct 90.00 88.75
Claude-3.5-sonnet CoT 88.75 33.75
Claude-3.5-sonnet RoT 87.50 37.50
Claude-3.5-sonnet RRefl. 90.00 36.25
Claude-3.5-sonnet ReAct 91.25 35.00
o3-mini CoT 91.25 77.50
o3-mini RoT 88.75 88.75
o3-mini RRefl. 93.75 95.00
o3-mini ReAct 86.25 82.50

Table 11: Results for Descriptive Statistics and Distribution Compliance Test in StatQA
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Category Model Prompt
Overall

Accuracy
Overall

Reproducibility

V
ar

ia
nc

e
Te

st

Llama-3.3 CoT 85.00 57.50
Llama-3.3 RoT 82.50 58.75
Llama-3.3 RRefl. 86.25 75.00
Llama-3.3 ReAct 92.50 62.50
DeepSeek-R1-70B CoT 83.75 72.50
DeepSeek-R1-70B RoT 83.75 65.00
DeepSeek-R1-70B RRefl. 83.75 76.25
DeepSeek-R1-70B ReAct 85.00 70.00
GPT-4o CoT 90.00 75.00
GPT-4o RoT 92.50 83.75
GPT-4o RRefl. 93.75 90.00
GPT-4o ReAct 90.00 63.75
Claude-3.5-sonnet CoT 92.50 37.50
Claude-3.5-sonnet RoT 92.50 40.00
Claude-3.5-sonnet RRefl. 91.25 38.75
Claude-3.5-sonnet ReAct 92.50 31.25
o3-mini CoT 86.25 77.50
o3-mini RoT 86.25 76.25
o3-mini RRefl. 87.50 93.75
o3-mini ReAct 85.00 72.50

Table 12: Results for Variance Test in StatQA
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Figure 11: Examples of three types of irreproducibility.
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Figure 12: Proportion of irreproducible samples by category for five LLMs in three benchmark datasets.
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Figure 13: Comparison between CoT and RoT on different types of irreproducibility. P values are obtained from
two sample one-sided (RoT < CoT) t-tests.
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Figure 14: Reproducibility scores on QRData with GPT-4o, Claude-3.5-sonnet, and o3-mini as the inspectors.
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QA Type Model Prompt
Overall

Accuracy
Overall

Reproducibility
N

um
er

ic
al

Llama-3.3 CoT 54.27 41.46
Llama-3.3 RoT 54.88 43.29
Llama-3.3 RRefl. 55.18 49.09
Llama-3.3 ReAct 57.32 34.15
DeepSeek-R1-70B CoT 54.27 72.87
DeepSeek-R1-70B RoT 54.88 71.95
DeepSeek-R1-70B RRefl. 55.79 74.70
DeepSeek-R1-70B ReAct 58.54 68.60
GPT-4o CoT 59.76 60.98
GPT-4o RoT 59.76 60.98
GPT-4o RRefl. 59.45 67.99
GPT-4o ReAct 60.67 61.89
Claude-3.5-sonnet CoT 62.20 42.38
Claude-3.5-sonnet RoT 61.89 54.57
Claude-3.5-sonnet RRefl. 61.28 50.91
Claude-3.5-sonnet ReAct 61.89 32.32
o3-mini CoT 60.06 75.00
o3-mini RoT 61.59 82.62
o3-mini RRefl. 60.37 84.76
o3-mini ReAct 61.28 77.13

C
at

eg
or

ic
al

Llama-3.3 CoT 58.23 45.31
Llama-3.3 RoT 59.47 52.04
Llama-3.3 RRefl. 56.46 51.15
Llama-3.3 ReAct 57.52 43.54
DeepSeek-R1-70B CoT 61.24 51.86
DeepSeek-R1-70B RoT 59.29 51.15
DeepSeek-R1-70B RRefl. 63.54 58.05
DeepSeek-R1-70B ReAct 59.29 46.19
GPT-4o CoT 56.81 61.95
GPT-4o RoT 56.46 66.02
GPT-4o RRefl. 56.64 71.15
GPT-4o ReAct 53.98 60.35
Claude-3.5-sonnet CoT 62.65 36.81
Claude-3.5-sonnet RoT 65.13 40.71
Claude-3.5-sonnet RRefl. 63.19 37.88
Claude-3.5-sonnet ReAct 64.96 37.52
o3-mini CoT 63.01 76.28
o3-mini RoT 65.13 80.88
o3-mini RRefl. 63.36 87.96
o3-mini ReAct 61.59 65.31

Table 13: Results for Categorical and Numerical QA types across all three datasets.
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QA Type Model Prompt
Overall

Accuracy
Overall

Reproducibility

Te
xt

ua
l

Llama-3.3 CoT 58.27 35.97
Llama-3.3 RoT 58.99 38.85
Llama-3.3 RRefl. 57.55 50.36
Llama-3.3 ReAct 60.43 40.29
DeepSeek-R1-70B CoT 59.71 46.04
DeepSeek-R1-70B RoT 55.40 43.88
DeepSeek-R1-70B RRefl. 63.31 51.08
DeepSeek-R1-70B ReAct 61.87 46.04
GPT-4o CoT 58.27 49.64
GPT-4o RoT 58.27 56.12
GPT-4o RRefl. 60.43 66.19
GPT-4o ReAct 58.99 46.76
Claude-3.5-sonnet CoT 63.31 22.30
Claude-3.5-sonnet RoT 60.43 24.46
Claude-3.5-sonnet RRefl. 62.59 23.74
Claude-3.5-sonnet ReAct 67.63 17.27
o3-mini CoT 62.59 60.43
o3-mini RoT 65.47 59.71
o3-mini RRefl. 61.87 74.10
o3-mini ReAct 61.15 52.52

Table 14: Results for Textual QA types across all three datasets.
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You are a statistician trying to answer a question based on one or more datasets.

You have access to the following tools:
python_repl_ast: A Python shell. Use this to execute python commands. Input should be a valid
python command. When using this tool, sometimes output is abbreviated - make sure it does not
look abbreviated before using it in your answer.
In your output, please strictly follow the format outlined below, maintaining the specified order and
structure.
Question: the input question you must answer
Workflow: a plan to tackle the problem
Action: the action to take, should be one of [python_repl_ast]
Action Input: the input to the action in the format of (```python\s.*?```). Use print to show the
results.
Observation: the result of performing the action with the action input (please do not generate)
Final Answer: an answer to the original question

NOTE: You will need to generate the complete action input in one code snippet to solve the query in
one attempt.
If no observation is provided, you need to generate the workflow, action, and action input. You don’t
need to provide the final answer.
If an observation is provided, you should generate the answer starting with "Final Answer:"
{agent_instruction}

Begin!

You need to load all datasets in Python using the specified paths:
{file_paths}

Dataset descriptions:
{descriptions}

Question:
{question}
{conversation}{reflexion}

Table 15: Prompt templates for Chain-of-Thought (CoT), Reproducibility-of-Thought (RoT), and Reproducibility-
Reflexion (RReflexion). For the CoT prompt, {agent_instruction} is replaced with "\nLet’s think step by step." The
RoT prompt adds the instruction: "Make sure a person can replicate the action input by only looking at the workflow,
and the action input reflects every step of the workflow." For the RReflexion prompt, {reflexion} is replaced with
"\nThe above workflow and action input are not aligned for reproducibility. Please rewrite the workflow, action, and
action input. Generate the most likely executable code (action input) and ensure reproducibility of the code through
the workflow."
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You are a statistician trying to answer a question based on one or more datasets.

You have access to the following tools:
python_repl_ast: A Python shell. Use this to execute python commands. Input should be a valid
python command. When using this tool, sometimes output is abbreviated - make sure it does not
look abbreviated before using it in your answer.

Below is the structure of the agent-environment interaction. Your task is to generate only the agent’s
responses.
Question: the input question you must answer
<Agent>
Workflow: a plan to tackle the problem
Action: the action to take, should be one of [python_repl_ast]
Action Input: the input to the action in the format of (```python\s.*?```). Use print to show the
results.
<Environment>
Observation: the result of performing the action with the action input (please do not generate)
<Agent>
Workflow: a plan to tackle the problem
Action: the action to take, should be one of [{tool_names}]
Action Input: the input to the action in the format of (```python\s.*?```). Use print to show the
results.
<Environment>
Observation: the result of performing the action with the action input (please do not generate)
...
<Agent>
Final Answer: an answer to the original question
Task done!

NOTE: You will need to generate the complete action input in one code snippet. We will execute the
code for you and provide the observation to you.
If no observation is provided or the observation is insufficient to answer the question, you need to
(re)generate the complete workflow, action, and action input. Do not generate final answer and ’Task
done’.
If the observation is sufficient to answer the question, generate the final answer starting with ’Final
Answer:’ and indicate completion by ending with ’Task done!’. Do not generate workflow any more.
Let’s think step by step.

Example
Question:
What is the linear coefficient that describes the positive relationship between the rate of maximum
body length evolution and spatial variation in speciation rates, where the former emerges as the most
influential factor?
<Agent>
Workflow: First, I need to load the dataset ’body-size-evolution-in-south-american-freshwater-
fishes.csv’ into a Pandas DataFrame, and print the first few rows of the data.
Action: python_repl_ast
Action Input: ```python

import pandas as pd
df = pd.read_csv('body-size-evolution-in-south-american-freshwater-fishes.csv')
df.head()

```

Table 16: Prompt template for ReAct.
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<Environment>
Observation:
HYBAS_ID long lat BAMM_speciation BAMM_extinction BAMM_NetDiv ... aet Elevation sgr
soil_div area diversity
0 6050000010 -76.477422 7.742693 0.137392 0.026807 0.110585 ... 1387 330.150088 166 0.482402
72363.7 68
1 6050000740 -74.628725 9.803586 0.117235 0.025796 0.091438 ... 1082 69.475294 23 0.457436
17944.3 35
2 6050068100 -75.295995 8.448815 0.119381 0.023826 0.095555 ... 1312 143.032178 74 0.378793
17105.5 44
3 6050068110 -74.608408 8.922863 0.132477 0.027777 0.104700 ... 1445 14.724138 3 0.468328
610.1 48
4 6050070260 -75.591588 5.770093 0.120127 0.022940 0.097187 ... 1371 1378.729945 421
0.158870 61901.9 81
[5 rows x 21 columns]
<Agent>
Workflow: 1. Import Libraries: Import ‘LinearRegression‘ from ‘sklearn‘ and ‘numpy‘.
2. Prepare Data: Extract predictor ’BAMM_speciation’ and response ’BAMM_NetDiv’.
3. Create and Fit Model: Instantiate ‘LinearRegression()‘ and fit the model using ‘model.fit(X, y)‘.
4. Retrieve Coefficient: Get the slope using ‘model.coef_[0]‘.
5. Output Result: Print the coefficient with ‘print(coefficient)‘.
Action: python_repl_ast
Action Input: ```python

from sklearn.linear_model import LinearRegression
import numpy as np

# Prepare the data for regression
X = df[['BAMM_speciation']].values.reshape(-1, 1) # Predictor
y = df['BAMM_NetDiv'].values # Response

# Create a linear regression model
model = LinearRegression()
model.fit(X, y)

# Get the coefficient
coefficient = model.coef_[0]
print(coefficient)

```
<Environment>
Observation: 0.5175306498596297
<Agent>
Final Answer:
The linear coefficient that describes the positive relationship between the rate of maximum body
length evolution (’BAMM_speciation’) and spatial variation in speciation rates (’BAMM_NetDiv’)
is approximately 0.518.
Task done!

Table 17: [Continue] Prompt template for ReAct.
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Begin!

You need to load all datasets in python using the specified paths:
{file_paths}

Dataset descriptions:
descriptions

Question:
{question}
<Agent>
{conversation}

Table 18: [Continue] Prompt template for ReAct.

Evaluate the correctness (0 for incorrect, 1 for correct) of the predicted answer to the question:
{question}
{dataset_specific_prompt}
Predicted answer: {predicted_answer}

Ground truth answer: {true_answer}

Please reply in this format:
"Thoughts:

The accuracy score is:"

Table 19: Prompt for evaluating the accuracy of an answer. The {dataset_specific_prompt} is used to define
dataset-specific requirements. For questions with a numerical conclusion, accuracy is considered achieved if the
deviation between LLM’s response and the benchmark conclusion falls below a benchmark-specific error threshold:
3% threshold for QRData following (Liu et al., 2024) and 1% threshold for DiscoveryBench and StatQA. If the
conclusions in StatQA tasks contradict each other, any conclusion is considered correct.

Question: {question}
These are the dataset paths: {file_paths}

Develop a Python script that precisely converts the provided narrative summary into executable code.
Ensure that each component of the analysis process is correctly implemented, closely following the
steps outlined in the summary. Maintain consistency by using the exact variable names specified in
the narrative. Below is the code summary to translate:
{workflow}

Table 20: Prompt for workflow-to-code conversion.

You are a data scientist answering a question based on the code and code output.

Question: {question}

Code:
{code}

Code output: {code_output}

Please generate the answer based only on the code output in this format:
"Thought:

Conclusion:"

Table 21: Prompt for extracting conclusion from code execution output.
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Your task is to determine whether Code 1 and Code 2 arrive at the same conclusion regarding the
question: {question}

Code 1:
{code_1}

Code 1 execution output:
{code_1_output}

Code 1 conclusion:
{code_1_conclusion}

Code 2:
{code_2}

Code 2 execution output:
{code_2_output}

Code 2 conclusion:
{code_2_conclusion}

If the output of the two code snippets provide the same values for the same statistics and lead to the
same conclusion to the question, please score 1. Otherwise, score 0. Note that if code 2 runs into
error, please score 0. Please reply in this format:
"Thoughts:

The similarity score is:"

Table 22: Prompt for assessing reproducibility.
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I used an LLM to write a workflow and code1. Then the workflow is converted to code2.
I did reproducibility test between code1 and the workflow-converted code2 to see if they are
functionally equivalent.
Analyze the following reproducibility test result and categorize this sample.

Original code1:
```
{code1}
```

Original workflow:
{workflow}

Workflow-converted code2:
```
{code2}
```

Not reproducible reason: {reason}

Assign exactly one category from the following list:
1. "Workflow Sufficiency Issues": This occurs when the workflow leaves out details of the original
analysis or oversimplifies the methods in the original code.
Example: The workflow neglects to include variable names or normalization steps that were crucial
in the original data analysis.
2. "Workflow Mis-Specification Issue": This arises when the workflow inaccurately describes some
steps.
Example: The workflow mistakenly specifies using a logistic regression model, while the original
code actually implements a linear regression model.
3. "Workflow Over-Specification Issue": This happens when the workflow introduces additional
steps, constraints, or assumptions that are not part of the original code.
Example: The workflow unnecessarily adds an outlier-removal procedure that wasn’t performed in
the original analysis.

Analyze what issues exist in the workflow that prevented it from accurately capturing the functionality
of code1. Focus on how the workflow itself may be incomplete, incorrect, or unnecessarily complex
rather than just comparing the code implementations.

Your output must include:
1. The reason for assigning this category, focusing on workflow issues
2. The single category for this sample (chosen from the three categories above)

{format_instructions}

Table 23: Prompt template for categorizing workflow reproducibility issues.

10201


