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Abstract

Multimodal machine translation (MMT) aims
to enhance translation quality by integrating
visual information. However, existing meth-
ods often extract visual features using pre-
trained models while learning text features
from scratch, leading to representation imbal-
ance. These methods are also prone to be-
ing misled by redundant visual information,
which results in suboptimal performance. To
address these challenges, we propose CAMT,
a novel cross-modal VQA-augmented MMT
method. CAMT aligns image-source text pairs
and image-question text pairs through dual-text
contrastive learning, thereby improving seman-
tic consistency across modalities. Additionally,
we design an effective strategy for generating
question–answer pairs to enhance fine-grained
alignment and filter out irrelevant visual noise,
while also addressing the scarcity of VQA an-
notations. Extensive experiments on multiple
benchmark datasets demonstrate the effective-
ness of the proposed CAMT framework, which
consistently outperforms state-of-the-art MMT
methods across multiple evaluation metrics.

1 Introduction

Multimodal Machine Translation (MMT) enhances
translation quality by incorporating visual informa-
tion to address the ambiguity in traditional Neu-
ral Machine Translation (NMT). Recent studies
have explored strategies to assess and improve the
role of visual inputs in MMT. Although early re-
search (Lala et al., 2018) found limited benefits
from image context, later work (Li et al., 2022a)
showed significant performance gains with more
advanced visual encoders. These findings highlight
the importance of stronger interaction between vi-
sual and textual modalities.

To mitigate these challenges, researchers have
explored auxiliary tasks such as image caption-
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Image
Source Text Question Text

Who is outside the church at 
the wedding?

Who is grabbing the tip of 
the board?

Toyota rally car plows through a deep 
puddle of mud on the race course.

A woman with braided hair is sitting 
at a table full of food and gesturing.

A skilled surfer grabbing the tip of his 
board while the rides a wave.

Who is in the air with one 
hand on the dirt bike?

Dirt bike racer in the air with one 
hand on the dirt bike and body in air.

What is plowing through the 
puddle of mud?

Positive example

Negative example

Figure 1: Illustration of positive and negative sample
pairs in dual-text contrastive learning: image-source
text and image-question text.

ing (Cheng et al., 2023), object detection, and vi-
sual question answering (VQA) (Zuo et al., 2023).
In many existing MMT datasets, the limited rel-
evance between images and their paired texts in-
troduces substantial visual noise, complicating ef-
fective multimodal integration. Methods such as
synthetic image generation (Li et al., 2022b; Yuasa
et al., 2023) and dynamic image feature filtering
(Ye et al., 2022a; Fang and Feng, 2022; Lu et al.,
2021) have been proposed to mitigate this chal-
lenge to some extent. While previous work has con-
structed QA pairs for the Multi30K dataset, many
MMT datasets, such as 3AM, lack such pairs, lim-
iting the broader application of VQA. To address
this, we propose a novel method to automatically
generate semantically richer QA pairs for the 3AM
dataset using a large language model (LLM). Un-
like existing VQA methods that focus primarily on
limited aspects like nouns, numbers, or colors, our
approach targets deeper semantic elements essen-
tial for translation, such as prepositional phrases,
action descriptions, and spatial relations. These
elements are critical for resolving translation am-
biguity and capturing fine-grained image-text rela-
tionships.

We further observe that most MMT systems
suffer from a representation imbalance: image
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features are extracted from frozen pre-trained en-
coders, while text features are dynamically learned
with Transformers. This imbalance introduces two
key limitations. First, static visual features cannot
adapt to the evolving semantics of the source text,
resulting in rigid cross-modal interactions. Sec-
ond, this asymmetry prevents attention mechanisms
from fully capturing dynamic visual–textual rela-
tionships, thereby hindering fine-grained alignment.
However, existing MMT datasets (e.g., Multi30K)
contain only about 29K image–text pairs, which is
orders of magnitude smaller than the datasets used
to pre-train vision models. In such a data-scarce
setting, retraining or fine-tuning the visual encoder
is computationally prohibitive and highly prone to
overfitting, making it an impractical solution.

To address these limitations, we propose a VQA-
augmented contrastive learning framework that dy-
namically aligns vision and text. By leveraging
semantically enriched question-answer pairs, our
method projects visual features into a trainable la-
tent space, where contrastive learning promotes
fine-grained alignment with textual semantics. Pos-
itive pairs are constructed between images and their
corresponding source and question texts, while un-
related combinations serve as negatives (Figure 1).
This dual-text supervision enhances the adaptabil-
ity of visual representations and bridges the seman-
tic gap across modalities, improving translation
quality.

Our main contributions are summarized as fol-
lows:

• We propose a cross-modal VQA-augmented
machine translation method to address the
misalignment of image and text features in
current MMT systems.

• We propose a simple yet effective LLM-based
QA generation strategy that mitigates the
scarcity of VQA annotations and produces
diverse pairs across six categories.

• Extensive experiments on benchmark datasets
demonstrate that our CAMT framework sig-
nificantly outperforms state-of-the-art MMT
methods across multiple metrics.

2 Related Work

2.1 Multimodal Contrastive Learning
Contrastive learning (He et al., 2020) optimizes
feature representations by clustering semantically

similar pairs while repelling dissimilar ones. It
has been widely used in scenarios such as sen-
tence embedding learning (Yan et al., 2021), ma-
chine translation (Pan et al., 2021; Ye et al., 2022b),
and text summarization (Cao and Wang, 2021). It
has also been gradually extended to multimodal
scenarios, including aligning image-text represen-
tations (Zhou et al., 2020), and the potential to
enhance semantic robustness in adversarial train-
ing (Huang et al., 2023). Our approach focuses
on semantically relevant image regions and lever-
ages dual-text supervision to achieve fine-grained
alignment between visual and textual representa-
tions, particularly for complex multimodal transla-
tion tasks.

2.2 Multimodal Machine Translation

Multimodal machine translation (MMT) aims to en-
hance text translation systems by integrating addi-
tional modalities, such as images and videos. Early
efforts in this domain include dual attention de-
coders (Calixto et al., 2017), latent variable models
(Calixto et al., 2019), and methods that employ
visual information only in a refinement stage to ad-
dress translation needs (Ive et al., 2019). Addition-
ally, cross-lingual visual pre-training has been ex-
plored to leverage visual features across languages
(Caglayan et al., 2021). However, adversarial eval-
uation has exposed limitations in the effective uti-
lization of visual modalities (Elliott, 2018). Re-
cent advances focus on improving vision-text fu-
sion through multimodal transformers (Yao and
Wan, 2020) and dynamic context-guided networks
(Lin et al., 2020), optimizing visual processing
via encoder-decoder calibration (Lu et al., 2021)
and multi-granularity guidance (Guo et al., 2024),
and leveraging pre-trained models for knowledge
transfer (Gupta et al., 2023) and adversarial im-
age generation (Guo et al., 2023a). Other notable
contributions include the Soul-Mix method, which
enhances multimodal translation through manifold
mixing (Cheng et al., 2024), image-assisted meth-
ods that tackle ambiguity (Futeral et al., 2023), and
approaches that leverage data beyond triplets to
enrich multimodal machine translation (Zhu et al.,
2023). More recently, ConsQA-MMT (Gao et al.,
2025) enhances robustness by questioning both
source and target texts with consistency constraints.
In contrast, we jointly optimize VQA and con-
trastive learning to achieve finer semantic align-
ment and reduce the modality gap.
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Figure 2: The overall framework of our proposed CAMT model, which includes the dual-text contrastive learning
stage, VQA-augmented interaction stage, data augmentation, unified multimodal translation strategies, and the
overall training objective.

3 Method

This section provides a comprehensive overview of
our proposed framework, detailing its key compo-
nents: the dual-text contrastive learning stage, the
VQA-augmented interaction stage, data augmenta-
tion, the unified multimodal translation strategies,
and the overall training objective. The overall ar-
chitecture of our Cross-modal VQA-Augmented
Multimodal machine Translation model (CAMT)
is illustrated in Figure 2.

3.1 Dual-Text Contrastive Learning

Image-Source Text Contrastive Learning

Given a source text X and the corresponding image
I , a contrastive loss function is utilized to maxi-
mize the similarity scores for correctly matched
image-text pairs while minimizing the scores for
mismatched pairs. The contrastive loss function is
formally defined as follows:

simi,j(I,X) = exp(sim(Ii, Xj)/τ), (1)

Li-s = − 1

N

N∑

i=1

log
simi,i(I,X)

∑N
j=1 simi,j(I,X)

, (2)

where sim(·, ·) denotes the similarity function (e.g.,
cosine similarity) between images and texts, τ is a
temperature parameter, and N is the batch size.

Image-Question Text Contrastive Learning
To further enhance the image’s understanding of
textual semantics, we introduce contrastive learn-
ing between the image I and a question Q gener-
ated from the source text X . The corresponding
contrastive loss is defined as:

Li-q = − 1

N

N∑

i=1

log
simi,i(I,Q)

∑N
j=1 simi,j(I,Q)

. (3)

By jointly optimizing these two contrastive learn-
ing objectives, the image is guided by both source
text X and question Q to capture richer and more
precise semantic representations. The overall loss
function is formulated as:

LCTR = Li-s + Li-q. (4)

Through simultaneous contrastive alignment
with both the source text and the question text, the
image representation is progressively refined, lead-
ing to a deeper understanding of textual semantics.

3.2 VQA-Augmented Interaction
In this phase, the VQA task is executed within a
multimodal encoder-decoder architecture. It de-
mands tight integration of visual and textual ele-
ments, necessitating that the model identify per-
tinent visual attributes from the image and cor-
relate them with the question’s textual features.

10115



System Instructions
You are a professional English test writer specializing in reading comprehension. Given a
sentence, design a question to assess students' ability to identify key translation challenges,
particularly words or phrases that are ambiguous, easily mistranslated, or may require visual
context for accurate interpretation.

Requirements
1. Answers must be concise, taken directly from the original text. Function words such as is 
and are should be omitted unless they change the meaning.
2. Questions should target phrases that are prone to translation errors or ambiguity.
3. Use the original wording in the question as much as possible, excluding only the answer 
to avoid revealing clues or altering context.
4. Do not introduce any content beyond what appears in the original text.
……
<Key Points>
Ambiguous words (multiple meanings or unclear references)
Prepositional phrases (prone to mistranslation in meaning or collocation)
Action verbs (errors in tense, voice, or action)
Culturally specific or visually dependent terms (require cultural or visual context)

Examples
Below I will provide you with two examples to learn. Please refer to the format in the examples 
when replying to me! 
Original sentence: "Two construction workers in orange vests and hard hats are riding in a piece 
of equipment." 
Question: What are the two construction workers wearing while riding in a piece of equipment? 
Answer: orange vests and hard hats. 

After understanding what I said, please respond me according to this sentence: 

Question Generation

Image

Where does Xander 
appear to be during 

the funky moment at 
the game?

a house of mirrors.

Answer

Where does Xander 
appear to be during 

the funky moment at 
the game?

Query

A funky moment at 
the game as xander 
appears to be in a 
house of mirrors.

Source Text

Figure 3: Illustration of LLM-based question–answer
pair generation from source text and image.

The core objective is to produce an answer A =
(a1, a2, . . . , alA) of length lA based on an input
natural language question Q = (q1, q2, . . . , qlQ) of
length lQ, and an image I = (i1, i2, . . . , ilI ).

The training loss for VQA is defined as:

LVQA = −
∑|A|

i=1
ki logP (ai|I,Q), (5)

where A is the set of possible answers, and
P (ai|I,Q) represents the probability of answer ai
given the image I and question Q. Here, ki is a one-
hot encoded vector representing the ground truth
answer, where ki = 1 if ai is the correct answer,
and 0 otherwise.

Our multi-task framework combines translation
and VQA using a unified image-text encoder to
align visual and textual features. Although VQA
isn’t used in inference, it’s vital for training as it
directs the model to focus on relevant visual cues.
In training, separate text encoders handle source
and question texts, while a pre-trained image en-
coder extracts features that are projected to align
with text dimensions. The formulae are as follows:

F x = T (X) ∈ RN×lS×d, (6)

F q = T (Q) ∈ RN×lQ×d, (7)

F i = W · V(I) ∈ RN×lI×d, (8)

where T (·) and V(·) denote the text encoder and
visual encoder (e.g., CLIP, MAE, or ViT). The
projection matrix W aligns the visual features with
the text feature space. Here, N denotes the batch
size and d denotes the hidden dimension.

We utilize a selective attention mechanism (Li
et al., 2022a) to align image patches with words.
In both the VQA and MMT tasks, image features
serve as keys and values while the question text in
VQA and the source text in MMT act as queries
for cross-modal alignment and text generation, re-

Type Spatial Entity Attribute Action Quantity Event

Count 13662 5202 2388 2237 242 200

Table 1: Count statistics for each question type.

spectively. The process is defined as:

attn(Q,K, V ) = Softmax
(
QK⊤
√
dk

)
V, (9)

Hmmt = attn(F x, F i, F i), (10)

Hvqa = attn(F q, F i, F i), (11)

where dk matches the dimension of F x or F q, and
Hmmt ∈ RN×lS×d and Hvqa ∈ RN×lQ×d.

3.3 Data Augmentation

To enhance the model’s generalization and cross-
modal alignment, we introduce a text data augmen-
tation module inspired by Shen et al. (2020). This
module generates challenging training samples that
encourage the model to leverage multimodal infor-
mation more effectively.

We apply partial deletion to the text data by ran-
domly removing tokens, creating augmented sam-
ples that simulate missing information. This forces
the model to rely on images for consistent trans-
lations despite partial data loss, promoting deeper
multimodal fusion and improving robustness in
real-world scenarios with incomplete or noisy data.
The loss function is defined as:

LAUG = DJS(pMMT∥pMMTaug), (12)

where DJS denotes the Jensen-Shannon divergence
between the original model distribution pMMT and
the augmented model distribution pMMTaug . This
objective encourages the model to maintain consis-
tent translation quality despite partial information
loss, effectively improving its robustness to noisy
or incomplete inputs.

3.4 Unified Multimodal Translation Strategy

In MMT, the dataset D typically comprises triples
(X, I, Y ), where X = (x1, x2, . . . , xlS ) represents
an input sentence of length lS , I = (i1, i2, . . . , ilI )
denotes an input image, and Y = (y1, y2, . . . , ylT )
is the corresponding target sentence of length lT .
Most translation models adopt the Transformer ar-
chitecture, which is well-suited for handling se-
quential data and has been highly successful in
neural machine translation (NMT). Standard NMT
considers only text pairs (X,Y ), with the training
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Multi30K English→German Multi30K English→French

Test2016 Test2017 MSCOCO Test2016 Test2017 MSCOCO
Models BLEU↑ METEOR↑ BLEU↑ METEOR↑ BLEU↑ METEOR↑ BLEU↑ METEOR↑ BLEU↑ METEOR↑ BLEU↑ METEOR↑

Traditional MMT Models

Transformer (Vaswani et al., 2017) 41.02 68.22 33.36 62.05 29.88 56.64 61.80 81.02 53.46 75.62 44.52 69.43
Imagination (Elliott and Kádár, 2017) 41.31 68.06 32.89 61.29 29.90 56.57 61.90 81.20 54.07 76.03 44.81 70.35
Gated Fusion (Wu et al., 2021) 41.96 67.84 33.59 61.94 29.04 56.15 61.69 80.97 54.85 76.34 44.86 70.51
Selective Attn (Li et al., 2022a) 41.93 68.55 33.60 61.42 31.14 56.77 62.48 81.71 54.44 76.46 44.72 71.20
IKD-MMT (Peng et al., 2022) 41.28 58.93 33.83 53.21 30.17 48.93 62.53 77.20 54.84 71.87 - -
VALHALLA (Li et al., 2022b) 42.60 69.30 35.10 62.80 30.70 57.60 63.10 81.80 56.00 77.10 46.40 71.30
Noise-robust (Ye et al., 2022a) 42.56 59.98 35.09 54.51 31.09 50.46 63.24 77.54 55.48 72.62 46.34 67.40
MMT-VQA (Zuo et al., 2023) 42.55 69.00 34.58 61.99 30.96 57.23 62.24 81.77 54.89 76.53 45.75 71.21
SAMMT (Guo et al., 2023b) 42.50 - 36.04 - 31.95 - 63.71 - 56.17 - 46.43 -
ConVisPiv (Guo et al., 2024) 42.64 60.56 34.84 54.62 29.69 50.12 62.56 77.09 55.83 73.18 46.61 67.67
RG-MMT-EDC (Tayir et al., 2024) 42.00 60.20 33.40 53.70 30.00 49.60 62.90 77.20 55.80 72.00 45.10 64.90

Open-source LLMs

Llama3-8B (Grattafiori et al., 2024) 30.10 - 24.20 - 21.90 - 50.20 - 40.40 - 34.50 -
Alpaca-7B (Taori et al., 2023) 38.50 - 34.30 - 30.90 - 59.20 - 51.40 - 42.60 -
Vicuna-7B (Chiang et al., 2023) 32.90 - 28.00 - 26.10 - 46.50 - 43.80 - 39.30 -
Tower-7B* (Alves et al., 2024) 22.10 - 13.70 - 16.30 - 24.50 - 20.80 - 22.50 -

CAMT (ours) 43.72 70.10 36.10 63.40 32.49 59.10 64.53 82.70 57.62 78.10 47.45 72.00

Table 2: BLEU and METEOR scores of Multi30K En→De and En→Fr translation direction. The best results are
shown in bold, and the second-best results are underlined. ‘-’ denotes missing results from the published work.

loss defined as:

LNMT(θ) = E(X,Y ) [− log p(Y |X; θ)] , (13)

where p(Y |X) is the conditional probability of gen-
erating the target sentence Y given the source sen-
tence X . In contrast, MMT incorporates additional
modalities such as images. The training loss func-
tion for MMT is:

LMMT(θ) = E(X,Y ) [− log p(Y |X, I; θ)] , (14)

where p(Y |X, I) denotes the conditional probabil-
ity of generating the target sentence Y given the
source sentence X and input image I .

From a Bayesian perspective, the MMT objec-
tive function (Eq.14) decomposes into two compo-
nents:

log p(Y |X, I) = log p(Y |X) + log
p(I|X,Y )

p(I|X)
.

(15)
The first component log p(Y |X) corresponds to
the core text-to-text translation objective, while the
second component encourages translations consis-
tent with visual evidence. However, when image
relevance is weak or noisy, spurious correlations
may lead the model to overemphasize misleading
visual cues, thus distorting the learning of p(Y |X).

To mitigate this, this paper proposes a dual-loss
approach. We jointly employ both loss functions
to integrate image information, which helps reduce
redundant data interference and preserves the per-
formance of pure text translation:

LMT = LNMT + LMMT. (16)

The MMT loss updates both image and text pa-
rameters, while the NMT loss only updates text

Multi30K English→Czech 3AM English→Chinese

Test2016 Test2018 Test
Models BLEU↑ METEOR↑ BLEU↑ METEOR↑ BLEU↑ METEOR↑
Transformer (Vaswani et al., 2017) 32.70 32.34 27.62 29.03 11.33 31.34
Doubly-ATT (Arslan et al., 2018) 33.25 32.28 29.12 29.87 – –
MM Self-attn (Yao and Wan, 2020) 33.12 32.01 28.75 29.51 – –
Gated Fusion (Wu et al., 2021) 33.77 32.24 29.43 29.41 – –
Selective Attn (Li et al., 2022a) – – – – 13.33 33.47
MMT-VQA (Zuo et al., 2023) – – – – 15.43 35.96
ConVisPiv (Guo et al., 2024) 34.72 33.54 30.30 31.04 – –

CAMT (ours) 35.31 47.10 32.01 38.40 17.22 40.37

Table 3: BLEU and METEOR scores on Multi30K
dataset of the En→Cs and the 3AM dataset of En→Zh
translation direction.

parameters. Using a separate NMT loss ensures a
more stable optimization process, especially since
text may be noisy during training from scratch.

3.5 Overall Training Objective
Our total training loss is composed of several ele-
ments:

Ltotal = LMT + αLCTR + λLVQA + γLAUG.
(17)

Here, α represents the weight for the contrastive
loss, λ denotes the weight for the VQA task, and γ
corresponds to the weight for the data augmentation
task. This combination effectively balances the
contributions of MT, contrastive alignment, and
VQA in our training process.

3.6 QA Generation
We constructed the QA dataset for 3AM using
the GPT-4o-mini API to generate question–answer
pairs (Figure 3). A tailored prompt was designed
to encourage image-dependent questions by em-
phasizing ambiguous terms, prepositional phrases,
verbs, and culturally or visually grounded expres-
sions. To ensure quality, we first checked the out-
put for correctness and format consistency. We
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Multi30K English→French

Models Test2016 Test2017 MSCOCO

Stronger Models

CLIPTans (Gupta et al., 2023) 64.55 57.59 48.83
DAS-CL (Cheng et al., 2023) 64.92 57.34 49.42

Large Vision-Language Models

Qwen-vl-plus (Bai et al., 2023) 48.81 47.37 47.10
Qwen-vl-plus w/o Image 48.90 47.72 47.03
GPT-4o (Achiam et al., 2023) 57.44 56.65 54.66
GPT-4o w/o Image 56.59 56.46 54.77

CAMT (ours) 64.53 57.62 47.45

Table 4: BLEU scores on the Multi30K En→Fr transla-
tion task.

then used Sentence-BERT for semantic similar-
ity and CLIP for image alignment, filtered out
low-threshold examples, and regenerated them as
needed. Finally, 20% of the samples were ran-
domly selected for manual inspection to confirm
semantic fidelity and translation relevance. The
distribution of question types is shown in Table 1.

4 Experiments

4.1 Datasets and Metrics

We use two standard benchmark datasets Multi30K
and 3AM to evaluate our method. The Multi30K
dataset (Elliott et al., 2016) contains a total of
31,014 image-text pairs, each with an English
description and human translations in German,
French, and Czech. 3AM (Ma et al., 2024) is a
more ambiguous MMT dataset that contains 26,000
parallel sentence pairs with corresponding images
in English and Chinese. We use 4-gram BLEU (Pa-
pineni et al., 2002) and METEOR (Denkowski and
Lavie, 2014) for evaluation.

4.2 Implementation Details

We conducted experiments using the Transformer
Tiny configuration (Ye et al., 2022a), implemented
with the Fairseq library (Ott et al., 2019) and vi-
sion pre-trained models from Huggingface 1. The
corpus was preprocessed with the Moses tokenizer
(Koehn et al., 2007) and Byte Pair Encoding (BPE)
(Sennrich et al., 2016) to create a shared sub-
word vocabulary. Learning rates were set to 0.006
(En→Fr) and 0.005 (En→De), with a warmup
phase of 25, 000 steps. Early stopping was ap-
plied if no improvement occurred on the valida-
tion set over ten epochs. For robust performance,

1https://huggingface.co/

Multi30K English→French

Visual Model Test2016 Test2017 MSCOCO Test2018

MMT-VQA model

MAE-base 63.57 55.56 45.82 37.83
CLIP-base 63.28 55.40 46.01 37.27
ViT-base 62.68 55.31 45.37 37.36
BLIP-base 62.36 55.17 45.22 37.49

CAMT model

MAE-base 64.53(↑0.96) 57.62(↑2.06) 47.45(↑1.63) 39.73(↑1.90)
CLIP-base 64.02(↑0.74) 56.51(↑1.11) 46.32(↑0.31) 38.93(↑1.66)
ViT-base 63.51(↑0.83) 56.35(↑1.04) 45.89(↑0.52) 39.14(↑1.78)
BLIP-base 63.69(↑1.33) 56.51(↑1.34) 46.36(↑1.14) 37.88(↑0.39)

Table 5: BLEU scores of different visual encoders in
MMT-VQA and CAMT models for Multi30K En→Fr
translation task.

Multi30K English→German

Model Test2016 Test2017 MSCOCO

Noise-Robust 41.67 34.16 30.80
Noise-Robust + VQA 42.30 34.72 31.74

CAMT (ours) 43.72 36.10 32.49

Table 6: BLEU scores comparing noise-robust models
with or without VQA and CAMT.

the last ten checkpoints were averaged during in-
ference. The contrastive temperature was set to
0.7, with contrastive weights α of 0.9 (En→Fr)
and 0.3 (En→De), and VQA task weights λ of
0.9 (En→Fr) and 0.5 (En→De), and the data aug-
mentation weight γ is set to 0.1. These values
were determined through preliminary experiments
to achieve the best performance. More details can
be found in Appendix A.

4.3 Baselines

To demonstrate the advantages of our CAMT
model, we compare it with several state-of-the-art
approaches on translation tasks, including the text-
only Transformer Tiny and multimodal methods
such as Imagenation, Gated Fusion, Selective At-
tention, IKD-MMT, VALHALLA, Noise-robust,
MMT-VQA, SAMMT, ConVisPiv, and RG-MMT-
EDC.

4.4 Results

Table 2 compares CAMT with baselines on En-
glish→German/French (Multi30K), while Table 3
adds results for English→Czech (Multi30K) and
English→Chinese (3AM). CAMT matches or sur-
passes existing models across metrics and test sets,
demonstrating its robustness. By integrating con-
trastive learning and VQA tasks, our model bridges
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Multi30K English→French

Test2016 Test2017 MSCOCO Test2018
Models BLEU↑ METEOR↑ BLEU↑ METEOR↑ BLEU↑ METEOR↑ BLEU↑ METEOR↑
CAMT (ours) 64.53 82.70 57.62 78.10 47.45 72.00 39.73 65.10

w/o CTR loss 62.90 (↓1.63) 81.90 (↓0.80) 55.15 (↓2.47) 76.30 (↓1.80) 44.17 (↓3.28) 70.00 (↓2.00) 37.60 (↓2.13) 63.80 (↓1.30)
w/o VQA loss 62.85 (↓1.68) 81.80 (↓0.90) 55.39 (↓2.23) 76.70 (↓1.40) 45.36 (↓2.09) 70.70 (↓1.30) 37.59 (↓2.14) 63.90 (↓1.20)
w/o NMT loss 61.93 (↓2.60) 81.40 (↓1.30) 54.89 (↓2.73) 76.30 (↓1.80) 45.21 (↓2.24) 70.40 (↓1.60) 37.07 (↓2.66) 63.70 (↓1.40)
w/o AUG loss 63.32 (↓1.21) 82.10 (↓0.60) 56.90 (↓0.72) 77.60 (↓0.50) 46.44 (↓1.01) 71.20 (↓0.80) 39.05 (↓0.68) 64.50 (↓0.60)
w/ random image feature 62.32 (↓2.21) 81.60 (↓1.10) 54.79 (↓2.83) 76.10 (↓2.00) 45.17 (↓2.28) 70.00 (↓2.00) 38.00 (↓1.73) 63.80 (↓1.30)

Table 7: Results of ablation experiments on En→Fr translation task on Multi30K. The arrows indicate the difference
in scores compared to the full CAMT model (↓ for degradation). Values in parentheses denote the absolute
difference.

SRC：a window with some type of design painted on it.

REF：une fenêtre avec une sorte de dessin peint dessus.

MMT-VQA：une fenêtre avec une sorte de fresque peinte dessus.✕

  (a window with some type of fresco painted on it.)
CAMT：une fenêtre avec une sorte de dessin peint dessus.✓

(a window with some type of design painted on it.)

（a) Raw image （b) MMT-VQA （c) CAMT

Figure 4: Attention visualization. Regions with lower
transparency correspond to higher attention weights,
indicating stronger focus from the model.

image-text modality gaps, improving semantic co-
herence and translation accuracy.

We further compare CAMT with stronger pre-
trained methods and vLLMs (Table 4), where it
remains highly competitive. Notably, GPT-4o and
Qwen-vl-plus sometimes underperform when using
image inputs compared to text-only settings , indi-
cating limited exploitation of visual cues, whereas
CAMT consistently benefits from them. Table 5
shows that CAMT outperforms the MMT-VQA
method across multiple visual pre-trained models,
with the largest gain on MAE features. This con-
firms that our method better leverages VQA signals
and remains robust across representations. By inte-
grating question–answer pairs, CAMT adaptively
selects relevant features to mitigate misaligned vi-
sual–textual information. As shown in Table 6,
adding VQA alone improves performance, but con-
trastive learning further amplifies the gains.

5 Analysis

5.1 Does CTR Effectively Facilitate Model
Alignment?

As illustrated in Figure 4, the source image (a)
shows a patterned window, but its reflective glass
captures irrelevant interior elements and people at

Multi30K English→French

Models Test2016 Test2017 MSCOCO Test2018

MMTVQA* 62.87 55.83 45.41 37.81
MMTVQA w/ aug* 63.20 55.70 46.34 38.51
Noise-robust* 62.98 56.26 45.96 38.49
Noise-robust w/ aug* 63.86 56.82 46.65 38.92

CAMT (ours) 63.32 56.90 46.44 39.05
CAMT w/ aug (ours) 64.53 57.62 47.45 39.73

Table 8: Performance comparison across different
datasets. Models marked with * are our own implemen-
tations, while others are reported results from previous
papers.

night. These reflections can mislead models during
cross-modal alignment, causing translation errors.
For instance, the MMT-VQA model (b) focuses
on reflections in regions 19, 26, 33, and 34, mis-
interpreting them as part of the window design
(e.g., a fresco). In contrast, our proposed model (c)
employs dual-text contrastive learning to filter out
irrelevant visual details. It focuses on the window
frame and the actual pattern, producing a transla-
tion that accurately reflects the source text. This
approach ensures faithful alignment between the
image and text modalities and avoids misinterpre-
tation of the visual context.

5.2 Ablation Study

To evaluate each component’s contribution in the
CAMT model, we performed ablation experiments
on the En→Fr task, with results in Table 7.

Cross-Modal Alignment Mechanisms The con-
trastive loss removal causes the largest performance
drop (1.63-3.28 BLEU points across test sets). This
shows contrastive learning is crucial for aligning
similar text-image pairs and separating dissimilar
ones in the shared latent space. Likewise, removing
the VQA loss leads to consistent declines (1.68-
2.23 BLEU points), highlighting its importance in
using question-answer pairs as semantic anchors.
This helps bridge the modality gap and direct visual
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SRC : some plants are growing near the window.
REF : quelques plantes poussent près de la fenêtre.
MMT-VQA: quelques plantes répètent près de la fenêtre.

(some plants repeat near the window.)
CAMT : quelques plantes poussant près de la fenêtre.

(some plants are growing near the window.)

SRC : three construction workers are mending pavement.
REF : trois ouvriers du bâtiment réparent la chaussée.
MMT-VQA: trois ouvriers du bâtiment creusent la chaussée.

(three construction workers are digging the road.)
CAMT : trois ouvriers du bâtiment réparent la chaussée.

(Three construction workers are mending the road.)

Table 9: Two illustrative examples of En→Fr translation from the Multi30K dataset. Incorrect translations are
marked with red underlines, while correct translations are highlighted with bold. For clarity, the French translations
are back-translated into English below each sentence.

attention to textually relevant image regions.

Translation-Specific Components Removing
the NMT loss results in the second-largest per-
formance degradation (2.24-2.73 BLEU points),
emphasizing its importance in maintaining strong
text generation capabilities and preventing over-
reliance on visual features. The smaller impact of
removing the augmentation loss (0.68-1.21 BLEU
points) still confirms its value in improving robust-
ness and generalization through diverse training
samples.

The ablation results confirm the necessity of
combining NMT loss and MMT loss. The NMT
loss optimizes text-to-text translation, while the
MMT loss includes an additional visual ground-
ing term. From a Bayesian perspective, the MMT
loss decomposes into the NMT loss plus a visual
correction term that can overfit spurious image cor-
relations. By explicitly including the NMT loss
with higher weight, we ensure robust text transla-
tion even when visual input is noisy. Moreover, the
NMT loss selectively updates text-related compo-
nents, acting as a regularizer against over-reliance
on visual features.

The results show that each component in our
method plays a unique role: contrastive and
VQA losses establish cross-modal alignment, while
NMT and augmentation losses ensure robust trans-
lation performance. The consistent performance
drop when removing any component confirms their
complementary nature in achieving state-of-the-art
results. Our goal is to enhance model robustness
through diverse positive samples. Even without

augmentation, our model outperforms most exist-
ing methods (Table 8), demonstrating its intrinsic
effectiveness.

5.3 Incongruent Decoding

As shown in the last row of Table 7, we conducted
an inconsistency decoding test to assess the model’s
ability to integrate image and text features. By
replacing original images with mismatched ones
across multiple test sets, we observed a significant
drop in BLEU scores. Specifically, on Test2016,
Test2017, and MSCOCO, the BLEU score dropped
markedly (up to 2.83) when using random image
features, indicating effective image information uti-
lization. The CAMT model’s BLEU score drops
by 2.14 under inconsistent decoding, highlighting
its better ability to utilize visual information under
consistent conditions. The relatively smaller drop
on Test2018 may stem from the dataset’s more suf-
ficient text information and reduced reliance on im-
age cues. Furthermore, the contrastive learning and
VQA auxiliary tasks bolstered the model’s resis-
tance to visual noise, enabling it to maintain robust
performance even when image and text mismatch.
Collectively, these results demonstrate the model’s
strong proficiency in integrating and adapting to
both image and text features.

5.4 Case Study

Table 9 shows two En→Fr translation examples,
highlighting our model’s effectiveness. In the first
case, our model correctly translates “growing”, de-
spite significant visual interference that misled the
MMT-VQA model to incorrectly translate it as
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“répètent”. This illustrates our model’s stronger
cross-modal interaction and understanding. In
the second case, our model accurately translates
“mend” instead of “creusent” (which translates to
“dig” in English), demonstrating that our approach
better enhances image-text interaction and under-
standing compared to using only VQA for encoder
parameter sharing.

6 Conclusion

In this paper, we propose a novel cross-modal
VQA-augmented multimodal machine translation
model to address the critical challenge of aligning
image and text features in MMT. By leveraging
dual-text contrastive learning, our model enhances
the alignment between visual and textual modali-
ties, bridging the semantic gap. Our experiments
across four directions demonstrate the effectiveness
of integrating VQA tasks and contrastive learning
into MMT, highlighting the importance of cross-
modal interactions. Additionally, we provide a sim-
ple and effective method to obtain question-answer
data and introduce the 3AMVQA dataset.

Limitations

While the proposed CAMT method demonstrates
significant improvements in multimodal machine
translation, several limitations must be acknowl-
edged. First, CAMT relies on the generation
of high-quality question-answer pairs to enhance
cross-modal alignment. The effectiveness of this
approach may be compromised if the VQA ques-
tion generation process produces low-quality ques-
tions or fails to adequately capture the semantic
intricacies of the image. Furthermore, our method
still depends on the availability of images during
the inference stage, which limits its applicability
in scenarios where images are scarce or impracti-
cal. In the future, we plan to explore the possibility
of using alternative models to generate matching
images, enabling the use of text alone during the
inference phase.
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A Experimental Details

A.1 Data Preprocessing
To ensure consistency across language pairs, we
applied Byte Pair Encoding (BPE) to generate a
shared subword vocabulary. This technique helps
manage rare words while improving alignment
across different languages. Before applying BPE,
we tokenized the corpus using the Moses tokenizer
to maintain standardized preprocessing.

For our translation tasks, the final vocabulary
consisted of 9,544 unique tokens for En→Fr and
9,713 tokens for En→De. The adoption of a uni-
fied subword vocabulary enhances cross-lingual
transfer, minimizes redundancy, and ultimately im-
proves translation performance.

Additionally, we utilized the Multi30K-VQA
dataset (Zuo et al., 2023), an extended version
of Multi30K enriched with image-text question-
answer pairs. This dataset was refined through
both model-driven and manual corrections, where
masked words from an object detection task serve
as answers to automatically generated questions
based on the source text. It includes 29,000 QA
pairs, mirroring the size of the training set, with an-
swer categories distributed as 5,133 nouns, 18,423
characters, 5,303 colors, and 141 numbers.

A.2 Training and Implementation Details
We trained our model using the Adam optimizer,
setting λ1 = 0.9, λ2 = 0.98, and ϵ = 10−8. To
enhance generalization, we applied a dropout rate
of 0.3 and label smoothing of 0.2. For decoding,
we used a beam size of 5 with a length penalty of
1. The training seeds were set to 0 for En→De and
42 for En→Fr.

Each encoder and decoder layer was configured
with a hidden size of 256, a feed-forward network
intermediate size of 256, and four attention heads.
Training was performed on four NVIDIA GeForce
RTX 3090 GPUs, with a batch size of 4,096 tokens
per step. Our CAMT model integrates a pre-trained
image encoder, an 8-layer text encoder, three selec-
tive attention layers, and two 8-layer decoders.
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