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Abstract

As NLP models become increasingly integrated
into real-world applications, it becomes clear
that there is a need to address the fact that
models often rely on and generate conflicting
information. Conflicts could reflect the com-
plexity of situations, changes that need to be
explained and dealt with, difficulties in data
annotation, and mistakes in generated outputs.
In all cases, disregarding the conflicts in data
could result in undesired behaviors of models
and undermine NLP models’ reliability and
trustworthiness. This survey categorizes these
conflicts into three key areas: (1) natural texts
on the web, where factual inconsistencies, sub-
jective biases, and multiple perspectives intro-
duce contradictions; (2) human-annotated data,
where annotator disagreements, mistakes, and
societal biases impact model training; and (3)
model interactions, where hallucinations and
knowledge conflicts emerge during deployment.
While prior work has addressed some of these
conflicts in isolation, we unify them under the
broader concept of conflicting information, an-
alyze their implications, and discuss mitigation
strategies. We highlight key challenges for de-
veloping conflict-aware and robust NLP sys-
tems, and propose concrete research directions
to address them.

1 Introduction

The rapid advancement of natural language process-
ing (NLP), particularly with the rise of large lan-
guage models (LLMs), has led to their widespread
adoption in daily tasks, information retrieval, and
decision-making processes. However, the increas-
ing complexity of these models reveals various
types of conflicts at multiple stages, including train-
ing, annotation, and model interaction, affecting
the reliability and trustworthiness of downstream
applications. For example, training models on data
containing factual contradictions, annotation dis-
agreements, or prompts that contradict a model’s

Figure 1: Examples of the three different areas of con-
flicts discussed in this work. The first example describes
a case where two different entities of the same name
are found naturally on the web, the second example
elaborates the annotation disagreement in a sentiment
analysis task, and the third showcases a knowledge con-
flict between the context and memory of LLMs during
model interactions.

parametric knowledge can introduce inconsisten-
cies with unpredictable consequences (Pavlick and
Kwiatkowski, 2019; Sap et al., 2019).

Existing work on conflicts in NLP tends to fo-
cus on specific issues, such as annotation disagree-
ments (Uma et al., 2021; Klie et al., 2023), hallu-
cinations and factuality (Zhang et al., 2023; Wang
et al., 2023), and knowledge conflicts (Xu et al.,
2024; Feng et al., 2024), without synthesizing these
problems into a broader perspective. In this survey,
we conceptualize these diverse challenges under
the umbrella of conflicting information and analyze
their origins, implications, and mitigation strate-
gies.

To ensure comprehensive and representative cov-
erage of conflicts in NLP, we first establish a
high-level categorization encompassing three pri-
mary sources: (1) natural conflicts present in web
data, (2) conflicts arising from human annotation,
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Conflicts in NLP

Model Interactions

Hallucination

Contextual Hallucination Maynez et al. (2020),
Raunak et al. (2021), Dale et al. (2023)

Factual Hallucination Lin et al. (2022),
Pagnoni et al. (2021), Honovich et al. (2021)

Knowledge Conflicts

Across Different Models Cohen et al. (2023),
Zhu et al. (2024), Zhao et al. (2024)

Between Context and Parameters Longpre et al. (2021); Chen et al. (2022a),
Chen et al. (2021); Lazaridou et al. (2021)

Human Annotations

Ethical and Societal Biases Annotation Biases Sap et al. (2022), Faisal et al. (2022),
Thorn Jakobsen et al. (2022)

Human Judgements Interpretation Disagreements Kahneman (2021), Uma et al. (2021),
Sandri et al. (2023), Jiang and de Marneffe (2022)

Natural Conflicts on Web

Conflicts in Opinions

Framing Bias Card et al. (2015), Liu et al. (2019),
Fan et al. (2019), Lei et al. (2022)

Perspectives Chen et al. (2019), Liu et al. (2021),
Lee et al. (2022) , Wan et al. (2024a)

Factual Conflicts

Contradictory Evidence Chen et al. (2022a),Hong et al. (2024),
Liu et al. (2024), Pham et al. (2024)

Ambiguity Min et al. (2020), Zhang and Choi (2021),
Dhingra et al. (2022), Cole et al. (2023)

t

Figure 2: Taxonomy of conflicts in texts.

and (3) conflicts emerging from model interac-
tions. Notably, conflicts found in natural web
texts and human-annotated datasets are primar-
ily present in the training data—i.e., the inputs to
models—whereas conflicts involving model inter-
actions can arise in various forms, such as incon-
sistencies between model outputs and their inputs,
contradictions among multiple outputs, or conflicts
within the outputs themselves. For each category,
we identify influential and widely cited survey pa-
pers as initial seed works (Uma et al., 2021; Klie
et al., 2023; Zhang et al., 2023; Xu et al., 2024;
Feng et al., 2024; Wang et al., 2023). Building
upon these seeds, we systematically trace and in-
corporate the most impactful and representative
studies for each type of conflict through citation
chaining and targeted literature searches across ma-
jor databases. This approach enables us to synthe-
size developments in each category and connect
them, thereby providing an integrated discussion of
current challenges, impacts on downstream tasks,
and promising future directions for conflict-aware
AI systems (See Appendix B for more discussion
about our survey methodology).

The abundance of online data is accompa-
nied by inherent conflicts, stemming from diverse
sources, interpretations, and biases. These con-

flicts manifest as factual conflicts, such as seman-
tic ambiguities (Pavlick and Tetreault, 2016; Min
et al., 2020) and factual inconsistencies (Pham
et al., 2024; Liu et al., 2024), or as conflicts in opin-
ions related to political ideologies (Entman, 1993;
Recasens and et al., 2013) and perspectives (Chen
et al., 2019; Liu et al., 2021). Factual conflicts are
particularly prevalent in open-domain question an-
swering (QA) and retrieval-augmented generation
(RAG) systems (Chen et al., 2017), where aggre-
gating knowledge from multiple sources introduces
inconsistencies (Liu et al., 2024). These challenges
highlight the need for conflict-aware retrieval and
reasoning mechanisms to improve model reliability
(Xie et al., 2024). Unlike factual conflicts, opin-
ionated disagreements reflect the variability in hu-
man interpretation, beliefs, and ideological stances
(Chen et al., 2019; Fan et al., 2019). The presence
of conflicting viewpoints complicates tasks such as
summarization, sentiment analysis, and dialogue
generation, where maintaining coherence and neu-
trality is crucial (Liu et al., 2021; Lee et al., 2022).
Furthermore, the uneven distribution and biases
of web data also affects models to behave from
a Western perspective (Ramaswamy et al., 2023;
Mihalcea et al., 2025).

Another significant conflict arises in human-
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annotated data. For instance, annotation dis-
agreements persists in both subjective and seem-
ingly objective NLP tasks (Mostafazadeh Davani
et al., 2022). Disagreements are widespread in sen-
timent analysis (Wan et al., 2023), hate speech de-
tection (Sap et al., 2022), and even natural language
inference (NLI) (Pavlick and Kwiatkowski, 2019).
Models trained on aggregated (e.g. majority-
vote) labels struggle with ambiguous or high-
disagreement examples, often treating them as hard-
to-learn or mislabeled (Anand et al., 2024). Pavlick
and Kwiatkowski (2019) also find that standard
NLI models’ uncertainty does not reflect the true
ambiguity present in human opinions, leading to
overconfidence in contentious cases. In addition,
annotation biases—such as those related to race,
gender, and geography—skew model predictions
and reinforce societal biases (Buolamwini and Ge-
bru, 2018; Sap et al., 2022; Pei and Jurgens, 2023).
These issues highlight the need for fair and repre-
sentative annotations that capture the complexity
of human disagreement.

Conflicts also emerge during interactions with
models, manifesting as knowledge conflicts be-
tween model memories and contexts, and halluci-
nations in generated outputs. Knowledge conflicts
arise when a model’s internal memory contradicts
external contextual evidence, as shown by Longpre
et al. (2021), who found that models often overly
depend on memorized knowledge, leading to hal-
lucinations. Neeman et al. (2023) proposed sepa-
rating parametric and contextual knowledge to im-
prove interpretability, while Xie et al. (2024) exam-
ined LLMs’ confirmation bias, showing how mod-
els inconsistently handle contradictory evidence.
Additionally, hallucinations—ranging from factual
inconsistencies (Lin et al., 2022; Ouyang et al.,
2022) to contextual hallucinations (Maynez et al.,
2020; Kryscinski et al., 2020)—further undermine
model reliability. Various mitigation strategies
have been proposed, including retrieval augmen-
tation (Lewis et al., 2020; Shuster et al., 2021),
hallucination detection (Manakul et al., 2023), and
knowledge graph-based verification (Guan et al.,
2024).

In this survey, we systematically examine the
landscape of conflicts in NLP by categorizing them
into three primary sources. For each conflict type,
we detail how such conflicts arise and in what
forms they take (origins), the challenges they pose
(implications), and the strategies developed to ad-

dress them (mitigation). We present a compre-
hensive taxonomy in Figure 2, as well as struc-
tured summary tables—Table 1, Table 2, and Ta-
ble 3—that synthesize datasets, methodologies, and
analysis from prior work. By offering a unified
framework for understanding and addressing con-
flicting information in NLP, this survey contributes
to the development of conflict-aware frameworks
for data collection, model training, and model us-
age, ultimately enhancing the fairness and reliabil-
ity of NLP.

2 Conflicts in Natural Texts on the Web

Conflicts in natural texts on the web manifest in di-
verse ways, reflecting the inherent complexity and
subjectivity of human language. They can broadly
be categorized into factual conflicts, which revolve
around factual discrepancies caused by various rea-
sons, and conflicts in opinions, which pertain to
divergent perspectives or biases.

2.1 Factual Conflicts
2.1.1 Origins
Ambiguity Ambiguity is a root cause of factual
conflict. When a query or piece of data lacks clar-
ity about entities or context, a model can produce
conflicting answers. A clear demonstration of how
ambiguity induces conflicts is context dependence.
For example, an ambiguous question of "which
COVID-19 vaccine was the first to be authorized by
our government?" can have conflicting answers de-
pending on different geographical contexts (Zhang
and Choi, 2021).

Min et al. (2020) was the first work to study
the effects of ambiguity in open domain question
answering. They introduced AmbigQA, a dataset
highlighting that over half of the open-domain, nat-
ural questions are ambiguous, with diverse sources
of ambiguity such as event and entity references.
Zhang and Choi (2021) proposed the SituatedQA
task, showing that a significant fraction of open-
domain questions are valid only under particular
temporal or geographic contexts. Many other work
specifically focus on the temporal aspect of ambi-
guity, benchmarking and evaluating models’ aware-
ness and adaptation to time-sensitive questions
(Chen et al., 2021; Liska et al., 2022; Kasai et al.,
2023).

Contradictory Evidence Conflicts in NLP sys-
tems arise when information on the web presents
conflicting evidence towards a factual question.
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This issue is particularly prevalent in open-domain
question answering settings, where models must
navigate inconsistencies across diverse information
sources. For example, Liu et al. (2024) find that
25% of unambiguous factual questions queried on
Google retrieve conflicting evidence from multiple
sources.

Researchers have proposed different datasets
to systematically study how NLP models handle
such conflicts. Li et al. (2024b) introduce Con-
traDoc, a human-annotated dataset of long doc-
uments with internal contradictions; Pham et al.
(2024) propose WhoQA, a benchmark dataset that
constructs conflicts by formulating questions about
a shared property among entities with the same
name (e.g. "Who is George Washington?"); and Liu
et al. (2024) construct QACC, a human-annotated
dataset of conflicting results retrieved by Google.
Beyond empirical datasets, several studies have
proposed synthetic approaches to simulate con-
flicts through entity substitution (Chen et al., 2022a;
Hong et al., 2024), machine-generated conflicting
evidence (Pan et al., 2023; Wan et al., 2024a; Hong
et al., 2024), and pre-defined rule-based templates
(Kazemi et al., 2023).

2.1.2 Implications and Mitigation
Implications Factual conflicts pose significant
challenges for NLP systems. Pre-trained language
models accurately detect context-dependent ques-
tions but fall short when answering queries requir-
ing temporal context, performing notably below hu-
man levels (Zhang and Choi, 2021). Additionally,
large language models (LLMs) often exhibit con-
firmation bias, favoring retrieved information that
aligns with their parametric memory despite contra-
dictory evidence (Xie et al., 2024). Consequently,
conflicting information sources severely impact
retrieval-augmented generation (RAG) frameworks,
significantly degrading model performance even
with minimal misinformation exposure (Pham
et al., 2024; Liu et al., 2024; Li et al., 2024b; Pan
et al., 2023).

Mitigation To address these challenges, various
mitigation strategies have been proposed. Effective
methods include fine-tuning calibrators for selec-
tive abstention (Chen et al., 2022a), employing a
"disambiguate-then-answer" pipeline to detect am-
biguity proactively (Cole et al., 2023), and develop-
ing time-aware models that condition responses on
timestamps to manage outdated information (Dhin-

gra et al., 2022). Further robustness improvements
have been achieved through fine-tuning discrimi-
nators or prompting GPT-3.5 models to explicitly
recognize conflicting evidence (Hong et al., 2024),
as well as incorporating human-written explana-
tions in fine-tuning processes to enhance models’
reasoning capabilities (Liu et al., 2024).

2.2 Conflicts in Opinions

2.2.1 Origins
Perspectives Individuals and communities often
hold diverse perspectives on the same issue. Such
diversity is evident in online discussions and de-
bates, where the multiplicity of viewpoints can lead
to conflicting opinions. For instance, on controver-
sial topics such as "Animals should have lawful
rights," people express varying stances (Chen et al.,
2019), posing challenges for downstream tasks like
summarization where consolidating viewpoints and
presenting unbiased information are crucial (Liu
et al., 2021; Lee et al., 2022).

Several studies have explored perspectives in
the context of conflicting information. Chen et al.
(2019) introduce the task of substantiated perspec-
tive discovery, where systems identify diverse,
evidence-supported stances on a claim, and re-
lease the PERSPECTRUM dataset using online
debates and search results. Wan et al. (2024a)
propose ConflictingQA, a dataset of controversial
questions paired with real-world documents that
present divergent facts, arguments, and conclusions.
Plepi et al. (2024) examine perspective-taking in
contentious online discourse, curating a corpus of
95k conflict scenarios annotated with users’ self-
reported backgrounds. Liu et al. (2021) present
MultiOpEd, a corpus of 1,397 controversial topics,
each paired with opposing editorials and concise
summaries capturing their core perspectives.

Framing Bias A specific example of how differ-
ing opinions are conveyed and expanded is fram-
ing bias, a mechanism in which news media shape
interpretations by emphasizing certain aspects of
information over others (Entman, 1993). In a po-
larized media environment, partisan media outlets
deliberately frame news stories in a way to advance
certain political ideologies (Jamieson et al., 2007;
Levendusky, 2013; Liu et al., 2019).

Numerous studies have investigated different as-
pects of media bias. Card et al. (2015) introduce
the Media Frames Corpus (MFC), a collection of
news articles annotated with 15 general-purpose
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framing dimensions across three policy issues, en-
abling computational analysis of media framing.
Liu et al. (2019) present the Gun Violence Frame
Corpus (GVFC), a dataset of news headlines an-
notated by domain experts to capture framing in
gun violence reporting. Fan et al. (2019) examine
informational bias—bias conveyed through con-
tent selection and structure—and release BASIL, a
dataset of 300 news articles annotated with 1,727
bias spans, demonstrating that informational bias
is more prevalent than lexical bias.

2.2.2 Implications and Mitigation

Implications Analysis of PERSPECTRUM re-
veals significant natural language understanding
challenges, as human performance substantially
outperforms machine baselines at identifying di-
verse, evidence-supported perspectives (Chen et al.,
2019). Furthermore, when selecting real-world evi-
dence for controversial questions, LLMs predomi-
nantly prioritize the relevance of the evidence to the
query, often disregarding stylistic attributes such
as the presence of scientific references or a neutral
tone (Wan et al., 2024a). In addition, the distribu-
tion and biases of web data also affects models to
behave from a Western perspective (Ramaswamy
et al., 2023; Mihalcea et al., 2025). Studies have
shown that LLMs’ outputs skew toward the val-
ues of Western English-speaking countries (Tao
et al., 2024; Naous et al., 2024), and misalignment
is more pronounced for underrepresented personas
and on culturally sensitive topics such as social val-
ues (Al Kuwatly et al., 2020). Furthermore, LLMs
often provide inconsistent answers to the same
question when prompted in different languages (Li
et al., 2024a; AlKhamissi et al., 2024; Eloundou
et al., 2025), revealing conflicting cultural perspec-
tives within a single model.

Mitigation Several studies have proposed meth-
ods to address conflicts in perspectives and ide-
ological bias. Liu et al. (2021) show that auxil-
iary tasks improve perspective summarization qual-
ity, while Chen et al. (2022b) propose a retrieval
paradigm that clusters documents by viewpoint, re-
vealing users’ preference for diverse perspectives
over relevance-ranked lists. Jiang et al. (2023b)
generate opinion summaries by selecting review
subsets based on sentiment polarity and contrast,
producing balanced pros, cons, and verdicts. Plepi
et al. (2024) demonstrate that conditioning gen-
eration on users’ personal contexts yields more

empathetic and appropriate responses than general-
purpose models.

To mitigate framing and ideological bias, Mil-
bauer et al. (2021) uncover nuanced worldview
differences across communities by identifying mul-
tiple axes of polarization beyond the traditional
left–right spectrum. Liu et al. (2022b) pre-train
models for ideology detection by comparing re-
porting on the same events across partisan sources.
Chen et al. (2023) disentangle content from style to
enable ideology classification under data scarcity
and bias. Lee et al. (2022) employ hierarchical
multi-task learning to neutralize bias from news
titles to article bodies, while Liu et al. (2023) con-
struct neutral event graphs by synthesizing perspec-
tives across ideological divides.

3 Conflicts in Human-Annotated Texts

Conflicts in human-annotated texts largely arise
from two sources: annotation disagreements and
societal or ethical biases. Disagreements stem from
linguistic ambiguity, annotator backgrounds, and
task design, while biases reflect systematic demo-
graphic or ideological influences that can skew la-
beling in consistent ways. Though conceptually
distinct, these sources often interact—biases may
amplify disagreement or entrench disparities. Dif-
ferentiating between them is essential for under-
standing annotation-related conflicts and for devel-
oping more reliable and equitable NLP datasets.

3.1 Origins

Annotation Disagreement The subjective nature
of human judgment introduces variability and dis-
agreement into annotated data (Kahneman, 2021).
In NLP, such disagreements arise from linguistic
ambiguity, annotator backgrounds, task design, and
dataset curation practices. Uma et al. (2021) survey
disagreements across NLP and vision tasks, identi-
fying subjective ambiguity and annotator diversity
as key contributors. Sandri et al. (2023) classify dis-
agreements in offensive language detection as stem-
ming from inherent ambiguity, annotation errors,
or contextual gaps, highlighting that some disagree-
ments reflect hard-to-classify content, while others
indicate correctable issues. Similarly, Jiang and
de Marneffe (2022) categorize NLI disagreements
into linguistic uncertainty, annotator bias, and task
design, showing that much of the observed noise is
systematic and predictable.

Task formulation also plays a critical role.
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Dsouza and Kovatchev (2025) find that label dis-
agreement in reinforcement learning from human
feedback (RLHF) is shaped by annotator selection
and task phrasing. Demographic and ideological
factors further influence disagreements. Pavlick
and Kwiatkowski (2019) argue that many NLI
disagreements reflect genuine linguistic ambigu-
ity and individual variation rather than annotation
error. Sap et al. (2022) demonstrate that annota-
tors’ personal beliefs and identities affect toxicity
judgments, while Wan et al. (2023) show that de-
mographic features significantly improve disagree-
ment prediction.

Ethical and Societal Biases Human-annotated
texts also encode societal biases related to race, gen-
der, and geography, which can significantly skew
model predictions and downstream decisions (Buo-
lamwini and Gebru, 2018). Sap et al. (2022) show
that annotators’ ideological and racial identities
influence toxicity judgments, with conservative
annotators less likely to flag anti-Black slurs and
more likely to misclassify African American En-
glish (AAE) as offensive. Thorn Jakobsen et al.
(2022) examine how annotation guidelines interact
with annotator demographics, demonstrating that
even well-designed tasks can elicit systematically
different responses across groups, highlighting the
need for inclusive task design. Pei and Jurgens
(2023) introduce POPQUORN, a dataset designed
to assess demographic effects on annotation across
NLP tasks, and find that annotator attributes—such
as age, gender, race, and education—account for
substantial variance in labeling behavior.

3.1.1 Implications and Mitigation

Implications Early research has underscored the
impact of annotator disagreement on data quality
and model performance (Artstein and Poesio, 2008;
Pustejovsky and Stubbs, 2012; Plank et al., 2014).
Pavlick and Kwiatkowski (2019) show that stan-
dard NLI models fail to capture the true uncertainty
present in human judgments, leading to overconfi-
dence on contentious examples. Similarly, Anand
et al. (2024) find that models trained on single
“gold” labels perform poorly and exhibit lower con-
fidence on high-disagreement instances, often treat-
ing them as mislabeled or hard to learn. Sap et al.
(2019) demonstrate how annotator bias can yield
discriminatory outcomes: tweets in African Ameri-
can English (AAE) are frequently misclassified as
toxic, a bias inherited by models that disproportion-

ately flag content from Black authors. Additionally,
many widely used NLP datasets exhibit a strong
Western-centric skew (Faisal et al., 2022), causing
models to generalize poorly to underrepresented re-
gions—for example, excelling on questions about
New York or London, but failing on Nairobi or
Manila due to lack of exposure.

Mitigation Prior work has explored collecting
multiple labels per data item to capture annotation
variability and improve data quality. Probabilistic
models have been developed to infer true labels
by accounting for annotator expertise and label
noise (Sheng et al., 2008). Mostafazadeh Davani
et al. (2022) propose a multi-task neural network
that models each annotator’s labels individually
while sharing a common representation, preserv-
ing disagreement in training. Similarly, studies
show that models trained on soft labels—i.e., full
label distributions reflecting annotator disagree-
ment—consistently outperform those trained on
aggregated labels (Uma et al., 2021; Fornaciari
et al., 2021).

4 Conflicts during Model Interactions

Conflicts during model interactions primarily mani-
fest as knowledge conflicts and hallucinations, each
posing distinct challenges. Knowledge conflicts
occur when a model’s parametric memory contra-
dicts contextual input or when inconsistencies arise
across models, whereas hallucinations occur when
outputs deviate from real-world facts or the given
input. Differentiating these two types of conflict
clarifies their underlying causes and helps guide
targeted mitigation strategies.

4.1 Knowledge Conflicts
4.1.1 Origins
Context vs. Memory A common type of knowl-
edge conflict arises when a model’s prompt (con-
textual knowledge) contradicts what the model has
learned and stored in its parameters (parametric
knowledge) (Longpre et al., 2021; Chen et al.,
2022a). One prevalent cause of such conflicts is
the presence of updated information (Chen et al.,
2021; Lazaridou et al., 2021; Luu et al., 2022),
where newly available knowledge contradicts mod-
els’ previously learned knowledge.

Recent studies have developed many evaluation
frameworks and datasets to assess LLMs’ behav-
iors in this scenario through different methods, in-
cluding entity substitution (Longpre et al., 2021;
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Chen et al., 2022a; Wang et al., 2024), adversarial
perturbation (Chen et al., 2022a; Xie et al., 2024),
misinformation injection (Pan et al., 2023), and
machine generation (Qian et al., 2024; Ying et al.,
2024; Tan et al., 2024).

Within and Across Models Conflicts may also
arise across or within model knowledge bases. Co-
hen et al. (2023) explore how different LLMs en-
code different knowledge and can be used to fact-
check one another, uncovering inconsistencies in-
dicative of factual errors. Zhu et al. (2024) examine
cross-modality conflicts in vision-language models,
attributing discrepancies between visual and tex-
tual components to separate training regimes and
distinct data sources. Even within a single model,
contradictions can emerge: Zhao et al. (2024) de-
tect intra-model inconsistencies by paraphrasing
queries and observing divergent answers across
prompts.

4.1.2 Implications and Mitigation

Implications Interestingly, different studies of
knowledge conflicts present seemingly contradic-
tory findings. Some studies claim that models often
excessively rely on parametric memory when ob-
serving conflicts with contextual knowledge (Long-
pre et al., 2021); Some other studies posit that
LLMs tend to ground their answers in retrieved
documents in this scenario (Chen et al., 2022a;
Qian et al., 2024; Tan et al., 2024); or even both
– LLMs are highly receptive to context when it is
the only evidence presented in a coherent way, but
also demonstrate a strong confirmation bias toward
parametric memory when both supportive and con-
tradictory evidence to their parametric memory are
present (Xie et al., 2024).

Mitigation Several approaches have been pro-
posed to mitigate the impact of knowledge conflicts.
Longpre et al. (2021) reduce memorization by aug-
menting training data through corpus substitution.
Chen et al. (2022a) introduce a calibrator that ab-
stains from prediction when conflicting evidence
is detected. More recently, Wang et al. (2024) pro-
pose an instruction-based framework that enables
LLMs to identify conflicts, localize conflicting seg-
ments, and generate distinct responses for conflict-
ing scenarios.

4.2 Hallucination

4.2.1 Origins
Factual Hallucinations Factual hallucinations
arise when a model’s output contradicts real-world
facts. Lin et al. (2022) present TruthfulQA, an
adversarial QA benchmark, and show that even
top-performing models like GPT-3 were truthful
on only 58% of questions, compared to 94% for
humans. Pagnoni et al. (2021) construct FRANK, a
dataset for identifying factual errors in summariza-
tion, while Honovich et al. (2021) extend QAGS
to dialogue by leveraging question generation and
entailment for factual consistency evaluation. To
assess factual knowledge and reasoning in LLMs,
Hu et al. (2024) introduce Pinocchio, a large bench-
mark covering multiple domains, timelines, and
languages, revealing challenges in composition,
temporal reasoning, and robustness. Mallen et al.
(2023) further find that models struggle with less
common factual knowledge, with retrieval augmen-
tation significantly improving performance in such
cases.

Contextual Hallucinations Contextual halluci-
nations occur when generated text contradicts the
given input context, such as in summarization,
translation, and generation tasks. Maynez et al.
(2020) find that summarization models frequently
generate content unfaithful to input documents,
with 64% of summaries containing unsupported
information. In machine translation, Raunak et al.
(2021) analyze hallucinations caused by source per-
turbations and training noise, and find that slight
modifications to input data could trigger off-topic
translations. Similarly, Dale et al. (2023) introduce
HalOmi, a multilingual benchmark for hallucina-
tion and omission detection in machine translation,
showing that prior hallucination detectors often
fail across different language pairs. In generation
tasks, Liu et al. (2022a) propose a novel token-
level, reference-free hallucination detection task
and dataset (HADES) for free-form text generation,
and Niu et al. (2024) introduce RAGTruth, a com-
prehensive corpus designed for analyzing word-
level hallucinations across various domains and
tasks within standard Retrieval-Augmented Gener-
ation (RAG) frameworks.

4.2.2 Implications and Mitigation
Implications Hallucinations threaten trust,
safety, and the integrity of AI-powered workflows.
Hallucinated outputs can rapidly spread false in-
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formation. For instance, in 2023, an AI-generated
image purporting to show an explosion near the
Pentagon went viral, briefly causing public panic
and even a stock market dip before being debunked
(Sun et al., 2024). Hallucinations directly degrade
the performance of downstream applications
like abstractive summarization. Studies have
found that a large portion of generated summaries
contain unsupported facts, misleading readers and
propagating misinformation in news and scientific
dissemination (Kryscinski et al., 2020).

Mitigation Mitigating hallucinations in language
models has been approached through various strate-
gies, including knowledge disentanglement (Nee-
man et al., 2023), retrieval augmentation (Lewis
et al., 2020; Shuster et al., 2021), knowledge graphs
(Guan et al., 2024), and improved verification meth-
ods (Kryscinski et al., 2020; Wang et al., 2020; La-
ban et al., 2022; Manakul et al., 2023). DisentQA
enhances robustness by training models to separate
internal memory from external context, improv-
ing accuracy in conflicting knowledge scenarios
(Neeman et al., 2023). Retrieval-Augmented Gen-
eration (RAG) mitigates factual inconsistencies by
integrating external sources like Wikipedia (Lewis
et al., 2020) or incorporating a neural search mod-
ule into chatbot responses (Shuster et al., 2021).
In addition, Guan et al. (2024) demonstrate how
retrofitting LLM outputs using structured knowl-
edge graphs can correct factual inconsistencies, par-
ticularly in complex reasoning tasks. For hallucina-
tion detection methods, FactCC and QAGS intro-
duce automated methods using synthetic data and
question-answer validation to assess factual consis-
tency (Kryscinski et al., 2020; Wang et al., 2020).
SummaC refines entailment-based scoring (Laban
et al., 2022), and SelfCheckGPT detects halluci-
nations by sampling multiple model outputs and
checking for agreement without external references
(Manakul et al., 2023).

5 Connections, Challenges and Directions

Given the significance and impact of conflicts in
NLP, we advocate for increased attention to the de-
velopment of conflict-aware and robust AI systems.
In this section, we highlight specific challenges by
connecting different types of conflicts and propose
concrete research directions to address them.

Culturally Robust LLMs Among the challenges
outlined in this survey, the development of cul-

turally robust LLMs remains particularly under-
explored. Cultural conflicts emerge both in nat-
urally occurring web data and human-annotated
datasets, where Western-centric distributions domi-
nate. Prior studies reveal that LLMs often reflect
the values and perspectives of Western, English-
speaking populations (Ramaswamy et al., 2023;
Mihalcea et al., 2025; Tao et al., 2024; Naous et al.,
2024), with misalignments especially pronounced
for underrepresented personas and culturally sen-
sitive topics (Al Kuwatly et al., 2020). Addition-
ally, LLMs exhibit inconsistent behavior across lan-
guages (Li et al., 2024a; AlKhamissi et al., 2024;
Eloundou et al., 2025), revealing internal cultural
conflicts. These issues are rooted in the data: both
the pre-train data and benchmark datasets com-
monly exhibit Western-centric biases (Mihalcea
et al., 2025; Faisal et al., 2022), causing models to
default to Western contexts and perform poorly on
less-represented regions and cultures.

However, to the best of our knowledge, no effec-
tive methodology has yet been proposed to address
this issue. With the emergence of culturally dis-
tinct LLMs—such as Qwen, trained largely on Chi-
nese data (Bai et al., 2023), and Vikhr, trained on
Russian data (Nikolich et al., 2025)—a promising
direction is model fusion across culturally diverse
models to achieve greater cultural balance (Wan
et al., 2024b; Jiang et al., 2023a). Furthermore, ad-
vances in culture-specific LLMs and synthetic data
generation offer the potential to curate more cultur-
ally representative training and evaluation datasets
beyond Western-centric narratives, supporting the
development of culturally robust LLMs.

Building Conflict-Aware AI Systems As out-
lined in this survey, various types of conflicts can
arise in a model’s input, each requiring different
handling depending on the task. We argue that
downstream applications should not treat all con-
flicts uniformly; rather, responses should be tai-
lored to the conflict type. For instance, conflicts
due to ambiguity should elicit clarification ques-
tions, factual contradictions should trigger reason-
ing over evidence, and opinion-based disagree-
ments should induce balanced, multi-perspective re-
sponses. Realizing such capabilities requires mod-
els to be aware of the potential conflicts and clas-
sify them according to a systematic taxonomy. Yet,
current research lacks frameworks to distinguish
and operationalize these conflict types. Our pro-
posed taxonomy offers a foundational step toward
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enabling conflict-aware systems that can recognize,
interpret, and appropriately address diverse con-
flicts in downstream applications.

6 Conclusion

We present a unified view of conflicting informa-
tion in NLP, organizing the landscape into conflicts
originating from (i) natural texts on the web, (ii)
human annotations, and (iii) model interactions.
This taxonomy connects lines of work that are of-
ten studied in isolation and clarifies how conflicts
arise, what they imply for reliability, and how cur-
rent methods aim to mitigate them. Our synthesis
argues that conflict awareness should guide the full
pipeline: data collection that preserves disagree-
ment and multiple perspectives, models that detect
and categorize conflicts and respond with clarifica-
tion, reasoning, or balanced presentation, and evalu-
ations that measure calibration under disagreement,
robustness to contradictory evidence, and cultural
coverage across languages and regions.

Limitations

Conflicting information is present both in the data
that models rely on and in their generated outputs.
While we strive to account for all potential con-
flict scenarios, some cases may inevitably be over-
looked. Additionally, due to space constraints, we
cannot provide an exhaustive discussion of the lit-
erature on each specific type of conflict. Instead,
we adopt a broader perspective, examining vari-
ous types of conflicts to identify connections, chal-
lenges, and future directions.
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A Summary Tables

In the summary tables, dataset covers prior work
that proposed datasets and benchmark, method cov-
ers work that focus on mitigation strategies, and
analysis presents work that aim at providing in-
sights through experiments.

B Survey Methodology

Our objective is to map the broad and diverse
landscape of textual conflicts in NLP, identify cen-
tral implications and gaps, and outline a research
agenda. We surveyed research indexed in Google
Scholar, the ACL Anthology, and OpenReview,
covering peer-reviewed work in major ML and
NLP venues such as ICLR and ACL, as well as
recent manuscripts on arXiv. Rather than relying
on predetermined keyword filters, we primarily
used citation chaining: starting from influential sur-
veys corresponding to the three sources of conflict
considered in this work (natural web text, human
annotations, and model interactions), we applied
both backward and forward chaining using Google
Scholar and venue indexes. Paper selection did
not follow a rigid checklist. The two authors inde-
pendently screened and included papers based on
inclusion criteria that prioritized recency, citation
impact, and perceived influence on the area, then
reconciled disagreements through discussion. This
methodology emphasizes coverage and structure
over exhaustiveness and is intended to synthesize
a rapidly evolving field while making the scope of
inclusion explicit and surfacing open problems.

10088



Table 1: Datasets, methods, and analysis for conflicts in natural texts

Conflict Type Sub-type Category Work

Factual

Ambiguity
Dataset

SituatedQA (Zhang and Choi, 2021)
AmbigQA (Min et al., 2020)
Time-sensitive QA (Chen et al., 2021)
StreamingQA (Liska et al., 2022)
Real-time QA (Kasai et al., 2023)

Method
Disambiguate then answer (Cole et al., 2023)
Time-aware LM (Dhingra et al., 2022)

Contradictory Evidence

Dataset

QACC (Liu et al., 2024)
Contra-Doc (Li et al., 2024b)
WhoQA (Pham et al., 2024)
Machine-generated (Pan et al., 2023)
Machine-generated (Wan et al., 2024a)
Machine-generated (Hong et al., 2024)
Machine-generated (Jiayang et al., 2024)
Entity-substitution (Chen et al., 2022a)
Rule-based (Kazemi et al., 2023)

Method
Finetuned Calibrator (Chen et al., 2022a)
Finetuned w/ Explanation (Liu et al., 2024)
Finetuned discriminator (Hong et al., 2024)

Analysis Confirmation bias (Xie et al., 2024)

Opinion

Perspectives

Dataset

PERSPECTRUM (Chen et al., 2019)
Multi-OpEd (Liu et al., 2021)
NeuS (Lee et al., 2022)
ConflictingQA (Wan et al., 2024a)
Reddit (Plepi et al., 2024)

Method
Multi-task learning (Liu et al., 2021)
Opinion summarization (Jiang et al., 2023b)
Tailored generation (Plepi et al., 2024)

Framing Bias

Dataset
MFC (Card et al., 2015)
GVFC (Liu et al., 2019)
BASIL (Fan et al., 2019)

Method

Multifaceted analysis (Milbauer et al., 2021)
Pre-training (Liu et al., 2022b)
Disentanglement (Chen et al., 2023)
Multi-task learning (Lee et al., 2022)

Analysis Sentence-level (Lei et al., 2022)
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Table 2: Datasets, methods, and analysis for conflicts in human-annotated texts

Conflict Type Sub-type Category Work

Human-Annotated

Disagreement

Dataset

Twitter (Sandri et al., 2023)
RLHF (Dsouza and Kovatchev, 2025)
DiscoGeM (Yung and Demberg, 2025)
NLI (Pavlick and Kwiatkowski, 2019)

Method

Probabilistic model (Sheng et al., 2008)
Multi-task (Mostafazadeh Davani et al., 2022)
Soft labels (Uma et al., 2021)
Soft labels (Fornaciari et al., 2021)

Analysis

Survey (Uma et al., 2021)
Survey (Klie et al., 2023)
Offensive language (Sandri et al., 2023)
NLI (Jiang and de Marneffe, 2022)
Task design (Dsouza and Kovatchev, 2025)
Free choice (Yung and Demberg, 2025)
Personal belief (Sap et al., 2022)
Demographic data (Wan et al., 2023)

Biases

Dataset
Gender (Buolamwini and Gebru, 2018)
Argument mining (Thorn Jakobsen et al., 2022)
POPQUORN (Pei and Jurgens, 2023)

Analysis
Western-centric (Faisal et al., 2022)
Toxicity (Wan et al., 2023)
Racist outcome (Sap et al., 2019)
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Table 3: Datasets, methods, and analysis for conflicts during model interactions

Conflict Type Sub-type Category Work

Knowledge

Context vs. Memory
Dataset

Entity substitution (Longpre et al., 2021)
Entity substitution (Chen et al., 2022a)
Instruction-based (Wang et al., 2024)
Misinformation injection (Pan et al., 2023)
KRE (Ying et al., 2024)
context-conflicting (Tan et al., 2024)

Method
Data Augmentation (Longpre et al., 2021)
Abstention (Chen et al., 2022a)
Instruction-based (Wang et al., 2024)

Within & Across Analysis
LM-vs-LM fact-checking (Cohen et al., 2023)
Cross-modality (Zhu et al., 2024)
Intra-model contradiction (Zhao et al., 2024)

Hallucination

Factual

Dataset

TruthfulQA (Lin et al., 2022)
FRANK (Pagnoni et al., 2021)
q2 (Honovich et al., 2021)
Pinocchio (Hu et al., 2024)
MiniCheck (Tang et al., 2024)

Method

RAG (Lewis et al., 2020)
RAG (Shuster et al., 2021)
Knowledge graph (Guan et al., 2024)
Disentanglement (Neeman et al., 2023)
QA validation (Kryscinski et al., 2020)
QA validation (Wang et al., 2020)
Entailment-based (Laban et al., 2022)
SelfCheckGPT (Manakul et al., 2023)

Analysis Less popular entities (Mallen et al., 2023)

Contextual

Dataset
HalOmi (Dale et al., 2023)
HADES (Liu et al., 2022a)
RAGTruth (Niu et al., 2024)

Method

Context-aware decoding (Shi et al., 2024)
Long context (Liu et al., 2025)
Context-DPO (Bi et al., 2024)
CR-DPO (Huang et al., 2025)

Analysis
Summarization (Maynez et al., 2020)
Translation (Raunak et al., 2021)
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