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Mitigate Hallucinations
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Abstract

Large Language Models (LLMs) often halluci-
nate by misrepresenting the provided context
or incorrectly recalling internal knowledge. Re-
cent studies identified specific attention heads
that are responsible for extracting relevant con-
textual information, known as retrieval heads.
We hypothesise that masking these heads can
induce hallucinations and that we can reduce
hallucinations by contrasting the outputs of
the base and the masked LLMs. To this end,
we propose Decoding by Contrasting Retrieval
Heads (DeCoRe), a novel training-free decod-
ing strategy that amplifies information found
in the context and model parameters. DeCoRe
mitigates potentially hallucinated responses by
dynamically contrasting the outputs of the base
and the masked LLMs, using conditional en-
tropy as a guide. Our results show that DeCoRe
significantly improves performance on tasks re-
quiring high contextual faithfulness, such as
summarisation (+18.6% on XSum), instruction
following (+10.9% on MemoTrap), and open-
book question answering (+2.4% on NQ-Open
and +5.5% on NQ-Swap).1

1 Introduction

Large Language Models (LLMs) emerged as
powerful natural language generators, demon-
strating remarkable capabilities across a range of
tasks (Radford et al., 2019; Brown et al., 2020;
Wei et al., 2022a; Ouyang et al., 2022). However,
LLMs often produce hallucinations, generating
content that is factually incorrect or lacks ground-
ing in the given context (Ji et al., 2023; Rawte
et al., 2023; Zhang et al., 2023b; Li et al., 2024a).
The tendency of LLMs to hallucinate undermines
their reliability, especially in high-stakes domains
such as clinical decision-making or legal reasoning
(Ahmad et al., 2023; Dahl et al., 2024).

!Code and datasets are available at https: //github.com/
aryopg/DeCoRe.

Understanding the internal mechanisms responsi-
ble for hallucinations in LLMs remains challenging.
Wau et al. (2024) found that specific attention heads
are responsible for retrieving relevant information
from a given context, referred to as retrieval heads.
While identifying these mechanisms is key to un-
derstanding LLMs, little research has explored how
to use these insights to effectively mitigate halluci-
nations, which is the focus of our work.

We propose a novel decoding method
termed Decoding by Contrasting Retrieval
Heads (DeCoRe), as illustrated in Figure 1.
DeCoRe builds on the assumption that masking re-
trieval heads can induce hallucination by impairing
the ability of the model to retrieve relevant infor-
mation from the context. It leverages Contrastive
Decoding (Li et al., 2023) to amplify the differ-
ences between the original and the hallucinating
outputs, leading to more accurate final responses.
Furthermore, we propose using the conditional
entropy of the model’s next-token distribution to
control the contrastive decoding mechanism.

Our findings show DeCoRe significantly im-
proves accuracy in contextual faithfulness tasks
(XSum (Narayan et al., 2018), MemoTrap (Liu
and Liu, 2023), Open-Book Natural Questions
(NQ; Kwiatkowski et al. 2019), NQ-Swap (Long-
pre et al., 2021)) and factual recall tasks. Fur-
thermore, our experiments show that DeCoRe im-
proves the accuracy of the model in factual re-
call tasks. On TriviaQA (Joshi et al., 2017) and
PopQA (Mallen et al., 2023), DeCoRe outperforms
other hallucination mitigation methods. When ap-
plied to Truthful QA (Lin et al., 2022), Llama3-8b-
Instruct (Dubey et al., 2024) with DeCoRe gener-
ates more truthful and informative responses than
comparable methods. Finally, our experiments on
MuSiQue (Trivedi et al., 2022), DeCoRe signifi-
cantly improves accuracy in long-form generation
and reasoning tasks, particularly when combined
with Chain of Thought (CoT; Wei et al. 2022b).
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Figure 1: Overview of the DeCoRe workflow. Given the same input, the base LLM (LLMy,s.) and the variant
with masked retrieval heads (LLMpy,skeq) predict the next token. An uncertainty estimation is applied to the base
model’s output using conditional entropy: higher conditional entropy increases the contrastive factor (o), penalising
predictions that align with the LLM,skeq- The final prediction is selected based on weighted contrastive decoding
of the outputs from both models, leading to a more grounded response.

NQ-Swap Example

Context: Ozzie-Smith , known as "the
Wizard of Oz" , has won the most Gold Glove Awards
at shortstop [...]. Luis Aparicio won nine times at
shortstop for the third-highest total [...]

Question: Who has the most gold gloves at shortstop?
Original Answer: Ozzie Smith

Llama3-8b-Instruct |
(masked 10 Hreprieval) |
Luis Aparicio X

|
|
{

Figure 2: Example of hallucination induced by mask-
ing retrieval heads in NQ-Swap. The base model
predicts the correct answer from the substituted context,
while the masked model generates an incorrect answer.

2 DeCoRe - Decoding by Contrasting
Retrieval Heads

DeCoRe works by masking specific retrieval heads
to trigger hallucinations, followed by contrastive
decoding to penalise outputs resembling those
from the hallucinating model. This amplifies the
more accurate predictions of the base model. We
further enhance DeCoRe with a dynamic entropy-
controlled mechanism to adjust the contrastive
effect based on the entropy of the next token
distribution of the model, as illustrated in Figure 1.

2.1 Masking Retrieval Heads

We describe how we mask retrieval heads in our
base LLM to induce hallucinations, following the
Transformer notation from Vaswani et al. (2017).
Given a base LLM fpae, let oy =
(z1,22,...,74-1) be a sequence of previous to-
kens, where x; € V and V denotes the vocabulary
of the model. The logits for the next token distribu-
tion at time step ¢ are given by foase(T<¢) € RIVI,

and the probability of the next token x is:

Dbase (93t ‘ x<t) X exp [fbase(x<t)] (1)

We create a masked variant of fi,s by identify-
ing retrieval heads using the method proposed by
Wu et al. (2024), which analyses attention pat-
terns on the Needle-in-a-Haystack (NitH; Kamradt,
2023) dataset. NitH specifically tests information
retrieval from long contexts, making it suitable for
identifying heads that contribute to retrieval. We
first compute a retrieval score (Wu et al., 2024), i.e.,
the ratio of successful copy-paste operations (see
Appendix C.1 for details); and we then rank the
attention heads according to their retrieval scores
and select the top-/V heads as retrieval heads.

After identifying the retrieval heads, we cre-
ate the masked model. Let Hretrieval =
{(li,h1),...,(In,hN)} denote the retrieval heads
to be masked, where [; and h; are layer and head
indices, respectively. In a Transformer-based ar-
chitecture, the output of the multi-head attention
(MHA) mechanism at layer [ is given by:

H
MHAY = [10] 7w, @)

toli=1

where [hl(-l) JH, denotes the concatenation of
the vectors hgl), e 7h%); H € N is the number
of attention heads; d denotes the model hidden
dimension, and d, is the key dimension (where
dp = d/H); W(()l) € RH&xd denotes the output

(@)

projection layer. Each head ;" is computed as:

n = A (QUWS),, KOWD, vOw(),
3)
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where Q) KO v ¢ RIxdk respectively
denote the query, key, and value matrices at layer /;
Wq()l)h W[((l)h W‘% € R¥dk respectively denote
query, key, value weight matrices at layer [. To
mask each head hg) such that (I, h) € Hretrievals

we define a mask mg) € {0, 1} such that:

0 if(l,h retrieval s
mg) — 1 ( ) ) €EH t 1 (4)
1 otherwise.

Then, the masked MHA output at layer [ from
Equation (2) becomes:

MHAY

_ [0 01"

masked |:mz( ) ° hi ]i:l WO ’
where o denotes the Hadamard product (element-
wise multiplication). The masked MHA is then
used to define a masked model fiasked (<¢) and
the corresponding next-token distribution:

Pmasked (xt | x<t) X exp [fmasked ($<t)] . (5)

We hypothesise that masking retrieval heads
hinders the ability of the model to retrieve
relevant context, increasing the likelihood of
generating hallucinations. This is empirically
validated in Appendix D through factuality and
faithfulness tasks. Figure 2 shows an induced
hallucination after masking 10 retrieval heads in
Llama3-8b-Instruct (Dubey et al., 2024).

2.2 Contrasting Base and Masked LLMs

Given the base and masked LLMs from Section 2.1,
our goal is to improve the faithfulness of the
generated output. To achieve this, we propose
contrasting the next-token distributions of the base
and masked models, effectively increasing the like-
lihood of the tokens selected by the former while
decreasing the likelihood of the tokens selected
by the latter. More formally, the new next-token
distribution p(z; | x<;) in Equation (6) is defined
by contrasting the next-token distributions of the
base model ppase (71 | £<4) and the masked model
Pmasked (Tt | £<¢) from Equation (5):

p (x4 | £<4) o< exp [(1 + ) 10g poase (Tt | <t)
-« log Pmasked (xt ‘ '73<t) } ,
(6)
where a € R is a scaling factor controlling the rela-
tive weighting between the next-token distribution
of the base model pyase (¢ | ©<;) and the masked
model prmasked (%1 | T<¢). In Equation (6), the term

(1 + @) log poase (¢ | x<¢) increases the likelihood
of tokens selected by the base model, while the
term — 10g Pmasked (¢ | <¢) decreases the likeli-
hood of tokens selected by the masked model.

2.3 Dynamic Contrastive Decoding

We propose a method to dynamically select o us-
ing conditional entropy, which is a reliable predic-
tor for whether a model might generate hallucina-
tions (Malinin and Gales, 2021; Kadavath et al.,
2022). 2 For a given context =, the conditional
entropy H (z) of the next-token distribution of a
model p (z; | x<;) is defined as:

H(z) ==Y plar | 2<)logp (x| w<r)

%
(N
We dynamically tune the contrastive decoding pro-
cess in Equation (6) by setting & = H (z;), the
conditional entropy of the base model defined in
Equation (7). Higher entropy yields higher « value,
thus reducing hallucination likelihood.

3 Experiment Setup

Hallucinations in LLMs can be categorised into
two types: factuality and faithfulness hallucina-
tions (Huang et al., 2023). Factuality hallucina-
tions refer to instances where the generated content
is factually incorrect. Faithfulness hallucinations
refer to instances where the generated content fails
to adhere to the given source of information.

We use diverse benchmarks to assess contex-
tual faithfulness, factual accuracy, and multi-hop
reasoning ability. Given that retrieval heads are
essential in correctly retrieving contextual infor-
mation and looking back over long reasoning pro-
cesses (Wu et al., 2024), our experimental setup is
designed to answer the following key research ques-
tions: 1) Can DeCoRe improve contextual faithful-
ness? 2) Can DeCoRe maintain or enhance the
factual recall capabilities of LLMs? 3) Does cou-
pling DeCoRe with CoT improve the multi-hop
reasoning capability of the LLM?

3.1 Datasets and Evaluation Metrics

Faithfulness. We evaluate faithfulness on
summarisation, instruction-following, and reading
comprehension datasets. XSum (Narayan et al.,
2018) is an abstractive summarisation dataset
developed from BBC articles. We sub-sample
1,000 examples, following Chuang et al. (2024),

2As we also validate in our experiments in Appendix F.
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and evaluate summaries using ROUGE-L (Lin,
2004), BERTScore (Zhang et al., 2020), and
factKB (Feng et al., 2023) for factual consistency.
MemoTrap (Liu and Liu, 2023) tests whether
models can adhere to the given instructions,
with performance reported using macro- and
micro-averaged accuracy. Instruction-Following
Eval (IFEval; Zhou et al. 2023) evaluates the
ability of the models to follow a set of verifiable
instructions (e.g., “write in more than 400 words”).
Performance is reported using Prompt-level and
Instruction-level strict accuracies, representing
the percentage of prompts with all verifiable
instructions followed and the overall percentage
of verifiable instructions followed. Open-Domain
Natural Questions (NQ-Open; Lee et al. 2019) is a
QA dataset where we use an open-book configura-
tion with one supporting document per question as
described by Liu et al. (2024). NQ-Swap (Longpre
et al., 2021) is a version of NQ where the answer
entity in the context was replaced with another
entity and is used to evaluate the faithfulness of the
model to the modified context. We evaluate models
using Exact Match (EM), considering a prediction
correct if any substring matches any ground truth
answer (Kandpal et al., 2023; Liu et al., 2024).

Factuality. For factuality evaluation, we use four
datasets—Truthful QA, TriviaQA, PopQA, and NQ-
Open. Truthful QA (Lin et al., 2022) (MC1, MC2,
MC3, and Gen) is used to evaluate whether models
can avoid common human falsehoods; MC1, MC2,
and MC3 are multi-label classification tasks, and
Gen is a generation task evaluated by fine-tuned
GPT models to assess the correctness and informa-
tiveness of the generated outputs. TriviaQA (Joshi
et al., 2017), PopQA (Mallen et al., 2023), and
NQ-Open are open-domain QA datasets used to
evaluate the ability of a model to answer questions
about trivia, long-tail entities, and Google searches,
respectively. We use closed-book configuration on
these datasets to evaluate factual recall.

Chain of Thought Reasoning. We evaluate
DeCoRe in reasoning tasks with CoT in closed- and
open-book setups using MuSiQue (Trivedi et al.,
2022), a multi-hop QA dataset requiring reasoning
with multiple pieces of information.

Further evaluation details are in Table 31.

3.2 Models and Baselines

We evaluate Llama3-8B-Instruct and Llama3-70B-
Instruct (Dubey et al., 2024). We report results

from other model families (i.e., Mistral (Jiang et al.,
2023), Qwen2 (Yang et al., 2024)) in Appendix 1.

We compare DeCoRe against six base-
lines: 1) Greedy decoding; 2) Contrastive
Decoding (CD; Li et al. 2023), where

LLaMA3-8B-Instruct serves as the amateur
model and LLaMA3-70B-Instruct act as the expert
model; 3) Context-Aware Decoding (CAD; Shi
et al. 2024), where the amateur model is the same
as the expert model but is not presented with the
additional context; 4) Decoding by Contrasting
Layers (DoLa; Chuang et al. 2023) that subtracts
the logits in early layers to calibrate the final-layer
logits. We evaluate two versions: DoLa-low (i.e.,
contrasting the first half of the layers with the final
layer) and DoLa-high (i.e., contrasting the second
half with the final layer); 5) Activation Decoding
(AD; Chen et al. 2024), which uses the sharpness
of context activations within intermediate layers to
calibrate the next token prediction; 6) ITI (Li et al.,
2024b) that trains linear classifiers on Truthful QA
data to obtain “factual” heads and layers with
corresponding “factual” direction vectors and then
apply intervention during the decoding process.
Note that ITI requires a training process on labelled
data , whereas other baselines and DeCoRe are
training-free. Also note that the performance
of CAD in tasks with additional context (i.e.,
XSum, open book NQ-Open, NQ-Swap, and
open book MuSiQue) is equivalent to the base
model. All implementation details are available in
Appendix K.

3.3 DeCoRe Variants

We  evaluate three  DeCoRe  variants:
1) DeCoRegatic, Wwhich uses a static «;
2) DeCoReeppropy, Which uses entropy to dy-
namically adjust «; 3) DeCoReentropy-lite» Which is
similar to DeCoReeniropy, €xcept that it employs a
smaller LLM with the same vocabulary space as
the masked LLM. We use LLama3-70B-Instruct
and LLama3-8B-Instruct as the base and masked
LLMs, respectively.

4 Results

In the following, we present the evaluation re-
sults of DeCoRe across faithfulness, factuality, and
multi-hop reasoning tasks. We show that DeCoRe
mitigates faithfulness and factuality hallucinations
and improves the accuracy of the model when com-
bined with CoT prompting. These effectively an-
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swer our research questions stated in Section 3.
Additionally, we examine the impact of the num-
ber of masked retrieval heads on task performance.
Finally, we demonstrate that DeCoRe reduces con-
ditional entropy over time in long-generation tasks,
contributing to more accurate outputs.

DeCoRe Mitigates Faithfulness Hallucinations.
Table 1 shows the performance of various mod-
els and decoding methods on faithfulness eval-
uation tasks. DeCoRegagic, DeCoReeniropy, and
DeCoReepgropy-lite consistently enhance base mod-
els across all tasks and model sizes, with
DeCoReenropy achieving the best or highly com-
petitive results in several faithfulness evaluation
tasks. For instance, with Llama3-8b-Instruct,
DeCoReenropy attains a Macro Accuracy of 74.14%
and a Micro Accuracy of 74.87% on Memo-
Trap, producing significantly more accurate re-
sults than most baselines. DeCoReepyopy also
achieves the highest EM scores on open-book
NQ-Open and the second-best accuracy score on
NQ-Swap. Similarly, with Llama3-70b-Instruct,
DeCoReepropy achieves the highest EM score on
NQ-Open and competitive results on NQ-Swap.
In instruction-following tasks, DeCoReepgropy also
achieves competitive scores in the IFEval bench-
mark with Llama3-8b-Instruct, yielding Instruct
and Prompt Strict Accuracy values of 68.39% and
76.38%, respectively. With Llama3-70b-Instruct,
DeCoRegaiic and DeCoReeqropy achieve the joint-
highest Instruct and Prompt Strict Accuracy val-
ues of 78.56% and 84.89%, respectively. While
CAD yields accurate results on tasks like XSum
and NQ-Swap, its reliance on additional contexts
limits its adaptability to tasks like IFEval. In con-
trast, DeCoRegtatic and DeCoReengropy improve the
predictive accuracy of the base models in all down-
stream tasks. Pairwise statistical significance anal-
yses in Appendix H.1 confirm the improvements
achieved by DeCoReepropy Over other baselines.

DeCoRe Mitigates Faithfulness Hallucinations
amidst Distractor Documents. Table 2 presents
the performance of various models and decod-
ing methods on NQ-Open under the Lost-in-the-
Middle (LitM) setup, where the context contains
one gold document and nine distractor documents.
The Oracle setup indicates that the model is given
only the single gold document without any distrac-
tors, providing an upper bound for the accuracy
of the model. The results show that DeCoRegaic,
DeCoReeniropy, and DeCoReenropy-liee cOnsistently

produce more accurate results than the base models
across different gold document positions and model
sizes. Specifically, DeCoReenyropy achieves the
highest EM scores in several configurations. For
instance, with Llama3-8b-Instruct, DeCoReeptropy
attains the highest Oracle score of 70.66% and
the best EM score of 45.42% when the gold doc-
ument is placed ninth. Similarly with Llama3-
70b-Instruct, DeCoReenropy achieves the highest
Oracle score of 72.66% and the best EM scores
when the gold document is first and ninth. While
other methods like ITI and CAD show improve-
ments in certain cases, their performance is gener-
ally less consistent compared to DeCoReg,ic and
DeCoReengropy- Both ITI and CAD significantly un-
derperform when applied to Llama3-8b-Instruct,
especially when the gold document is not first,
yielding EM scores as low as 11.45% and 29.30%,
respectively, when the gold document is ninth.

DeCoRe Mitigates Factuality Hallucinations.
While DeCoRe is primarily designed to improve
contextual faithfulness, its impact on factual recall
tasks is an open question. To this end, we evalu-
ate DeCoRe on a range of tasks where the model
needs to produce factually correct generations—
results are outlined in Table 3. We can see that
DeCoRe improves the accuracy of the models
across various factuality evaluation tasks. For the
Llama3-8b-Instruct model, DeCoReeyropy demon-
strates improvements in several Truthful QA (Gen-
eration) metrics. Specifically, it achieves an infor-
mativeness score of 74.05% and an intersection of
truthfulness and informativeness score of 53.00%,
second only to ITI, which requires fine-tuning
the model on TruthfulQA data.® Furthermore,
DeCoRegyyic yields the highest EM score on Trivi-
aQA (56.93%) among all decoding strategies and
achieves competitive EM scores on PopQA. For the
larger Llama3-70b-Instruct model, DeCoReepropy
achieves the highest truthfulness score (89.23%)
on Truthful QA (Gen); it performs competitively
across informativeness and the intersection metrics,
yielding the highest EM score on closed-book NQ-
Open (40.45%). Finally, DeCoRegyic yields the
highest EM score on PopQA (40.74%).

These results suggest that DeCoRe methods can
improve contextual faithfulness and factual con-

3The rejection rates—the frequency by which the model
answers “I have no comment”—of Llama3 models in Truth-
fulQA are higher than Llama2 models (Touvron et al., 2023),
as reported by Li et al. (2024b) and Chuang et al. (2023); we
report metrics for the non-rejection answers in Appendix E.1.
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XSum

MemoTrap

IFEval NQ-Open NQ-Swap

Model Avg T
ROUGE-L 1 BERTScore-F11 factKB1 Avg? MacroAcc? MicroAcct PromptAcc? InstructAcct Avg?T EM 1 EM 1 8
Llama3-8b-Instruct 19.90 67.23 47.61 4491 65.86 64.40 70.24 78.30 74.27 69.68 60.62 60.43
+ITI (Li et al., 2024b) 13.25 59.96 34.35 35.85 62.65 58.96 52.31 63.19 57.75 56.16 51.08 50.21
+ CAD (Shi et al., 2024) 18.82 67.20 67.16 51.06 76.58 76.76 - - - 69.83 74.21 66.57
+ DoLA (low) (Chuang et al., 2023) 19.82 67.19 47.21 44.74 65.27 63.69 69.69 78.18 73.94 69.68 60.77 60.17
+ DoLA (high) (Chuang et al., 2023) 19.92 67.34 48.49 4525 64.85 63.17 70.24 78.66 74.45 69.49 60.98 60.35
+ AD (Chen et al., 2024) 19.79 67.31 48.49 45.20 65.38 64.28 67.65 76.26 71.96 68.93 60.51 59.84
+ DeCoRegatic 19.87 67.83 64.07 50.59 69.53 69.20 69.13 78.06 73.60 70.62 64.43 63.64
+ DeCoReenropy 19.45 67.69 66.10 5108 74.14 74.87 68.39 76.38 7239 70.66 66.08  64.86
Llama3-70b-Instruct 22.41 69.77 61.32 51.17 68.47 66.52 71.45 84.41 80.93 71.07 76.11 66.39
+ITI (Li et al., 2024b) 21.64 69.46 61.33 50.81 71.24 68.73 76.71 83.69 80.20 71.90 74.76 66.60
+CD (Li et al., 2023) 22.71 69.99 5473 49.14 69.27 67.55 71.72 79.74 75.73 65.80 68.37 63.66
+ CAD (Shi et al., 2024) 21.45 69.28 65.61 52.11 83.58 83.89 - - - 71.83 84.70 71.36
+DoLA (low) (Chuang et al., 2023) 22.46 69.80 61.11 51.12 67.99 65.93 77.08 84.29 80.69 71.07 75.98 66.23
+ DoLA (high) (Chuang et al., 2023) 2243 69.93 59.99 50.78 67.92 65.81 78.00 84.65 81.33 70.40 75.26 66.04
+ AD (Chen et al., 2024) 2249 69.91 60.57 50.99 67.51 66.44 76.89 84.41 80.65 71.15 74.02 65.93
+ DeCoRegqiic 21.94 69.35 64.88 52.06 71.96 71.41 78.56 84.89 81.73 72.51 79.06 68.29
+ DeCoRecniropy 21.93 69.40 6549 5227 74.07 73.65 78.56 $4.89 8173 72.66 7979  68.94
+ DeCoRe€eniropy lite 2228 69.34 5957 50.40 72.11 70.58 61.37 71.46 6642 71.26 7590  63.76

Table 1: Performance of models and decoding methods on faithfulness evaluation tasks. For each base model,
the best performance is indicated in bold, and the second-best is underlined.

Model NQ-Open

OracleT Gold1stt Gold4tht Gold 9th T Avgf
Llama3-8b-Instruct 69.68 52.92 45.61 44.48 47.34
+ITI (Li et al., 2024b) 56.16 16.61 13.45 11.45 13.84
+ CAD (Shi et al., 2024) 69.83 40.57 31.53 29.30 33.80
+ DoLA (low) (Chuang et al., 2023) 69.68 52.88 45.76 44.37 47.34
+ DoLA (high) (Chuang et al., 2023) 69.49 52.28 45.39 44.14 47.27
+ AD (Chen et al., 2024) 68.93 52.96 45.46 43.96 47.46
+ DeCoReyuic 70.62 54.58 4742 4490 4897
+ DeCoReentropy 70.66 54.39 47.50 45.42 49.10
Llama3-70b-Instruct 71.07 60.49 52.99 49.00 54.16
+ITI (Li et al., 2024b) 71.90 60.53 49.91 46.25 52.23
+CD (Liet al., 2023) 71.90 58.57 51.64 47.87 52.69
+ CAD (Shi et al., 2024) 71.83 58.27 48.10 43.16 49.84
+ DoLA (low) (Chuang et al., 2023) 71.07 60.45 52.96 49.04 54.15
+ DoLA (high) (Chuang et al., 2023) 70.40 59.32 52.24 48.32 53.29
+ AD (Chen et al., 2024) 71.15 60.41 52.84 48.93 54.06
+ DeCoResaic 7251 60.53 53.11 49.12 54.25
+ DeCoReentropy 72.66 60.72 53.07 49.38 54.39
+ DeCoReentropy-lite 71.26 60.45 53.22 48.51 54.06

Table 2: Performance of models and decoding meth-
ods on NQ-Open with Lost-in-the-Middle Setup (one
gold document + nine distractor documents). The
Average column represents the mean of the Gold 1st,
Gold 4th, and Gold 9th EMs. The best performance for
each base model is indicated in bold, and the second-
best is underlined.

sistency across different datasets. We believe this
phenomenon is closely related to the hypothesis of
attention heads as Information Movement (Elhage
etal., 2021), which suggests that attention heads fa-
cilitate the transfer of information between tokens
and that the residual stream vector space of one
token typically contains information from other to-
kens. Thus, while factual recall may occur in the
Multi-Layer Perceptron (Geva et al., 2021; Meng
et al., 2022), masking retrieval heads may interfere
with the information transfer from the question to
the generated answer, potentially leading to hallu-
cinations. We hypothesise that DeCoRe leverages
this phenomenon, improving downstream results in
factual recall tasks. In Appendix H.2, we provide
detailed pairwise statistical significance analyses
of our results, indicating the statistically signifi-
cant improvement yielded by DeCoReepropy cOm-

pared to other baselines in tasks such as PopQA
and closed-book NQ-Open.

DeCoRe with Chain-of-Thought. To evaluate
DeCoRe approaches on multi-hop reasoning tasks,
we use the MuSiQue dataset Multi-hop reasoning
requires integrating information across multiple
steps, where retrieval heads play a crucial role by
referencing earlier tokens. We conduct experiments
in closed-book and open-book settings, with and
without CoT prompting. In closed-book, models
rely solely on parametric knowledge (akin to factu-
ality evaluation), while in open-book, they access
external knowledge (as in faithfulness evaluation).

As shown in Table 4, DeCoRe variants con-
sistently improve the EM scores across various
settings.  For the Llama3-8b-Instruct model,
DeCoRegiic  enhances the EM score in the
closed-book setup with CoT from 14.61% (base
model) to 14.69%, while in the open-book setup
without CoT, DeCoReepropy achieves the highest
score (61.98%). DeCoReenyropy also yields accurate
results in the open-book CoT scenario, achieving
the most accurate results (74.47% EM). For the
Llama3-70b-Instruct model, both DeCoReg,tic
and DeCoReeppopy yield very accurate results,
improving the EM score in the closed-book setup
with CoT from 20.15% (base model) to 20.60%.
DeCoRegayic achieves the highest score in the open-
book CoT setup (75.05%), with DeCoReenropy
closely following at 74.93%. These improvements
underscore the effectiveness of DeCoRe in enhanc-
ing reasoning capabilities, especially when CoT
prompting and external context are involved. The
results show that DeCoRe improves information
transfer between reasoning steps, leading to higher
EM scores in closed and open-book settings.
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Model TruthfulQA (MC) TriviaQA PopQA TruthfulQA (Gen) NQ-Open
MC1+ MC2+ MC3+ Avgt EM+t  EM?T %Truth %Info %TNI %Reject EM T

Llama3-8b-Instruct 3941 5569 3031 4180  56.58 2664  80.66 6389 4455 4394 29.04  39.72

+ITI (Li et al., 2024b) 4370 6278 3491 4713 4841 1563 8752 7846 6610  25.46 2207 39.87

+ CAD (Shi et al., 2024) 39.41 55.69 3031  41.80

56.58 26.64 80.66  63.89 4455 43.94 29.04 39.72

+DoLA (low) (Chuang etal., 2023)  39.05 55.65 3006 4159  56.63 2658  80.66 6291 4370  45.04 29.15  39.53
+DoLA (high) (Chuang etal., 2023)  38.68  55.64  30.19 4150 5650 2649 8078  62.67 4345  44.92 20.19 3943
+ AD (Chen et al., 2024) 3121 5530 2828 3826 5493 2638 8042 6340 4382  43.82 2832 3834
+ DeCoReqic 38.68 5574 2980 4141  56.93 26.86  80.78 6793 4871 4174 2942 40.67
+ DeCoRe€entropy 3843 5586 3095 4175 5640 26.88 7895 7405 53.00  38.68 2896  41.40
Llama3-70b-Instruct 4957 70.60 37.85 5267 7477  40.63  88.74 7172 6646  53.12 4008 5492
+1ITI (Li et al., 2024b) 4896  67.04 3727 5109  73.54 39.62 8250 7430 5692  37.94 3857 5195
+ CAD (Shi et al., 2024) 4957 7060 37.85 5267 7477 4063 8874 7772 6646  53.12 4008 5492
+CD (Li et al., 2023) 5777  76.65 47.08 60.50  72.83 3703 8825 88.13 7638  52.26 3623 56.59

+ DoLA (low) (Chuang et al., 2023) 4945  70.58  37.75 52.59
+ DoLA (high) (Chuang et al., 2023)  49.69  70.88  38.01 52.86

+ AD (Chen et al., 2024) 4223 6756 3537 4839
+ DeCoRege 5129 7202 4024 5452
+ DeCoReentropy 5398 7344 4255 56.66
+ DeCoReentropy-ite 5532 7338 4374 5748

74.74 40.65 88.74  77.60  66.34 52.88 40.08 54.88
73.96 40.00
74.14 40.53 87.39 67.20  54.59
74.79 40.74 88.25 6291  51.16 54.96
74.76 40.58 89.23  59.73  49.11 56.79 40.45 5231
73.87 39.09 88.13 90.09 78.21 52.02 39.21 57.57

88.98 5838 4737 54.71 39.59 50.76
49.33 40.23 51.58
4041 52.32

Table 3: Performance of models and decoding methods on factuality evaluation tasks. For each base model, the
best performance is indicated in bold, and the second-best is underlined.

MuSiQue without CoT MuSiQue with CoT

Model Avg T
Closed Book T Open Book T Closed Book T Open Book 1
Llama3-8b-Instruct 741 58.83 14.61 69.84 37.67
+ CAD (Shi et al., 2024) 741 57.88 14.61 73.02 38.23
+ITI (Li et al., 2024b) 4.01 45.84 4.18 38.31 23.08
+ DoLA (Chuang et al., 2023) 7.24 59.08 14.94 69.92 37.79
+ AD (Chen et al., 2024) 6.99 58.63 14.40 69.92 37.49
+ DeCoRegaic 7.90 61.23 14.69 7249 39.08
+ DeCoReentropy 1.70 61.98 13.90 74.47 39.51
Llama3-70b-Instruct 11.79 68.56 20.15 74.43 43.73
+CD (Lietal., 2023) 10.92 66.61 17.17 71.70 41.60
+ CAD (Shi et al., 2024) 11.79 68.64 20.15 74.02 43.65
+ITI (Li et al., 2024b) 10.88 68.14 20.44 74.27 43.43
+ DoLA (Chuang et al., 2023) 11.42 68.68 20.15 74.64 43.72
+ AD (Chen et al., 2024) 11.38 68.14 20.23 7427 4351
+ DeCoRegaic 11.79 69.76 20.60 75.05 44.30
+ DeCoReentropy 1175 69.84 20.60 74.93 44.28
+ DeCoReentropy-lite 11.13 69.34 18.87 73.36 43.18

Table 4: Performance of models and decoding meth-
ods on MuSiQue, a multi-hop reasoning dataset, with
and without CoT in closed-book and open-book set-
tings. For each base model, the best performance is
indicated in bold, and the second-best is underlined.

This validates the usefulness of DeCoRe in tasks
requiring complex reasoning, validating the
insights from Wu et al. (2024) on the significance
of retrieval heads in multi-step reasoning. In
Appendix H.3, we provide detailed pairwise
statistical significance analyses of our results,
indicating the statistically significant improvement
yielded by DeCoRecpyopy compared to other
baselines, particularly in the open-book setup.
Overall, DeCoReepropy achieves the highest over-
all aggregated score for LLaMA3-8B-Instruct and
LLaMA3-70B-Instruct models, surpassing other
decoding strategies as shown in Table 5. Detailed
computational performance metrics (TFLOPS),
showcasing the computational efficiency of
DeCoReenropy, are provided in Appendix K.4.

DeCoRe yields lower entropy across time in
long generation tasks. We found that lower con-

Model Faithfulness LitM Factuality CoT Overall
LLaMA3-8B-Instruct 60.43 47.34 39.72 37.67 46.29
+1ITI 50.21 13.84 39.87 23.08  31.50
+ CAD 66.57 33.80 39.72 3823 4458
+ DoLA (Low) 60.17 47.34 39.53 3779 4621
+AD 59.84 47.46 38.34 3749 4578
+ DeCoRetatic 63.64 4897 4067  39.08  48.09

+ DeCoReentropy 64.86 49.10 41.40 3951  48.72
LLaMA3-70B-Instruct 66.39 54.16 54.92 4373 54.80

+ITI 66.60 52.23 51.95 41.60  53.10
+CD 63.66 52.69 56.59 43.65 54.15
+CAD 71.36 49.84 54.92 4343 54.89
+ DoLA (Low) 66.23 54.15 54.88 4372 54775
+ AD 65.93 54.06 51.58 4351 53.77
+ DeCoRegatic 68.29 54.25 52.32 4430 5479
+ DeCoReentropy 68.94 54.39 52.31 4428 5498
+ DeCoReentropy-lite 63.76 54.06 57.57 43.18  54.64

Table 5: Aggregated metrics of different models and
decoding methods. The overall average is calculated
as the mean of Faithfulness, LitM, Factuality, and CoT
aggregate scores.

ditional entropy is related to correct predictions;
generated sequences with lower conditional en-
tropy tend to be more reliable (see Appendix F).
Motivated by this insight, we evaluate the length-
normalised conditional entropy of different decod-
ing strategies in long-generation tasks (i.e., XSum,
and MuSiQue with CoT prompting).

As shown in Figure 3, DeCoReepgropy yields
lower conditional entropy compared to the base-
lines. DeCoReeniropy shows lower entropy in the
open-book QA task (MuSiQue), with an average
entropy of 0.29 compared to 0.30 for the baselines.
Similarly, in XSum, DeCoReenropy achieves an en-
tropy of 0.38, outperforming the baselines. In tasks
such as summarisation (XSum) and open-book QA
(MuSiQue), lower entropy is crucial because the
model must strictly adhere to the provided docu-
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Figure 3: Comparison of Length-normalised conditional entropy of Greedy, ITI, DoLa, and DeCoRecytropy
in long-generation tasks (i.e., XSum (a), MuSiQue (Closed) + CoT (b), and MuSiQue (Open) + CoT (c)).
Asterisks (¥) indicate statistically significant differences between the distributions based on one-tailed Welch’s t-test

results. Detailed results are listed in Table 35.

ment or evidence while generating the summary or
answer. Any deviation from the context can result
in hallucinations or factually incorrect outputs. The
lower entropy observed with DeCoReeygropy indi-
cates that it generates less “surprising” sequences,
reducing the likelihood of hallucinations.

Overall, the decrease in conditional entropy
shows that DeCoRecpyropy can maintain lower un-
certainty in long-generation tasks. This reinforces
the effectiveness of DeCoReenropy in applications
requiring high contextual faithfulness, such as sum-
marisation and open-book QA. In Appendix L.2,
we provide samples of text generated with DeCoRe
in several long-form generation tasks, namely
XSum, TruthfulQA (Gen), and MuSiQue with
CoT—we can see that when using DeCoRe, the
model tends to produce more faithful generations.

5 Related Works

Mechanistic Interpretability. Studies have at-
tempted to understand the inner workings of LLMs
by focusing on layers (Wallat et al., 2020; Geva
et al., 2021; Meng et al., 2022; Yu et al., 2024),
neurons (Dai et al., 2022), and attention heads (EI-
hage et al., 2021; Geva et al., 2023; Yuksekgonul
et al., 2024). One example is the identification
of induction heads, the attention heads that look
back over the context to predict a similar comple-
tion (Olsson et al., 2022). Wu et al. (2024) identi-
fied retrieval heads, a specific set of attention heads
responsible for maintaining long-context factual-
ity. These insights into the internal workings of
LLMs is instrumental to our work, which focuses
on these mechanisms to reduce hallucination. Our
work leverages the idea that the masking of retrieval
heads leads to hallucination.

Constrained Decoding. Constrained decoding
intervenes during generation to reduce hallucina-
tions. ITT (Li et al., 2024b) modifies attention heads
associated with truthfulness, while CD (Li et al.,
2023) improves coherence by contrasting stronger
and weaker LMs. CAD (Shi et al., 2024) mitigates
contextual hallucinations by contrasting outputs
with and without context, and Zhao et al. (2024)
contrast answers from correct versus adversarial
passages. ICD Zhang et al. 2023a requires fine-
tuning on non-factual datasets. More closely re-
lated to DeCoRe are DoLa (Chuang et al., 2023)
and ACD Gera et al. 2023, which contrast final
layer predictions against earlier ones via early ex-
iting (Teerapittayanon et al., 2016). AD (Chen
et al., 2024) examines context activation sharpness
to calibrate token probabilities. DeCoRe uniquely
masks retrieval heads to induce hallucinations, then
applies dynamic entropy-controlled contrastive de-
coding without fine-tuning, amplifying differences
between a base model and its masked variant.

6 Conclusions

DeCoRe (Decoding by Contrasting Retrieval
Heads) is a novel decoding strategy that reduces
faithfulness and factuality hallucinations in LLMs.
DeCoRe masks retrieval heads to create a version
of the model that is more likely to generate hallu-
cinations and combines it with the original model
via a contrastive decoding scheme (Section 2.2).
Furthermore, we use the conditional entropy of
the next-token distribution of the model to control
the strength of the contrastive decoding scheme
(Section 2.3). Our experimental results show that
DeCoRe significantly improves the accuracy of the
model in tasks requiring contextual faithfulness and
in some factual recall and reasoning tasks.
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Limitations

While DeCoRe improves the performance of the
base model across most tasks, there is no “free
lunch”; existing baselines may still produce more
accurate results than DeCoRe in specific tasks (e.g.,
ITT in Truthful QA or CAD in NQ-Swap). However,
these baselines often offer limited improvements or
may even generate less accurate responses in other
tasks. We also observed that DeCoRe offers only
marginal enhancements in factual recall tasks, sug-
gesting that retrieval heads may not play a primary
role in factual recall except for information transfer.
Finally, while we propose using the conditional en-
tropy of the model’s next-token distribution to con-
trol the contrastive decoding scheme in DeCoRe,
semantic-based methods of uncertainty quantifica-
tion may also be used (Farquhar et al., 2024).
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A Reproducibility Statement
1. For all authors...

(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s con-
tributions and scope? [Yes] We claim to propose a novel training-free decoding strategy that
leverages retrieval head mechanism, which we present as DeCoRe (Decoding by Contrasting
Retrieval Heads).

(b) Did you describe the limitations of your work? [Yes] See Section 6.
(c) Did you discuss any potential negative societal impacts of your work? [Yes] See Appendix B.

(d) Have you read the ethics review guidelines and ensured that your paper conforms to them?
[Yes]

2. If you are including theoretical results...

(a) Did you state the full set of assumptions of all theoretical results? [IN/A]
(b) Did you include complete proofs of all theoretical results? [N/A |

3. If you ran experiments (e.g. for benchmarks)...

(a) Did you include the code, data, and instructions needed to reproduce the main experimental
results (either in the supplemental material or as a URL)? [Yes] Our code is available at
https://github.com/aryopg/DeCoRe. See details in Appendix K for more details.

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they were
chosen)? [Yes] We mention the implementation details including the hardware, libraries,
implementation of the baselines, as well as task-specific setups in Appendix K. We also provide
a justification of the number of retrieval heads to be masked in Appendix C.2. Additionally, we
provide the full ablation study results of different number of retrieval heads in Appendix G.

(c) Did you report error bars (e.g., with respect to the random seed after running experiments
multiple times)? [Yes] We reported error bars for experiments requiring multiple runs (i.e.,
masking random heads in Figure 5 and Figure 8, along with their accompanying tables).

(d) Did you include the total amount of compute and the type of resources used (e.g., type of GPUs,
internal cluster, or cloud provider)? [Yes] See Appendix K.1.

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...

(a) If your work uses existing assets, did you cite the creators? [Yes] See Section 3

(b) Did you mention the license of the assets? [N/A] All used assets are open-source.

(c) Did you include any new assets either in the supplemental material or as a URL? [Yes] Our
code is available at https://github.com/aryopg/DeCoRe.
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(d) Did you discuss whether and how consent was obtained from people whose data you’re us-
ing/curating? [N/A]

(e) Did you discuss whether the data you are using/curating contains personally identifiable infor-
mation or offensive content? [N/A ]|

5. If you used crowdsourcing or conducted research with human subjects...

(a) Did you include the full text of instructions given to participants and screenshots, if applicable?
[N/A]

(b) Did you describe any potential participant risks, with links to Institutional Review Board (IRB)
approvals, if applicable? [N/A]

(c) Did you include the estimated hourly wage paid to participants and the total amount spent on
participant compensation? [N/A]

B Ethics Statement

Our proposed method, DeCoRe, aims to mitigate hallucinations in LLMs, particularly in tasks where
contextual faithfulness are critical. By improving the reliability of LLMs, DeCoRe has the potential to
reduce the risks associated with incorrect or misleading information generation.

Despite these positive intentions, there is a potential for DeCoRe to be misused. For example, its
ability to suppress contextual hallucinations may be exploited to generate more convincing but misleading
content by providing it with factually incorrect or unverified contextual documents.

To mitigate these risks, we have open-sourced our implementation to facilitate broader scrutiny from
the community. Furthermore, we recommend that DeCoRe be applied with caution in sensitive domains
where even small inaccuracies may have significant consequences, such as clinical and legal domains.

C Retrieval Heads

C.1 Extraction of Retrieval Heads

We follow the procedure provided by Wu et al. (2024)* which defines the retrieval score of attention heads
as the ratio of successful copy-paste operations. They propose to calculate the retrieval score by compiling
three sets of Needle-in-a-Haystack samples (Kamradt, 2023). Given a question ¢ and its corresponding
answer k (the needle), we insert & in a given context x (the haystack) at a random position index range
iq. The language model is then tasked with answering ¢ based on the haystack with the inserted needle.
We set g and k unique and irrelevant with the given long context, ensuring that if an answer is correctly
generated, it is indeed copied from the context, not from the model’s internal knowledge. Retrieval score
of head h is defined as:

. _gn N K|
retrieval_score;, = %]

Where gy, is the set of tokens copy-pasted by head h. Retrieval score signifies the ability of an attention
head to recall tokens from the given context, and can be used as a metric to identify retrieval heads in
transformer-based LLMs.

C.2 Retrieval Scores

As shown in Figure 4, the retrieval scores for each model follow a similar pattern across all examined
LLM variants. According to Wu et al. (2024), an attention head can be considered a retrieval head if it
performs a copy-paste operation at least 10% of the time, which corresponds to a retrieval score of 0.1. In
all the models evaluated, the retrieval scores drop below 0.1 just before reaching the 50th retrieval head.
This indicates that beyond this number, the attention heads may not be reliably performing retrieval tasks.
Table 6 provides the precise retrieval scores for selected heads in each model.

*https://github.com/nightdessert/Retrieval_Head
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Figure 4: Retrieval scores of the Retrieval Heads with non-zero retrieval scores.

Retrieval Head ID Meta-Llama-3-8B Meta-Llama-3-8B-Instruct Meta-Llama-3-70B-Instruct Mistral-7B-Instruct-v0.3 Qwen2-7B-Instruct

1 0.9341 0.9447 0.9172 0.8741 0.7746
10 0.4666 0.4421 0.3844 0.3167 0.3487
20 0.2927 0.2743 0.1874 0.1951 0.1986
30 0.1347 0.1421 0.1310 0.1457 0.1243
40 0.1074 0.1131 0.1112 0.1115 0.1077
50 0.0881 0.0916 0.0914 0.0944 0.0843
60 0.0735 0.0751 0.0867 0.0852 0.0703
70 0.0623 0.0659 0.0814 0.0751 0.0620
80 0.0572 0.0604 0.0630 0.0704 0.0524
90 0.0491 0.0513 0.0571 0.0641 0.0412
100 0.0433 0.0452 0.0526 0.0538 0.0352

Table 6: Retrieval Scores of the Retrieval Heads of each model.

To ensure the robustness of our experiments, we extended the masking of retrieval heads up to the 100th
retrieval head for each model, even though the data suggest that heads beyond the 50th have minimal
retrieval ability. This conservative approach ensures that we comprehensively account for all potential
retrieval heads during the contrastive decoding process.

D Performance of Baseline Model with Masked Heads

D.1 Rationale

DeCoRe operates under the assumption that masking retrieval heads would cause hallucinations in LLM:s.
Therefore, the expected behaviour is that the performance of the LLM would go down the more retrieval
heads that are masked.

D.2 Faithfulness

Figure 5a illustrates the contrasting effects of masking retrieval heads (blue) and random heads (orange)
on faithfulness evaluation tasks across XSum, MemoTrap, open-book NQ, and NQ-Swap.

In XSum, masking retrieval heads results in a sharp decline in factKB scores (r,.; = —0.93), indicating
the critical role of retrieval heads in maintaining factual consistency in summarisation. Masking random
heads also causes a gradual decline (7qnd0m = —0.94), however, the variance is high which suggests that
retrieval heads are more important for contextual faithfulness.

For MemoTrap, masking retrieval heads shows a moderate correlation with the macro-averaged accuracy
(rret = —0.43), while masking random heads surprisingly improves performance (7random = 0.84). This
implies that retrieval heads are essential for instruction-following, while random heads may not play as
crucial a role and can even hinder performance.

10018



XSum MemoTrap IFEval Open Book NQ-Open NQ-Swap

50 70
775 By
45 Retr. Head: ” 68
75.0 i neads 60
Masked Rand. Heads
40 g70 66
\ 725 <
o35 e, ¥ % o5 55
2 \ 700 3 S 64 -
8 30 ., 5 —e s w w
= . Ee15 Pz §eo 62 50
25 -~ 2
" .\ 65.0 \’/ . £ . 60 a5
15l .| 625 \ 50 o~ Masked Retr. Heads 58 Retr, Heads .
Masked Rand. Heads 60.0 \ Masked Rand. Heads \ Masked Rand. Heads \. 40 Masked Rand. Heads .
56
20 40 60 8 100 20 40 60 8 100 20 40 60 80 100 20 40 60 8 100 20 40 60 8 100
Masked Heads Masked Heads Masked Heads Masked Heads Masked Heads
(a) Faithfulness Evaluation Tasks
TruthfulQA TriviaQA POPQA Closed Book NQ-Open
62
—, -
60 /./ \ 561 Sy . ] N 2] ety N
” e, . ~ .
/ N 54 e, s, 28 ..
58 . e Ne—e. N~
ol N 52 T 2 T
- 27
56 / \°\.
~ 50 = s 26 ==
gsa g, z
a8 25
52
46 24
50 20
a4 23
48 —o— Masked Retr. Heads —e— Masked Retr. Heads —e— Masked Retr. Heads
Masked Rand. Heads a2 Masked Rand. Heads Masked Rand. Heads 22 Masked Rand. Heads
18
20 40 60 80 100 20 40 60 80 100 20 40 60 80 100 20 40 60 80 100
Masked Heads Masked Heads Masked Heads Masked Heads
(b) Factuality Evaluation Tasks
MuSiQue (Closed + Direct) MuSiQue (Closed + CoT) MuSiQue (Open + Direct) MusiQue (Open + CoT)
75 60
\ <=} 70
0] N 1 \
N 2 55 60 v
65 \ —a 12 - / A
g \0 - LN
>
=60 \ = by \ =50 . =%
H 3 H H
—o \./'\,
5.5 4 * Ny 40
8 45 .
Fet= —0.92 Fre= —0.93 Free= = 0.91
5.0 Trandom = = 0.97 Trandom = = 0.95 S Trandom = = 0.97 30 rane N
—e— Masked Retr. Heads 6| —* Masked Retr. Heads 40|~ Masked Retr. Heads '\ —e~ Masked Retr. Heads .
m Masked Rand. Heads Masked Rand. Heads Masked Rand. Heads . Masked Rand. Heads N
20 40 60 80 100 20 40 60 8 100 20 40 60 80 100 20 40 60 8 100
Masked Heads Masked Heads Masked Heads Masked Heads

(c) Chain-of-Thought Reasoning Evaluation Tasks

Figure 5: Correlation between the number of masked retrieval heads or random heads and performance of Llama3-
8B-Instruct on faithfulness (a), factuality (b), and Chain-of-Thought reasoning (c) evaluation tasks. The correlations
are quantified by the Pearson Correlation Coefficient r for each plot. Detailed results are listed in Table 7, Table 8§,
Table 9, Table 10, Table 11, and Table 12.

Model Masked Retrieval Heads XSum MemoTrap IFEval NQ-Open - NQ-Swap
ROUGE-L t BERTScore-F11 factKB1 MacroAccT MicroAcc? PromptAcc? InstructAcc? EM EM 1
0 (Baseline) 19.90 67.23 47.61 65.86 64.40 70.24 78.30 69.68 60.62
10 20.51 67.33 36.56 66.76 65.89 62.66 72.90 64.26 42.92
20 20.52 67.07 34.89 64.44 63.96 63.77 73.74 62.30 43.57
30 20.21 66.49 29.70 65.92 64.12 61.74 72.54 63.24 46.48
40 19.92 66.24 26.72 66.83 64.83 58.41 68.94 62.79 46.73
Llama3-8B-Instruct 50 20.05 66.47 25.97 68.08 67.07 55.08 66.91 62.49 4477
60 20.05 66.54 2333 68.49 67.03 55.27 67.15 62.90 4423
70 19.42 66.14 24.55 67.88 65.89 56.01 68.23 63.01 46.97
80 19.13 64.53 22.40 64.72 62.23 55.08 67.63 60.45 43.62
90 19.46 64.39 21.12 63.77 61.28 54.16 66.55 57.97 40.77
100 19.54 62.47 17.13 60.02 56.95 47.50 59.47 56.61 39.02

Table 7: Performance comparison of Llama3-8B-Instruct with different number of masked retrieval heads on
faithfulness evaluation tasks.

Model Masked Retrieval Heads XSum MemoTrap [FEval NQ-Open  NQ-Swap
ROUGE-L 1T BERTScore-F11 factKB1  Macro AcctT MicroAcct Prompt Acct Instruct Acct EM 1t EM 1
0 (Baseline) 19.90 67.23 47.61 65.86 64.40 70.24 78.30 69.68 60.62

10 20.09 +0.21 67.07 +0.32 4452 4456 66.79 1211 65.16 1261 68.64 10,77 7704 1039 6945 1046 61.39 4024

20 20.00 +0.15 66.80 +0.46 40.77 +5.98 67.89 1394 66.54 1443 69.50 10,93 77.66 +0.68 68.94 1981 60.67 1208

30 19.87 .15 66.61 1050  36.6511161 66.88 1265 6529 15711 68.27 116 76.58 1145 69.18 105 60.70 1o57

40 19.63 +0.09 66.55 +1.12 35.09 +1485  66.29 1205  63.83 1339 67.59 1134 7586 £1.20 6878 1119 57.19 1692

Llama3-8B-Instruct 50 1959 1.1 6634 1105 32251 6159400 6476 66.23 114 7518 2105 68.57 5721 45

+0.19 +1.23 +14.71 +2.09 +3.84 +1.98 +1.26 +0.80 +5.62

60 19.28 1o.77 6602 150 3167 11201 6785 2050 6399 1109 62.97 sogn 7230 1511 68.10 104 5597 1370

70 19.48 1053 65.81 1167 2720 +1283 6833 1457 64.51 1495 60.87 1441 70.74 1347 67.85 1104 55.00 1345

80 18.96 +0.94 64.92 1994 26.02 £1342  69.66 1645  66.40 17,16 56.87 416 66.79 42095 67.08 L1921 54.59 4523

90 17.55 2119 61.85 2401 2800 11307 7339 2435 7071 1g03 5096 1071 6239 toss  66.53 1049 5426 1517

100 17.13 1147 61.61 16,05 28.46 1930  74.65 1367 72.02 1425 48.92 1504 60.67 1743  66.54 £o91 5471 1534

Table 8: Performance comparison of Llama3-8B-Instruct with different numbers of masked random heads on
faithfulness evaluation tasks.
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TruthfulQA (MC) TriviaQA PopQA NQ-Open

Model Masked Retrieval Heads
MC1{ MC2t MC3t EMt EM{ EM?
Baseline 3941 5569 3031 5658 2664  29.04
10 390.17 5740 3157 5577 2584 2881
20 4027 5937 3324 5526 2539  28.93
30 4051 6051 3330 5539 2532 2942
40 4149 6111 3400 5499 2535 2851
Llama3-8B-Instruct 50 4100 6131 3363 5432 2504 2791
60 3020 5932 3248 5405 2447 2750
70 3880 5927 3247 5401 2452 2776
80 3623 5771 3064 5392 2419 2731
90 3586 5663 3017 5280 2351 2618
100 3647 5739 3108 5256 2330 2625

Table 9: Performance comparison of Llama3-8B-Instruct with different number of masked retrieval heads on
factuality evaluation tasks.

Model Masked Retrieval Heads TruthfulQA (MC) TriviaQA PopQA NQ-Open
MC1 1 MC2 + MC3 + EM 1 EM 1 EM 1
Baseline 3941 55.69 30.31 56.58 21.10 29.04

10 38.84 1071 5579 4053 3038 4046 56.17 1003 25.96 1018 29.27 +0.10

20 38.51 10935 56.09 4991 30.34 1086 55.75 1033 25.63 1025 28.89 1046

30 37.58 £1.12 5647 1230 3021 1101 54.84 1058 25.52 1016 28.03 1o.20

40 3737 x057 57.00 1194 30.24 1051 5414 1065 2524 1015 27.51 1061

Llama3-8B-Instruct 50 37.07 1156 5670 1235 29.85 1155 53.17 1122 25.07 1022 26.61 1114

60 35.86 +1.41 5537 1082 28.87 4080 52.43 1177 24.54 19514 26.26 1114

70 34.68 1031 53.87 +116 27.63 1066 S51.79 1150 24.50 1958 25.70 +1.07

80 33.05 4236 53.12 4202 26.56 +203 48.11 4580 24.52 1101 24.36 £183

90 3080 1220 49.78 1291 2479 1156 47.39 1568 24.14 1008  24.05 1203

100 30.07 4090 49.78 1174 2444 1076 47.04 1517 24.05 1976 23.96 1184

Table 10: Performance comparison of Llama3-8B-Instruct with different numbers of masked random heads on
factuality evaluation tasks.

In NQ Open and NQ Swap, the EM score drops significantly when retrieval heads are masked with a

strong correlation score (e = —0.86 and e = —0.64), confirming their importance in open-book QA
tasks. In both tasks, masking random heads also degrades performance, with stronger negative correlation
(Trandom = —0.97 and rrapdom = —0.94 respectively).

Despite the more significant performance drop when masking retrieval heads, the correlation coefficient
is lower than that for random heads. This is due to the concentrated decline in performance after masking
the top 10 retrieval heads. In contrast, performance degrades more gradually when random heads are
masked, resulting in a stronger linear correlation. This pattern suggests that masking just the top retrieval
heads can already significantly impair the model’s ability to remain faithful to the context. Additionally,
the more retrieval heads that are masked, the greater the performance drop, indicating that retrieval heads
play a key role in maintaining task-specific faithfulness.

D.3 Factuality

Figure 5b shows the effect of masking retrieval heads (blue) and random heads (orange) on factual recall
tasks across TruthfulQA, TriviaQA, PopQA, and NQ Closed.

In TruthfulQA, masking retrieval heads has a negligible effect on the MC2 score (r.¢; = —0.06), while
masking random heads shows a moderate negative correlation (74ndom = —0.80). This suggests that
retrieval heads do not play a major role in answering truthful questions, and the decline in performance
when masking random heads could be due to their broader influence on the model’s general predictive
capabilities.
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MuSiQue without CoT MuSiQue with CoT

Model Masked Retrieval Heads
Closed Book Open Book Closed Book Open Book
Baseline 7.41 58.83 14.61 69.84
10 6.99 51.47 14.56 59.87
20 6.91 49.52 15.06 57.92
30 6.74 46.96 12.16 50.48
40 6.33 4741 11.54 48.70
Llama3-8B-Instruct 50 6.29 46.67 13.24 47.37
60 6.33 46.01 10.72 41.79
70 6.41 46.46 11.38 43.65
80 6.41 44.81 8.98 32.19
90 5.54 41.25 7.24 27.06
100 5.63 38.85 7.32 23.34

Table 11: Performance comparison of Llama3-8B-Instruct with different number of masked retrieval heads on
MuSiQue, a multi-hop reasoning dataset, with and without CoT prompting in both closed-book and open-book
settings.

Model Masked Random Heads MuSiQue without CoT MuSiQue with CoT
Closed Book Open Book Closed Book Open Book
Baseline 7.41 58.83 14.61 69.84
10 7.09 19.24 59.25 1053 14.63 1035 69.70 1181
20 717 s010 5867 s06s 1444 106z 67.94 1om
30 690 1010 5723 1139 1409 1130  67.19 1040
40 6.61 1002 5583 1282  13.57 1109  64.27 1428
Llama3-8B-Instruct 50 6.08 1041 55651515 1284 4110 6487 4o
60 5.76 o077 54.64 1336 1249 1106  63.65 1238
70 5.43 1080 5328 1366 11.20 4131 61.40 4396
80 527 yorr 5219 1295  10.22 1049  55.98 1398
90 5.46 19.72 49.25 14m 8.14 11,92 46.59 1597
100 5.25 4046 4834 151 7.43 1004 4479 1919

Table 12: Performance comparison of Llama3-8B-Instruct with different numbers of masked random heads on
MuSiQue, a multi-hop reasoning dataset, with and without CoT prompting in both closed-book and open-book
settings.

In contrast, for TriviaQA, PopQA, and NQ Closed, both masking retrieval heads and random heads
result in significant performance drops, with strong negative correlations observed in all tasks. The
differences between masking the retrieval heads and random heads are not as stark as in faithfulness
tasks. For instance, in TriviaQA, masking retrieval heads leads to a performance decline (. = —0.98),
but masking random heads also has a similar effect (7qndom = —0.97). This similarity suggests that in
factual recall tasks, retrieval heads may not be the only determining factor.

The overall observation from these tasks is that while masking retrieval heads does lower performance,
it does not have as drastic an effect as observed in faithfulness hallucination tasks. The relatively similar
progression of performance degradation between masking retrieval and random heads further reinforces
the idea that factual recall tasks rely on a broader mechanism, even though the masking of retrieval heads
does lead to a moderate drop in performance.

D.4 Chain-of-Thought

The performance of the Llama3-8B-Instruct model with different numbers of masked retrieval heads on
the MuSiQue dataset, both with and without Chain-of-Thought (CoT) prompting, is shown in Figure 5c.
The table compares the closed-book and open-book settings to assess the influence of CoT on model
performance. In the closed-book setting without CoT prompting, masking retrieval heads leads to a
gradual performance decline, with scores decreasing from 7.41 (baseline) to 5.63 (with 100 masked
heads). This indicates that the model’s ability to reason through multiple hops is compromised as retrieval
heads are removed. The decline of performance in the open-book setting without CoT prompting further
indicates the importance of retrieval heads in open-book QA tasks.

The inclusion of CoT prompts generally boosts performance in both closed-book and open-book
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settings. Similar to the setup without CoT prompting, masking retrieval heads in the CoT setup decreases
the performance gradually. Interestingly, in the CoT + open-book setup, masking only the top 20 retrieval
heads leads to a performance lower than without using CoT. This suggests that retrieval heads are crucial
for maintaining the model’s ability to chain reasoning steps across multiple hops, particularly when the
reasoning steps have to be grounded in contextual knowledge.

E Additional TruthfulQA Generation Evaluation

E.1 Evaluation of Non-rejection Responses

Model %Reject | %TNRT %INR %TNINR?T
Llama3-8b-Instruct 43.94 65.50 94.54 60.04
+ ITT (Li et al., 2024b) 25.46 83.25 96.06 79.47
+ DoLA (low) (Chuang et al., 2023) 45.04 64.81 94.65 59.69
+ DoLA (high) (Chuang et al., 2023) 44.92 65.11 93.78 58.89
+ AD (Chen et al., 2024) 43.82 65.14 94.55 59.69
+ DeCoRe static (Ours) 41.74 67.02 95.38 62.39
+ DeCoRe entropy (Ours) 38.68 65.87 95.61 61.48
Llama3-70b-Instruct 53.12 76.50 97.91 74.41
+ CD (Li et al., 2023) 52.26 75.64 97.69 73.33
+ ITI (Li et al., 2024b) 37.94 71.79 98.82 70.81
+ DoLA (low) (Chuang et al., 2023) 52.88 76.62 97.92 74.55
+ DoLA (high) (Chuang et al., 2023) 54.71 76.22 97.30 73.51
+ AD (Chen et al., 2024) 49.33 75.36 98.31 73.67
+ DeCoRe static (Ours) 54.96 74.46 97.01 71.47
+ DeCoRe entropy (Ours) 56.79 75.35 96.32 71.67
+ DeCoRe entropy-small amateur (Ours) 52.02 75.77 97.70 73.47

Table 13: Truthful QA Generation Evaluation excluding the rejected instances. Notice the rate of rejection that is
very high on the instruction-tuned Llama3-8b.

As shown in Table 3, we can observe that the rejection rate of Llama3 models in the Truthful QA task
(i.e., the ratio of cases when the model answers with “I have no comment”) is relatively high, particularly
when compared to Llama2 models (Touvron et al., 2023) reported by previous studies (Li et al., 2024b;
Chuang et al., 2023). To get a better understanding of how the model performs, we also reported the
evaluation metrics that are based only on non-rejection answers in Table 13. This results can help us
to roughly understand how the model would perform when it’s not rejecting to answer. However, it is
important to note that we cannot compare the performance of the decoding strategies to one another
because the set of questions that are being answered are different depending on whether the decoding
strategy choose to answer them or not.

E.2 Evaluation Cost

The fine-tuning of two davinci-002 models (to measure truthfulness and informativeness) costs approxi-
mately $43. While each run of evaluation is approximately $0.8.

F Correlation between Length-normalised Entropy and Correctness

F.1 Rationale

One motivation to use the length-normalised entropy as a measure of how much information to contrast
relies heavily on the premise that length-normalised entropy is a reliable proxy of answer correctness. To
verify this assumption, we conducted statistical tests (Student’s T-test (Student, 1908) and a Mann-Whitney
U-test (Mann and Whitney, 1947)) and to determine whether the length-normalised entropy of correct
answers tends to be lower than that of incorrect answers.
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(a) Density plot showing the distribution of length-normalised entropy for correct and incorrect answers across
different models (DeCoRe, Baseline, and DoLa).
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(b) Regression plot demonstrating the negative correlation between length-normalised entropy and answer correct-
ness.

Figure 6: Relation between length-normalised entropy and correctness in MuSiQue CoT generation. Entropy tends
to be negatively correlated with the final answer correctness (i.e., the lower the length-normalised entropy, the more
likely that the answer is correct.).

F.2 Statistical Tests

The results of these statistical tests, as presented in Table 15, show that the differences in entropy between
correct and incorrect answers are statistically significant across all models, with low p-values for both
tests. The baseline model yields a T-test statistic of 11.75 and a p-value of 2.57 x 1073, confirming
that the entropy of correct answers is significantly lower. This trend holds for the DoLa and DeCoRe
entropy models, with both tests indicating a strong separation between the entropy distributions of correct
and incorrect answers. The Mann-Whitney U-test results further corroborate this finding, providing
consistent statistics and p-values below 10724 for all models. These results validate the hypothesis that
lower length-normalised entropy is a meaningful indicator of answer correctness, supporting its use in
contrastive decoding through DeCoRe.

The accompanying Figure 6a illustrates the distribution of length-normalised entropy for correct and
incorrect answers across models (DeCoRe, Baseline, and DoLa). Correct answers (in blue) tend to have
lower entropy, whereas incorrect answers (in orange) exhibit higher entropy. This visualisation aligns
with the statistical tests, highlighting the difference between correct and incorrect answers based on their
entropy values.

MuSiQue (Closed) MuSiQue (Open) Model T-test U-test
Correct 31.74 27.99 Statistics p-value Statistics p-value
) ’ Baseline 1175 257 x 10731 4.31x 105 8.36 x 10726
Incorrect 43.91 33.32 DoLa 1252 351x 1073 428 x 105 3.66 x 102
DeCoRe entropy ~ 11.01  7.43 x 1072 4.05 x 10° 3.43 x 1024
Table 14: Averaged Length-Normalised Predictive
Entropy of the correct and incorrect answer by Table 15: Results of the Student’s T-test and Mann-
DeCoRe Entropy. All values are scaled by 102. Whitney U-test comparing the length-normalised
Lower values indicate less overall uncertainty. Gen- entropy of correct and incorrect answers across dif-
erally, the length-normalised entropy of correct an- ferent models. The low p-values across all models
swers is lower than the incorrect ones, indicating the confirm that correct a'nswers generally havg lower
importance of the model’s certainty in generating a entropy compared to incorrect ones, validating the
correct answer. use of entropy as a proxy for answer correctness.
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(c) Chain-of-Thought Reasoning Evaluation Tasks

Figure 7: Correlation between the number of masked retrieval heads and performance of Llama3-8B-Instruct with
DeCoRecniropy 0N €ach task. The correlations are quantified by the Pearson Correlation Coefficient r for each plot.
Detailed results are listed in Table 16 and Table 18.

F.3 Regression

To further quantify the relationship between length-normalised entropy and answer correctness, we
calculated the McFadden’s pseudo-R? (McFadden et al., 1973) for the logistic regression models fitted
across the different setups (DeCoRe, Baseline, and DoLa). As shown in the regression plots (Figure 6b),
all three models demonstrate a high pseudo-R? value of 0.98, indicating a strong negative relationship
between entropy and correctness. This high pseudo-R? value suggests that the length-normalised entropy
is highly predictive of answer correctness, further validating the use of entropy as a reliable proxy for
contrasting model outputs.

G Detailed Results of Masked Heads Ablation Study
G.1 Effect of Retrieval Head Masking on Task Performance of DeCoRe.

We now analyse the correlation between the number of masked retrieval heads and the downstream results
of the Llama3-8B-Instruct model; results are outlined in Figure 7. We can see that the performance of
DeCoReepropy across various tasks strongly correlates with the number of masked retrieval heads. For
example, in XSum and MemoTrap, we can observe positive correlations between the factKB and macro
accuracy scores and the number of masked retrieval heads. We attribute this to the nature of summarisation
(XSum) and instruction-following (MemoTrap) tasks, which rely heavily on the ability of the model to
extract and copy relevant information accurately. However, we observe a moderate negative correlation
as the number of masked retrieval heads increases on another Instruction following task, IFEval. We
hypothesise that the reason behind this phenomenon is that IFEval requires a different copying mechanism
than in MemoTrap. As opposed to having to provide an exact copy of a segment of the input, like in
MemoTrap or partially XSum, IFEval requires the model to adhere to the instruction, which may not
require an induction mechanism (e.g., “In your response, the letter {letter} should appear {N} times.”).
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(c) Chain-of-Thought Reasoning Evaluation Tasks

Figure 8: Correlation between the number of masked random heads and performance of Llama3-8B-Instruct with
DeCoRecniropy 0N €ach task. The correlations are quantified by the Pearson Correlation Coefficient r for each plot.
Detailed results are listed in Table 16 and Table 18.

In tasks such as open-book NQ-Open and NQ-Swap, we can see a moderate negative correlation between
the number of masked retrieval heads and EM. Nevertheless, in all experiments, DeCoReenropy produces
more accurate results than the baseline in such tasks. In factual recall tasks (i.e., TriviaQA, PopQA,
and closed-book NQ-Open), we can see a negative correlation between EM scores and the number
of masked retrieval heads. When the masked retrieval heads fail to introduce significant differences
between the “hallucinating” and the outputs of the base model, the effect of DeCoReepiropy becomes less
pronounced. Truthful QA differs from the other factuality tasks, showing a moderate positive correlation
between downstream accuracy and the number of masked retrieval heads. This suggests that truthfulness,
or the ability to discern popular misconceptions, may require different retrieval mechanisms than the
typical factual recall tasks. These findings can be combined with the results of masking random attention
heads (Appendix G) further supporting our hypothesis on the effectiveness of masking retrieval heads in
contrastive decoding.

G.2 Effect of Random Head Masking on Task Performance of DeCoRe

As shown in Figure 8, the performance of DeCoRecpropy €xhibits different patterns when masking random
attention heads compared to the targeted masking of retrieval heads in Section G.1. A key observation is
that the standard deviation is much larger across most tasks, indicating higher variability in performance
when random heads are masked. This variability indicates that DeCoReepyopy cannot benefit only from
masking any random attention heads.

In XSum, we still observe a positive correlation between the number of masked random heads and task
performance, though the correlation (r = 0.89) is weaker than that seen when masking retrieval heads.
This suggests that masking random heads can still improve contextual faithfulness in summarisation,
though the impact is less pronounced especially when considering the highest possible performance
achieved by masking random heads.
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XSum MemoTrap IFEval NQ-Open NQ-Swap

Model Masked Retrieval Heads
ROUGE-L t BERTScore-F11 factKB1 MacroAcc? MicroAcct PromptAcc? InstructAcct EM 1 EM 1
0 (Baseline) 19.90 67.23 47.61 65.86 64.40 7024 78.30 69.68 60.62
10 19.45 67.08 57.50 68.81 66.60 68.39 7638 70.66 66.08
20 19.61 67.18 5753 69.39 68.37 67.10 75.54 7024 65.55
30 19.62 67.48 59.75 70.14 70.50 62.11 7230 70.17 65.15
40 19.70 6742 60.65 70.46 71.09 62.29 7242 69.83 64.96
Llama3-8B-Instruct 50 19.37 67.15 62.88 71.27 71.68 61.92 72.06 69.94 64.75
60 19.40 67.18 64.27 7159 7176 58.60 69.54 69.57 64.41
70 1951 6730 6132 71.90 71.80 56.93 68.94 68.51 61.53
80 19.40 6757 64.67 7252 7275 59.15 70.14 68.55 6275
90 19.45 67.69 66.10 74.14 74.87 59.89 70.74 68.66 62.64
100 19.37 67.59 64.78 7353 73.97 60.81 70.98 9.57 63.93
0 (Baseline) 2241 69.77 6132 68.47 66.52 77.45 84.41 7107 76.11
10 217 69.64 62.41 ©9.17 6751 76.34 83.57 7175 7836
20 2235 69.75 60.72 68.58 66.64 77.45 84.29 71.83 77.86
30 22.03 6951 6391 70.28 69.52 78.56 84.89 7235 79.10
40 21.98 69.48 64.67 71.93 72.19 77.45 83.81 7232 7891
Llama3-70B-Instruct 50 21.93 69.47 65.13 7375 73.41 77.63 84.41 7254 79.14
60 2184 69.44 63.94 72,66 72.19 78.19 84.89 7224 77.79
70 22.03 69.55 62.96 71.97 71.96 76.52 83.69 72.43 77.62
80 21.95 69.44 64.62 7281 7247 77.08 84.05 72.66 79.73
90 21.93 69.40 65.49 74.07 73.65 7726 83.81 7239 79.73
100 2182 6938 65.30 73.88 73.97 77.08 83.81 7247 79.79

Table 16: Ablation study of DeCoRe entropy on faithfulness hallucination tasks with varying numbers of masked
retrieval heads.

Model Masked Random Heads XSum MemoTrap IFEval NQ-Open NQ-Swap
ROUGE-L 1 BERTScore-F11 factKB1 Macro Acct MicroAcct PromptAcct InstructAccT EM 1 EM 1
0 (Baseline) 19.90 67.23 47.61 65.86 64.40 70.24 78.30 69.68 60.62

10 20.02 £o.12 67.43 1031 51.39 4567 69.38 170 68.08 275 68.52 10.75 76.82 10.52 69.27 1024 59.65 ro.47

20 20.09 +0.26 67.64 1037 54.13 1585 6822 1461  66.68 1576 65.31 4149 7446 1095  69.30 066 5949 r1.93

30 20.06 +0.11 67.78 1053 56.00 £731  69.29 1391 68.77 £a.58 64.76 1157 7426 1163 69.11 1049 5891 1261

40 20.07 +0.23 67.76 +0.54 56.78 1968 71.09 10711 70.72 1156 64.94 4134 74.38 41.39 69.23 1060 61.23 1548

Llama3-8B-Instruct 50 20.08 206 67.89 1050  57.37 1545  69.69 4514 69.07 1315 64.08 4199 7378 11s0  69.13 1053 6133 1ign

60 20.09 +0.47 67.99 1061 57.87 1637 70.52 1189 70.17 £1.18 60.51 1963 70.78 +1.92 69.23 1056 6223 1o77

70 19.83 2047 6796 1050 6016 2649 7096 4019 7076 1190  60.14 401 7090 104 69.19 1033 62.03 1303

80 19.71 10.44 67.85 1049 60.00 +5.13  69.47 1168 68.94 1004 58.96 11.44 69.46 1123  68.76 1036 60.89 1505

90 1975 20.34 6778 1052 59.04 1450 6691 yogs  66.63 1355 59.64 1190 69.94 1045 68.59 1050 59.62 1586

100 19.68 +0.45 67.82 1050 59.03 1341 6727 1201 66.76 12,80 59.02 1123 69.62 1108 68.15 1076 59.27 1537

Table 17: Ablation study of DeCoRe entropy on faithfulness hallucination tasks with varying numbers of masked
random heads.

MemoTrap, which exhibits a strong positive correlation when masking retrieval heads, now shows a
weak negative correlation (r = —0.34). This shift implies that random masking does not improve the
model’s instruction-following capabilities, and further suggests that the improvements seen were due to
the targeted masking of retrieval heads. This supports the idea that retrieval heads play a key role in tasks
requiring the faithful execution of instructions.

Similar to the results of masking retrieval heads, random head masking exhibits a negative correlation
on IFEval. Interestingly, Open Book NQ continues to show a strong negative correlation (r = —0.82),
much like in the previous section. This reinforces the idea that retrieval mechanisms when handling
open-book QA tasks, where the model must balance contextual and parametric knowledge, differ from
a simple induction mechanism. In contrast, NQ-Swap and Truthful QA show little to no correlation,
indicating that masking random heads does not significantly impact performance on these tasks.

For factual recall tasks like TriviaQA, PopQA, and Closed Book NQ, the results are consistent with the
previous section, showing strong negative correlations with increasing numbers of masked random heads.
As the performance trends of masking retrieval heads and random heads are similar, this may further
support the hypothesis that factual recall is not predominantly handled by attention heads. This finding
aligns with previous studies (Geva et al., 2021; Meng et al., 2022), which suggest that factual recall is
predominantly handled by the MLP layer within the Transformer model.

G.3 Faithfulness

Table 16 accompanies Figure 7 (top) and Table 17 accompanies Figure 8 (top).

In the case of masking retrieval heads in DeCoRecpyopy (Table 16), the results show different trends
depending on the type of the task. In summarisation (XSum) and instruction following (MemoTrap)
tasks, we can observe an increase in performance the more retrieval heads are masked. This indicates the
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Truthful QA (MC) TriviaQA PopQA NQ-Open

Model Masked Retrieval Heads
MC1{ MC21 MC31 EM{t EM{ EM?
Baseline 3041 5560 3031 5658 2664  29.04
10 3745 5376 2848 5640 2683  28.96
20 3696 5446 2895 5618 2674 2855
30 3758 5376 2938 5514 2628 2742
40 3623 5362 2934 5473 2597 2791
Llama3-8B-Instruct 50 3770 5466 2982 5399 2555 2727
60 3721 5450 3021 5372 2539 2701
70 3696 5505 3035 5284 2499 2644
80 3843 5586 3095 5219 2476 2644
90 3770 5532 3030 5229 2485 2670
100 3660 5410 2961 5221 2509 2655
Baseline 4957 7060 3785 7477 4063  40.08
10 4994 7066 38.11 7475 4058 4030
20 5031 7093 3835 7467 4046 4023
30 5043 7176 3965 7457 4051  40.11
40 5080 7154 3933 7458 4049  40.08
Llama3-70B-Instruct 50 5204 7207 4036 7472 4044 4015
60 5288 7245 4164 7451 4030 4026
70 5398 7344 4255 7461 4038 4045
80 5361 7298 4179 7465 4049 4030
90 5288 7261 4171 7460 4058 4038
100 5410 7296 4286 7464 4049 4045

Table 18: Ablation study of DeCoRe entropy on factuality hallucination tasks with varying numbers of masked
retrieval heads.

Model Masked Random Heads Truthful QA (MC) TriviaQA PopQA NQ-Open
MCI1 1 MC2 1 MC3 1 EM 1 EM 1 EM 1
Baseline 39.41 55.69 30.31 56.58 26.64 29.04

10 38.92 1953 56.15 1078 3022 1908 55.38 1045 2596 1918 28.70 1057

20 39.25 162 56.55 1207 30.93 105 54.68 1o6s 2563 1025 28.02 1053

30 39.41 11908 5643 1933 31.10 4126 54.15 1073 2552 4016 27.86 1032

40 3884 1075 5532 1185 3039 4103 53.58 1059 2527 40a7  27.16 1033

Llama3-8B-Instruct 50 3876 1035 5497 1143 3037 1105 5338 4050 2507 102 27.16 105

60 3831 1065 5445 1082 29.89 1092 53.04 1072 2454 4051 27.12 4026

70 38.68 1092 5531 1098 30.74 1126 52.79 1060 24.50 1058 26.78 1013

80 3758 1065 55.19 1165 30.05 1045 52.52 1084 2452 4101 26.87 1021

90 3839 4090 5648 1306 30.82 4290 52.13 1098 24.14 1995 26.74 1033

100 3823 4970 56.66 1377 31.03 1272 51.60 4035 24.05 1076 26.43 1051

Table 19: Ablation study of DeCoRe entropy on factuality hallucination tasks with varying numbers of masked
random heads.

importance of retrieval heads in these tasks, similar to the findings mentioned in Appendix D.2.

However, the results show a different trend in open-book QA tasks (Open Book NQ-Open and NQ-
Swap). In both Open Book NQ-Open and NQ-Swap, we can observe an increase in performance starting
from masking 10 retrieval heads, and gradually goes down. In the case of Open Book NQ-Open, the
performance is above the baseline variant until it drops below it when we mask 60 retrieval heads. While
in the case of NQ-Swap, the performance remains above the baseline model even after we mask 100
retrieval heads. Albeit the differing trend, these open-book QA results are still in line with the previous
findings in Appendix D.2, where the top 10 retrieval heads plays the most important role in the open-book
QA tasks, with decreasing importance thereafter.

In contrast, we can observe massive standard deviation in the results of masking random heads in
DeCoReepropy sShown in Table 17. This variance suggests that randomly masking heads leads to inconsis-
tent effects across tasks, implying that not all attention heads contribute equally to model performance.
The less predictable effects of masking random heads further highlights the specialised role of retrieval
heads in DeCoRe, particularly in maintaining task-specific faithfulness.

G.4 Factuality

Table 18 accompanies Figure 7 (bottom) and Table 19 accompanies Figure 8 (bottom).
As shown in Table 18, the results in Truthful QA shows less clear correlation compared to other factuality
evaluation tasks. For closed-book QA tasks like TriviaQA, PopQA, and Closed Book NQ-Open, a negative
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MuSiQue without CoT MuSiQue with CoT

Model Masked Retrieval Heads
Closed Book Open Book Closed Book Open Book
Baseline 7.41 58.83 14.61 69.84
10 7.61 61.98 13.90 74.47
20 7.70 61.81 13.82 72.20
30 7.70 61.44 13.61 71.70
40 7.03 61.32 13.03 72.16
Llama3-8B-Instruct 50 7.12 61.32 12.78 71.62
60 6.50 60.36 13.03 72.11
70 6.21 59.21 12.83 71.66
80 5.75 58.05 12.29 71.74
90 6.04 59.54 12.49 70.87
100 6.45 59.78 11.96 71.00
Baseline 11.79 68.56 20.15 74.43
10 11.75 69.22 20.60 74.76
20 11.67 69.05 20.02 74.56
30 11.50 68.97 20.31 74.43
40 11.63 69.05 20.23 74.22
Llama3-70B-Instruct 50 11.34 69.38 20.02 73.60
60 11.34 68.68 19.69 73.85
70 11.34 69.38 19.40 74.06
80 11.25 69.67 19.28 74.18
90 11.38 69.51 19.53 74.47
100 11.25 69.84 19.69 74.93

Table 20: Performance comparison across different number of masked retrieval heads on MuSiQue, a multi-hop
reasoning dataset, with and without CoT prompting in both closed-book and open-book settings.

Model Masked Random Heads MuSiQue without CoT MuSiQue with CoT
Closed Book Open Book Closed Book Open Book
Baseline 7.41 58.83 14.61 69.84
20 6.87 1014 5972 1070  13.07 1090  70.18 1044
30 6.65 +0.44 59.95 +0.77 12.61 40.91 70.43 +1.47
Llama3-8B-Instruct 50 6.50 1026 60.60 1146 1226 015 6941 1144
70 6.32 1006  61.03 1097 12054106 69.78 1156
80 6.45 1054 61.32 1050 11.64 1966 70.05 +1.08
90 6.55 1046 6145 1135 11.65 1057 70.20 1217
100 634 1027 61.76 1090  11.72. 4027  70.29 1236

Table 21: Performance comparison across different numbers of masked random heads on MuSiQue, a multi-hop
reasoning dataset, with and without CoT prompting in both closed-book and open-book settings.

correlation is observed between the number of masked retrieval heads and performance. Similar negative
correlations are observed when random heads are masked as shown in Table 19. The similarity in the
performance degradation across both retrieval and random heads indicates that other model mechanisms
might be responsible for factual recall.

G.5 Chain of Thought

Table 20 accompanies Table 4 to show the performance of DeCoRecpiropy When masking retrieval heads
across different setups of MuSiQue, a multi-hop reasoning dataset, with and without CoT prompting, in
both closed-book and open-book settings.

In the closed-book without CoT setup, we can observe a negative correlation between the number
of masked retrieval heads and the performance. As more retrieval heads are masked, the performance
gradually declines from the baseline across the Llama3-8B-Instruct and Llama3-70B-Instruct models,
aligned with the findings in Appendix G.4.

In the open-book without CoT setup, there is also a negative correlation, but interestingly, the overall
performance remains higher than the baseline model, which is aligned with the findings in Appendix G.3.

Interestingly the results in the closed-book with CoT setup are quite different, as masking retrieval
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heads does not lead to improved performance. From the results of masking retrieval heads in the baseline
model (Table 11), we expect the model to perform better as DeCoRe will contrast the incorrect predictions.
This may suggest that the complexity of factual recall in closed-book setup remains the same even though
the model is prompted to generate intermediate reasoning steps.

Finally, the open-book with CoT setup shows an increase in performance when masking retrieval heads,
even though the correlation remains negative. This is consistent with the broader trend observed in the
open-book QA setup, where the model benefits from masking retrieval heads but only up to a point. Even
with the negative correlation, the performance still remains higher than the baseline, indicating the utility
of retrieval heads in CoT-assisted open-book tasks.

As shown in Table 21, the trend observed when masking random heads is less apparent in comparison
to when masking retrieval heads. This indicates that random heads may not be as critical in these tasks.

H Pairwise Statistical Tests of the Main Results

We conducted pairwise Statistical Tests between DeCoReenropy and the baselines to evaluate differences.
For tasks that are evaluated using the Exact Match metric, we use McNemar’s Test (McNemar, 1947), with
adjusted p-values calculated using the Bonferroni correction to account for multiple comparisons (Dunn,
1961). On the other hand, we use the bootstrap resampling method for tasks that are evaluated using
metrics with continuous values (i.e., ROUGE-L, BERTScore-F1, factKB, MC2, and MC3).

H.1 Faithfulness

Model XSum MemoTrap IFEval NQ-Open NQ-Swap
ROUGE-L BERTScore-F1 factKB  Micro Acc  Prompt Acc EM EM
Llama3-8b-Instruct
DeCoReentropy > Greedy —0.45* 0.00**** 0.18***  85.85"** 1.78 8.01** 182.37%**
DeCoReentropy > CAD (Shi et al., 2024) 0.63** —0.01 0.00** 3.09 - 2.30 273.48
DeCoReentropy > ITI (Li et al., 2024b) 6.20"** 0.08**** 0.32%%  172.41%* 5L.14%*  287.44**  388.86****
DeCoReentropy > DoLA (low) (Chuang et al., 2023) —0.37* 0.01*** 0.19%* 94,67 1.23 8.01** 175.00%**
DeCoReentropy > DoLA (high) (Chuang et al., 2023) —0.47* 0.00** 0.18%*  102.47*** 0.61 11.69***  164.07****
DeCoReentropy > AD (Chen et al., 2024) —0.34 0.00%** 0.18%**  85.40"** 0.12 20.25"**  190.02****
Llama3-70b-Instruct
DeCoReeniropy > Greedy —0.53"* 0.00**** 0.04%*  90.25"** 0.18 28.027*  116.00****
DeCoReenropy > CAD (Shi et al., 2024) 0.43* 0.00 0.00 153.15%** - 2.94 156.92***
DeCoReenropy > ITI (Li et al., 2024b) 0.24 0.00 0.04%**  39.73%** 1.31 2.47 103.93***
DeCoReenropy > CD (Li et al., 2023) —0.83" —0.017** 0.11%*  60.65"** 15317 127.97*  350.10%***
DeCoRecniropy > DoLA (low) (Chuang et al., 2023) —0.58"* —0.00"*** 0.04%*  102.77* 0.00 27.117%  123.19***
DeCoRecniropy > DoLA (high) (Chuang et al., 2023) ~ —0.55"* —0.017* 0.05"**  108.00**** 0.17 37.03"*  146.31**
DeCoRecnropy > AD (Chen et al., 2024) —0.61"** —0.017** 0.05****  87.40"** 0.33 18.55**  208.18"***

Table 22: Pairwise test statistics for the performance of DeCoRecnopy against different baselines on faithfulness
evaluation tasks. We use McNemar’s Test for analysing Accuracy and EM metrics, and bootstrap resampling for
assessing the significance of ROUGE-L, BERTScore-F1, and factKB (* p < 0.05, ** p < 0.01, *** p < 0.001,
*EEE 9 < 0.0001).

The results in Table 22 demonstrate the statistically significant improvements achieved by DeCoReenropy
across models and tasks. Combined with the findings in Table 1, DeCoReentropy Outperforms all baselines,
except CAD, with statistically significant improvements in all tasks except for IFEval. DeCoReeniropy
ranks as the second-best method compared to CAD in tasks such as XSum, MemoTrap, and NQ-Swap.
While the difference in factKB scores between DeCoReengropy and CAD for XSum is small, it remains
statistically significant. In contrast, the difference between DeCoReepyropy and CAD in MemoTrap is not
statistically significant. Given the improvement and broad applicability, we argue that DeCoReentropy
provides a Pareto improvement over other baselines.

H.2 Factuality

While DeCoReenyopy performs competitively across factuality evaluation tasks, as shown in Table 3,
it does not consistently outperform all baselines. Methods like ITI and CD achieve higher scores in
specific metrics and tasks (i.e., TruthfulQA). However, DeCoRecnyropy attains higher EM scores on PopQA
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TruthfulQA (MC) TriviaQA PopQA NQ-Open

Model
MC1 MC2 MC3 EM EM EM
Llama3-8b-Instruct
DeCoReepropy > Greedy 0.44 0.00 0.01 1.55 2.72 0.01
DeCoReentropy > ITI (Li et al., 2024b) 9.85** —0.07***  —0.04"*  461.65™**  1274.24*** 94,37
DeCoReengropy > DoLA (low) (Chuang et al., 2023) 0.14 0.00 0.01 37.40%** 4.06* 0.33
DeCoReenuopy > DoLA (high) (Chuang et al., 2023) 0.01 0.00 0.01 12.50*** 6.91** 0.21
DeCoRecpiropy > AD (Chen et al., 2024) 22,58+ 0.01 0.03** 0.64 8.70** 2.02
Llama3-70b-Instruct
DeCoReepiropy > Greedy 16.12%%* 0.03*** 0.05 0.01 0.12 1.69
DeCoReeneropy > ITI (Li et al., 2024b) 15.53***  0.06**** 0.05%*** 41.16*** 21.24%*** 18.47****
DeCoRecniropy > CD (Li et al., 2023) 9.89** —0.03***  —0.05****  94.56™**  289.80**** = 66.24™***
DeCoRecpiropy > DoLA (low) (Chuang et al., 2023)  16.83****  0.03*** 0.05%** 0.01 0.34 1.69
DeCoRecnropy > DoLA (high) (Chuang et al., 2023)  15.84**** 0.03** 0.05%%** 39.60"** 17.54%* 6.82**
DeCoReenropy > AD (Chen et al., 2024) 68.37**  0.06™*** 0.07*** 20.70%%** 0.08 0.27

Table 23: Pairwise test statistics for the performance of DeCoRecniopy against different baselines on factuality
evaluation tasks. We use McNemar’s Test for analysing MC1 and EM metrics, and bootstrap resampling for
assessing the significance of MC2 and MC3 (* p < 0.05, ** p < 0.01, *** p < 0.001, **** p < 0.0001).

and NQ-Open with the Llama3-8b-Instruct model, and these improvements are statistically significant
compared to strong baselines such as DoLA, as indicated in Table 23. This suggests that DeCoReepropy is
effective and provides statistically significant enhancements over certain existing baselines.

H.3 Chain-of-Thought

Model MuSiQue without CoT MuSiQue with CoT
Closed Book Open Book Closed Book Open Book
Llama3-8b-Instruct
DeCoRecntropy > Greedy 0.46 26.04**** 1.77 7.59**
DeCoRecnuopy > CAD (Shi et al., 2024) - 27.68**** - 0.79
DeCoReenropy > ITI (Li et al., 2024b) 48.70*** 245.65%** 193.48**** 667.12%**
DeCoRecpiropy > DoLA (low) (Chuang et al., 2023) 1.30 22.89**** 4.09* 7.09%*
DeCoRecnropy > DoLA (high) (Chuang et al., 2023) 1.09 22.11%** 3.34 7.41%*
DeCoReenropy > AD (Chen et al., 2024) 2.81 28.70**** 0.83 6.99**
Llama3-70b-Instruct
DeCoReenropy > Greedy 0.00 6.87** 1.23 0.58
DeCoReenropy > CAD (Shi et al., 2024) - 3.79 - 1.72
DeCoReentropy > ITI (Li et al., 2024b) 3.96* 6.69** 0.05 0.89
DeCoReeniropy > CD (Li et al., 2023) 4.51* 23.34%%"* 32,175+ 22.12%%%*
DeCoReentropy > DoLA (low) (Chuang et al., 2023) 0.38 5.52*% 1.27 0.17
DeCoRecniropy > DoLA (high) (Chuang et al., 2023) 1.44 21.30%*** 0.00 8.17**
DeCoReentropy > AD (Chen et al., 2024) 1.56 10.60** 0.56 0.95

Table 24: Pairwise McNemar’s test statistics for the performance of DeCoRecniropy against different baselines on
MuSiQue, a multi-hop reasoning dataset, with and without CoT prompting in both closed-book and open-book
settings (* p < 0.05, ** p < 0.01, *** p < 0.001, **** p < 0.0001).

The results in Table 4 demonstrate that DeCoReentropy achieves strong performance on the MuSiQue
multi-hop reasoning dataset, particularly in open-book settings. For the Llama3-8b-Instruct model,
DeCoReeyropy attains the highest average score and excels in open-book scenarios both without and with
CoT, with these improvements being statistically significant compared to baselines like DoLLA and CAD,
as shown in Table 24. While DeCoRecpiopy does not always outperform all baselines in closed-book
settings, it still shows significant gains over methods like ITI. Similarly, for the Llama3-70b-Instruct
model, DeCoReepropy achieves the highest EM score in the open-book setting without CoT. These findings
suggest that DeCoReengopy significantly improves the model in a multi-hop reasoning task.
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XSum MemoTrap IFEval NQ-Open NQ-Swap

Model

ROUGE-L 1t BERTScore-F11 factKB{ MacroAcct MicroAcc? PromptAcc? InstructAcc?t EM 1 EM 1
Mistral-7B-Instruct-v0.3 16.53 65.30 65.53 76.63 75.11 51.02 60.91 66.86 65.17
+ CAD (Shi et al., 2024) 14.71 63.55 69.90 83.63 81.49 51.02 60.91 65.54 76.11
+ DoLA (low) (Chuang et al., 2023) 16.45 65.24 65.51 76.33 74.75 49.54 60.19 67.01 65.32
+ DoLA (high) (Chuang et al., 2023) 16.44 65.23 65.70 76.47 74.91 49.72 60.19 66.97 65.21
+ AD (Chen et al., 2024) 16.58 65.36 65.25 76.80 75.35 51.76 62.35 66.70 63.99
+ DeCoRe static (Ours) 15.57 64.20 71.75 77.01 76.49 51.94 62.47 68.02 68.08
+ DeCoRe entropy (Ours) 15.15 63.80 70.73 77.54 76.96 51.20 61.27 68.48 68.61
Qwen2-7B-Instruct 20.00 67.70 68.66 82.13 80.54 52.31 62.35 68.81 72.90
+ CAD (Shi et al., 2024) 17.06 65.08 71.98 87.52 86.14 52.31 62.35 69.30 78.05
+DoLA (low) (Chuang et al., 2023) 19.57 67.47 65.05 82.76 81.76 54.16 65.35 68.32 72.88
+ DoLA (high) (Chuang et al., 2023) 18.69 66.60 55.71 56.61 55.89 47.32 59.59 65.76 70.48
+ AD (Chen et al., 2024) 19.58 67.66 66.42 81.37 80.03 51.76 62.35 68.14 72.29
+ DeCoRe static (Ours) 18.78 66.82 7521 82.50 81.02 58.04 67.51 70.13 75.64
+ DeCoRe entropy (Ours) 17.09 64.79 76.90 83.80 82.04 54.90 64.03 70.58 75.31

Table 25: Performance comparison of other model families (i.e., Mistral-7B-Instruct-v0.3 and Qwen2-7B-Instruct)
with different decoding strategies on faithfulness evaluation tasks. For each base model, the best performance is
indicated in bold, and the second-best is underlined.

Model TruthfulQA (MC) TriviaQA PopQA TruthfulQA (Generation) NQ-Open
MC1t MC2t MC31 EM 1 EM*t  %Trutht %Infot %TNIT %Reject | EM 1
Mistral-7B-Instruct-v0.3 50.31 65.62 38.29 59.99 26.65 80.54 97.06 77.60 26.07 31.49
+DoLA (low) (Chuang et al., 2023) ~ 50.18  65.64  38.17 60.06 26.68 80.29 97.31 77.60 25.70 31.53
+DoLA (high) (Chuang et al., 2023)  50.18  65.61  38.18 60.03 26.68 80.54 97.06 77.60 25.70 31.53
+ AD (Chen et al., 2024) 43.82 64.44 35.67 59.92 26.66 80.29 97.18 77.48 25.70 30.55
+ DeCoRe static (Ours) 5349 67.13 3948 60.09 27.02 77.85 97.43 75.40 20.81 31.38
+ DeCoRe entropy (Ours) 54.84 69.08 41.82 59.64 27.11 76.99 97.80 74.79 15.91 31.45
Qwen2-7B-Instruct 29.99 48.08 2422 42.77 17.55 80.78 67.93 48.71 37.33 2591
+ DoLA (low) (Chuang et al., 2023) 30.11 49.11 25.09 40.57 15.85 84.58 65.36 50.06 41.74 23.84
+ DoLA (high) (Chuang et al., 2023)  20.44 47.09 22.76 37.82 13.84 83.97 61.57 45.53 45.17 21.36
+ AD (Chen et al., 2024) 30.85 4971 2533 42.13 18.19 78.09 79.68 57.83 26.31 24.41
+ DeCoRe static (Ours) 31.09 4823 2520 42.50 17.71 79.31 69.28 48.59 37.33 26.06
+ DeCoRe entropy (Ours) 3452 5179 2730 41.30 17.15 76.87 76.74 53.61 26.81 25.05

Table 26: Performance comparison of other model families (i.e., Mistral-7B-Instruct-v0.3 and Qwen2-7B-Instruct)
with different decoding strategies on factuality evaluation tasks. For each base model, the best performance is
indicated in bold, and the second-best is underlined.

I Ablation with Other LLM Families

I.1 Faithfulness

Table 25 shows the performance of other model families (i.e., Mistral-7B-Instruct-v0.3 and Qwen2-7B-
Instruct) evaluated across faithfulness tasks with different decoding strategies. The results indicate that
DeCoRe static and DeCoRe entropy outperform baseline models and other decoding strategies (DoLA) in
most cases, demonstrating the effectiveness of DeCoRe in enhancing faithfulness evaluation tasks.

For Mistral-7B-Instruct-v0.3, both DeCoRe static and DeCoRe entropy perform competitively. Specifi-
cally, DeCoRe entropy achieves the highest scores on XSum’s factKB, MemoTrap’s Macro Acc, Open-
Book NQ-Open, and NQ-Swap, showing the strongest ability to generate factually consistent summaries,
follow instructions, and handle contextually faithful QA. DeCoRe static also improves performance
significantly, underlining its utility in faithfulness tasks, even without dynamic entropy adjustments.

For Qwen2-7B-Instruct, DeCoRe entropy also leads in most tasks. It shows top performance on XSum’s
factKB, MemoTrap and Open-Book NQ-Open, indicating that it excels in generating factually consistent
summaries, following instruction, and answering complex QA questions. DeCoRe static marginally
surpasses DeCoRe entropy in NQ-Swap EM, suggesting that in some cases, static contrastive decoding
may be sufficient for maintaining contextual faithfulness.

Overall, the trend observed across both model families confirms that DeCoRe, whether in static
or entropy-controlled mode, provides significant improvements in maintaining contextual faithfulness
regardless of the base model family, outperforming traditional decoding strategies like DoLLA across
summarisation, instruction-following, and QA tasks.
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MuSiQue without CoT MuSiQue with CoT

Model
Closed Book Open Book Closed Book Open Book

Mistral-7B-Instruct-v0.3 7.61 58.01 11.17 59.70
+ CAD (Shi et al., 2024) 7.61 50.10 11.17 63.55
+ DoLA (low) 7.53 58.21 10.92 59.79
+ AD (Chen et al., 2024) 7.53 59.00 11.34 61.69
+ DeCoRe static 7.86 59.33 12.04 63.92
+ DeCoRe entropy 7.57 62.72 11.21 65.12
Qwen2-7B-Instruct 6.54 63.01 8.23 60.57
+ CAD (Shi et al., 2024) 6.54 64.58 8.23 66.41
+ DoLA (low) 7.03 65.45 7.70 64.54
+ AD (Chen et al., 2024) 5.71 65.29 8.44 65.70
+ DeCoRe static 6.70 63.34 8.36 66.78
+ DeCoRe entropy 6.16 66.49 8.23 67.98

Table 27: Performance comparison of other model families (i.e., Mistral-7B-Instruct-v0.3 and Qwen2-7B-Instruct)
with different decoding strategies on MuSiQue, a multi-hop reasoning task. For each base model, the best
performance is indicated in bold, and the second-best is underlined.

I.2 Factuality

Table 26 compares the performance of Mistral-7B-Instruct-v0.3 and Qwen2-7B-Instruct on factuality
evaluation tasks using different decoding strategies. For Mistral-7B-Instruct-v0.3, DeCoRe entropy
delivers the best performance across multiple metrics, multiple choice metrics, the informativeness
and rejection score on TruthfulQA, EM on TriviaQA and PopQA. DeCoRe static also performs well,
particularly in improving the EM scores for PopQA and TriviaQA, showing its utility in handling factual
recall tasks effectively.

Qwen2-7B-Instruct shows a similar pattern. DeCoRe entropy outperforms both the baseline model and
DoLA in multiple choice and generation metrics on TruthfulQA. This highlights its superior capability in
distinguishing truthful answers and minimising rejected outputs.

Overall, the trend across both model families confirms that DeCoRe, particularly DeCoRe entropy,
significantly enhances the model’s performance beyond just contextual faithfulnes.

I.3 Chain-of-Thought

Table 27 presents the performance of Mistral-7B-Instruct-v0.3 and Qwen2-7B-Instruct on the MuSiQue
multi-hop reasoning task across different decoding strategies. The most notable performance improvement
for both models is observed in the open-book setup, particularly when coupled with CoT prompting which
is also aligned with the results.

Without CoT, the open-book setup already shows strong performance, with DeCoRe entropy out-
performing both DoLLA and the baseline model. However, when CoT prompting is incorporated, the
performance boost becomes even more apparent. This confirms that DeCoRe further amplifies the
effectiveness of CoT prompting across model families.

J Ablation of DeCoReg ¢

DeCoReygaiic uses a hyperparameter o to control how much we want to contrast the prediction of the
masked model from the base model, as shown in Equation (6). We examine the various values of o and
shows the results in Figure 9 across the faithfulness, factuality, and CoT reasoning evaluation tasks.

J.1 Faithfulness

As shown in Figure 9a and Table 28, for XSum, increasing « leads the highest factKB score up until
a = 1.0. MemoTrap tasks show a steady improvement in both Macro and Micro Accuracy as « increases,
peaking at o« = 2.0. However, for IFEval, higher values of « lead to a drop in Instruct and Prompt
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(c) Chain-of-Thought Reasoning Evaluation Tasks

Figure 9: Relation between « and performance metrics of Llama3-8b-Instruct with DeCoRegic in the faithfulness
(a), factuality (b), and Chain-of-Thought reasoning (c) evaluation tasks. Detailed results are listed in Table 28,
Table 29, and Table 30.

Accuracy. Similarly, for the Open book NQ-Open and NQ-Swap tasks, performance decreases for extreme
values of a.

J.2 Factuality

Figure 9b and Table 29 show that, for TruthfulQA, the MC2 score improves slightly at higher « values,
with the best performance for MC2 at o = 8.0. TriviaQA shows stable EM performance for lower «, but
it significantly drops when « increases beyond 4.0. For PopQA and Closed-Book NQ-Open, performance
declines as « increases, with the best scores occurring at lower .

J.3 Chain of Thought

As shown in Figure 9c and Table 30, the performance of Llama3-8b-Instruct on MuSiQue varies with the
choice of « in both closed-book and open-book settings, with and without CoT prompting. Without CoT,
performance peaks at « = 0.5 in both settings, but rapidly declines for higher values of a. When CoT
prompting is applied, accuracy improves across all settings, with the best results also observed at o = 0.5.
However, as « increases beyond 1.0, performance deteriorates sharply, particularly at extreme values such
as a = 4.0 and a = 8.0.

Overall, these patterns show that some tasks may benefit from a high « value, while the others may
require it to be more constrained, indicating that it is necessary to have a dynamic « value throughout the
generation.
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o XSum MemoTrap IFEval NQ-Open NQ-Swap

ROUGE-L 1 BERTScore-F11 factKB{ MacroAcc? MicroAcc? Instruct Acc? PromptAce? EM 1 EM 1
-0.5 20.16 66.42 28.17 63.52 60.65 76.98 68.58 68.17 55.75
0.0 19.90 67.23 47.61 65.86 64.40 70.24 78.30 69.68 60.62
0.5 19.87 67.83 64.07 69.53 69.20 69.13 78.06 70.62 64.43
1.0 19.41 67.83 67.46 69.71 70.22 73.74 63.59 70.73 64.88
2.0 18.38 67.19 64.02 71.28 71.84 70.74 59.70 69.64 63.02
4.0 16.65 65.26 52.61 70.77 71.09 51.56 37.52 62.86 54.83
8.0 13.05 55.65 31.34 70.68 70.97 35.01 20.70 43.24 39.97

Table 28: Performance of Llama3-8b-Instruct with DeCoRegic on faithfulness evaluation tasks. For each base
model, the best performance is indicated in bold, and the second-best is underlined.

Truthful QA (MC) TriviaQA PopQA NQ-Open
MC1|{ MC2t MC3+ EMt EM{t EM+?

-0.5  38.31 57.05 31.48 56.00 26.09 28.93
00 3941 55.69  30.31 56.58 26.64 29.04
05 38.68 5574  29.80 56.93 26.86 29.42
1.0 38.07 5586  29.81 56.78 26.87 28.93
20 36.84 56.13 30.08 56.47 26.60 28.59
4.0 3745 57.62 3143 53.92 24.55 28.14
8.0 3770 5837 31.82 43.67 18.66 23.47

Table 29: Performance of Llama3-8b-Instruct with DeCoRegyic on factuality evaluation tasks. For each base model,
the best performance is indicated in bold, and the second-best is underlined.

K Implementation Details

K.1 Hardware and Library

We run all the experiments with NVIDIA A100 80GB GPUs. Specifically, we use 1 GPU instance for
LLMs with 7B and 8B parameters, and 2 GPUs for 70B parameters LLM. We use the Huggingface
Transformers libraries (Wolf et al., 2020) and custom LLM model python classes from (Wu et al., 2024)
which contains the snippet to mask the attention heads. Our code is available at https://anonymous.
4open.science/r/decore-4FB7.

K.2 Baseline Implementation

We obtained the fine-tuned weights of ITI models of Llama3-8B-Instruct and Llama3-70B-
Instruct from https://huggingface.co/jujipotle/honest_llama3_8B_instruct and https://
huggingface.co/jujipotle/honest_llama3_70B_instruct, respectively. As the ITI modifications
are already incorporated into the weights, we use them similarly to the baseline model with greedy
decoding. For DoLa generation, we use the Huggingface official implementation via the . generate(...)
function. While for the multiple choice tasks which compare the generated probability distribution, we
use the implementation provided by the official code repository (https://github.com/voidism/DolLa).
We followed the original implementation of the Contrastive Decoding algorithm (https://github.
com/Xiangli1999/ContrastiveDecoding). We followed the original implementation of the Activa-
tion Decoding algorithm (https://github.com/hkust-nlp/Activation_Decoding). We followed the
original implementation of the Context Aware Decoding algorithm (https://github.com/xhan77/
context-aware-decoding).

K.3 Additional Experimental Setting Details

Table 31 outlines the additional experimental settings for each task, including the evaluation metrics,
number of shots (In-Context Learning demonstrations), and corresponding prompt templates. The prompt
templates use double curly braces to denote input data placeholders. In each task, we use the same set
of examples across all inputs to maintain an equal setup. We adopted examples from prior work and
conducted a qualitative inspection (Gao et al., 2024; Chuang et al., 2023; Hong et al., 2024; Liu et al.,
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MuSiQue without CoT MuSiQue with CoT
Closed Book T Open Book T Closed Book T Open Book 1

-0.5 6.95 55.94 14.56 66.32
0.0 11.79 68.56 20.15 74.43
0.5 11.79 69.76 20.60 75.05
1.0 8.27 62.27 14.19 72.07
2.0 7.12 60.57 11.67 70.09
4.0 4.18 52.92 7.36 58.46
8.0 2.52 33.88 5.01 31.36

Table 30: Performance of Llama3-8b-Instruct with DeCoReg.ic on MuSiQue, a multi-hop reasoning dataset, with
and without CoT prompting in both closed-book and open-book settings. For each base model, the best performance
is indicated in bold, and the second-best is underlined.

2024). Specifically for the MuSiQue tasks, we noticed that three examples were not suitable for the
intended tasks, as they did not adequately demonstrate multi-hop reasoning (see Table 32).

K.4 Computational Performance in TFLOPS

Table 33 shows the computational performance of various models measured in TFLOPS. The CAD model
exhibits the highest computational demand at 8.44 TFLOPS. In contrast, DeCoRegatic, DeCoReentropy-
and DoLa show similar computational performance compared to the base model using greedy decoding,
ranging from 4.24 to 4.32 TFLOPS. We believe that this is because DeCoRe implementation leverages
shared KV caching as opposed to CAD which forces completely separate forward passes.

L. Long Generation Results

L.1 Averaged Length-Normalised Conditional Entropy

Table 35 accompanies Figure 3. Refer to Section 4 for the explanation. Along with Table 34, we found
that there is no significant difference between the methods, with the exception of ITI which generates
shorter answers, however inaccurate. Thus, the difference is only in the correctness of the generation.

L.2 Qualitative Examples

XSum Figure 10 presents a qualitative comparison between the baseline decoding and DeCoRe entropy
generations in the XSum task. Both decodings are generally accurate, but there are notable differences in
the information included. The entropy spikes when the model generates important or factual details such
as the netting around the seal and the location. While the baseline focuses on reporting the basic details of
the event, DeCoRe adds additional, contextually relevant information, such as the reference to avoiding
serious injury and infection. This extra detail aligns with the facts presented in the original document
(e.g., "[...] the net would have eventually cut through his skin which could have resulted in septicaemia or
other infections [...]").

TruthfulQA Figure 11 compares the baseline decoding with DeCoRe entropy generations in the
Truthful QA task. The amber background highlights the entropy value, with darker shades indicating
higher uncertainty. In this example, the baseline model declines to answer the question, providing an
uninformative response: “I have no comment.” In contrast, DeCoRe generates a much more detailed and
accurate answer, correctly refuting the link between the MMR vaccine and autism while also mentioning
the discrediting of Wakefield’s research. The entropy spikes are observed near key facts, such as “autism”
and “measles” and the follow-up that “subsequent investigations” discredited the study.

MuSiQue Figure 12 compares the baseline decoding with DeCoRe entropy generations in the MuSiQue
task. Amber shading indicates the entropy level, with darker shades indicating higher uncertainty. Since
MuSiQue is a question answering task, we can indicate the correct and incorrect answer by using green
and red backgrounds, respectively. Both decoding strategies show similar entropy spikes when generating
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Article:

The grey seal was found at Cruden Bay on Tuesday. The Scottish SPCA removed the seal from
beach and took it to the charity’s rescue centre where it was cut free. Ch Insp John Carle said:
“The amount of netting tangled around the seal’s neck was the largest I have ever seen. It was a
lovely moment watching the seal heading back into the water.” He added: “He was so large and
heavy it took three of our officers to lift him and take him to our centre in Drumoak where we
cut the net away. If he hadn’t been discovered and freed the net would eventually have cut
through his skin which could have resulted in septicaemia or other infections. Thankfully there
were no injuries in this case and we were able to release him relatively quickly. This was a very
happy ending and we’re so glad we were able to help.”

A grey seal was rescued by the

Scottish S PCA from a beach
in Cr uden Bay  after it became

A grey seal was found  ent
angled in | massive amounts of net

ting at Cr uden Bay ;;  Scotland

ent angled in a large amount of
& & , and was successfully rescued

t ti d it k , which -
fet (ung MR [ fnee whie and cut free by the Scottish S

was | eventually cut away and the — : ;
y y PCA , avoiding potential serious

seal was released back into the — . .
injury or infection
water

(a) Baseline. (b) DeCoReentropy-

Figure 10: Qualitative comparison of Baseline decoding vs DeCoReeniropy generations in the XSum task, along with

the entropy over time. Amber background indicates the entropy (darker shades indicate higher entropy). Notice
that the entropy spikes nearing the important fact such as the details about the amount of netting and the location of
the incident. Both generations are equally accurate, but DeCoRe occasionally includes additional, relevant details.
For example, it mentions the rescue preventing serious injury and infection, which is consistent with the source
document (i.e., “[...] the net would eventually have cut through his skin which could have resulted in septicaemia or
other infections [...]”).

the names “Gilroy” and “Robert,” suggesting uncertainty. DeCoRe, however, correctly selects “Robert
Ludlum,” the author of the original novel, while the baseline model incorrectly selects “Gilroy,” the
screenplay writer. This shows DeCoRe’s improved accuracy in selecting the right answer, particularly in
cases where multiple plausible names are involved.
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Question: What link was confirmed by Wakefield’s paper on autism in the Lancet?
Best Answer: No link between the MMR vaccine and autism was confirmed because the paper
was a scientific fraud.

Wake field ’s paper | on autism in

the Lanc et did not confirm a
link between = autism and | the

measles , m umps , and rub
I have no comment . ella ( MM R ) vaccine . In
(a) Baseline. fact , subsequent investigations

and @ studies have @ thoroughly dis
credited Wake field ’s | research
and found no @ such link

(b) DeCoReentropy-

Figure 11: Qualitative comparison of Baseline decoding vs DeCoReenopy generations in the Truthful QA task, along
with the entropy over time. |Amber background indicates the entropy (darker shades indicate higher entropy).
Notice that the entropy spikes nearing the beginning of important facts such as the diagnoses (i.e., autism and
measles) and the fact that the paper was discredited by subsequent studies. As noted in Table 3, DeCoRe is more
likely to not reject answering the question compared to the baseline models.

Wikipedia Title: The Bourne Ultimatum (film)
The Bourne Ultimatum is a 2007 action spy film directed by Paul Greengrass loosely based on

. The screenplay was written by Tony Gilroy,
Scott Z. Burns and George Nolfi and based on a screen story of the novel by Gilroy.

Question: What was the story that included the character from The Bourne Betrayal based on?

The screenplay for The Bour ne The screenplay for The Bour ne
Ult im atum was written by Tony Ult im atum was written by Tony
Gil roy , Scott Z . Burns , and Gil roy , Scott Z . Burns , and
George N olf i , and was based George N olf i , and was based
on a screen story of the novel by on a screen story of the novel by
. Robert | Lud | lum

(a) Baseline. (b) DeCoReentropy -

Figure 12: Qualitative comparison of the Baseline decoding vs DeCoReeniopy generations in the MuSiQue task,
along with the entropy over time. /Amber background indicates the entropy (darker shades indicate higher entropy),

while [green| and - background indicates the right and wrong answers, respectively. Entropy generally follow
the same pattern for the similar generation. Notice that both models are more uncertain when generating “Gil” or
“Robert”, which are the final answers. “Robert Ludlum” is the correct answer, while “Gilroy” was mentioned in the
passage as the writer of the screen story, but not the original novel.
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Task Metric # of shots Prompt Template
Faithfulness Hallucination
ROUGE-L . . .
Generate a summary comprising of 1 sentence for the given article.\n\n
XSum BERTScore 0 Article: " + {{document} }\n\nSummary:
factKB el " mmary:
Macro Accuracy .
MemoTrap Micro Accuracy 0 {{question}}
Instruction-level Strict Accuracy .
TFEval Prompt-level Strict Accuracy 0 {{question}}
Write a high-quality answer for the given question using only the provided search results
(some of which might be irrelevant). Provide the answer in 5 words or less without any
explanation.\n\n
Open Book NQ-Open EM 1 {{in-context learning demonstrations} }\n\n
Document [{ {document_index}}] {{document} }\n
Question: {{question}}\n
Answer:
Answer the following question based on the provided context:\n\n
{ {in-context learning demonstrations} }\n\n
NQ-Swap EM 4 Context: {{context}}\n
Question: {{question} }\n
Answer:
Factuality Hallucination
Write a high-quality answer for the given question. Provide the answer in 5 words or less
without any explanation.\n\n
Closed-Book NQ-Open EM 8 {{in-context learning demonstrations} }\n\n
Question: {{question}}\n
Answer:
Answer the given question.\n\n
TriviaQA EM 8 {{m—cpntext leam{ng demonstrations} }\n\n
Question: {{question} }\n
Answer:
Answer the given question.\n\n
{{in-context learning demonstrations} }\n\n
PopQA EM 8 Question: {{question} }\n
Answer:
Interpret each question literally, and as a question about the real world;
MC1 . .
MC2 carefully research each answer, without falling prey to any common myths;
TrathfulQA MC3 6 anfi reply “I have r}o comment upless you are completely certain of the answer.\n\n
{{in-context learning demonstrations} }\n\n
GPT-Judge Q: {{question} \n
GPT-Info S taues
A:
Reasoning
Answer the following question.\n\n
MuSiQue Direct EM 17 { {m-conte)'(l learning demonstrations} }\n\n
Q: {{question} }\n
Answer:
Answer the following question by reasoning step-by-step.\n\n
MuSiQue CoT EM 17 { {in-context learning demonstrations} }\n\n

Q: {{question} }\n
Answer:

Table 31: Additional experimental setting details for the tasks, including the number of shots and the prompt
templates. The double curly braces “{{}}” signify input data.
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Question

Answer

Reason of Removal

What genre is the
record label of the per-
former of So Long, See
You Tomorrow associ-
ated with?

The performer of So Long, See
You Tomorrow is Bombay Bicy-
cle Club. The record label of
Bombay Bicycle Club is Island
Records. The genre of Island
Records is jazz. So the answer
is: jazz.

A record label does not
have only one specific
genre, as confirmed by
a Wikipedia search of
Island Records.

What is the genre of
the record label of the
band that performed on
the Crush Tour?

The Crush Tour is performed by
the band Bon Jovi. The record la-
bel of Bon Jovi is Island Records.
The genre of Island Records is
jazz. So the answer is: jazz.

A record label does not
have only one specific
genre, as confirmed by
a Wikipedia search of
Island Records.

Where is the crying

stone found in the
country in  which
Raphael Tuju holds
citizenship?

Raphael Tuju is a citizen of
Kenya. The crying stone in
Kenya is found along the high-
way towards Kisumu. So the
answer is: along the highway to-
wards Kisumu.

The second passage al-
ready contains the an-
swer as standalone evi-
dence. It does not high-
light the multi-hop rea-
soning.

Table 32: Erroneous In-Context Learning Demonstrations of MuSiQue

Model TFLOPS |
Llama3-8B-Instruct 4.24
+ CAD 8.44
+ DoLa 4.28
+ DeCoRegtatic 4.32
+ DeCoReentropy 4.32

Table 33: Computational performance of the decoding methods in TFLOPS.

Model XSum MuSiQue with CoT
Closed Open

LLama3-8B-Instruct 54.74  50.63 44 .41

+ITI 29.37 2471 21.72

+ DoLa 5497  50.35 44.49

+ DeCoRecniropy 52.31 54.76 46.15

Table 34: Average Length of Generations.

Model XSum MuSiQue with CoT
Closed Open
Llama3-8b-Instruct 0.41 4912 0.30 4010 0.43 1920
+ITI 0.65 1901 0.46 40918 0.72 4998
+ DoLa 0.41 £9.12 0.30 1010 0.43 1020
ar DeCoReemopy 0.38 +0.11 0.29 +0.10 0.41 +0.20

Table 35: Averaged Length-Normalised Conditional Entropy which signifies the averaged overall uncertainty of
generated sequences per model. Lower values indicate less overall uncertainty. Bold indicates the lowest value.
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