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Abstract

We cast nested named entity recognition
(NNER) as a sequence labeling task by lever-
aging prior work that linearizes constituency
structures, effectively reducing the complexity
of this structured prediction problem to straight-
forward token classification. By combin-
ing these constituency linearizations with pre-
trained encoders, our method captures nested
entities while performing exactly n tagging ac-
tions. Our approach achieves competitive per-
formance compared to less efficient systems,
and it can be trained using any off-the-shelf
sequence labeling library.

1 Introduction

Named Entity Recognition (NER) involves identi-
fying token spans that refer to specific named en-
tities. Traditional approaches use the BIO scheme
(Ramshaw and Marcus, 1995), which assigns la-
bels to define the beginning (B), inside (I), and
outside (O) tokens of each entity. BIO NER—and
other BIO tasks—can be naturally addressed using
sequence labeling approaches (Ratnaparkhi, 1996;
Lafferty et al., 2001; Lample et al., 2016; Yang
and Zhang, 2018). However, nested NER (NNER)
challenges these approaches, as it involves enti-
ties embedded within other entities as long as their
spans do not overlap. For example, in Figure 1, the
person mention “president of the USA” contains the
geopolitical named entity “the USA”. This nested
structure breaks the BIO tagging assumption that
each token belongs to only one entity. As a re-
sult, structured prediction is a better fit for NNER,
as it can model interdependent spans and capture
hierarchical relationships between nested entities.
Prior work has tackled NNER as a hierarchi-
cal or layered sequence labeling task, applying
token-level tagging multiple times, either detecting
outer entities first and then inner ones (Shibuya
and Hovy, 2020), or identifying inner entities first
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Figure 1: Illustration of a nested NER annotated sen-
tence as (a) spans, (b) a constituent tree and its corre-
sponding binarized tree, and (c) four ways to linearize
that tree. We compare three depth-based—absolute,
relative, dynamic—and one transition-based encoding—
tetra-tagging (see §2.1). Binarized non-terminals in the
tetra-tagging encoding are marked with ’.

and then expanding outward (Wang et al., 2021).
Other paradigms classify each possible text span
as either an entity or not (Yu et al., 2020; Sohrab
and Miwa, 2018; Yuan et al., 2022; Corro, 2023),
use sequence-to-sequence techniques (Yan et al.,
2021; Tan et al., 2021), or exploit hypergraph repre-
sentations (Lu and Roth, 2015; Katiyar and Cardie,
2018; Yan et al., 2023).

Alternatively, some methods transform NNER
into constituency parsing by mapping samples
to constituent trees and relying on parsing algo-
rithms (Finkel and Manning, 2009; Wang et al.,
2018; Fu et al., 2021; Lou et al., 2022). More
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recently, Yang and Tu (2022) applied a pointer-
network-based bottom-up constituency parser to
NNER, offering linear-time decoding. In this con-
text, constituency tree linearization—first intro-
duced by Gémez-Rodriguez and Vilares (2018)
and later explored in related work (Kitaev and
Klein, 2020; Amini and Cotterell, 2022)—reframes
the structured prediction task as a sequence label-
ing problem. This approach achieves competitive
performance while improving computational effi-
ciency, as it outputs the tree in exactly n tagging
actions. This is in contrast with previous sequence-
to-sequence models for NNER where the number
of tagging actions depends on the number of pre-
dicted mentions (Miculicich and Henderson, 2020).
Building on this line of work, we present a sim-
ple yet effective NNER approach that applies con-
stituency tree linearizations within a standard se-
quence labeling framework.! Our method is single-
pass, parser-free, and integrates seamlessly with
pretrained encoders. It captures nested structures
efficiently and achieves competitive benchmark
results, all while requiring minimal implementa-
tion effort. Overall, the data preparation remains
lightweight and fully automated, and it is no more
complex than in traditional nested NER settings,
thus preserving the simplicity of standard NER
pipelines while adding structural expressiveness.

2 NNER Through Constituent Parsing as
Sequence Labeling

We represent NNER structures using constituent
trees, adopting a sequence labeling strategy for syn-
tactic parsing. We hypothesize that this formulation
aligns well with NNER due to two key properties:
(1) the trees are relatively shallow, involving fewer
output levels than in full parsing,” and (2) the en-
codings provide full coverage of well-formed trees,
regardless of nesting depth. Furthermore, unlike
TreeCRF models (Fu et al., 2021), span-based (Lou
et al., 2022) or transition-based parsers (Gao et al.,
2023), our method avoids complex decoding, en-
abling linear-time inference’—n tagging actions—
with standard architectures.

ICode is available at https://github.com/amunozo/
nner_as_sl.

2In full constituent parsing, large gaps between nonter-
minals have been shown to challenge sequence tagging ap-
proaches (Vilares et al., 2019).

3 Although the transformer architecture has quadratic com-
plexity, we follow common practice and refer to the rest of the
system’s complexity (Shibuya and Hovy, 2020; Corro, 2023;
Lou et al., 2022).

# Labels Missing
Dataset Enc. (n,c,u) (n,c,u) % dev % test
abs  (6.118)  (0.1,0) 100.00 99.96
dyn  (10,11.8)  (0.1.0) 100,00 99.96
ACE2004 07 (10118)  (0.10) 100,00 99.96
atg (8228)  (1.61) 100.00 99.96
abs  (7299) (03.1) 99.88 99.98
dyn  (9299)  (031) 99.88 99.98
ACE2005 07 (16209) (03.1) 99.88 99.98
4tg (8589) (1.61) 99.88 99.98
abs  (4.12.13)  (0.0.0) 100.00 100.00
GENIA dyn  (81213)  (000) 10000 100.00
rel  (812.13)  (0.0.0) 100,00 100.00
atg (52213)  (0.1.0) >99.99 >99.99
abs  (7.264.401) (0.1437) 99.93 99.95
NNE  dvn (11.264.401) (0/1437) 9993 9995
rel (10.264.401) (0.1437) 99.93 99.95
atg (13.399.401) (0.18.37) 99.93 99.95

Table 1: Coverage statistics across datasets and encod-
ing strategies. # Labels indicates the number of unique
labels in the training set. Missing shows the number of
labels in dev/test not seen during training. % dev/test
indicates the percentage of dev/test labels covered by
the training vocabulary.

2.1 Linearizations

We use three depth-based (absolute, relative, dy-
namic) and one transition-based (tetra-tagging) en-
coding strategies. These are illustrated in Figure 1
using a sentence with nested entities.

Let w = [wi,ws,..., W] be an input word
sequence, where w; represents the word at posi-
tion i. We define a label [; = (n;, ¢;, u;) for each
word w;, where: (1) n; is an integer indicating the
number of common ancestors between words w;
and w;1, (2) ¢; is the non-terminal symbol at their
lowest common ancestor, and (3) u; denotes the
unary branch for w;, if one exists.

In the absolute encoding (abs) (Goémez-
Rodriguez and Vilares, 2018), n?bs represents the
number of common ancestors between w; and w; 4.
While abs often suffers from a large and sparse
label space in full constituent parsing due to the
depth and complexity of syntactic trees, we expect
it to remain compact and easier to learn in NNER,
where structures are shallower.

The relative encoding (rel) was also introduced
in (Gomez-Rodriguez and Vilares, 2018). In order
to reduce the label set, n?el represents the difference
in the number of common ancestors, i.e., fori > 1,

;el — n?bs _ n?lisl (and nrlel — nzlle)'

Combining these two strategies, the dynamic en-
coding (dyn) (Vilares et al., 2019) selects, at each
position #, the most suitable encoding—absolute
or relative—for representing the relation between

n
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tokens w; and w; . It defaults to the relative encod-
ing and switches to absolute when two conditions
are met: (1) the relative value n?el < -2, indicating
a sharp drop in tree depth with empty non-terminal
levels that must be filled in subsequent steps; and
(2) the corresponding absolute value n?bs <3, en-
suring the constituent node is close to the topmost
tree level and the absolute label remains compact,
avoiding sparsity and improving learnability. The
dynamic encoding uses the absolute function only
after abrupt structural changes. This affects few
labels—0.75% in ACE2004, 0.73% in ACE2005,
0.15% in GENIA, and 1.16% in NNE—but many
sentences: 14.64%, 12.45%, 3.86%, and 20.20%,
respectively.

In addition to depth-based encodings, we also
consider the tetra-tagging (4tg) linearization in-
troduced by Kitaev and Klein (2020). Tetra-tagging
is a left-corner transition-based parsing algorithm
for binary trees, which can be adapted to sequence
labeling. It assigns two tags per word: one for the
word itself and one for the adjacent fencepost (i.e.,
the boundary between consecutive words). Each
tag encodes whether the word (N, /) or the lowest
common ancestor spanning the fencepost (N, 7)
is a left or right child. To fit our sequence labeling
framework, we pair each word and fencepost tag
into a single label. We reuse the notation /;, but
in this case n; is refactored to store the two tags
associated to w;. Nonterminal symbols and unary
chains are added aside the tags as in depth-based
encodings.

Label Vocabulary As entity spans are encoded
with a finite set of labels observed during training,
the model may face unseen labels at test time. Still,
as shown in Table 1, the proposed encodings cover
almost all entities in the development and test sets.

3 Experiments
We present our experimental setup and results.

Setup We use the MaChAmp framework
(van der Goot et al.,, 2021) to train a mul-
titask transformer-based model.  Specifically,
we use roberta-large (Liu et al., 2019) and
bert-large-uncased (Devlin et al., 2019) as
shared encoders for the ACE and NNE datasets,
and biobert-large-cased-v1.1 (Lee et al.,
2020) for GENIA. We include RoBERTa as a
high-performing option, and BERT for compari-
son, since it is the most commonly used model in

Model Comp. ACE2004 ACE2005 GENIA NNE
Other approaches (O(n))

W21  O(n) 86.1 84.7 78.7

Y22 Oo(n) 869 85.5 78.2

Other approaches (higher complexity)

S20  O(n?) 85.8 843 774 -
C23  0(n?) 862 84.8 783 -
S21  0o(n?) 874 86.7 805 -
F21  O(n®) 86.6.03 85.4.0;1 782+01 -
L2 oY 879 86.9 78.4 94.6
This work (O (n))

RoBERTa (ACE and NNE) and BioBERT

abs 0(}’1) 86.810.3 85.010.3 76.610.3 94.11073
rel O(n) 86.910_3 85.5i0_3 75~1i0.7 94310.1
dyn O(n) 87.7.02 86.0.93 75.3.05 943,92
4tg O(n) 86.1,05 84.7.05 74.6.08 94.140.1
BERT (for comparison)

abs O(n) 86.1.93 83.8404 - 94.040.1
rel O(n) 87.010_4 85.210_3 - 94. 1:!:0.1
dyn 0 (n) 87.01041 85.2i0_5 - 94210.0
4tg O(n) 86.0.05 84.7.02 - 94.1,40.1

Table 2: F1-scores for different datasets and encodings,
a comparison to prior work, and computational com-
plexities. Highest F1 among O (n) models is in bold.

related work. We add three task-specific linear clas-
sification heads to predict each atomic component
of the label (n;, ¢;, u;). We adopt the default hyper-
parameters provided in the MaChAmp repository,
as our primary goal is to show that these models per-
form well in off-the-shelf sequence labeling setups
with simple plug-and-play scripts. In particular, for
encoding and decoding, we use the scripts provided
by the CoDeLin library (Roca et al., 2023). This li-
brary provides homogeneous post-processing to
produce trees from ill-formed label sequences;
more details about the post-processing are in Ap-
pendix E.

Datasets We train and evaluate our models on
four popular English NNER benchmarks: GENIA
(Kim et al., 2003), ACE 2004 (Doddington et al.,
2004), ACE 2005 (Walker et al., 2006), and NNE
(Ringland et al., 2019). For ACE and GENIA,
we preprocess the datasets following Shibuya and
Hovy (2020). Information about the datasets is
shown in Appendix Table 8. Notably, most entities
are flat and short and highly nested spans are rare.

Metrics We evaluate our models in terms of pre-
cision, recall, and F1-scores based on strict entity
boundaries, requiring both correct spans and types.
We also provide finer-grained evaluations (e.g., by
entity length) and external comparisons.
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ACE2004 ACE2005 GENIA NNE

Prec. Rec. Prec. Rec. Prec. Rec. Prec. Rec.

ACE2004 ACE2005 GENIA NNE

Prec. Rec. Prec. Rec. Prec. Rec. Prec. Rec.

84.4 87.2 83.1 86.7 789 79.8 88.8 92.3
78.9 859 71.0 84.3 444 435 90.6 954
77.7 74.6 698 67.1 445 37.5 88.8 884
71.6 63.6 61.3 37.4 50.0 25.0 85.2 83.2

83.5 85.8 81.6 859 77.7 76.1 87.8 91.7
78.7 87.6 72.7 85.8 58.1 41.7 90.1 954
759 726 71.1 68.8 57.4 235 88.9 873
62.7 623 59.6 405 0.0 86.4 824

84.0 86.8 82.6 86.5 78.1 88.1 91.9
794 88.1 75.3 86.9 51.7 90.4 95.6
774 72.1 7277 70.5 51.6 88.7 87.7
68.0 66.2 58.6 49.6 85.3 827

83.1 86.0 81.2 85.7 89.3 922
73.6 86.8 73.4 85.2 90.8 95.5
70.0 72.9 70.8 71.0 88.2 88.7
>2 539 59.6 59.2 58.8 83.5 84.9

0o - - 804 76.1
1 724 T1.7
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Table 3: Precision and recall by encoding and depth
per dataset for entities at different depths. Best values
for each dataset and depth shown in bold. Results for
Shibuya and Hovy (2020) are added from their pub-
lished scores.

3.1 Results

Table 2 reports precision, recall, and F1-scores for
our sequence labeling models compared to previ-
ous work on NNER. All results are averaged over
five runs to provide robust performance estimates
(standard deviations are also reported).

Our approach outperforms both comparable and
more complex methods on the ACE and NNE
datasets. However, this is not the case for GE-
NIA, where the results—particularly recall—are
lower. Although the dyn encoding predominantly
uses the relative function—as most entities are flat
or shallow—it outperforms the other encodings on
every dataset except GENIA, effectively leverag-
ing the best of abs and rel linearizations. Even
though the absolute function is rarely used in the
dynamic encoding, it yields small but consistent F1
improvements of 0.74% for ACE2004, 0.39% for
ACE2005, 0.22% for GENIA, and 0.02% for NNE.
As more than 99% of entities in GENIA are flat or
singly nested, the dyn and rel encodings represent
the entities almost identically. Tetra-tagging is the
worst-performing encoding in all but one setup.

To better understand how linearizations handle
nested entities, we evaluate each encoding by an-
alyzing model performance across different entity
depth and length, using RoOBERTa and BioBERT.

1 848 864 83.6 864 78.4 77.9 932 932
24 88.1 87.1 792 822 74.8 739 89.8 903
abs 22 83.8 83.6 77.2 79.1 743 742 895 88.9
59 768 782 74.1 768 69.3 76.7 850 73.6

>10 70.5 71.0 67.9 61.5 81.8 75.0 80.0 20.0

1 89.0 88.0 86.9 85.1 79.5 76.6 942 93.4
>2 83.7 803 79.4 78.0 73.4 68.1 90.6 87.8
2-4 895 86.3 82.5 824 74.1 68.3 91.0 89.6
5-9 77.8 73.2 75.8 70.8 68.2 67.7 85.5 68.3
>10 55.3 534 63.7 60.9 653 533 444 200

1 889 882 8.4 86.2 79.8 77.2 94.0 934
>2 84.6 822 80.0 79.3 734 66.8 90.3 88.1
2-4 89.8 86.7 824 83.0 73.9 66.8 90.7 89.8
5-9 774 754 176.7 72.6 69.2 67.7 84.4 69.9
>10 64.5 65.1 69.3 67.1 652 50.0 50.0 20.0

1 883 87.6 86.1 85.8 78.7 77.8 93.9 93.5
>2 799 804 753 77.0 69.0 70.2 88.8 89.3
4tg 2-4 87.8 85.5 79.8 80.8 72.2 704 89.9 91.0
5-9 72.6 74.6 722 712 56.7 68.9 769 72.0
>10 48.3 57.8 52.6 62.1 16.8 583 18.2 30.0

1 86910 - - - - - -
>2 853 837 - - - - - -
g 24 870 860 - - - - - -
59 843 832 - - - - - -
>10 692 632 - - - - - -

rel

dyn

Table 4: Precision and recall by encoding and length for
entities of different span lengths. Best values for each
dataset and span length shown in bold. Results from
Shen et al. (2021) are added for comparison.

Results by depth Table 3 presents precision and
recall by depth for each encoding and dataset.
Since the number of predicted entities may vary
across runs, we follow Shibuya and Hovy (2020)
and report the precision results from the run whose
F1 is closest to the average, and the average recall
over five runs. abs performs best for flat entities on
all datasets, dyn leads for singly nested entities in
ACE2004 and ACE2005, rel in GENIA, and 4tg
and dyn tie in NNE. For entities nested two or more
times, abs performs best in GENIA and achieves
the highest precision on the ACE datasets, but is
outperformed in recall except in GENIA. In NNE,
4tg achieves the highest recall. We also compare
against external work that has reported these results,
particularly Shibuya and Hovy (2020), where our
method shows superior performance on flat entities
but underperforms on deep nested structures.

Results by entity length Table 4 presents preci-
sion and recall by span length. Among the en-
codings, rel and dyn tend to perform best on
single-token spans and those of 2—4 tokens. Re-
sults for 5-9 token spans are mixed, while abs con-
sistently outperforms the others on longer spans
(=10 tokens), except in ACE2005, where it is
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ACE2004 ACE2005 GENIA NNE
Best Worst Mean Std Best Worst Mean Std Best Worst Mean Std Best Worst Mean Std
4tg PER FAC 789 10.6 PER LOC 77.8 7.4 protein DNA 73.1 3.0 ENERGY BAND 73.7 29.8
abs PER WEA 78.5 10.8 PER LOC 78.6 7.2 protein cell_type 74.7 3.4 DISEASE BAND 744 29.5
dyn PER FAC 81.3 83 PER LOC 79.6 7.6 protein DNA 73.1 3.2 ENERGY BAND 74.0 294
rel PER FAC 80.6 8.8 PER LOC 79.3 7.7 protein DNA 73.0 3.2 HURRICANE BAND 734 30.4

Table 5: Fl-score statistics across datasets and encodings. The table identifies the best and worst performing entity
labels and lists the mean and standard deviation of F1-scores across all labels.

surpassed by dyn. 4tg performs well on short
spans—particularly in NNE—but its performance
drops sharply as span length increases. These
trends suggest that dyn is well-suited for frequent,
shorter entities, while abs offers greater robustness
on longer ones. In addition, we benchmark against
external work we are aware of, such as the more
complex model from Shen et al. (2021), where
our methods are competitive for entities spanning
fewer than four tokens, but the performance gap
widens for longer entities where their specialized
architecture appears more advantageous.

Results by entity type Table 5 provides a de-
tailed analysis of Fl-scores for each entity type,
identifying the best and worst performers and
summarizing the overall distribution with mean
and standard deviation. PER (Person) consistently
achieves the highest scores in both ACE datasets,
while protein is the strongest performer in GE-
NIA, regardless of the encoding used.

Focusing on the variance, scores in GENIA and
ACE2005 are stable across types, with a standard
deviation of around 3 and 7.5 respectively for all
encodings. For ACE2004, the rel and dyn encod-
ings show a standard deviation of approximately
8.5, while 4tg and abs present slightly higher vari-
ation at around 10. As expected, NNE shows a
much higher standard deviation (~29.7), due to its
large and sparse label set; however, this pattern is
stable across encodings.

3.2 Discussion

The results show that with standard transformer-
based encoders, NNER can be effectively learned
as sequence labeling under various representations.
As expected, for both flat and short entities, dif-
ferences across encodings do not appear to sub-
stantially affect performance, since in these cases
representing sentences as constituent trees does not
lead to significant changes. For deep entities, more
elaborate encodings appear to be beneficial com-
pared to the naive absolute encoding. For longer

entities, results are mixed. This is likely influenced
by the fact that longer entities can be either flat or
deep, which may confound conclusions about the
impact of different encodings. In particular, depth-
based encodings perform better on the ACE and
GENIA datasets, while 4tg performs comparably
to the other encodings on the NNE dataset. In this
context, a factor could be the relative ease of the
NNE dataset. Although it includes many nested
entities and a large label set, it also provides a sub-
stantial larger amount of training data (see Table
8). If the learning task becomes less demanding
overall, differences between encodings are less pro-
nounced, and the encoder may play a more promi-
nent role. As shown by our NNE results, the nar-
row F1 range (94.0-94.6) across encodings and
models suggests that, with enough data, different
encodings are learned to similar capacity, thereby
limiting observable performance differences.

4 Conclusion

We cast nested NER for the first time as a single-
pass sequence labeling task by first transforming
NNER annotations into constituent trees, and then
leveraging the linearization options these trees
enable. In particular, we explored both depth-
based (absolute, relative and dynamic encodings)
and transition-based encodings (tetra-tagging) pre-
viously proposed for this type of tree structure.
Our experiments show that this approach models
nested structures effectively, with competitive per-
formance and no need for complex architectures,
remaining lightweight and compatible with stan-
dard sequence labeling tools.

Among the explored encodings, the dynamic
variant—which selects between absolute and rel-
ative schemes based on local structural cues—
consistently achieves the highest F1 across datasets,
except for GENIA. The transition-based tetra-
tagging approach is competitive on flat and short
entities but degrades on longer spans, where depth-
based strategies prove more effective.
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Limitations

Due to the limited availability of freely accessible
NNER datasets, we focus on the most widely used
English benchmarks, including both public and
proprietary ones. These datasets are commonly
used in prior work and provide a solid basis for
comparison. While our approach is evaluated on
these established datasets, it’s important to note that
results may vary across benchmarks, as factors such
as annotation scheme, entity types, nesting depth,
domain, and language can influence performance.
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A Precision and Recall Results

Table 6 shows the precision and recall correspond-
ing to the evaluation presented in Table 2 of the
main text.

B Results from Best Runs

Table 7 presents the precision, recall, and F1-scores
from the best run of each model, selected according
to the highest F1-score.

C Dataset information

Table 8 presents statistics for each dataset, includ-
ing information on entity depth and length.

D Data coverage

The encodings can represent all nested entity struc-
tures in the datasets without error. The only unre-
coverable cases with these encodings arise from an-
notation inconsistencies—such as crossing spans in
ACE2004 or inverted boundaries in NNE—rather
than from limitations of the encodings themselves.

E Post-processing

Rather than imposing strict constraints during pre-
diction, parsing as sequence labeling ensures well-
formedness by applying simple heuristics to ill-
formed label sequences. In our setup, we apply the
heuristics provided by CoDeLin (Roca et al., 2023),
i.e., (1) in depth-based encodings, if multiple labels
are assigned to the same non-terminal node, we
retain only the first; (2) if no label is assigned to a
node, it is removed from the tree; (3) indices out of
range (e.g., -7 in the relative encoding when there
are fewer than 7 levels to go up) are changed to the
nearest legal index; and (4) in tetra-tagging, if the
label sequence specifies an invalid transition, the
transition is skipped. Words that remain unattached
due to skipped transitions are attached to the lowest
non-terminal in the rightmost tree spine.

F Model Size and Budget

We fine-tune three models: BERT Large (340M pa-
rameters), BioBERT Large (340M), and RoBERTa
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ACE2004 ACE2005 GENIA NNE
Model Comp. Prec. Rec. Prec. Rec. Prec. Rec. Prec. Rec.

Other approaches (O (n))

W21 O(n) 854 86.7 84.2 85.3 78.2 79.2 - -
Y22 O(n) 86.6 87.3 84.6 86.4 78.1 78.3 - -

Other approaches (higher complexity)

S20 O(n?) 859 857 838 849 778 769 - -
C23 O(n?) 874 850 844 853 793 713 - -
S21  O(n?) 874 874 861 873 802  80.9 - -
F21  O(n®) 86.7.04 86.5.04 84.5.04 86.4.02 78.2:07 782408 — -
L22 O(n%) 874 834 8.0 879 784 785 943 950

This work (O (n))
RoBERTa (ACE and NNE) and BioBERT

abs O(n) 86.8.05 86.8.0.1 84.1.0.6 85.910.4 77.6.0.4 75.6:103 94.0.0.3 94.2.03
rel 0(}’1) 87.410.4 86. 4+0 3 85. 3+0 6 85. 7+0 3 78. 4+0 7 72. 1+1 8 94. 4i0 0 94.110.1
dyn O(n) 88.010.3 87. 3+0 2 8S. 6+0 4 86. 4+0 5 78. 5+0 5 72. 5+1 3 94. 310 2 94210 2
4tg O(n) 85.8411 86.440.1 84.0005 85.5.05 75.251.1 74.150.9 94.0202 94.3.0 1

BERT (for comparison)

abs O(n) 85.9i0.4 86‘2i0_5 82.7i0 4 85.0i0.4 - - 94‘li0.] 94.0i0.1
rel O(n) 87.9:04 86.0.04 84.9.07855:00 - - 94.4.0193.8.01
dyn 0(}’1) 87.910.1 86.2i072 84-910.5 85.41077 - - 94.4i070 94.010.1
4tg O(n) 86.0.97 86.0.03 83.6.02 85.8.03 — - 941,01 94.1.0

Table 6: Performance metrics for each dataset and encoding. Among O (n) methods, the top values for each dataset
are in bold.

ACE2004 ACE2005 GENIA NNE
Model Prec. Rec. F1 Prec. Rec. F1 Prec. Rec. F1 Prec. Rec. F1
abs 86.4 86.6 86.5 83.7 85.7 84.7 77.1 75.5 76.3 93.6 93.8 93.7
rel 86.9 86.1 86.5 85.1 85.1 85.1 79.3 69.8 74.3 94.3 93.9 94.1
dyn 87.7 87.2 87.4 85.2 85.7 85.5 78.5 71.4 74.8 93.9 93.9 93.9
4tg 83.8 86.6 85.1 83.1 84.7 83.9 74.6 72.6 73.5 93.7 94.2 93.9

Table 7: Metrics from each model’s best run, selected by F1-score. The highest value for each metric and dataset is
highlighted in bold.

Large (355M). Each model is trained with four en-
coding strategies, across four datasets, and using
five random seeds, resulting in a total of 240 train-
ing runs. Training was performed on a GPU cluster
using NVIDIA A100 GPUs (40GB), with each run
executed on a single GPU. The cumulative training
time is estimated at approximately 300-360 GPU
hours.
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Characteristic ACE2004 ACE2005 GENIA NNE

Topic News News  Biomedical = News
Sentences 7762 9335 18549 49211
Sent. Length 21.8 +12.8 18.8 +12.3 26.5+11.8 23.9+11.3
Ent. Types 7 7 5 114
Total Entities 27751 30956 57063 279796
Avg. Depth 1.34 1.29 1.10 1.88
Med. Depth 1 1 1 2
Max. Depth 6 6 4 6
Percentage of Entities at Each Nesting Depth
0 71.77 75.81 90.29 36.45
1 22.98 19.98 9.45 42.73
2 4.61 3.73 0.25 17.83
3 0.55 0.44 0.00 2.83
4 0.08 0.02 0.00 0.15
5 0.01 0.01 0.00 0.00
Percentage of Entities with Different Span Lengths
1 Token 42.46 46.68 52.50 61.77
24 Tokens 39.49 37.25 42.42 35.06
5-9 Tokens 12.51 10.94 4.74 3.10
> 10 Tokens 5.54 5.13 0.35 0.06

Table 8: Dataset details, including the percentage of entities at each nesting depth and their distribution by length.
Nesting depth refers to the number of hierarchical levels an entity is embedded within another, with 0 indicating a
flat entity.
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