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Abstract

Aspect-Based Sentiment Analysis (ABSA) fo-
cuses on extracting opinions about specific
aspects, with Aspect Sentiment Quad Predic-
tion (ASQP) being the most complex sub-
task. Large language models (LLMs) like
GPT4 exhibit strong generalization yet strug-
gle with ASQP due to a lack of task-specific
alignment. Supervised small language mod-
els (SLMs), while effective in capturing task-
specific patterns, lack the extensive knowledge
of LLMs. To address this, we propose a frame-
work that combines SLMs and LLMs using
supervised in-context learning to align LLM
outputs with human preferences. One SLM
is supervised to generate candidate answers
and guide LLMs with task-specific instructions,
while another SLM acts as a reward model it-
eratively evaluates and refines LLM outputs.
Experiments show that our framework signif-
icantly improves ASQP performance, demon-
strating robustness, scalability, and potential for
advancing alignment techniques in sentiment
analysis.

1 Introduction

Aspect-Based Sentiment Analysis (ABSA) is a fine-
grained sentiment analysis task that aims to extract
opinions expressed toward specific aspects of a
given target (Hu and Liu, 2004). Among its sub-
tasks, Aspect Sentiment Quad Prediction (ASQP)
represents the most challenging task, requiring the
identification of aspect-category-opinion-sentiment
quads from the text (Zhang et al., 2021b; Cai et al.,
2021a).

Common methods for solving ASQP often rely
on structured extraction techniques (Zhang et al.,
2021b; Bao et al., 2023, 2022; Cai et al., 2021a; Hu
et al., 2022b). However, with the rise of large lan-
guage models (LLMs) such as ChatGPT (Ouyang
et al., 2022) and Claude (Anthropic, 2024), there
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Figure 1: An illustration of the zero-shot approach and
our proposed framework.

is increasing interest in leveraging their strong gen-
eralization capabilities for ASQP. These LLMs
have demonstrated remarkable performance across
diverse applications (Kojima et al., 2022; Wang
et al., 2023), but directly applying them to ASQP
remains challenge (Zhang et al., 2023, 2024a).
One common approach to align language models
with human preferences is supervised fine-tuning.
While effective, fine-tuning huge LLMs (e.g.,GPT-
4, Claude) is infeasible for ASQP due to their black-
box nature and the prohibitive computational costs
of updating such massive models. Alternatively, in-
context learning (Brown et al., 2020) has emerged
as a practical strategy to guide black-box LLMs for
downstream tasks.

As shown in Figure 1(a), LLMs can follow in-
structions and generate outputs in forms that hu-
mans prefer. However, their answers often dif-
fer from what humans consider correct. This dif-
ference appears because LLMs rely on their pre-
trained knowledge, which may not include the spe-

1012



cific details required for ASQP. As a result, their
outputs tend to be biased or incomplete. In contrast,
as shown in Figure 1(b), supervised SLMs can learn
patterns that align well with human preferences for
ASQP. Yet, SLMs have limited world knowledge,
so their single-pass answers may still be incorrect
or incomplete. Surprisingly, we observe that by
increasing the number of samples from one to ten,
the probability of including a correct answer grows
substantially, ultimately boosting the F1-score by
more than 10% (see Section 3.2).

Based on these observations, we propose a
framework that combines the strengths of super-
vised SLMs and black-box LLMs to address ASQP.
Specifically, we use SLMs to learn human pref-
erences and transfer them to LLMs through in-
context learning. We firstly supervise fine-tuning a
SLM to learn from human-annotated data and gen-
erates candidate answers during testing. By com-
bining these candidate answers with well-designed
instructions, we use the rich human supervision
signals to guide LLMs toward aligning their out-
puts with human intent. Secondly, we supervised
fine-tuning another SLM to act as a reward model
to evaluate whether the LLMs’ outputs align with
human preferences (Ouyang et al., 2022; Rafailov
et al., 2023). In particular, the LLM can perform
multiple rounds of sampling, and the reward model
evaluates the correctness of its outputs, adding cor-
rect answers to the candidate answer list. By it-
eratively repeating this process, the LLM can be
effectively aligned with human preferences and pro-
gressively improve its ability to generate human-
desired aspect sentiment quad predictions.

We conduct extensive experiments to evaluate
the proposed framework across various dimensions.
Our results reveal that directly applying in-context
learning with black-box LLMs struggles to gen-
erate human-aligned ASQP answers, while super-
vised fine-tuning of SLMs effectively captures hu-
man preferences. Furthermore, integrating super-
vised signals of SLM into context for guiding black-
box LLMs demonstrates significant improvements
without requiring additional training data. Com-
parative studies highlight the advantages of our
candidate answer strategy and iterative alignment
approach.

The main contributions of this work can be sum-
marized as follows:

• We introduce a framework combining super-
vised SLMs and in context learning to align

black-box LLM outputs with human prefer-
ences for aspect sentiment quad prediction.

• We design a reward model to iteratively eval-
uate and refine LLM outputs, progressively
improving their alignment with aspect senti-
ment quad prediction.

• Extensive experiments demonstrate the effec-
tiveness of our framework in improving as-
pect sentiment quad prediction performance,
highlighting its robustness, scalability, and po-
tential for advancing alignment techniques.

2 Related Work

2.1 Aspect Sentiment Quad Prediction
Aspect-Based Sentiment Analysis (ABSA) has
been extensively studied as a fine-grained senti-
ment analysis task (Ben-David et al., 2022; Li et al.,
2022; Cai et al., 2021b; Zhang et al., 2022). The
recently proposed Aspect Sentiment Quads Predic-
tion (ASQP) extends ABSA by identifying four
elements: the aspect, its category, the associated
opinion, and the sentiment polarity. One line of
research explores it by incorporating syntax and se-
mantics to assist models in addressing this task (Su
et al., 2025).

With the advent of pre-trained generative mod-
els, methods such as GAS (Zhang et al., 2021b)
and OTG (Bao et al., 2022) have been developed
to address ASQP in an end-to-end manner, lever-
aging the power of generative models to predict
all components simultaneously (Ma et al., 2024).
These approaches reformulate ASQP as a sequence-
to-sequence problem, allowing the model to pre-
dict all elements simultaneously. Recently, the
rise of LLMs has further advanced ASQP. Previ-
ous work, such as Zhang et al. (2024b), utilized
LLMs as scoring mechanisms to generate pseudo-
labeled data for data augmentation. In our work,
we simplify this process. Since LLMs are already
strong scorers (Zhang et al., 2024b), we propose di-
rectly leveraging them with the guide of supervised
SLMs to predict the final answers without addi-
tional domain-specific, unlabeled data and addi-
tional computational costs to retrain the supervised
model.

2.2 In-context Learning Methods
In-Context Learning (ICL) is a practical approach
for using LLMs like GPT-4 in tasks with limited
labeled data (Brown et al., 2020; Kojima et al.,
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Figure 2: Illustration about the ASQP task and our framework. (a) shows a case of the ASQP task; (b) demonstrates
the flowchart of our proposed framework for aligning a black-box LLM through supervised SLMs for ASQP.

2022). By providing examples directly in the in-
put, ICL allows the model to make predictions
without needing to retrain, making it useful for
zero-shot and few-shot tasks. However, ASQP
introduces unique challenges. It requires identi-
fying complex relationships, following predefined
categories, and ensuring outputs match human an-
notations. Simply applying ICL often produces
inconsistent predictions because it depends heav-
ily on the model’s existing knowledge, which may
not be well-suited to the task (Zhang et al., 2024a).
Recent advancements, such as retrieval-augmented
generation (Lewis et al., 2020; Liu et al., 2022)
and knowledge-enhanced context methods (Yang
et al., 2024b; Ma et al., 2023; Xu et al., 2024;
Shen et al., 2023) address this by integrating task-
specific knowledge retrieval into ICL, improving
alignment with human preferences. These develop-
ments highlight promising directions for enhancing
LLM-based in-context learning in complex struc-
tured prediction tasks.

Our framework differs from traditional ASQP
and ICL methods by combining LLMs for predic-
tion with supervised SLMs for dynamic guidance.
Unlike ASQP methods that use small models (e.g.,
T5) for prediction and large models only for of-
fline data augmentation, our framework enables
dynamically interaction. In contrast to ICL meth-
ods that rely on static prompts without supervision,
our framework provides adaptive inference.

3 Methods

In this section, we first introduce the aspect sen-
timent quad prediction problem definition, then
quantitatively analyze the zero-shot black-box
LLMs compared with supervised SLM. Finally,
based on the insights of the analysis, we explore
aligning the black-box LLMs through supervised
and reinforcement-enhanced context for aspect sen-
timent quad prediction as shown in Figure 2(b).

3.1 Problem Definition
Aspect sentiment quad prediction is a fine-grained
task in aspect-based sentiment analysis that aims
to extract and classify quadruples. Formally, given
an input text T = {w1, w2, . . . , ws}, where wi

represents the i-th token in a sequence of s tokens,
the aspect sentiment quad prediction task aims to
extract a set of quadruples:

Q = {(ai, ci, oi, si) | i = 1, 2, . . . , q}, (1)

where ai is the aspect term, ci is the prede-
fined category, oi is the opinion term, and si ∈
{positive, neutral, negative} is the sentiment polar-
ity associated with the aspect. The number of
quadruples q depends on the content of the input
text. If ai and oi are implicit, then ai = NULL
and oi = NULL. The ASQP task requires a model
to predict the set Q for any given input text T
while maintaining alignment between the extracted
aspects, categories, opinions, and sentiments as
shown in Figure 2(a).
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3.2 Zero-Shot LLMs vs. Supervised SLMs

This section provides a quantitative analysis of the
phenomenon that LLMs struggle with ASQP, while
supervised small models perform better. It also
shows that supervised small models sampling mul-
tiple outputs can effectively cover correct answers.

We use Top@1 and Top@10 as evaluation met-
rics to compare the effectiveness of SLMs with
zero-shot LLMs. Top@1 measures the F1-score
of the model’s first prediction, while Top@10
considers whether the correct answer is present
within the top 10 predictions. Figure 3 com-
pares the average F1-score of zero-shot LLM,
Top@1 (SLM), and Top@10 (SLM) across var-
ious datasets. Specifically, we select two power-
ful foundation models, as shown in Figure 3 (a)
and (b), which can be deployed on a consumer-
grade GPU as the SLM, while using the commonly
adopted GPT-4o-mini as the LLM. The results
show that zero-shot LLM perform poorly, while
Top@1 predictions from supervised SLMs provide
moderate improvements. In contrast, Top@10 pre-
dictions from SLMs achieve significantly higher
F1-scores, aligning with earlier observations. This
finding demonstrates that SLMs, by generating
multiple outputs, can effectively cover correct an-
swers aligned with human preferences.

Motivated by these findings, we propose aligning
the powerful but less task-specific LLM through in-
context learning using supervised SLM-generated
candidate answers. Specifically, instead of di-
rectly prompting the LLM for open-domain an-
swers, we prompt it to select the best answer
from a set of SLM-generated candidates. These
candidates inherently encode human-preferred re-
sponses, thereby bridging the alignment gap be-
tween the LLM’s outputs and human expectations.

Next, we introduce our proposed two-stage
framework, which leverages SLM-generated out-
puts to effectively guide and align the LLM.

3.3 Stage-1: Supervised Context

In-context learning refers to the capability of a
model to infer patterns or generate answers based
on the input prompt, without explicit parameter
updates. Our framework begins by training a su-
pervised SLM on labeled data to learn human pref-
erences and act as a candidate answers generator
of the given samples. Specifically, we fine-tune
the SLM with supervision and then use it to per-
form multiple samplings with a high-temperature
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Figure 3: Analysis of the supervised SLMs using Top@1
and Top@10 metrics.

setting. The sampled outputs are subsequently used
as candidate answers for in-context learning in a
black-box LLM.

Formally, let D = {(xi, yi)}Di=1 represent the
test dataset, where xi is an input, and yi is the
corresponding ground truth. Given an test in-
put xi, a supervised SLM generates candidate an-
swers Ai = {a1i , . . . , ani }, where i ∈ [1..|D|] and
n ∈ [1..N ]. N is empirically set as 10. Then, the
probability of the LLM generating the answer yi
by our method is defined as:

pLLM (yi | I∗, Ai, xi) , (2)

where I∗ represents a specific instruction guiding
the LLM to identify the most suitable answer.

3.4 Stage-2: Reinforcement-Enhanced
Context

Reinforcement learning methods, such as Direct
Preference Optimization (Rafailov et al., 2023)
and Proximal Policy Optimization (Schulman
et al., 2017), have demonstrated their effective-
ness in fine-tuning models based on reward sig-
nals (Ouyang et al., 2022; Anthropic, 2024). How-
ever, these approaches require updating model pa-
rameters, making them unsuitable for black-box
LLMs where parameter access is restricted.

To address this limitation, we propose to build
reinforcement-enhanced context. Specifically, we
first train a reward model to guide the reinforce-
ment process. The training data for the reward
model is constructed as follows: we use the super-
vised SLM trained in the initial stage to perform
sampling on the training set to generate candidate
answers. These candidates are then provided to the
black-box LLM for predictions on the training set.
Incorrect answers from the LLM are paired with
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the corresponding ground-truth answers to form a
labeled dataset containing both positive and nega-
tive examples, which is subsequently used to train
the reward model.

Once the reward model is trained, it evalu-
ates the outputs of the black-box LLM to refine
candidate answers. Formally, for each test in-
put xi, the LLM generates multiple predictions
M = {y1i , . . . ymi }. The reward model then evalu-
ates each pair {xi, ymi } and assigns a reward score
Rθ(xi, y

m
i ) for each ymi ∈ M , where |M | is empir-

ically set as 10.
In stage-2, the reward model outputs statements

such as "the answer is X." and we focus on the
logit at the position X corresponding to the word
"right" to determine correctness. Specifically, we
maintain an answer only when the logit of the word
"right" exceeds 0.8. This threshold (τ = 0.8) is
empirically set to ensure that the reward model
confidently recognizes the answer as correct. If
the logit is below 0.8, we classify the answer as
incorrect and disregard it as shown in Figure 4.

Formally, the new candidates with scores above
a predefined threshold τ is defined:

ami = {ymi |Rθ({xi, ymi }) ≥ τ}, (3)

where τ is the predefined threshold.
The selected candidates are added to the in-

context candidate answers A∗
i , forming an updated

candidate set:

A∗
i = {a1i , . . . , ani , an+1

i , . . . , a
|M |
i }. (4)

This process is iterative, refining the candidate
examples over multiple steps to improve alignment
with the task objectives. At each iteration t, the

Datasets
Train Dev Test

#S #Q #S #Q #S #Q

ACOS-Laptop 2934 4172 326 440 816 1161
ACOS-Rest 1530 2484 171 261 583 916
Rest-15 834 1354 209 347 537 795
Rest-16 1264 1989 316 507 544 799

Table 1: Statistics of four ASQP datasets (Cai et al.,
2021a; Zhang et al., 2021a). #S and #Q represent the
number of sentences and quads.

candidate set is updated as follows:

A∗
i [t+ 1] = A∗

i [t] ∪ {aT [t]+1
i [t], a

T [t]+2
i [t],

. . . , a
T [t]+∆T [t]
i [t]},

(5)

where T [t] is the number of candidates at iteration t,
and ∆T [t] represents the number of newly selected
candidates in that iteration.

The newly selected candidates at iteration t are
defined as:

aki [t] = {y∗i |Rθ({xi, y∗i }) > τ},
∀k ∈ {T [t] + 1, . . . , T [t] + ∆T [t]}.

(6)
Finally, the probability of the LLM generating

the correct answer yi under the refined candidate
set is defined as:

pLLM(yi | I∗, A∗
i [X ], xi), (7)

where X denotes the total number of iterations,
empirically set to 2.

4 Experiments

In this section, we introduce our experimental setup
and implementation details, present our frame-
works’ performance on several standard datasets
compared to competitive baselines.

4.1 Setup

We conduct experiments on four aspect sentiment
quad prediction datasets: ACOS-Laptop, ACOS-
Restaurant, Rest15, and Rest16. These datasets are
based on the SemEval Challenges (Pontiki et al.,
2015, 2016), while the quad-level annotations are
introduced in Cai et al. (2021a) and Zhang et al.
(2021b). Table 1 provides detailed statistics for
each dataset, including the number of sentences (S)
and quads (Q) in the train, development, and test
splits.
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Methods LLMs
F1-score (↑)

ACOS-Rest ACOS-Laptop Rest-15 Rest-16 Avg.

In-context Learning
ZERO-SHOT (Brown et al., 2020) GPT4O-MINI 31.28 11.18 25.24 34.31 25.50
ZERO-SHOT COT (Kojima et al., 2022) GPT4O-MINI 23.01 7.56 21.55 26.73 19.71
FEW-SHOT(N=5) (Brown et al., 2020) GPT4O-MINI 32.76 13.69 30.28 35.39 28.03
MAJORITY-VOTE(N=5, K=8) GPT4O-MINI 34.09 15.22 31.62 36.40 29.33
RETRIEVAL-AUGMENTED(N=5) GPT4O-MINI 42.15 21.87 38.46 41.27 35.94

Supervised Learning w/o LLM
EXTRACT-CLASSIFY (Cai et al., 2021a) — 38.54 35.80 52.96 44.61 42.98
GAS (Zhang et al., 2021b) — 58.63 43.07 46.57 57.55 51.46
DLO (Hu et al., 2022b) — 59.18 43.60 48.48 59.79 52.76
ILO (Hu et al., 2022b) — 58.69 44.35 49.05 59.32 52.85
MVP (Gou et al., 2023) — 61.54 43.92 51.04 60.39 54.22
MUL (Hu et al., 2023) — 60.53 44.01 49.75 60.47 53.69

Supervised Learning w/ LLM
SCORER (Zhang et al., 2024b) GPT4 62.47 46.01 51.74 63.51 56.41
SUPERCONTEXT* (Yang et al., 2024b) GPT4O 61.43 41.28 52.17 62.48 54.34
SCORER-GAS (Zhang et al., 2024b) GPT4 61.44 45.19 50.38 61.08 54.52
SCORER-GAS* GPT4 61.28 44.57 49.63 60.49 53.99

+ STAGE-1 GPT4O 62.86 45.72 51.88 61.77 55.56
+ STAGE-1 GPT4O-MINI 62.50 44.87 51.56 61.58 55.13
+ STAGE-1 & STAGE-2 GPT4O-MINI 63.58 45.22 52.34 62.88 56.01

QWEN2.5 (Yang et al., 2024a) — 62.03 43.12 52.89 63.30 55.34
+ STAGE-1 GPT4O 64.67 44.78 54.22 65.37 57.09
+ STAGE-1 GPT4O-MINI 64.41 43.48 53.85 64.97 56.68
+ STAGE-1 & STAGE-2 GPT4O-MINI 66.78 45.68 55.94 66.83 58.81

Table 2: Performance comparison of different methods on ACOS-Rest, ACOS-Laptop, Rest-15, and Rest-16
datasets. The final column shows the average F1-Score across all datasets. * denotes the method we reproduced.

In this section, we select two powerful founda-
tion models (T5-large, Qwen-2.5) that can be de-
ployed on a consumer-grade GPU (e.g., NVIDIA
RTX 3090, 4090) as the SLM. Specifically, we
use SCORER-GAS (Zhang et al., 2024b), which
is based on T5-large and additionally trained with
pseudo-labeled data generated by the LLMs, and
7B-Instruct version (Yang et al., 2024a) for LoRA-
based (Hu et al., 2022a) supervised fine-tuning.
Additionally, the 0.5B-Instruct version is full-
parameter fine-tuned to serve as the reward model.
For black-box LLMs, we include the commonly
used GPT-4o and GPT-4o-mini. Since the or-
der of options may influence the experimental re-
sults (Pezeshkpour and Hruschka, 2024), we report
results averaged over three runs for experiments
involving candidate selection, with the candidate
answers randomly shuffled in each run. Thus, due
to resource constraints, we perform the complete
experimental pipeline only on GPT-4o-mini.

For baseline comparison, we evaluate sev-
eral commonly used supervised learning meth-
ods (Yang et al., 2024a; Cai et al., 2021a; Hu et al.,
2022b; Gou et al., 2023; Hu et al., 2023) as well as

in-context learning techniques (Brown et al., 2020;
Wang et al., 2023; Kojima et al., 2022; Liu et al.,
2022; Yang et al., 2024b). The baseline results
in the supervised learning w/o LLM section are
derived from Zhang et al. (2024b).

4.2 Main Results

As shown in Table 2, simply relying on in-context
learning fails to effectively guide LLMs output an-
swers that align with human expectations and thus
have a poor performance. On the other hand, su-
pervised fine-tuning with human-annotated labels
allows models to learn the preferred types of pre-
dictions efficiently, resulting in better performance.
Moreover, leveraging supervised models and LLMs
leads to further improvements, highlighting the po-
tential of leveraging LLMs for this task. Notably,
SCORER-GAS based on our framework achieves
competitive results with SCORER (Zhang et al.,
2024b) relying on GPT-4o-mini and requiring
no additional data for training a AI-reranker. Fur-
thermore, as task performance improves, achieving
further gains becomes increasingly difficult. While
Qwen2.5-Instruct already performs well, our frame-
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Methods Rest Laptop Rest15 Rest16

Zero-shot 28.74 10.18 24.33 28.16
Same 62.14 43.10 53.12 63.81
Ours (N = 5) 63.78 42.82 53.35 64.12
Ours (N = 10) 64.41 43.48 53.85 64.97
Ours (N = 20) 64.52 43.44 53.67 64.88

Table 3: Performance comparison of different methods
across datasets. Bold values indicate the best perfor-
mance for each dataset. N denotes the number of candi-
date answers generated by SLM.

work enhances it even further, demonstrating the
effectiveness of our framework. Surprisingly, Su-
perContext (Yang et al., 2024b) still has certain
limitations in addressing the ASQP task. A possi-
ble reason is that it provides only a single answer
generated by the SLM in the prompt, leaving the
search space for the LLM too broad. The results in-
dicate that our framework by integrating supervised
signals of SLM into context for guiding black-box
LLMs demonstrates significant improvements and
paves a new way to combine LLMs and supervised
SMLs for ASQP.

5 Analysis and Discussion

The experiments showed that while Qwen2.5 had
a Top@1 performance similar to SCORER-GAS,
its larger gap between Top@1 and Top@10 led
to better results within our framework. Moreover,
leveraging PEFT techniques like LoRA (Hu et al.,
2022a) and well-deigned inference framework like
vLLM (Kwon et al., 2023), it can achieve T5-large-
level GPU efficiency. Therefore, we consider it a
more promising SLM backbone and select it for
further analysis in this section.

5.1 Impact of Candidate Answer Strategy
We evaluate the impact of different candidate an-
swer strategies on model performance, as shown
in Table 3. The methods include Zero-shot (no
options), Same (replicates Top@1 prediction at 10
times), and Ours. The results show that methods
with candidate answers outperform Zero-shot, high-
lighting that providing supervised context helps
narrow the search space of LLMs, leading to more
accurate predictions. Compared to N = 5 and
N = 20, N = 10 achieved relatively better re-
sults. Therefore, we select the number of candidate
answers to ten. The reason why the performance
does not improve significantly when increasing N
beyond ten might be that the outputs of the SLM re-
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Figure 5: Influence of different answer selection strate-
gies. “Maj” refers to the Majority-vote strategy, where
“Maj@10” indicates the selection of the majority answer
from 10 candidate answers.

main highly similar. Additionally, a longer prompt
resulting from larger number of candidate answers
could negatively impact the LLM’s judgment.

5.2 Influence of Answer Selection Strategy
In this section, we compare our proposed frame-
work with different answer selection strategies.
“Random” selects the final answer randomly from
the candidate answers. “Reward” refers to first
filtering the 10 candidate outputs using a reward
model, and then applying majority voting over the
filtered candidates to obtain the final answer, with-
out using the LLM. The majority-vote approach
selects the answer that appears most frequently
among the candidates. our framework uses su-
pervised context (S1) and reinforcement-enhanced
context (S1&S2) along with LLMs to make the
final prediction.

Majority-vote is a simple but effective baseline,
as it aggregates repeated predictions to reflect the
performance of the supervised model. As demon-
strated in Figure 5, majority-vote achieves strong
results across all datasets, while increasing the
number of aggregated predictions from Maj@10 to
Maj@20 only lead to a marginal improvement. Ad-
ditionally, the results of “Reward” show that this ap-
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Figure 6: Analysis of the iterative alignment of the
LLM. Maj@N indicates the selection of the majority
answer from the current candidate answer pool. S1 and
S2 denotes stage-1 and stage-2.

proach performs comparably to the Maj@10 base-
line, suggesting that a simple combination of multi-
ple models does not inherently guarantee improve-
ments. However, our method surpasses majority-
vote and other methods by combining supervised
context and reinforcement-enhanced context with
LLM. This highlights the advantages of our frame-
work and the essence of the LLM. The enhanced
performance of our method indicates that combin-
ing supervised context with LLMs provides more
nuanced and effective means of aligning model
outputs with human preferences, compared to the
straightforward aggregation strategy employed by
majority-vote. This demonstrates the advantage
of our approach in effectively reducing the search
space and incorporating confidence signals from
supervised models to guide the final predictions.

5.3 Analysis of Iterative Alignment

In this section, we utilize the ACOS-Rest dataset
as the benchmark to explore the impact of rein-
forcement context on LLM outputs across multiple
iterations.

As shown in Figure 6, methods incorporating
Stage-2 consistently outperform other methods at
each iteration. Furthermore, as the Reinforcement
Context evolves in each iteration, both the Maj@N
(S1&S2) and Maj@N (S1) improve, indicating that
our framework effectively increases the proportion
of correct answers among the candidate answers.
However, the gap between Maj@N (S1&S2) and
Maj@N (S1) suggests that there are still many un-
certain candidates. Our proposed reward model
helps filter out these uncertain candidate answers,

Case Study

ZERO-SHOT
Task Definition: {Task Definition}
Input: This is a great place to get a delicious meal
Final output:
((meal, FOOD#QUALITY, delicious, positive),
(a place, RESTAURANT#GENERAL, great, positive)) ✗

OURS (Stage-1)
Task Definition: {Task Definition}
Input: This is a great place to get a delicious meal
Candidate answers:
a) ((meal, FOOD#QUALITY, delicious, positive),

(place, RESTAURANT#GENERAL, great, positive)) ×3
b) (meal, FOOD#QUALITY, delicious, positive) ×4
c) (place, RESTAURANT#GENERAL, great, positive) ×3
Final output:
(place, RESTAURANT#GENERAL, great, positive) ✗

OURS (Stage-1 & Stage-2)
Task Definition: {Task Definition}
Input: This is a great place to get a delicious meal
Candidate answers:
a) ((meal, FOOD#QUALITY, delicious, positive),

(place, RESTAURANT#GENERAL, great, positive)) ×11
b) (meal, FOOD#QUALITY, delicious, positive) ×5
c) (place, RESTAURANT#GENERAL, great, positive) ×8
Final output:
((meal, FOOD#QUALITY, delicious, positive),
(place, RESTAURANT#GENERAL, great, positive)) ✓

Table 4: An example of case study. The symbol ×X
(e.g., ×3) indicates the number of identical candidate
answers.

leading to better performance in Maj@N (S1&S2).
Notably, skipping the Stage-2 leads to performance
degradation in Top@1. This is likely due to low-
precision candidate answers affecting LLM judg-
ment or rapid context growth causing the LLM
misunderstanding of the instructions.

5.4 Case Study

In this section, we present a case study, where Ta-
ble 4 illustrates one of the most common cases in
which the proposed framework has led to improve-
ments. As shown in Table 4, both the zero-shot
method and Ours (Stage-1) produced outputs that
appeared correct but did not align with human pref-
erences. However, by leveraging a reward model
to construct a refinement context, our framework
was able to preserve more of the correct answers
in the candidate pool. This iterative refinement
process enabled the model to correct the error and
output the correct prediction, thus demonstrating
the effectiveness of our framework.
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6 Conclusion

We proposes a framework that integrates super-
vised SLMs with black-box LLMs to address
the challenges of aspect sentiment quad predic-
tion. Motivated by the complementary strengths
of SLMs in capturing task-specific knowledge and
LLMs in generalization, we designed a framework
to align LLM outputs with human preferences
through in-context learning and iterative refine-
ment. Experimental results demonstrate that our
framework significantly improves aspect sentiment
quad prediction performance compared with in-
context learning and supervised learning methods.
In the future, we will explore extending this align-
ment framework to other fine-grained sentiment
analysis tasks and further enhancing its adaptabil-
ity to diverse datasets and tasks.

7 Limitations

Despite its effectiveness, our framework has certain
limitations. First, the in-context learning process
heavily relies on carefully designed instructions
and high-quality candidate answers from SLMs.
If these inputs are not well-crafted, the LLMs
may fail to align with human preferences. Sec-
ond, while the framework allows flexible combi-
nations of large and small models, it is not effec-
tive when the smaller model is underperformant,
such as a simple perceptron, which cannot pro-
vide meaningful guidance for alignment. However,
we observe that as long as the SLM possesses a
certain level of ASQP capability, the lower its per-
formance, the greater the performance gain from
our framework. Third, our framework involves
multiple sampling steps, which may increase ad-
ditional inference time. However, this issue can
be effectively mitigated by adopting efficient infer-
ence frameworks (e.g., vLLM, SGLang). Future
research could explore optimizing the efficiency of
in-context learning setups and developing methods
to enhance the robustness of instruction designs.
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A Experiment Details

This section outlines our experimental setup. We
describe the prompt designs across different set-
tings, the implementation details of model training
and evaluation, and an analysis of computational
cost.

A.1 Prompt Details

This section provides details about the prompts
used in our experiments, covering both zero-shot
and few-shot settings for the laptop and restaurant
domain.

The specific prompts are presented in Table 5, Ta-
ble 6, Table 7, Table 8. Since the few-shot and zero-
shot methods lack sufficient knowledge of ASQP,
we incorporate additional knowledge and examples
to provide a more comprehensive understanding
of the ASQP task. For the Retrieval-Augmented
method, we used the LangChain framework to im-
plement the process. Specifically, LangChain was
utilized to build a retrieval pipeline, where a dense
retriever searched for relevant labeled examples
from training dataset. The retrieved examples are
then integrated into the prompt to guide the gener-
ation process. For the CoT method, we followed
prior studies (Kojima et al., 2022) and added "Let’s
think step by step" after the zero-shot prompt. Ad-
ditionally, our method incorporates candidate an-
swers generated by the supervised model after the
zero-shot prompt as shown in Table 9 and Table 10.

A.2 Implementation Details

In our experiments, all language models used a
temperature of 0.7 for Top@10 candidate answers
sampling and 0.2 for Top@1 candidate answers
sampling. To enhance diversity in LLM-generated
outputs, we slightly adjusted the generation order
format of ASQP quads in the instruction during
sampling, inspired by the previous work (Hu et al.,
2022b).

We employ Qwen2.5-7B-Instruct (Yang
et al., 2024a) and SCORER (Zhang et al.,
2024b) as our primary supervised SLM and
Qwen2.5-0.5B-Instruct act as the reward model.
AdamW (Loshchilov and Hutter, 2018) is used
as the optimizer, with a learning rate of 1× 10−4

for LoRA-based supervised fine-tuning (Hu et al.,
2022a) and 1 × 10−5 for the full-parameters
supervised fine-tuning. During training, we
employ early stopping based on the development
set performance

Previous research (Pezeshkpour and Hruschka,
2024) has shown that the performance of LLM
in multiple choice tasks can be influenced by the
order of options. Therefore, for experiments involv-
ing candidate selection, we report results averaged
over three runs, with candidate answers randomly
shuffled in each run.

A.3 Computational Cost Analysis
We conduct an analysis based on the ACOS-rest
test set, which contains 583 samples. The evalua-
tion considers three stages, corresponding to dif-
ferent average numbers of candidate answers: 10
in Stage-1, 17 in Stage-2-1, and 25 in Stage-2-2.
Stage-1 refers to the process where the LLM selects
and generates answers based on 10 candidate an-
swers provided by the SLM, requiring 10 iterations.
Stage-2-1 denotes the LLM generation process con-
ditioned on both the reward-filtered answers and
the original 10 SLM-generated candidates, also
repeated 10 times. Stage-2-2 corresponds to the
final prediction step, where the model generates
the output based on the preceding rounds of candi-
date answer generation and filtering, and this step
is performed only once.

The model used is GPT-4o-mini, with pricing
set at $0.15 per million input tokens and $0.60 per
million output tokens. Cached inputs are not con-
sidered in this estimation. Given that our prompts
contain substantial token overlap, the actual cost
in large-scale deployments would likely be lower
than the values reported here.

For Stage-1, an average of 589 input tokens and
38 output tokens were consumed per sample, result-
ing in a total cost of $0.066 for the entire set and
$0.66 for ten times sampling. Stage2 consists of
two iterative steps. In the first step, Stage-2-1, the
average input tokens increased to 799 per sample,
with the total cost rising to $0.083 and $0.83 for ten
times sampling. In the subsequent step, Stage-2-2,
the average input token count grew to 1028, lead-
ing to a total cost of $0.103. The average output
tokens remained constant at 38 across all measured
stages. The values 10, 17, and 25 represent the
upper-bound averages of candidate answers in each
stage. Summing the costs across all three stages,
the total upper-bound cost for processing the full
ACOS-rest dataset once by our framework is ap-
proximately $1.59.
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Zero-shot example of restaurant domain

Task Definition:
Aspect-Based Sentiment Analysis aims to extract the opinion target described by an entity and its aspect (collectively called aspect) from reviews and identify
the sentiment toward the aspect.
Pre-defined Categories: Categories must follow the A#B format, where A is one of [’RESTAURANT’, ’DRINKS’, ’SERVICE’, ’FOOD’, ’AMBIENCE’,
’LOCATION’], and B is one of [’GENERAL’, ’STYLE_OPTIONS’, ’QUALITY’, ’PRICES’, ’MISCELLANEOUS’]. Each category must strictly adhere to
these sets, e.g., FOOD#QUALITY.
Input
Instruction: From the restaurant review, identify all aspects, their opinion words, category, and sentiment (’positive’, ’negative’, ’neutral’).
Answer Format: Your final answer can include multiple aspect-opinion pairs, formatted as follows:
"Final Answer: [’aspect_term1’, ’category1’, ’opinion_term1’, ’sentiment1’], [’aspect_term2’, ’category2’, ’opinion_term2’, ’sentiment2’] ...".If an aspect or
opinion term is implicit, use ’NULL’ to represent it.
Input: "Yum !"

Table 5: Zero-shot example of restaurant domain

Few-shot example of restaurant domain

Task Definition:
Aspect-Based Sentiment Analysis aims to extract the opinion target described by an entity and its aspect (collectively called aspect) from reviews and identify
the sentiment toward the aspect.
Pre-defined Categories: Categories must follow the A#B format, where A is one of [’RESTAURANT’, ’DRINKS’, ’SERVICE’, ’FOOD’, ’AMBIENCE’,
’LOCATION’], and B is one of [’GENERAL’, ’STYLE_OPTIONS’, ’QUALITY’, ’PRICES’, ’MISCELLANEOUS’]. Each category must strictly adhere to
these sets, e.g., FOOD#QUALITY.
Examples
The following are several examples to help you learn how to extract quadruples:
Input: "after all that , they complained to me about the small tip ."
Final Answer: [’NULL’, ’SERVICE#GENERAL’, ’complained’, ’negative’]
Input: "food was okay , nothing great ."
Final Answer: [’food’, ’FOOD#QUALITY’, ’okay’, ’neutral’], [’food’, ’FOOD#QUALITY’, ’nothing great’, ’neutral’]
Input: "i had to ask her three times before she finally came back with the dish ive requested ."
Final Answer: [’NULL’, ’SERVICE#GENERAL’, ’NULL’, ’negative’]
Input: "went on a 3 day oyster binge , with fish bringing up the closing , and i am so glad this was the place it o trip ended , because it was so great !"
Final Answer: [’fish’, ’RESTAURANT#GENERAL’, ’great’, ’positive’], [’NULL’, ’RESTAURANT#GENERAL’, ’glad’, ’positive’]
Input: "ive asked a cart attendant for a lotus leaf wrapped rice and she replied back rice and just walked away ."
Final Answer: [’cart attendant’, ’SERVICE#GENERAL’, ’NULL’, ’negative’]
Input
Instruction: From the restaurant review, identify all aspects, their opinion words, category, and sentiment (’positive’, ’negative’, ’neutral’).
Answer Format: Your final answer can include multiple aspect-opinion pairs, formatted as follows:
"Final Answer: [’aspect_term1’, ’category1’, ’opinion_term1’, ’sentiment1’], [’aspect_term2’, ’category2’, ’opinion_term2’, ’sentiment2’] ...".If an aspect or
opinion term is implicit, use ’NULL’ to represent it.
Input: "Yum !"

Table 6: Few-shot example of restaurant domain

Zero-shot example of Laptop domain

Task Definition:
Aspect-Based Sentiment Analysis aims to extract the opinion target described by an entity and its aspect (collectively called aspect) from reviews and identify
the sentiment toward the aspect.
Pre-defined Categories: Categories must follow the A#B format, where A is one of [’LAPTOP’, ’HARD_DISC’, ’OS’, ’KEYBOARD’, ’HARDWARE’,
’PORTS’, ’SUPPORT’, ’COMPANY’, ’MULTIMEDIA_DEVICES’, ’POWER_SUPPLY’, ’DISPLAY’, ’BATTERY’, ’FANS&COOLING’, ’CPU’, ’MEM-
ORY’, ’WARRANTY’, ’OPTICAL_DRIVES’, ’GRAPHICS’, ’SOFTWARE’, ’SHIPPING’, ’MOTHERBOARD’, ’MOUSE’, ’Out_Of_Scope’], and B is one
of [’PRICE’, ’DESIGN_FEATURES’, ’OPERATION_PERFORMANCE’, ’USABILITY’, ’GENERAL’, ’QUALITY’, ’PORTABILITY’, ’CONNECTIVITY’,
’MISCELLANEOUS’]. Each category must strictly adhere to these sets, e.g., LAPTOP#GENERAL.
Input
Instruction: From the laptop review, identify all aspects, their opinion words, category, and sentiment (’positive’, ’negative’, ’neutral’).
Answer Format: Your final answer can include multiple aspect-opinion pairs, formatted as follows:
"Final Answer: [’aspect_term1’, ’category1’, ’opinion_term1’, ’sentiment1’], [’aspect_term2’, ’category2’, ’opinion_term2’, ’sentiment2’] ...".If an aspect or
opinion term is implicit, use ’NULL’ to represent it.
Input: "the unit cost $ 275 to start with , so it is not worth repairing ."

Table 7: Zero-shot example of laptop domain.
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Few-shot example of laptop domain

Task Definition:
Aspect-Based Sentiment Analysis aims to extract the opinion target described by an entity and its aspect (collectively called aspect) from reviews and identify
the sentiment toward the aspect.
Pre-defined Categories: Categories must follow the A#B format, where A is one of [’LAPTOP’, ’HARD_DISC’, ’OS’, ’KEYBOARD’, ’HARDWARE’,
’PORTS’, ’SUPPORT’, ’COMPANY’, ’MULTIMEDIA_DEVICES’, ’POWER_SUPPLY’, ’DISPLAY’, ’BATTERY’, ’FANS&COOLING’, ’CPU’, ’MEM-
ORY’, ’WARRANTY’, ’OPTICAL_DRIVES’, ’GRAPHICS’, ’SOFTWARE’, ’SHIPPING’, ’MOTHERBOARD’, ’MOUSE’, ’Out_Of_Scope’], and B is one
of [’PRICE’, ’DESIGN_FEATURES’, ’OPERATION_PERFORMANCE’, ’USABILITY’, ’GENERAL’, ’QUALITY’, ’PORTABILITY’, ’CONNECTIVITY’,
’MISCELLANEOUS’]. Each category must strictly adhere to these sets, e.g., LAPTOP#GENERAL.
Examples
The following are several examples to help you learn how to extract quadruples:
Input: "acer wants $ 170 to just look at it then add the repair cost on top of that ."
Final Answer: [’acer’, ’SUPPORT#PRICE’, ’NULL’, ’neutral’]
Input: "update : i repaired it myself for $ 12 ."
Final Answer: [’NULL’, ’LAPTOP#GENERAL’, ’NULL’, ’neutral’]
Input: "first one that they shipped was obviously defective , super slow and speakers were garbled ."
Final Answer: [’NULL’, ’SHIPPING#GENERAL’, ’defective’, ’negative’], [’NULL’, ’SHIPPING#GENERAL’, ’slow’, ’negative’], [’speakers’, ’MULTIME-
DIA_DEVICES#GENERAL’, ’garbled’, ’negative’]
Input: "pro : light , reasonable price , fast ."
Final Answer: [’NULL’, ’LAPTOP#DESIGN_FEATURES’, ’light’, ’positive’], [’NULL’, ’LAPTOP#OPERATION_PERFORMANCE’, ’fast’, ’positive’],
[’price’, ’LAPTOP#PRICE’, ’reasonable’, ’positive’]
Input: "overall , it is not horrible , but i wouldn ’ t purchase this model again ."
Final Answer: [’model’, ’LAPTOP#GENERAL’, ’not horrible’, ’negative’]
Input
Instruction: From the laptop review, identify all aspects, their opinion words, category, and sentiment (’positive’, ’negative’, ’neutral’).
Answer Format: Your final answer can include multiple aspect-opinion pairs, formatted as follows:
"Final Answer: [’aspect_term1’, ’category1’, ’opinion_term1’, ’sentiment1’], [’aspect_term2’, ’category2’, ’opinion_term2’, ’sentiment2’] ...".If an aspect or
opinion term is implicit, use ’NULL’ to represent it.
Input: "the unit cost $ 275 to start with , so it is not worth repairing ."

Table 8: Few-shot example of laptop domain

Our instruction for restaurant domain

Task Definition:
Aspect-Based Sentiment Analysis aims to extract the opinion target described by an entity and its aspect (collectively called aspect) from reviews and identify
the sentiment toward the aspect.
Pre-defined Categories: Categories must follow the A#B format, where A is one of [’RESTAURANT’, ’DRINKS’, ’SERVICE’, ’FOOD’, ’AMBIENCE’,
’LOCATION’], and B is one of [’GENERAL’, ’STYLE_OPTIONS’, ’QUALITY’, ’PRICES’, ’MISCELLANEOUS’]. Each category must strictly adhere to
these sets, e.g., FOOD#QUALITY.
Instruction:
From the restaurant review, identify all aspects, their opinion words, category, and sentiment (’positive’, ’negative’, ’neutral’).
You will be given several possible answers and the correct answer is highly likely to be among the provided options. Please select the most appropriate option.
Only if you believe none of the options are correct, provide your own answer.
Answer Format:
Your final answer can include multiple aspect-opinion pairs, formatted as follows:
"Final Answer: [’aspect_term1’, ’category1’, ’opinion_term1’, ’sentiment1’], [’aspect_term2’, ’category2’, ’opinion_term2’, ’sentiment2’] ...".
If an aspect or opinion term is implicit, use ’NULL’ to represent it.
Input:
{Input review}
Candidate answers:
{candidate answers}

Table 9: Our instruction for restaurant domain

Our instruction for laptop domain

Task Definition:
Aspect-Based Sentiment Analysis aims to extract the opinion target described by an entity and its aspect (collectively called aspect) from reviews and identify
the sentiment toward the aspect.
Pre-defined Categories: Categories must follow the A#B format, where A is one of {category_a}, and B is one of {category_b}. Each category must strictly
adhere to these sets, e.g., BATTERY#GENERAL.
Instruction:
From the laptop product review, identify all aspects, their opinion words, category, and sentiment (’positive’, ’negative’, ’neutral’).
You will be given several possible answers and the correct answer is highly likely to be among the provided options. Please select the most appropriate option.
Only if you believe none of the options are correct, provide your own answer.
Answer Format:
Your final answer can include multiple aspect-opinion pairs, formatted as follows:
"Final Answer: [’aspect_term1’, ’category1’, ’opinion_term1’, ’sentiment1’], [’aspect_term2’, ’category2’, ’opinion_term2’, ’sentiment2’] ...".
If an aspect or opinion term is implicit, use ’NULL’ to represent it.
{Input review}
Candidate answers:
{candidate answers}

Table 10: Our instruction for laptop domain
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