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Abstract

Large language models are prone to generating
hallucination that deviates from factual infor-
mation. Existing studies mainly focus on de-
tecting the presence of hallucinations but lack
a systematic classification approach, which hin-
ders deeper exploration of their characteris-
tics. To address this, we introduce the concept
of belief state, which quantifies the model’s
confidence in its own responses. We define
the belief state of the model based on self-
consistency, leveraging answer repetition rates
to label confident and uncertain states. Based
on this, we categorize factuality hallucination
into two types: Overconfident Hallucination
and Unaware Hallucination. Furthermore, we
propose BAFH, a factuality hallucination type
detection method. By training a classifier on
model’s hidden states, we establish a link be-
tween hidden states and belief states, enabling
efficient and automatic hallucination type de-
tection. Experimental results demonstrate the
effectiveness of BAFH and the differences be-
tween hallucination types.

1 Introduction

Large Language Models (LLMs) have demon-
strated remarkable capabilities in various Natural
Language Processing tasks (Achiam et al., 2023).
However, there’s a concerning trend where they
exhibit an inclination to generate hallucination (Co-
hen et al., 2023; Ren et al., 2023; Huang et al.,
2025), which makes it risky to deploy LLMs in
practical scenarios. Consequently, accurately de-
tecting and addressing hallucination has become a
significant research challenge (Huang et al., 2025).

Existing LLM hallucination detection methods
mainly focus on identifying factual errors in LLM
outputs, which are commonly referred to as factu-
ality hallucination (Li et al., 2023; Manakul et al.,
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Figure 1: Our proposed two types of factuality halluci-
nation. Red represents incorrect, and green represents
correct.

2023; Liu et al., 2025). For instance, Chern et al.
(2023) utilize external tools for evidence gathering
to detect factual errors. If the model’s output does
not align with evidence, it is considered a potential
hallucination (Manakul et al., 2023; Zhang et al.,
2023a; Azaria and Mitchell, 2023). Another cate-
gory of methods do not rely on external knowledge,
but instead detect hallucination by estimating the
uncertainty of model outputs (Varshney et al., 2023;
Luo et al., 2023; Yao et al., 2024). For example,
MIND (Su et al., 2024) leverages the hidden states
of LLMs for real-time hallucination detection with-
out requiring manual annotations.

Despite significant progress in factuality hallu-
cination detection, existing work still has notable
limitations. Current research primarily focuses on
detecting the presence of factuality hallucination,
with insufficient attention given to the detailed anal-
ysis of specific types of hallucination. A few stud-
ies (Huang et al., 2025; Zhang et al., 2023b) that
have attempted to classify hallucination typically
base on semantic errors (e.g., factual or logical
errors), but they lack a general classification frame-
work and automated methods. These limitations
constrain deeper understanding of the hallucination
mechanisms in LLMs.

Therefore, we focus on factuality hallucination
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and pose the critical questions: "Can factuality
hallucination be categorized into distinct types?
How can we effectively differentiate between these
types of hallucination?"

Existing studies have shown that models exhibit
a degree of self-awareness (Li et al., 2025). Build-
ing on these insights, we observe that models also
display different levels of uncertainty regarding the
hallucinations they produce. We describe this un-
certainty as the model’s belief state and propose a
belief-state-based classification paradigm for fac-
tuality hallucination, as illustrated in Figure 1. We
define belief states by measuring the consistency
across different responses. As analyzed and dis-
cussed in Section 3, we categorize them into two
types: confident state and uncertain state. Halluci-
nations generated by the model in confident belief
state are referred to as Overconfident Hallucina-
tions, while those generated in uncertain belief
state are termed Unaware Hallucinations.

Given these considerations, we developed Belief-
State-Aware Factuality Hallucination Type Detec-
tion (BAFH) method, a lightweight framework that
integrates with Transformer-based LLMs. BAFH
leverages hidden states to determine belief states
and classify hallucination types. In summary, our
contributions are as follows:

• To the best of our knowledge, we are the first
to analyze how model response distributions vary
with self-consistency, and to introduce a novel clas-
sification framework for factuality hallucination,
which divides hallucinations into two types based
on the model’s belief states.

• We propose BAFH, which leverages the hidden
states of large language models to analyze belief
states and detect different types of hallucination.

• BAFH achieves high accuracy on multiple
datasets, while maintaining stability under various
hyperparameter settings. The exploratory experi-
ment suggest possible causes of the two types of
hallucinations and underscore the necessity of clas-
sifying hallucinations.

2 Related Work

Factuality Hallucination Detection Existing
LLM hallucination detection methods primarily
focus on factuality hallucination (Li et al., 2023;
Manakul et al., 2023; Bang et al., 2025) and can be
divided into evidence-based and uncertainty-based
methods. Evidence-based methods utilize external
knowledge sources to verify model outputs. For in-

stance, FACTSCORE (Min et al., 2023) determines
the veracity of long-format text by decomposing
LLM-generated content into atomic facts and cal-
culating the percentage of atomic facts supported
by reliable sources. Uncertainty-based methods
detect hallucination by analyzing the model’s hid-
den states or behavior (Betley et al., 2025). For
example, SAPLMA (Ji et al., 2024) and MIND (Su
et al., 2024) use hidden states to construct classi-
fiers, while Selfcheckgpt (Manakul et al., 2023) de-
tects hallucinations by comparing the consistency
of multiple responses. Although these methods
have shown significant efficacy, they cannot distin-
guish between specific types of hallucinations or
deeply explore the relationship between accuracy
and the model’s confidence in its answers.

Hallucination Classification In early studies,
hallucinations are broadly categorized into intrinsic
and extrinsic hallucinations based on whether the
correctness of the output could be verified against
the source content (Li et al., 2022; Huang et al.,
2023; Ji et al., 2023). Recent research has ex-
panded these classifications to encompass hallu-
cinations in broader contexts. For example, consid-
ering the user-centered interaction emphasized by
LLMs, Huang et al. (2025) classify hallucination
into factuality and faithful hallucination. Faithful
hallucination reflects the logical consistency within
the generated content (Zhang et al., 2023b). Fac-
tuality hallucination refers to outputs containing
factual inaccuracies that can be verified against re-
liable sources. While existing frameworks provide
valuable insights (Zhang et al., 2023b; Huang et al.,
2025), their classification basis is often limited to
task-specific or semantic levels, making them inad-
equate for comprehensively describing the complex
generative behaviors of LLMs. To this end, we pro-
pose a new classification criteria and a detection
method for factuality hallucination types and con-
duct comparative analysis of the characteristics of
different hallucination types.

3 Motivation

In this section, we analyze the repetition count of
model responses. Manakul et al. (2023) point out
that the self-consistency of model responses re-
flects the model’s uncertainty, which we refer to as
belief states. Specifically, we define belief states
as the model’s internal confidence level in its gen-
erated responses, which can be inferred indirectly
through the consistency of repeated outputs. To

9947



Figure 2: The overall process of BAFH

Figure 3: Statistical Analysis of Model Response Con-
sistency for Gemma-2-9b-it on NQOPEN.

quantify belief states, we prompt the model to gen-
erate ten responses for each question and extracted
the answers (as described in Section 4). Then we
record the repetition count of the most frequent
response along with its correctness.

Figure 3 shows that as repetition count increases,
correct responses become more frequent, indicating
that a higher repetition count is generally linked to
greater confidence and accuracy. Moreover, while
most factual errors have a low repetition count,
some still occur with high repetition. This sug-
gests that LLMs may retain high confidence even
when generating hallucinations, implying that not
all hallucinations stem from uncertainty.

Notably, response repetition counts exhibit an
uneven distribution, with higher counts (e.g., 10)
and lower counts (e.g., 1–5) being more common,
while intermediate counts (e.g., 6–8) are relatively
rare. This pattern may reflect a form of metacog-
nitive behavior of LLM, suggesting that it tends to
be either confident (frequent repetition) or uncer-
tain (minimal repetition), rather than distributing
its confidence uniformly across responses (More
details are provided in Appendix A.1). Based on
these observations, we hypothesize that this dis-
tribution may reflect a clustering of the model’s
belief state around two primary modes, which we
refer to as confident state and uncertain state.

Correspondingly, we categorize the hallucinations
arising from these states as Overconfident Hallu-
cinations and Unaware Hallucinations. Section 4
presents our hallucination type detection method.

4 Method

4.1 Overview

We define the task of detecting factuality hallu-
cination types as a binary classification problem:
determining whether a hallucination produced by
a model is an Overconfident Hallucination or an
Unaware Hallucination. To this end, we propose
BAFH consisting of two core modules: a belief
state classifier and an evidence-based hallucination
detection module, as illustrated in Figure 2.

Given a question, BAFH extracts the hidden
states from the LLM during the answer genera-
tion process. The hallucination detection module
employs the method from Min et al. (2023). It re-
trieves passages from external knowledge source
and then prompts an LLM to assess the correctness
of the model’s response. More details are provided
in Appendix D. The belief state classifier employs
a feedforward neural network, which takes the hid-
den states from the generation process as input and
outputs the model’s belief state (confident or un-
certain). BAFH then combines the hallucination
detection result and the belief state to categorize
the hallucination as either an Overconfident Hallu-
cination or an Unaware Hallucination.

4.2 Belief State Classifier

To obtain the model’s belief state, we train a clas-
sifier based on a feedforward neural network. As
shown in Figure 4, we first evaluate the model’s
belief state and construct a training set by associat-
ing belief state labels with hidden states obtained
during answer generation. This training set is then
used to train a model-specific belief state classifier.
Belief State Evaluation Evaluating the belief state
is a crucial step in constructing the training dataset.

9948



Figure 4: Constructing the Belief State Training Dataset

In this paper, we define the belief state as the
model’s confidence level in its own answer, in-
dependent of the question’s answerability or the
correctness of the response. We categorize the
model’s belief state regarding its own answer into
two types: confident state and uncertain state.

Inspired by Kadavath et al. (2022) and Gao et al.
(2025), we determine the belief state by assess-
ing the self-consistency of the model’s answers.
Specifically, for each question q, we obtain multi-
ple answers from the model. Following the practice
of Cheng et al. (2024) and to balance statistical re-
liability with computational efficiency, we set the
number of answers to 10. To automatically process
the free-format answers generated by the model,
inspired by Manakul et al. (2023), we adopt tech-
niques from the Extractive Question Answering
task (Chen et al., 2019). Specifically, we utilize
a DeBERTa-v3-large (He et al., 2021) model fine-
tuned on SQuAD2.0 (Rajpurkar et al., 2018) to
extract core answers from free-format responses.
This process standardizes diverse answer formats
and improves response comparability.

After extracting core answers, we measure an-
swer consistency by calculating the frequency of
repeated responses. We define the frequency of
the most repeated answer a, denoted as freq(a),
as a measure of the model’s confidence in its re-
sponse. The belief state is determined based on the
following formula:

s =

{
scon if freq(a) ≥ δcon
sunc if freq(a) < δunc

where s is the model’s belief state for question q.
To more precisely distinguish belief states, we in-
troduce two thresholds δcon and δunc (δcon > δunc):
if the model generates highly consistent answers
to a question, it indicates that the model has high
confidence and stability in its own answer, corre-
sponding to the confident state (scon). Conversely,
if the answers are dispersed and lack consistency,
it suggests that the model has a high degree of un-
certainty about its own answer, corresponding to
the uncertain state (sunc).

Algorithm 1 BAFH
Require: Question q, LLM Model E, Belief State

Classifier T
Ensure: Hallucination type v: overconfident or

unaware
/* Step 1: Answer Generation and hidden
states Retrieval */

1: a← E(q) // Generate answer a for question
2: H ← HiddenState(E, q, a) // Get hidden

states H
/* Step 2: Hallucination Detection and Belief
State Classification*/

3: r ← HallucinationDetection(q, a) // Detect
hallucination by comparing a with external
knowledge

4: s← T (H) // Classify belief state for a
/* Step 3: Factuality Hallucination Classifi-
cation */

5: if r = "Hallucination" then
6: if s = scon then
7: v ← "Overconfident Hallucination"
8: else if s = sunc then
9: v ← "Unaware Hallucination"

10: end if
11: else
12: return "No Hallucination"
13: end if
14: return v

Training Set Construction To obtain the model’s
hidden states during the generation process, we
concatenate the question with the model’s answer
and extract the hidden states of the i-th token in the
l-th layer, represented as hl,i ∈ Rd, where d is the
dimension of the hidden states. These hidden states
serve as input to the classifier, with the correspond-
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ing belief state si assigned as the label. This forms

a training dataset of N samples
{
hl,ij , sj

}N

j=1
.

Classifier Training The belief state classifier em-
ploys a feedforward neural network with hidden
layer sizes of 256, 128, and 64, all utilizing ReLU
activations. The classifier takes hidden state vec-
tor hl,i ∈ Rd as input and produces a binary label
(confident/uncertain) through a sigmoid-activated
output layer. The classifier does not rely on hy-
perparameters such as temperature or top-k, ensur-
ing robustness and avoiding the resource-intensive
need for multiple question-answering sessions re-
quired by self-consistency methods (Slobodkin
et al., 2023; Su et al., 2024). Given that models,
domains, and prompts influence consistency, we
construct datasets specific to these factors and train
dedicated classifiers accordingly.

To distinguish between overconfident hallucina-
tions and unaware hallucinations, BAFH analyzes
the model’s belief state during answer generation.
The detection framework combines the model’s be-
lief state with the result of hallucination detection
module to determine the factuality hallucination
type. We present the algorithm flow for factuality
hallucination type detection in Algorithm 1.

5 Experimental Setting

5.1 Dataset

To construct the dataset and evaluate the perfor-
mance of BAFH, we considered three existing QA
benchmarks as data sources:

TriviaQA (Joshi et al., 2017) is a reading com-
prehension dataset. Its question-answer pairs can
be used for open-domain question-answer tasks.

NQOPEN (Kwiatkowski et al., 2019) is a ques-
tion answering dataset consisting of real queries
issued to the Google search engine.

ALCUNA (Yin et al., 2023a) is a benchmark to
assess LLMs’ abilities in new knowledge under-
standing.
Evaluation Metrics Our evaluation follows a sim-
ilar approach to Cheng et al. (2024), with modi-
fications to better suit our task. We employ the
following four metrics:

OH (Overconfident Hallucination): The propor-
tion of correctly detected overconfident hallucina-
tions among all overconfident hallucinations.

UH (Unaware Hallucination): The proportion of
correctly detected unaware hallucinations among
all unaware hallucinations.

Truthful Rate: The overall proportion of hallu-
cination types correctly detected.

In addition, we also use AUC (Area Under the
Curve) as an evaluation metric. Note that AUC is
not applicable to prompt-based methods, as they
do not produce continuous confidence scores.

5.2 Baselines
Most prior work focuses on detecting the presence
of hallucinations, but rarely explores their specific
types. Therefore, we use the LLM’s own classifica-
tion of its hallucination types as the baseline.

Directly asking the LLM to identify hallucinated
types is unreasonable because this task is too chal-
lenging for LLM. Therefore, we design a multiple-
choice task to indirectly evaluate the model’s ability
to detect its own hallucination types. The model
must choose from three options: its own halluci-
nated response, the correct answer, and I don’t
know. Selecting I don’t know or the correct answer
indicates that the model recognizes its knowledge
limitations, corresponding to Unaware Hallucina-
tion. Conversely, selecting its own hallucinated
response suggests that the model remains confident
in its answer, corresponding to Overconfident Hal-
lucination. We use the model’s performance on this
task to measure its ability to perceive hallucination
types and compare the performance with BAFH.

We adopt two prompting strategies: Direct In-
struction, where the model is directly instructed to
select an answer. Few-shot, which includes exam-
ples to illustrate the task before prompting.

We use greedy decoding in both settings to en-
sure determinism in the generated outputs, allowing
for a more accurate assessment of the model’s per-
ception of hallucination types. Prompt details are
provided in Appendix F.

Given the lack of research on hallucination-type
detection in existing work, we compare our belief
state classifier against the following approaches:
(1) MIND (Su et al., 2024) is an unsupervised
framework that leverages LLMs’ internal states for
real-time hallucination detection. (2) SAR (Duan
et al., 2024) is one of the latest uncertainty estima-
tion methods based on probability sampling and
attention allocation.

Although MIND and SAR were originally de-
veloped for hallucination detection and uncertainty
estimation respectively, both methods capture as-
pects of model uncertainty. Therefore, we evaluate
all three methods within a unified belief state de-
tection framework to assess their ability to reflect
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Models Methods ALCUNA NQOPEN TriviaQA
Truthful AUC Truthful UH OH AUC Truthful UH OH

Gemma-2-27b-it
Direct Instruction 0.385 - 0.274 0.312 0.236 - 0.304 0.336 0.272
Few-shot 0.47 - 0.294 0.352 0.236 - 0.338 0.398 0.278
BAFH 0.999 0.9063 0.821 0.854 0.788 0.8623 0.769 0.89 0.648

Gemma-2-9b-it
Direct Instruction 0.643 - 0.31 0.36 0.26 - 0.33 0.38 0.28
Few-shot 0.661 - 0.314 0.378 0.25 - 0.321 0.386 0.256
BAFH 0.992 0.8907 0.799 0.784 0.814 0.8406 0.751 0.836 0.666

Gemma-2-2b-it
Direct Instruction 0.617 - 0.259 0.33 0.188 - 0.18 0.226 0.134
Few-shot 0.638 - 0.306 0.37 0.242 - 0.217 0.31 0.124
BAFH 0.989 0.8601 0.766 0.75 0.782 0.8111 0.719 0.836 0.602

Llama-3.1-
70B-Instruct

Direct Instruction 0.55 - 0.327 0.436 0.218 - 0.34 0.476 0.204
Few-shot 0.518 - 0.313 0.43 0.196 - 0.328 0.468 0.188
BAFH 0.877 0.7924 0.741 0.708 0.774 0.7509 0.675 0.688 0.662

Llama-3.1-
8B-Instruct

Direct Instruction 0.664 - 0.4 0.49 0.31 - 0.364 0.474 0.254
Few-shot 0.84 - 0.526 0.656 0.396 - 0.481 0.64 0.322
BAFH 0.993 0.8605 0.771 0.824 0.718 0.7982 0.705 0.876 0.534

Llama-3-
70B-Instruct

Direct Instruction 0.406 - 0.371 0.42 0.322 - 0.377 0.448 0.306
Few-shot 0.431 - 0.407 0.482 0.332 - 0.453 0.536 0.37
BAFH 0.894 0.7894 0.706 0.636 0.776 0.7894 0.709 0.71 0.708

Llama-3-
8B-Instruct

Direct Instruction 0.56 - 0.415 0.476 0.354 - 0.393 0.502 0.284
Few-shot 0.618 - 0.451 0.554 0.348 - 0.41 0.524 0.296
BAFH 0.973 0.8117 0.722 0.678 0.766 0.7521 0.687 0.758 0.616

Mistral-7B-
Instruct-v0.3

Direct Instruction 0.553 - 0.397 0.506 0.288 - 0.363 0.45 0.276
Few-shot 0.5 - 0.453 0.52 0.386 - 0.397 0.476 0.318
BAFH 0.907 0.8232 0.759 0.72 0.798 0.747 0.683 0.694 0.672

Table 1: Performance comparison of different models and methods across multiple datasets and metrics

the model’s belief state.

5.3 Implementation Details

Dataset Construction To evaluate the performance
and generalizability of BAFH, we generate data
using multiple opene LLMs across various tasks.
Following the procedure in Section 4.2, we uti-
lize TriviaQA, NQOPEN, and ALCUNA as data
sources to build model-specific datasets.

The training set contains 3,000 samples, evenly
distributed between confident and uncertain states,
which are used to train the belief state classifier.
The training set focuses solely on the model’s belief
state regarding its answers.

The test set consists of 1,000 hallucination sam-
ples, evenly split into overconfident and unaware
hallucinations, which is used to evaluate the accu-
racy of factuality hallucination type detection.

Notably, our datasets constructed from TriviaQA
and NQOPEN include both training and test sets,
while the dataset constructed from ALCUNA only
includes a test set, for evaluating the performance
of Unaware Hallucination detection.
Hidden States Selection In our main experiments,
we use the model’s last layer hidden states of the
last token as features. This choice is based on find-

ings from previous research (Azaria and Mitchell,
2023; Chuang et al., 2023), which suggest that
the final layers tend to encode more abstract and
high-level semantic information. We also analyze
multiple token-layer combinations and compare
their effects in the ablation study.
Threshold Selection In the main experiments, to
ensure distinction between belief states and cover
most of the data, we set δcon=10 and δunc=5. In
Section 6.3 we present a comparative analysis of
different threshold settings.

6 Results

We conduct experiments to evaluate our proposed
factuality hallucination type detection method.
Specifically, this section aims to answer the fol-
lowing research questions (RQs):

RQ1: Does BAFH achieve good performance?
RQ2: How do the two types of hallucinations

differ from each other and from correct answers?
RQ3: Can hidden state of LLMs be used to

distinguish different types of hallucinations?

6.1 Overall Results of BAFH and Baselines
In this section, we conduct a comprehensive evalu-
ation of the BAFH framework against baselines to
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address research question RQ1. Table 1 presents
a comparison of BAFH with constructed baselines
across eight LLMs and three QA datasets. Our
findings are as follows:

(1) BAFH outperforms baselines across all mod-
els and datasets, demonstrating strong generaliza-
tion, as further evidenced in Appendix C. This sug-
gests LLMs exhibit distinct belief states when gen-
erating factual errors and leveraging LLM hidden
states allows us to infer the model’s belief state and,
consequently, the hallucination type.

(2) In most cases, prompt-based methods yield
UH values below 50% across all datasets. This
indicates that models tend to provide answers
rather than acknowledge their knowledge limita-
tions when responding to questions, which aligns
with findings from previous studies (Yin et al.,
2023b). Interestingly, the UH metric for prompt-
based methods generally outperforms the OH met-
ric across most models and datasets, suggesting
that models more readily admit to being unaware
but struggle to identify their own overconfident hal-
lucinations. The Few-shot approach outperforms
the Direct Instruction method, demonstrating that
guiding the model with examples helps it recognize
its own biases and limitations.

(3) Both BAFH and prompt-based methods per-
form better on the ALCUNA dataset compared to
others, revealing differences in model belief states
between new and existing knowledge. More details
can be found in Appendix G.

(4) The performance of BAFH is related to the
size of the model. In the Gemma series, the Truthful
of classifier positively correlates with model size,
possibly due to richer feature representations in
the hidden states of larger models. In contrast,
for the Llama series, Truthful decreases as model
size increases, which may be because the classifier
struggles to fully exploit the increasingly complex
internal features beyond a certain scale.

Methods SAR MIND BAFH
Llama2-7B-Instruct 0.702 0.627 0.758
Llama2-13B-Instruct 0.644 0.568 0.794
Mistral-7B-Instruct 0.762 0.735 0.747
Llama3.1-8B-Instruct 0.757 0.683 0.798

Table 2: The AUC of BAFH and other baselines on a
dataset we construct based on TriviaQA

Performance of the Belief State Classifier As a
key component of BAFH, the belief state classifier

significantly impacts the framework’s effectiveness.
In this section, we compare it with state-of-the-art
methods, MIND and SAR, on the dataset based on
TriviaQA. MIND is as a strong representative of
linear probing approaches and SAR is one of the
most effective probability-based methods.

As shown in Table 2, BAFH outperforms both
baselines in belief state classification. This may
be because our dataset relies on self-consistency
rather than correctness, which better aligns with
hallucination classification by capturing the inter-
nal belief patterns of LLMs. Furthermore, leverag-
ing hidden layer activations enables the classifier
to capture more nuanced semantic representations.
We also assess computational efficiency (Appendix
B.2), showing that BAFH maintains competitive
efficiency while achieving superior performance.

Models Confident State Uncertain State

Gemma-2-2b-it 0.8561 0.4973
Llama3-8B-Instruct 0.7892 0.4766
Llama3.1-8B-Instruct 0.8056 0.5105
Mistral-7B-Instruct 0.7279 0.4719

Table 3: Model’s Hallucination Selection Rates in
Multiple-Choice Questions

6.2 Possible Causes and Differences Between
the Two Types of Hallucinations

We construct a multiple-choice task to address
RQ2. The results are shown in Table 3. Specifi-
cally, we first extract the hallucinated answers gen-
erated by the model using the method described
in Section 4.2. These answers could either be
Overconfident Hallucinations or Unaware Halluci-
nations. We then form multiple-choice questions
by presenting the model’s hallucinated answer and
the ground-truth answer as the two answer choices,
with the original question serving as the prompt.

Since automatic extraction of answers may in-
troduce errors, we conducted manual screening to
ensure data quality, as detailed in Appendix B.1.
Finally, we separately compute the hallucination
selection rates for the two types of questions:

Confident State Group: The proportion of times
the model selected its own hallucinated answer in
all multiple-choice questions containing an Over-
confident Hallucination.

Uncertain State Group: The proportion of times
the model selected its own hallucinated answer
in all multiple-choice questions containing an Un-
aware Hallucination.
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The results show that LLMs tend to prefer their
own answers when confident, while their choices
appear random when uncertain. This may indicate
that Overconfident Hallucinations may be related to
inherent biases, while Uninformed Hallucinations
may stem from a lack of knowledge. These findings
highlight the role of belief states in differentiating
hallucination types.

Figure 5: 3D PCA projection of the last hidden layer’s
embedding of LLaMA-3-8B-Instruct

Internal Space Differentiation To address RQ2
and RQ3, we perform a PCA projection of the
embedding from the final hidden layer of the last
generated token onto a 3-D plane. Figure 5 illus-
trate the results for LlaMA-3-8B-Instruct on the
NQOPEN dataset. We observe that the boundary
between Overconfident Hallucinations (pink dots)
and Correct Answers (red dots) is not distinct. Fur-
thermore, Unaware Hallucinations (blue dots) form
a distinguishable boundary with the other two cate-
gories. This suggests that the model’s hidden states
can be used to differentiate between different be-
lief states, and overconfident hallucinations show
a strong similarity to correct answers in their be-
lief states. This may be due to different causes
of two types of hallucinations. Based on existing
literature, we hypothesize that the inherent bias
causing overconfident hallucinations stems from
spurious correlations or erroneous information in
the training data, while uncertain hallucinations are
more likely to result from a lack of knowledge or
incomplete information.

6.3 Ablation Studies
Effect of δcon and δunc threshold We investigate
the impact of belief state thresholds δcon and δunc
on the model’s AUC metric. We constructe bal-
anced datasets for training and testing under var-
ious threshold combinations. The results are il-
lustrated in Figure 6. As the gap between δcon
and δunc thresholds widens, the classifier’s AUC
improves significantly. This indicates that larger

Figure 6: AUC of BAFH under different thresholds

threshold differences better capture variations in
belief states. Additionally, the consistency level
of answers reflects the model’s belief state, with
higher consistency suggests greater model confi-
dence in its responses.

Layers Token Positions

Qend Aend

20 0.7818 0.8901
24 0.7612 0.8867
28 0.7585 0.8871
32 0.7703 0.8848

Table 4: AUC across different token positions and layers

Token and Hidden Layer Selection To examine
the impact of token position and hidden layer se-
lection on framework performance, We conduct
experiments using data generated by Llama3-8B-
Instruct on the NQOPEN dataset. We focus on
tokens at the question’s end (Qend) and the se-
quence’s end (Aend), as well as hidden layers near
the output. As shown in Table 4, tokens at the same
position perform similarly across different layers,
whereas classification accuracy is significantly af-
fected by token position. The sequence-end token
(Aend) performs best, likely due to its hidden states
retaining more belief state-related information.

7 Conclusion

We propose a belief-state-based factuality halluci-
nation classification method and introduce BAFH,
a hallucination type detection method. Experimen-
tal results show that BAFH achieves high accuracy
across multiple datasets. Furthermore, different
types of hallucinations are distinct in the distribu-
tion of hidden states, and LLMs exhibit distinct
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behavioral patterns when encountering different
hallucination types. However, LLMs struggle to
recognize the hallucination types of their own. In
summary, our research reveals distinctions among
factuality hallucination categories and highlights
the significance of hallucination classification.

8 Limitations

This study focuses on the classification of factual-
ity hallucinations, while more challenging types,
such as faithfulness hallucinations and those involv-
ing complex reasoning, have not been explored in
depth. Future work will incorporate a broader range
of hallucination types and classification criteria to
provide a more comprehensive understanding of
the differences between them.

Meanwhile, this study primarily aims to identify
hallucination types and analyze their differences,
rather than directly investigating the causes of hallu-
cinations or the key factors influencing their types.
We believe that hallucination classification can con-
tribute to understanding the mechanisms behind
hallucination generation and lay the groundwork
for future research on its causes and influencing
factors. This direction will be further explored in
our future work.
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A Validation of the hypothesis

A.1 Statistical Analysis of Model Response
Consistency

(a) NQOPEN

(b) TriviaQA

Figure 7: Gemma-2-2b-it

In this section, we conduct experiments on LLaMA-
3.1 and Gemma-2 to analyze the repetition rate of
model responses. As shown in Figre 7 to ??. The
results align with our hypothesis: the distribution of
response repetition rates is uneven, with higher and
lower repetition rates being more prevalent, while
intermediate repetition rates are relatively less fre-
quent. Moreover, similar patterns are observed
across other models. The bimodal phenomenon is
more pronounced in smaller models but less appar-
ent in larger ones. This may be because the dataset
used is relatively simple for the larger models, lead-
ing to more high-confidence and high-accuracy pre-
dictions, while uncertain cases are relatively rare.

A.2 Internal Space Differentiation

In this section, we visualize the internal states of
the model’s hallucinations. As shown in Figure
9, blue points represent hallucinations with high
repetition counts (9-10), red points represent those
with low repetition counts (1-4), and green points
represent hallucinations with intermediate repeti-
tion counts. The results indicate that the internal
states of hallucinations with high and low repetition

(a) NQOPEN

(b) TriviaQA

Figure 8: LLaMA-3.1-8B-Instruct

counts exhibit separation, whereas hallucinations
with intermediate repetition counts do not form a
distinct category, suggesting that their belief states
are difficult to classify into a separate group.

Figure 9: 3D PCA projection of the last hidden layer’s
embedding of LLaMA-3.1-8B-Instruct
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A.3 A more fine-grained classification
method.

Number of Classes 2 3 4
Llama3-8B-Instruct 0.7703 0.3395 -
Gemma_2_9b_it 0.7325 0.3226 -

Table 5: Performance comparison of Llama3-8B-
Instruct and Gemma_2_9b_it with different numbers
of classes.

In this section, we attempt to train the linear clas-
sifier using hidden states to categorize belief states
at a finer granularity and evaluate its F1 scores un-
der different numbers of categories. As shown in
Figure 5, the binary classification setting achieves
the best performance, while in the three-class set-
ting, the classifier’s performance is close to random.
In the four-class setting, the classifier struggles to
converge effectively, indicating a high degree of
uncertainty in the task.

This phenomenon may be due to the fact that
finer-grained classification of belief states is more
susceptible to various potential noise factors, which
in turn affect the classifier’s performance. There-
fore, dividing belief states into two categories is a
reasonable simplification.

B Implementation details

B.1 Construct multiple-choice questions.

We first use ChatGPT to perform an initial filter-
ing of hallucination types that meet the definition.
Then, we invite a human annotator to further re-
fine the selection in order to construct high-quality
multiple-choice questions containing both types of
hallucinated responses from the model. Specifi-
cally, we obtain an initial hallucination type dataset
following the process outlined in Section 4.2, after
which ChatGPT conducts a preliminary screening.
A human annotator then reviews the dataset, ensur-
ing the correctness of the hallucination type labels
from the following three aspects: the answer is cor-
rectly extracted from the model’s response, it meets
the hallucination definition, and the answer’s repe-
tition rate is calculated correctly. For each model in
Table 3, we ultimately retain 1000 multiple-choice
questions that meet the requirements, with 500
questions for each type of hallucination.

Method Train Time (s) Inference Time (s)
LLM’s Response – 1.52
BAFH 17.90 0.05
MIND 18.47 0.05
SAR – <0.01

Table 6: Comparison of training and inference times
for BAFH and other baselines using Llama-7B hidden
activations.

B.2 Computational Cost of the Belief State
Classifier

Table 6 shows a comparison of the training and
inference times for the BAFH method versus other
baselines using hidden layer activations of Llama-
7B. The experiment was conducted on an NVIDIA
V100 GPU. The training time of our method is
comparable to the hidden layer activation-based
method MIND[3], and it is significantly faster than
the response time of LLMs.

C Generalization Experiments

Model ID NQOPEN-TriviaQA

AUC Truthful UH OH

Llama3.1_70B_Instruct 0.7606 0.658 0.868 0.448
Llama3.1_8B_Instruct 0.8532 0.763 0.818 0.708
Llama3_70B_Instruct 0.7432 0.671 0.730 0.612
Llama3_8B_Instruct 0.8111 0.734 0.812 0.656
Mistral_7B_Instruct 0.7996 0.732 0.758 0.706
Gemma_2_27b_it 0.9027 0.797 0.940 0.654
Gemma_2_2b_it 0.8108 0.728 0.748 0.708
Gemma_2_9b_it 0.8476 0.758 0.862 0.654

Table 7: Performance comparison of different models
on NQOPEN-TriviaQA dataset

We evaluate the generalization capability of our
approach. We train the classifier using a balanced
training set based on NQOPEN and test it on a
test set derived from TriviaQA. As shown in Table
7, the classifier trained on NQOPEN data main-
tains good performance on the out-of-domain test
set, demonstrating the strong generalization abil-
ity of our detection framework. This effectiveness
may be attributed to two factors: First, the belief
state classifier, trained on hidden states, is less in-
fluenced by textual features. Second, it appears
to successfully capture the model’s underlying be-
lief state. These results suggest that our approach
can generalize well across different domains and
datasets.
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Model ID Mistral-7B Gemma-2-2B Gemma-2-9B Gemma-2-27B Llama-3-8B Llama-3-70B Llama-3.1-8B Llama-3.1-70B

Score 0.947 0.951 0.8407 0.7884 0.979 0.855 0.997 0.884

Table 8: Proportion of Unaware Hallucination for Each Model on ALCUNA

D Hallucination Detection Module

We use ChatGPT (OpenAI et al., 2024) as an
LMEV AL. For passage retrieval, we use General-
izable T5-based Retrievers (GTR, a large variant),
an unsupervised dense passage retrieval system (Ni
et al., 2022). We restrict retrieved passages to be
from the topic entity’s page, and use k=3. As a
retrieval corpus, we use TriviaQA and NQOPEN.
We also use the English Wikipedia and split each
page into passages with up to 256 tokens. This
method achieves approximately a 90% agreement
rate with human evaluation. We consider it to be a
relatively accurate automatic evaluation method.

E Proportion of Unaware Hallucination
on ALCUNA

Since most errors in the ALCUNA dataset fall Un-
aware Hallucination, we did not evaluate OH on
this dataset. We supplement Table 8 with the pro-
portion of Unaware Hallucination for each model
on ALCUNA. The results show that the majority
of hallucination errors are Unaware Hallucination,
while OH accounts for an extremely low propor-
tion. This may be because ALCUNA is a relatively
new dataset, and its content is entirely new to the
model. This further demonstrates that when tack-
ling more challenging problems, LLMs are more
prone to generating Unaware Hallucination rather
than OH. This conclusion further suggests that be-
lief states can serve as meaningful indicators of
hallucinations.

F Prompt

Figure 10: Few-shot prompt

Figure 11: Direct Instruction

Figure 12: Prompts used for multiple-choice task to
address RQ2

G Proportion of Unaware Hallucination
on ALCUNA

Since most errors in the ALCUNA dataset fall Un-
aware Hallucination, we did not evaluate OH on
this dataset. We supplement Table 8 with the pro-
portion of Unaware Hallucination for each model
on ALCUNA. The results show that the majority
of hallucination errors are Unaware Hallucination,
while OH accounts for an extremely low propor-
tion. This may be because ALCUNA is a relatively
new dataset, and its content is entirely new to the
model. This further demonstrates that when tack-
ling more challenging problems, LLMs are more
prone to generating Unaware Hallucination rather
than OH. This conclusion further suggests that be-
lief states can serve as meaningful indicators of
hallucinations.
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