HEBID: Detecting Social Identities in Hebrew-language Political Text

Guy Mor-Lan¹, Naama Rivlin-Angert¹, Yael R. Kaplan², Tamir Sheafer¹, Shaul R. Shenhav¹

¹ The Hebrew University of Jerusalem, ² The Open University of Israel guy.mor@mail.huji.ac.il

Abstract

Political language is deeply intertwined with social identities. While social identities are often shaped by specific cultural contexts, existing NLP datasets are predominantly Englishcentric and focus on coarse-grained identity categories. We introduce HEBID, the first multilabel Hebrew corpus for social identity detection. The corpus contains 5,536 sentences from Israeli politicians' Facebook posts (Dec 2018-Apr 2021), with each sentence manually annotated for twelve nuanced social identities (e.g., Rightist, Ultra-Orthodox, Socially-oriented) selected based on their salience in national survey data. We benchmark multilabel and singlelabel encoders alongside 2B-9B-parameter decoder LLMs, finding that Hebrew-tuned LLMs provide the best results (macro- $F_1 = 0.74$). We apply our classifier to politicians' Facebook posts and parliamentary speeches, evaluating differences in popularity, temporal trends, clustering patterns, and gender-related variations in identity expression. We utilize identity choices from a national public survey, comparing the identities portrayed in elite discourse with those prioritized by the public. HEBID provides a comprehensive foundation for studying social identities in Hebrew and can serve as a model for similar research in other non-English political contexts.1

1 Introduction

Social identities—such as political ideology, religious affiliation, or demographic group membership—are powerful drivers of political behavior and public discourse (Tajfel and Turner, 1979). Yet existing NLP resources for identity detection remain almost entirely English-focused, single-label, and rely on coarse-grained categories (e.g., party or ethnicity). In this work, we introduce HEBID, the first publicly released Hebrew dataset for fine-grained, multilabel social identity detection in political text,

grounded in both domain expertise and large-scale survey evidence.

We frame the task as a sentence-level classification problem: the goal is to determine which, if any, of twelve social identities are being positively expressed or invoked within a given sentence.

The choice of social identities is empirically grounded in survey data. We utilized 12 waves of a national survey (N = 1,769) each of which included questions designed to identify the social identities most salient to Israeli citizens (e.g., Rightist, Ultra-Orthodox, Socially-oriented). These survey-derived categories were then used to guide the annotation of 5,536 sentences sampled from Facebook posts by Israeli politicians (December 2018–April 2021), ensuring that our labels reflect real-world identity salience.

We benchmark a suite of modern architectures on the Facebook data—(i) multilabel encoder models; (ii) single-label encoder models; and (iii) 2B–9B-parameter decoder LLMs, finding that Hebrewtuned decoder models (specifically, DICTALM2.0) achieve the highest macro- F_1 (0.743), outperforming encoder-only baselines by over six points. We then assess cross-genre generalization by applying our best model to 500 parliamentary speech excerpts, achieving a comparable macro- F_1 of 0.72.

Finally, we link three complementary sources in our analysis of how identities behave: politicians' Facebook posts, parliamentary speeches from the Israeli parliament (Knesset), and survey responses that reflect public identification. We (1) compare identity prevalence and correlations between social media, parliamentary speech, and the public; (2) document how identity discourse surges around election cycles; (3) uncover coherent "bundles" of co-occurring identities; and (4) quantify gender-related variation in identity expression.

https://github.com/guymorlan/hebid/

Our contributions are:

- Dataset and survey-grounded methodology: We introduce a framework for creating identity corpora by linking survey data to text annotation, and release HEBID, the resulting Hebrew dataset.
- Comprehensive benchmarks: We evaluate a range of encoder-only and decoder LLMs, establishing strong baselines for the task.
- Cross-genre evaluation: We demonstrate our best model's generalization to parliamentary speech, confirming its robustness.
- External validation: We validate our classifier against an external expert survey (CHES-Israel), showing its alignment with party policy positions.
- Sociolinguistic analysis: We use the classifier to reveal novel insights into identity dynamics across social media, parliamentary speeches, and public surveys.

Taken together, these contributions offer value on three fronts. For computational social scientists, HEBID provides a novel tool for analyzing political discourse. For the NLP community, our work establishes a challenging new benchmark for multilabel classification in a low-resource language. Finally, our survey-grounded annotation framework serves as a methodological template for developing similar culturally-aware resources in other non-English contexts.

2 Related Work

Automatic analysis of social identity language in political text intersects several NLP subfields: group reference detection, framing and stance classification, and ideological position inference. However, existing resources remain limited in granularity, language coverage, and multilabel capacity, leaving a clear gap that our Hebrew dataset fills.

Group reference detection. Early work extended named-entity recognition to capture social groups as entities. Zanotto et al. (2024) introduce GRIT, annotating Italian news and parliamentary text for spans referring to demographic, national, or partisan groups, and fine-tune BERT to identify them. Licht and Sczepanski (2024) apply a similar span-labeling approach to British parliamentary

debates, quantifying how often politicians mention particular social groups. These studies demonstrate the feasibility of automatic group mention detection, but remain single-label and limited to explicit group mentions.

Framing and stance. Beyond mentions, understanding how groups are portrayed is crucial. The *Us vs. Them* corpus (Huguet Cabot et al., 2021) annotates Reddit comments for target group, stance (supportive vs. hostile), and emotion, using a multitask RoBERTa model. Card et al. (2022) study 140 years of U.S. congressional speeches on immigration, combining sentiment classification with custom frame lexica to reveal evolving and polarized frames. The Media Frames Corpus (Card et al., 2015) provides frame annotations (including cultural identity frames) for news articles. These resources focus on single-label stance or framing, and predominantly English texts.

Ideological position inference. Separate but related is the task of inferring latent political ideology. Thomas et al. (2006) use SVMs on floor debate transcripts to classify support/opposition. Iyyer et al. (2014) develop neural networks to predict left/right alignment of speeches. More recent prompt-based methods with LLMs (Mishra et al., 2023) achieve zero-shot ideological scoring. While these approaches infer broad ideological leanings, they do not detect explicit identity mentions or support multilabel identity categories.

In-group/out-group rhetoric. Discourse-level signals such as pronoun clusivity and coded language reveal populist identity appeals. Rehbein and Ruppenhofer (2022) annotate inclusive vs. exclusive uses of "we" in German parliamentary debates and train classifiers to disambiguate referents, highlighting *us-versus-them* framing. Mendelsohn et al. (2023) curate a dogwhistle lexicon and show that pretrained models struggle to detect covert slurs without knowledge grounding. These works emphasize the need for high-precision, context-aware annotation, but do not cover multilabel identity categories across many classes.

Gaps and Our Contributions. Current identity-focused corpora are typically single-label, English-centric, and restricted to broad political categories or explicitly stated group mentions. They rarely offer the fine-grained, multilabel annotations needed to capture the complexity of real-world political speech, and they do not cover non-Latin scripts

or languages such as Hebrew. We introduce the first publicly available Hebrew dataset for social identity detection, comprising 5,536 sentences from politicians' Facebook posts annotated with twelve distinct identities—each grounded in survey-measured salience and expert-defined categories. By providing multilabel annotations across a rich set of ideologically, religiously, and socioeconomically relevant identities, our resource enables more nuanced analyses of how political actors deploy identity language than has previously been possible in any non-English setting.

3 Annotating Social Identities

3.1 Panel Survey

To select social identities for annotation, we utilized a combination of experts and survey instruments. We utilized a representative 12-wave panel survey of the Jewish population in Israel (N =1,769), conducted between January 2019 and April 2021 (Dvir-Gvirsman et al. 2022; see also Rivlin-Angert et al. 2025).² This time period contains four Israeli elections held in quick succession, providing a unique opportunity to investigate political dynamics in a condensed time frame. In 12 survey waves, respondents were asked to select up to three identities they identify with, out of a list of 28. These 28 identities were chosen by a panel of experts in Israeli politics as reflecting a broad spectrum of prevalent social identities, spanning ideological, value-based, religious, national, sociodemographic, and economic dimensions (e.g., Conservative, Leftist, Nationalist, LGBTQ+. See appendix A for a full list).

For inclusion in the textual annotation, we selected the 12 identities that emerged as most salient in the panel survey, each consistently surpassing a 5% selection threshold in the first five waves. These identities are Rightist, Leftist, Conservative, Liberal, Socially-oriented, Capitalist, Zionist, Palestinian, Honest, Security-oriented, Ultra-orthodox, and Democrat.³ For more information on the survey methodology, see appendix B.

3.2 Annotation Scheme

Based on this selection, we developed an annotation scheme for the expression of social identities in text. Identities were annotated only when referenced in a positive manner; negative or oppositional mentions were excluded. Each sentence was annotated using a multilabel scheme across the twelve selected identities.

Below is a summary of the identity definitions used in the annotation scheme, accompanied by examples from the dataset translated from Hebrew (full definitions appear in appendix C). Some examples were abridged for brevity.

Liberal: Advocacy for civil rights, pluralism, separation of religion and state, freedom of religion, protection of minority rights, and support for the judicial system.

(1) Protecting personal freedom and the right of every individual to be who they are and live as they choose.

Conservative: Endorsement of opposition to change, support for the integration of religion and state, promotion of anti-liberal values, and advocating for the reduction of judicial authority.

(2) The appointment of conservative and nationalist judges is the most significant factor in changing reality.

Democrat: Emphasis on democratic values and procedures, such as fair elections, the rule of law, and institutional checks and balances. Includes references to the defense of democracy as a political principle.

(3) The existence of a democratic, state-based regime in the country; the guarantee of the supremacy of the law.

Leftist: Support for left-wing parties or policies, including dovish security positions, opposition to settlement construction, and criticism of right-wing actors or policies, when tied to a clear ideological stance. ⁴

²Similar to other panel surveys in which local sample vendors were unable to include re-interview samples of Palestinian citizens in sufficient numbers (e.g., Gidron et al. (2022)), the panel survey did not include this population, reflecting a known deficiency in Israel's survey sampling market.

³The 5% criterion was jointly applied to identities that respondents identify with and identities they disapproved of in a separate survey item.

⁴Note that in Israel, both Leftist and Rightist identities primarily reflect positions on resolving the Israeli-Palestinian conflict, rather than economic issues.

(4) [...] we think that the evacuation of the territories occupied in the Six-Day War is a national necessity of the utmost urgency.

Rightist: Support for right-wing parties or policies, including hawkish security positions, Greater Israel ideology, and criticism of left-wing actors or policies, when tied to a clear ideological stance.

(5) [...] we have a true and rare opportunity to form a [fully right-wing] government, so that we can [...] pursue an unapologetic policy regarding Israeli settlements in Judea, Samaria, and the Jordan Valley.

Capitalist: Support for free markets, deregulation, private enterprise, reduced government involvement in the economy, and growth-oriented economic policies that avoid redistributive or welfare-based framing.

(6) The state should avoid regulatory intervention in the business sector as much as possible

Socially-oriented: Support for social justice and welfare-oriented policies, including references to poverty, job security, government-funded education, healthcare, housing, and accessibility.

(7) [...] masses of unemployed, sick, or needy individuals do not place their trust in the free market [...], but in the state - in its institutions, its selected officials, and its public servants [...].

Zionist: Affirmation of Zionist symbols and values, such as Jewish immigration to Israel, national pride, unity, and collective sacrifice (e.g., references to Memorial Day or the national anthem).

(8) It is a great source of pride to see our kindergarten children [...] waving the flag with excitement and singing Independence Day songs. **Security-oriented:** Focus on national defense, military strength, borders, and threats to the internal or external security of the state.

(9) Only targeting terrorist organizations leaders will create deterrence, protect the security of the residence of the Gaza envelope, and strengthen their resilience.

Honest: References related to corruption and investigations involving public officials, honesty, and ethical conduct.

(10) In two months, we will lead Israel off the path of corruption and onto a new path.

Palestinians and Arab Citizens of Israel: Statements regarding policy issues, worldviews, and ideologies related to Palestinians and Arab-Israelis.

(11) We will continue to fight for Arab local authorities and against budgetary discrimination of the Arab society.

Ultra-orthodox: References to the Jewish ultra-Orthodox lifestyle, including the education system, gender segregation, and exemption from military service, as well as mentions of ultra-Orthodox political parties and leadership.

(12) [...] it is gratifying to see how the Shas movement [...] succeeds in uniting communities through faith in God, the legacy of Rabbi Ovadia Yosef [...], and shared values.

3.3 Co-occurring Identities

Our annotation scheme is multi-label, allowing a single sentence to express several social identities simultaneously. Each annotated sentence is evaluated with respect to all included identities. For example, the following sentence expresses *Democrat*, *Leftist*, and *Honest* social identities:

(13) Instead, the current election is about the political survival of a man suspected of deep corruption that endangers Israeli democracy, press freedom, the rule of law, and fairness.

Similarly, this sentence expresses both a *Rightist* and a *Liberal* identity:

(14) I believe that the nationalist right's role is to develop settlements everywhere in the country – without favoritism for one sector or another.

4 Dataset

To sample sentences for annotation, we compiled a corpus of Facebook posts by Israeli members of parliament, political parties, and viable party candidates, posted during the same timeframe as the survey (Dec. 2018 to Apr. 2021). This corpus comprises 64K posts containing 375K sentences. Our annotated dataset contains 5,536 Hebrew-language sentences sampled from 4.8K unique Facebook posts. Each sentence is annotated with 12 binary annotations according to whether it expresses a given identity. The dataset is split into a training set (70%), validation set (15%) and test set (15%).

4.1 Inter-coder Reliability

The sentences were annotated by two of the authors. We evaluate inter-coder reliability on a sample of 304 sentences. The results, given in Table 1, indicate a mean Cohen's κ of 0.77. Disagreements were resolved via consultation with all authors.

Category	Percent Agreement	Cohen's K
Conservative	96.7%	0.705
Rightist	94.4%	0.788
Democrat	91.4%	0.703
Honest	96.7%	0.782
Capitalist	98.4%	0.792
Ultra-Orthodox	98.7%	0.708
Socially-oriented	96.1%	0.841
Liberal	96.1%	0.841
Leftist	94.1%	0.761
Security-oriented	96.4%	0.736
Palestinian	98.4%	0.792
Zionist	96.1%	0.778
Mean	96.1%	0.769

Table 1: Inter-Annotator Agreement (IAA) scores

4.2 Descriptive statistics

The number of positive labels per identity ranges between 129 (Ultra-Orthodox) and 703 (Rightist), with a mean of 413 (Table 2). 37.5% of sentences express no identity, 41.1% express one identity and 21.4% express two or more identities (Table 3).

5 Modeling and Experiments

We model the task of identifying social identities from text using four types of training setups:

First, we establish **Baseline models** by training separate Logistic Regression and LinearSVC

Category	Count
Rightist	703
Liberal	629
Socially-oriented	567
Democrat	562
Leftist	546
Zionist	368
Honest	357
Security-oriented	346
Conservative	297
Capitalist	230
Palestinian	225
Ultra-Orthodox	129
Mean	413.25

Table 2: Number of Positive Instances

# Positives	Row Count	Percent
0	2,078	37.54%
1	2,275	41.09%
2	919	16.6%
3	218	3.94%
4	39	0.7%
5	6	0.11%
6	1	0.02%

Table 3: Number of Positive Labels per Sentence

classifiers for each label using TF-IDF features. Then, **Multilabel encoder-models** are fine-tuned to jointly learn the 12 identity labels. **Single-label encoder models** are fine-tuned separately for each label. For this training, we utilize the best performing base model in the multilabel encoder setup. Finally, **Decoder LLMs** are fine-tuned to generate a comma-separated list of all applicable Hebrew language labels for the given sentence.

We examine a set of encoder models and LLM decoders in the 2B–9B parameter range. For encoders, we use the multilingual MBERT (Devlin et al., 2019), and Hebrew-targeted encoders ALE-PHBERT (Seker et al., 2022), HERO (Hebron et al., 2023) and the base and large variants of DICTABERT (Shmidman et al., 2023). All encoder models are trained for up to 10 epochs with three learning rates (1e-5, 3e-5, 5e-5), and three types of loss (default, positive weight and focal loss), choosing the best performing checkpoint on the validation set.

For decoder LLMs, we use GEMMA 2 in the 2B and 9B variants (Gemma Team, 2024), QWEN3-8B (Qwen Team, 2025), and the Hebrew-targeted DICTALM2.0 (Shmidman et al., 2024). All decoders

Macro-averaged metrics				Per-label F ₁ scores											
Model P R F ₁	Security- oriented	Capitalist	Conserva -tive	Democrat	Ultra- Orthodox	Socially- oriented	Liberal	Palestinian	Leftist	Rightist	Honest	Zionis			
Decoder-only															
DICTALM2.0	0.740	0.751	0.743	0.705	0.805	0.675	0.754	0.653	0.723	0.724	0.852	0.750	0.765	0.816	0.700
GEMMA-2-9B	0.717	0.698	0.705	0.645	0.759	0.684	0.753	0.591	0.662	0.749	0.758	0.671	0.737	0.804	0.650
GEMMA-2-2B	0.620	0.631	0.624	0.560	0.723	0.575	0.757	0.385	0.634	0.673	0.716	0.609	0.615	0.680	0.557
QWEN-8B	0.665	0.463	0.542	0.605	0.508	0.308	0.700	0.410	0.541	0.568	0.625	0.516	0.515	0.650	0.554
Multilabel encoders	s														
DICTABERTLarge	0.677	0.680	0.678	0.660	0.667	0.561	0.750	0.667	0.688	0.689	0.831	0.588	0.670	0.716	0.645
DICTABERTBase	0.629	0.710	0.664	0.667	0.667	0.511	0.753	0.533	0.659	0.697	0.806	0.663	0.657	0.750	0.602
ALEPHBERT	0.628	0.692	0.657	0.673	0.675	0.526	0.738	0.604	0.627	0.664	0.783	0.620	0.641	0.718	0.618
HERO	0.608	0.693	0.647	0.667	0.575	0.587	0.730	0.528	0.648	0.642	0.776	0.659	0.638	0.720	0.589
мBERT	0.573	0.553	0.552	0.483	0.467	0.527	0.708	0.356	0.568	0.635	0.632	0.531	0.502	0.653	0.566
Single-label encode	rs														
DICTABERTLarge	0.643	0.689	0.659	0.672	0.659	0.529	0.731	0.508	0.708	0.694	0.783	0.615	0.636	0.721	0.652
Baselines															
LinearSVC	0.398	0.339	0.361	0.400	0.170	0.300	0.490	0.230	0.430	0.330	0.520	0.390	0.390	0.350	0.350
LogisticRegression	0.469	0.268	0.334	0.350	0.000	0.280	0.500	0.280	0.410	0.340	0.470	0.380	0.350	0.360	0.290

Table 4: Macro-averaged precision (P), recall (R), F₁, and per-label F₁ for all models.

are fine-tuned with QLORA (Dettmers et al., 2023) for up to 5 epochs with two learning rates (1e-5, 1e-4).

Table 4 reports test set results for trained models. We observe that the most performant are decoder models, achieving the highest per-label F1 scores on all but one label. DICTALM2.0, specifically, achieves the best macro P/R/F1 scores, and best perlabel scores on 8/12 identities. The performance of this model, continuously pre-trained from Mistral 7B on 100B Hebrew tokens, underscores the dependence identity detection on language specific cultural and political context.

We also note that two of the multilabel encoders, DICTABERT_{Large} and DICTABERT_{Base}, perform better on average than the single-label encoders fine-tuned for each identity separately using DICTABERT_{Large} as a base model. DICTABERT_{Large} achieved an F_1 score of 0.678 in a multi-label setting, compared to a mean F_1 of 0.659 when combining the single-label models. This indicates the benefit of joint learning and the interrelated nature of identities in this task.

5.1 Generalization to Parliamentary Speech

We examine whether the resulting classifier generalizes well to the parliamentary speech in the Knesset by utilizing the IsraParlTweet dataset (Mor-Lan et al., 2024). We subset speeches from the equivalent time period of the Facebook data, classify all sentences with the best performing DICTALM2.0 model, and sample 500 of the sentences for human annotation. We perform a precision-oriented test by oversampling positive predictions for each identity. The results show a macro F_1 score of 0.72, on par with the Facebook test set, indicating the

model's ability to generalize to Knesset data (for full results, see Table 5).

5.2 External Validity

We examine the external validity of the classifier by correlating social identity discourse with external party policy rankings from the CHES-Israel expert survey (Zur and Bakker, 2025), which assigns parties scores on several policy domains. For each of the 16 political parties covered by both the expert survey and our Facebook corpus in year 2021, we calculate identity discourse scores, defined as the share of sentences posted by the party's politicians which are classified as expressing said identity.

We match closely related policy issues from the expert survey to each social identity. For example, policy issue *Economic Stance* is linked with both *Capitalist* and *Socially-oriented* social identities. For better comparability, in some cases we additionally construct social identity dimensions by subtracting party means for two polar identities (e.g. Rightist — Leftist, Capitalist — Socially-Oriented). We then compute correlations between the CHES party policy scores and the predicted social identity discourse scores, for the 16 political parties.

Our analysis reveals a strong alignment with the expert-coded CHES data. Out of 21 correlations, 16 are statistically significant at $p \leq 0.1$ and 13 are significant at $p \leq 0.05$. Of those 13, all fall within a strong effect size range, with absolute correlation values from |r| = 0.71 to 0.94. For full results, see Table 7 in the appendix.

6 Results

We utilize the three identity data sources with overlapping time frames: our corpus of Israeli politi-

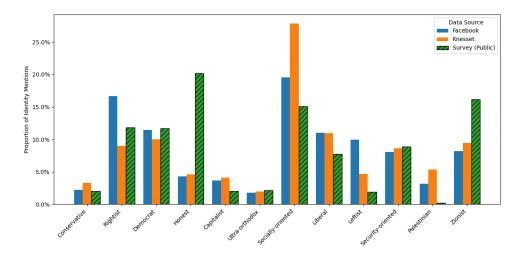


Figure 1: Normalized share of identities

cian Facebook posts; the subset of parliamentary speeches from (Mor-Lan et al., 2024) in the same time period; and the panel survey capturing the public's identity choices. The first two sources are classified using the best performing DICTALM2.0 model. Utilizing these three data sources allows for a unique exploration of the dynamics of social identities on different platforms of elite discourse (Facebook and Knesset speeches) and the public (panel survey). We examine the following aspects: the popularity of identities; temporal trends; the correlation and bundling together of identities; and gender differences in identities.

Popularity. In Figure 1, we compare the normalized share of each identity. The identities *Socially-oriented*, *Rightist* and *Democrat* are generally popular across the data sources. Interestingly, the *Leftist* identity is relatively less popular. While many identities receive similar proportions among the three sources, several exceptions stand out. Identities *Honest* and *Zionist* are significantly more popular among the public, whereas *Socially-oriented* is significantly more popular in parliament.

Examining correlations between the ranks of identities in each data source, we see that while the popularity ordering of identities is strongly correlated between the Facebook and Knesset data (ρ =0.87), survey identity rankings are moderately correlated with Facebook (ρ =0.48) and Knesset (ρ =0.46) data. For all ranks, see Figure 10.

Temporal trends. We examine whether identity-related discourse tends to increase before elections. Facebook posts are the most suitable data source for this analysis, as the survey panel includes a lim-

ited number of waves and Knesset meetings are in recess near election periods. We plotted the average number of identity mentions per sentence per week in the Facebook data (see Figure 2). The results show considerable fluctuation, ranging from 0.38 to 0.87 identity mentions per sentence. Notably, identity-related discourse peaks around three of the four election dates, highlighting the salience of identities during electoral competition.

Figure 3 plots the share of six identities over time for both the Facebook and survey samples (see Figure 11 for all 12). We see that the identities that peak during or near election dates are Rightist, Leftist and Democrat. However, as previously mentioned, Leftist holds a very small share in both Facebook and the survey, and thus drives a smaller part of the overall temporal change. A notable gap between elites and the public emerges for three identities. While the public decreasingly identifies with the Socially-oriented identity, it becomes significantly more prominent among politicians after the 3rd elections held in March 2020. On the other hand, the identities Honest and Democrat become more popular among the public after the 3rd election, but less popular in elite discourse. These findings demonstrate the potential of HEBID to provide valuable insights into how identity-driven agendas shift in the lead-up to elections.

Identity bundles. To examine which identities tend to co-occur, we perform a factor analysis on the mean levels of each identity per speaker/respondent (Figure 4). In the three sources, we see a primary dimension dividing identities into two broad groups, a left-wing group (*Leftist*, *Democrat*, *Honest*, *Liberal*, *Palestinian*) and a right-wing

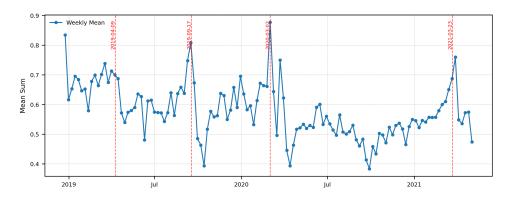


Figure 2: Temporal Trend

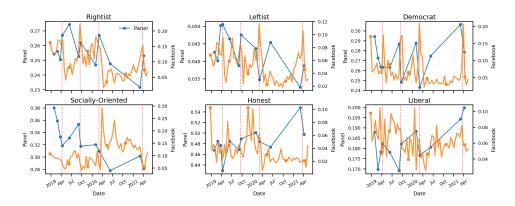


Figure 3: Per Identity Trends - Facebook and Survey

group (Rightist, Conservative, Zionist, Security-oriented, Capitalist, Ultra-orthodox). Other factors in the Facebook and Knesset data appear to reflect political sub-dimensions of identity pairs that are more tightly coupled, such as Conservative and Rightist, Zionist and Security-oriented, Liberal and Palestinian, and Honest and Democrat. In the survey data, factors beyond the first dimension appear less structured compared to those that arise in the Facebook and Knesset datasets.

Accordingly, examination of the correlations between identities (after aggregating into speakers/respondents) shows that the survey exhibits a mean absolute correlation coefficient of 0.159, weaker than the Facebook sample (0.235) and Knesset data (0.215). For full correlation matrices, see appendix K.

Gender differences. Do men and women differ in terms of social identities? We first examine gender differences in identity discourse by calculating gender differences in the total number of identities expressed. For each speaker/respondent, we calculate the mean number of identities expressed in a sentence or survey response, and then aggregate by gender. We see that in all data sources, women

express more identities than men. However, the gap is largest in the Knesset data (0.07) and is not statistically significant in the survey data.

We then examine the gender difference per identity by subtracting the share of each identity among women from that of men, in all data sources. We see that some identities, such as *Rightist*, *Security-oriented*, *Capitalist*, and *Ultra-orthodox* lean towards men, whereas *Socially-oriented* significantly leans towards women across all platforms. While the gender gaps on Facebook and the Knesset are generally in the same direction, several of the survey gender gaps arise in different directions. Thus, *Honest* in the survey leans significantly towards women, whereas in the Facebook and Knesset data it leans slightly towards men.

7 Conclusion

In this work, we have introduced HEBID, the first publicly available multilabel Hebrew corpus for fine-grained social identity detection in political text, grounded in large-scale survey evidence and expert consultation. Our dataset of 5,536 sentences from Israeli politicians' Facebook posts is annotated for twelve empirically salient identities, en-

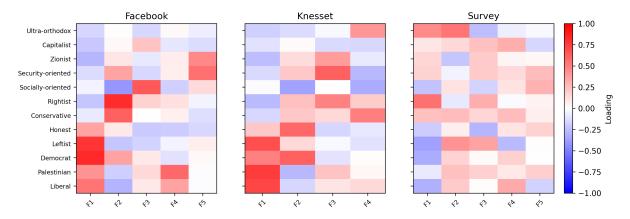


Figure 4: Factor analysis

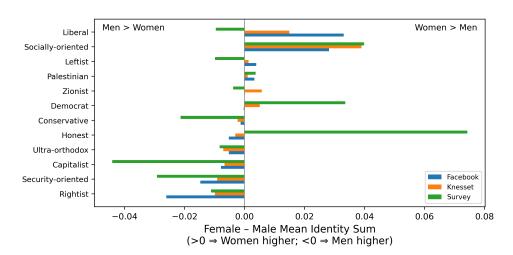


Figure 5: Gender Difference per Identity

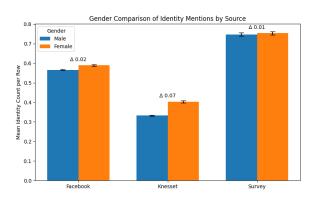


Figure 6: Gender Difference in Identity Mentions

suring both linguistic and sociological validity. We benchmarked a range of models—multilabel and single-label encoders as well as 2B–9B-parameter decoder LLMs—and demonstrated that Hebrewtuned decoder models (e.g., DICTALM2.0) achieve the highest macro-F1 (0.743), significantly outperforming encoder-only baselines. We further validated cross-genre robustness by applying our best

model to 500 Knesset speech excerpts, matching social-media performance (macro-F1 = 0.72).

By linking three complementary sources — Facebook posts, parliamentary speeches, and a national survey — we revealed systematic differences in identity prevalence, temporal surges around elections, bundles of co-occurring identities, and gendered patterns of identity expression. These findings showcase the potential of our framework to uncover nuanced political dynamics and address substantive questions in the social sciences.

The HEBID annotation scheme and corpus provides a comprehensive foundation for future research on identity discourse in non-English political contexts and paves the way for comparative studies across political systems. Specifically, this work provides a new tool for social scientists studying political communication, a new benchmark for NLP researchers working on Hebrew and multilabel classification, and a methodological template for creating similar resources cross-culturally.

Limitations

While HEBID represents a significant step forward in Hebrew political text analysis, several limitations should be acknowledged:

- Temporal and platform scope: Identity discourse is dynamic and may have evolved beyond the period captured in our data. Additionally, other platforms—such as Twitter and news media—are not represented, leaving out potentially important dimensions of identity expression and change over time.
- Survey population: The panel survey sampled only Jewish citizens of Israel. Identities and salience patterns may differ among non-Jewish citizens, including Palestinians and non-Jewish immigrant communities.
- Annotation granularity: Although multilabel, our scheme relies on twelve categories selected via a 5% survey threshold. Less frequent but potentially important identities were excluded, and negative or critical references to an identity are not captured.
- Model biases: Our classifiers inherit biases present in both the training data and the pretrained language models (e.g., under- or overrepresentation of certain groups). Performance may degrade on dialectal text, informal registers, or in hostile political discourse.
- Cross-genre validation: The Knesset evaluation, while indicative of robustness, is based on a limited sample of 500 human-annotated sentences drawn from Knesset Plenum protocols. A broader evaluation across other legislative bodies or timeframes is needed to fully assess generalization.
- Methodological considerations: Survey responses and text analysis offer complementary but distinct measurement approaches. Survey data provide insights into self-reported identity salience, while text analysis reveals patterns of expressed identity discourse. These methodological differences suggest caution when comparing panel survey results with computational text analysis findings.

Future work should extend HEBID to additional platforms and populations, refine the annotation

taxonomy to include emerging identities, and explore methods to mitigate model bias in identity detection tasks.

Acknowledgments

This work was supported by the Israel Science Foundation (Grant no. 2315/18). We thank Vered Porzycki for assistance in conceptualizing the definitions of the annotated identities; Vered Porzycki, Gal Ron, Avishai Green, Dror Markus and Noa Amir for invaluable assistance in a preliminary pilot study; and Effi Levi for his very useful and insightful advice.

References

- Dallas Card, Amber Boydstun, Justin Gross, Philip Resnik, and Noah Smith. 2015. The media frames corpus: Annotations of frames across issues. In *Proceedings of ACL-IJCNLP 2015*, pages 438–444.
- Dallas Card, Kevin H. Chang, Chris J. Kennedy, Ashiqur R. KhudaBukhsh, and Philip Resnik. 2022. A Century of Rhetoric: Shifting Sentiment on Immigration in U.S. Congressional Speeches. *Proceedings of the National Academy of Sciences*, 119(14):e2117533119.
- Tim Dettmers, Artidoro Pagnoni, Ari Holtzman, and Luke Zettlemoyer. 2023. Qlora: Efficient finetuning of quantized llms. *Preprint*, arXiv:2305.14314.
- Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2019. Bert: Pre-training of deep bidirectional transformers for language understanding. In Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pages 4171–4186.
- Shira Dvir-Gvirsman, Keren Tsuriel, Tamir Sheafer, Shaul Shenhav, Alon Zoizner, Liron Lavi, Michal Shamir, and Israel Waismel-Manor. 2022. Mediated representation in the age of social media: How connection with politicians contributes to citizens' feelings of representation. evidence from a longitudinal study. *Political Communication*, 39(6):779–800.
- Gemma Team. 2024. Gemma 2: Improving open language models at a practical size. *Preprint*, arXiv:2408.00118.
- Noam Gidron, Lior Sheffer, and Guy Mor. 2022. The israel polarization panel dataset, 2019–2021. *Electoral Studies*, 80:102512.
- David Hebron, Avi Shmidman, and Moshe Koppel. 2023. Hero: A hebrew roberta model for hebrew nlp tasks. *Preprint*, arXiv:2309.12345.

- Pere-Lluís Huguet Cabot, David Abadi, Agneta Fischer, and Ekaterina Shutova. 2021. Us vs. them: A dataset of populist attitudes, news bias and emotions. In *Proceedings of the 16th Conference of the European Chapter of the ACL (EACL)*, pages 1921–1945.
- Mohit Iyyer, Peter Enns, Jordan Boyd-Graber, and Philip Resnik. 2014. Political ideology detection using recursive neural networks. In *Proceedings of the 52nd Annual Meeting of the ACL*, pages 1113–1122.
- Hauke Licht and Ronja Sczepanski. 2024. Who are they talking about? detecting mentions of social groups in political texts with supervised learning. Technical report, Working Paper.
- Julia Mendelsohn, Ronan Le Bras, Yejin Choi, and Maarten Sap. 2023. From dogwhistles to bullhorns: Unveiling coded rhetoric with language models. In *Proceedings of ACL 2023*, pages 15162–15180.
- Swaroop Mishra, Grzegorz Boratyn, and Martin Roemmele. 2023. Zero-shot ideological scoring of political text with large language models. *Transactions of the ACL*, 11:1234–1248.
- Guy Mor-Lan, Effi Levi, Tamir Sheafer, and Shaul R. Shenhav. 2024. IsraParlTweet: The israeli parliamentary and Twitter resource. In *Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024)*, pages 9372–9381, Torino, Italia. ELRA and ICCL.

Qwen Team. 2025. Qwen3.

- Ines Rehbein and Josef Ruppenhofer. 2022. Who's in, who's out? predicting the inclusiveness or exclusiveness of personal pronouns in parliamentary debates. In *Proceedings of the Thirteenth Language Resources and Evaluation Conference*, pages 5849–5858, Marseille, France. European Language Resources Association.
- Naama Rivlin-Angert, Alon Yakter, and Lior Sheffer. 2025. Do personality traits predict voter attitudes when politics is structured around conflict? lessons from israel. *Public Opinion Quarterly*, 89(2):389–414.
- Amit Seker, Elron Bandel, Dan Bareket, Idan Brusilovsky, Refael Greenfeld, and Reut Tsarfaty. 2022. Alephbert: Language model pre-training and evaluation from sub-word to sentence level. In *Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)*, pages 46–56.
- Avi Shmidman, Shaltiel Shmidman, and Moshe Koppel. 2024. Adapting Ilms to hebrew: Unveiling dictalm 2.0 with enhanced vocabulary and instruction capabilities. *Preprint*, arXiv:2407.07080.
- Shaltiel Shmidman, Avi Shmidman, and Moshe Koppel. 2023. Dictabert: A state-of-the-art bert suite for modern hebrew. *Preprint*, arXiv:2308.16687.

- Henri Tajfel and John C. Turner. 1979. An integrative theory of intergroup conflict. In William G. Austin and Stephen Worchel, editors, *The Social Psychology of Intergroup Relations*, pages 33–47. Brooks/Cole, Monterey, CA.
- Michael Thomas, Bo Pang, and Lillian Lee. 2006. Get out the vote: Determining support or opposition from congressional floor-debate transcripts. In *Proceedings of EMNLP 2006*, pages 327–335.
- Sergio E. Zanotto, Qi Yu, Miriam Butt, and Diego Frassinelli. 2024. GRIT: A dataset of group reference recognition in italian. In *Proceedings of LREC-COLING* 2024, pages 7963–7970.
- Roi Zur and Ryan Bakker. 2025. The israeli parties' positions in comparative perspective. *Party Politics*, 31(2):323–334.

A Full list of social identities in Survey

- 1. Ashkenazi (Jewish of European descent)
- 2. Capitalist
- 3. Conservative
- 4. Democrat
- 5. A man of faith
- 6. Honest
- 7. Humanist
- 8. Israeli
- 9. Jewish
- 10. Leftist
- 11. LGBTQ+
- 12. Liberal
- 13. Lower class
- 14. Man
- 15. Middle class
- Mizrahi (Jewish of Middle Eastern/North African descent)
- 17. Nationalist
- 18. Palestinian
- 19. Religious
- 20. Rightist
- 21. Secular

- 22. Security-oriented
- 23. Socialist
- 24. Socially-oriented
- 25. Ultra-Orthodox (Haredi)
- 26. Upper class
- 27. Woman
- 28. Zionist

B Survey Methodology

The survey we utilize is an online panel survey conducted between January 2019 and April 2021, using a representative sample of the adult Jewish population in Israel. Participants were recruited through iPanel, the largest online survey firm in Israel, and received gift cards as compensation. To ensure representativeness, respondents were selected using demographic quotas based on key population parameters: age, gender, education, geographic location, and religiosity. A total of 1,769 individuals completed the first wave in January 2019, and 878 panelists completed the relevant waves for this study.

To measure identity salience, respondents were asked the following question: "People feel a sense of belonging to some groups in society and a sense of distance from others. Below is a list of groups. Please select up to three groups that best define who you are, groups that make you feel a sense of belonging, identification, and pride, and that you would like to see properly represented in the Knesset"

The possible selection options are the 28 identities appearing in section A of the appendix, a list developed by experts in Israeli politics to ensure relevance and comprehensiveness.

In total, the panel included 14 waves and an additional minor wave in which only several question items were repeated. We utilize 12 of the waves in which the identity salience question appears (11 major waves and the minor wave).

C Identity Definitions: Codebook

Dear Coder,

Below are twelve identity definitions for classification. Please follow the following guidelines:

1. Classify Based on Definitions. Assign identity categories only to statements that align with the definitions provided.

- 2. Multiple Classifications. If a statement may fit more than one identity category. Please assign it to all relevant identity categories accordingly.
- 3. Positive Associations Only. Please note that the identity categories reflect a positive association. Do not classify statements that oppose an identity (e.g., criticism of capitalism, liberalism, Ultraorthodox) under that category.
- 4. The Speaker Identity Is Irrelevant. Classification is based on the content of the statement, not who says it (e.g., a non-Palestinian can make a statement classified under "Palestinians and Arab Citizens of Israel" if they present a Palestinian perspective).
- 5. Not all statements will be classified. Some statements may not fit any of the twelve identity categories mentioned in the codebook. In such cases, do not force a classification.

Identity definitions:

Capitalist. Support for private enterprises, free markets and economics (including the stock market), wealth accumulation, trade-related topics, deregulation policies, tax reductions, limiting government involvement in the economy or social services. General references to economic growth, market openness, or business encouragement—without mention of state intervention—will be labeled under this identity.

Socially-oriented (*Hevrati*). Support for social justice and welfare-oriented policies, including reference to poverty in Israel, job security, healthcare, government-funded education, social organizations, aid initiatives (e.g., food donations), social policy (e.g., housing assistance, support for disadvantaged populations), social security benefits, infrastructure investment, prioritizing local business over international ones, and environmental policy.

Conservative. Endorsement of opposition to change, support for the integration of religion and state, preservation of traditional values, promotion of anti-liberal values, and advocating for the reduction of judicial authority. Note: This identity includes reference that endorse Jewish traditions and opposition to anti-religious coercion.

Liberal. Advocacy for equality, human and civil rights, pluralism, separation of religion and state, freedom of religion, the promotion of universal

values, protection of minority or LGBTQ+ rights, and support for the judicial system.

Note that:

- 1. References relating to inequality in the burden of civic duties will be labeled under this identity.
- 2. This identity does not include references to the rule of law.

Democrat. Emphasis on democratic values and procedures, such as fair elections, the rule of law, institutional checks and balances ("rules of the game"), and the defense of democracy as a political principle. Includes explicit references to democracy or portraying Israel as a democratic state.

Honest (Yeshar Derech). References related to corruption and investigations involving public officials, honesty, integrity, and ethical conduct in public service. Includes mentions of improper immunity, criticism of self-serving behavior by public officials, and praise for individuals acting in public interest. Note that neutral factual statements (e.g., "Netanyahu's trial begins tomorrow in Jerusalem") and descriptive mentions of corruption without a clear perspective will not be classified under this identity.

Leftist. Support for left-wing parties or policies, including dovish security policies, willingness to make territorial compromise, opposition to settlement construction, criticism of right-wing actors or policies, when tied to a clear ideological stance. Note that:

- 1. Identification with left-wing parties or groups is labeled as Leftist.
- This identity focuses on hawkish-dovish positions, not economic or social issues (which are coded separately, e.g., Liberal or Sociallyoriented).
- References to "peace" alone do not constitute a leftist identity without additional ideological context.
- 4. Centrist parties opposing a side are labeled according to the target of opposition (e.g., "Blue and White opposes Likud" = Leftist; "Blue and White opposes Labor" = Rightist).
- 5. Positions regarding state-religion relations are not considered part of the left/right ideological identities (e.g., referring to religious coercion would be considered liberal, not Leftist).

Rightist. Support for right-wing parties or policies, including hawkish security positions, Greater Israel ideology, criticism of left-wing actors or policies, when tied to a clear ideological stance.

Note that:

- 1. Identification with right-wing parties or groups is labeled as Rightist.
- This identity focuses on hawkish-dovish positions, not economic or social issues (which are coded separately, e.g., Conservative or Capitalist).
- 3. References to Israel as a "Jewish and democratic state" do not alone indicate Rightist identity.
- 4. Centrist parties opposing a side are labeled according to the target of opposition (e.g., "Blue and White opposes Labor" = Rightist; "Blue and White opposes Likud" = Leftist;).
- 5. Positions regarding state-religion relations are not part of ideological identities (e.g., referring to greater congruence between state and religious laws would be considered Conservative not Rightist).

Palestinians and Arab Citizens of Israel. Statements regarding policy issues, worldviews, and ideologies that represent or reflect Palestinians and Arab-Israelis, including references to Palestinian and Arab-Israeli culture, statements and interviews by Palestinian and Arab-Israeli public leaders related to Palestinians and Arab-Israelis, as well as policy matters concerning these groups (not just security issues).

Note that:

- References that do not reflect a Palestinian perspective (e.g., discussions on settlements or military actions against Palestinian organizations), will not be labeled under this identity.
- 2. The speaker does not have to be Palestinian but must present events or impacts from a Palestinian perspective.
- 3. Positive references for public figures representing these communities will be included under this identity.
- 4. This identity is distinct from the Leftist identity. References can be to both or either, depending on context.

Security-Oriented (*Bitchonist*). References to national security issues, military strength, security capabilities, threats to internal or external safety, defense agencies (IDF, Shin Bet, Mossad, etc.), borders protection, the state's ability to protect its citizens and security challenges.

Note that:

- 1. This identity includes references that relate to the notion of protecting all citizens (e.g., Jewish, Arab-Israeli) from violence or terror.
- 2. This identity excludes general or symbolic mentions of soldiers unrelated to defense (e.g., prayers, greetings, daily life).
- 3. This identity includes critiques of external actors (e.g., referring to the Palestinian Authority as a terrorists funding organization) when framed in terms of national security.

Ultra-orthodox (*Haredi*). References to Jewish ultra-orthodox (Haredi) lifestyle, including the Haredian education system, gender segregation in the public sphere, exemption from military service for yeshiva students, charitable activities within the Haredi community, the Haredi religious (Torah) world and tradition preservation, Haredian parties (Shas, United Torah Judaism, Agudat Yisrael), and Haredi rabbinic leadership.

Note that:

- 1. The mere mentioning of Rabbis is not enough. Statements must carry a positive tone.
- General religious expressions (e.g., quoting a verse, mentioning Jewish holidays) will not be labeled under this identity unless clearly framed within Haredian context or authority.
- References to the integration of Haredim into broader Israeli society, or criticism of the Haredi community, will not be labeled under this identity.

Zionist. Affirmation of Zionist symbols and values, such as Jewish immigration to Israel (Aliyah), connections between Israel and the Jewish diaspora, national pride, IDF enlistment, national unity, symbolic expressions such as the positive references to the Israeli flag, national anthem and collective sacrifice (e.g., references to Memorial Day, families of fallen soldiers). Also includes references relating to Israel's struggle against antisemitism and BDS. Note that:

- This definition draws on the Declaration of Independence, which defines Israel as the homeland of the Jewish people.
- 2. This identity includes expressions of dedication to Israel's future, strength and prosperity ("to serve the country," "for the future of the country").

D Fine-tuning setup

All model fine-tuning is performed on an 80GB A100 Nvidia GPU, using huggingface transformers.

For decoder fine-tuning, the separator "### Answer:" is used to separate the input sentences from the output. The labels of the input and separator are loss-masked.

All experiments utilize AdamW optimizer with a linear scheduler. Default values of hyperparameters are used everywhere except for learning rate (for encoders and for decoder LLMs) and loss type (for encoder models).

Decoder fine-tuning uses QLORA with 4bit quantization. LORA settings are rank of 256, and alpha value of 512. LORA layers are attached to all linear levels in the decoder models.

Each hyper-parameter configuration was trained once.

E Generalization to Parliamentary Speech

Table 5 shows the full results of the 500 items sampled from parliamentary Knesset speeches for cross-genre generalization test. The predictions are produced by the best performing training checkpoint (DictaLM2.0 fine-tune).

Class	Precision	Recall	F1-score	Support
Conservative	0.33	0.82	0.47	17
Rightist	0.66	0.74	0.70	47
Democrat	0.76	0.69	0.72	74
Honest	0.72	0.81	0.76	47
Capitalist	0.68	0.87	0.76	31
Ultra-orthodox	0.66	0.84	0.74	32
Socially-oriented	0.73	0.72	0.73	72
Liberal	0.60	0.60	0.60	63
Leftist	0.66	0.77	0.71	53
Security-oriented	0.78	0.75	0.77	48
Palestinian	0.91	0.86	0.88	69
Zionist	0.76	0.81	0.78	42
Micro avg	0.70	0.76	0.73	595
Macro avg	0.69	0.77	0.72	595
Weighted avg	0.72	0.76	0.73	595
Samples avg	0.62	0.64	0.62	595

Table 5: Knesset sample results – DictaLM2.0 fine-tuned checkpoint

F Data Release

The annotated data is released under cc-by-4.0 license. The data is publicly available on github at https://github.com/guymorlan/hebid/.

G Annotation

All data has been annotated by two authors of the paper. The authors have not received direct compensation. The two annotators are Hebrew speaking women living in Israel.

H Model Sizes

Model	Parameters		
mBERT (bert-base-multilingual-cased)	110 M		
AlephBERT	110 M		
HeRo	125 M		
DictaBERT-base	184 M		
DictaBERT-large	340 M		
Gemma-2B	2 B		
Gemma-9B	9 B		
Qwen3-8B	8.2 B		
DictaLM 2.0	7 B		

Table 6: Model sizes (number of parameters) for all models used in this paper.

I Preprocessing

Sentence segmentation was performed using the Stanza package.

J External Validity

CHES variable (2021)	Correlated with	Pearson r	p-value
	Rightist - Leftist	0.941	< 0.001
Overall Ideology (Left/Right)	Rightist	0.880	0.002
	Leftist	-0.815	0.007
	Conservative - Liberal	0.817	0.007
Social Values (Libertarian/Traditional)	Conservative	0.431	0.247
	Liberal	-0.838	0.005
	Conservative - Liberal	0.905	< 0.001
Civil Liberties vs. Law & Order	Conservative	0.850	0.004
	Liberal	-0.845	0.004
	Capitalist - Socially-oriented	0.423	0.256
Economic Stance (Left/Right)	Capitalist	0.869	0.002
	Socially-oriented	0.012	0.976
	Ultra-orthodox - Democrat	0.708	0.033
State's Identity (Democratic vs. Jewish)	Ultra-orthodox	0.649	0.059
	Democrat	-0.410	0.274
Salience of Reducing Corruption	Honest	0.664	0.051
Stance on Israeli Delectinian Conflict	Zionist	0.865	0.003
Stance on Israeli-Palestinian Conflict	Palestinian	-0.602	0.086
Position on a Palestinian State	Zionist	0.862	0.003
rosition on a Palestinian State	Palestinian	-0.549	0.126
Position on Engagement with Arab World	Security-oriented	0.710	0.032

Table 7: Pearson correlation between CHES variables (2021) and identity discourse shares.

K Additional Results

Hierarchically-Clustered Correlation Matrix

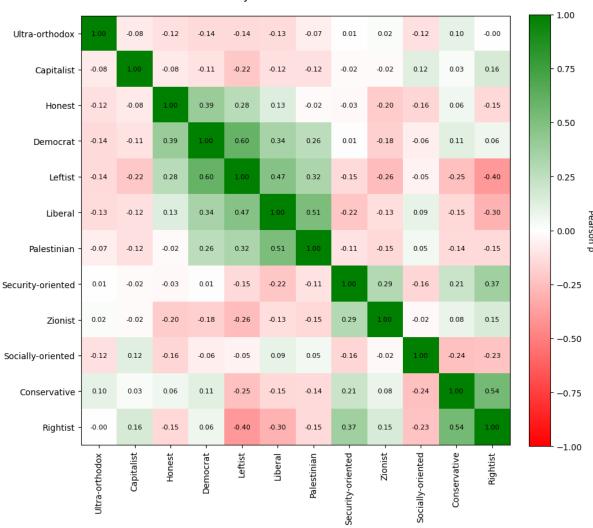


Figure 7: Identity Correlation Matrix - Facebook

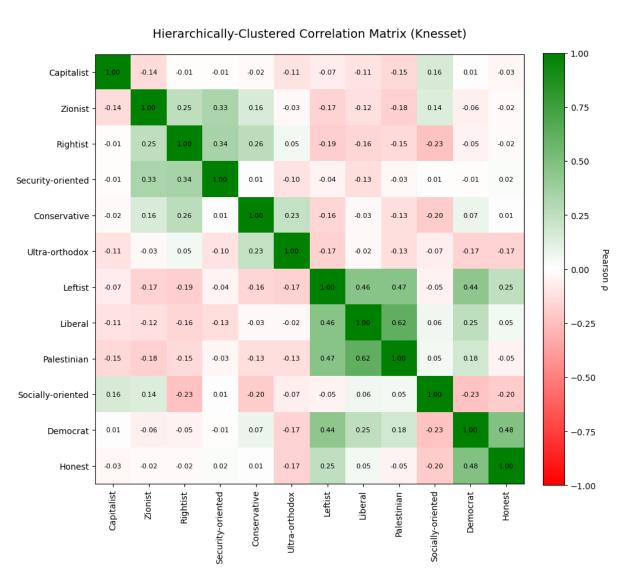


Figure 8: Identity Correlation Matrix - Knesset

Correlation Matrix - Panel 1.00 0.19 0.03 Ultra-orthodox --0.07 -0.04 -0.01 0.05 -0.02 -0.11 -0.02 0.13 0.01 Conservative · 0.02 0.13 0.04 -0.01 0.14 -0.02 0.75 0.22 0.01 0.13 Capitalist 0.03 0.03 0.09 0.05 0.01 -0.07 0.09 -0.06 0.50 0.01 1.00 0.25 0.10 0.11 -0.07 0.00 0.14 -0.02 -0.08 -0.17 0.07 Democrat Liberal -0.04 0.02 0.13 0.25 0.11 0.07 -0.05 -0.07 0.09 -0.19 0.05 0.25 0.14 -0.01 0.11 0.18 -0.04 0.02 0.03 -0.10 0.04 -0.13 -0.03 Leftist 0.00 Palestinian 0.08 0.10 0.07 0.03 0.09 0.04 Security-oriented -0.02 0.13 0.05 -0.02 -0.05 -0.04 0.06 1.00 0.07 0.02 0.19 -0.04 -0.25 -0.08 -0.07 -0.10 -0.11 0.18 Zionist -0.50 Socially-oriented -0.02 -0.01 -0.07 0.11 0.09 0.04 0.09 0.02 -0.11 1.00 -0.18 0.16 0.13 0.14 0.09 -0.17 -0.19 -0.13 0.01 0.19 0.18 -0.18 -0.23 Rightist - -0.75 0.01 Honest -0.02 0.07 0.05 -0.03 0.04 -0.04 -0.09 0.16 Leftist Ultra-orthodox Democrat Palestinian Security-oriented Socially-oriented

Figure 9: Identity Correlation Matrix - Survey

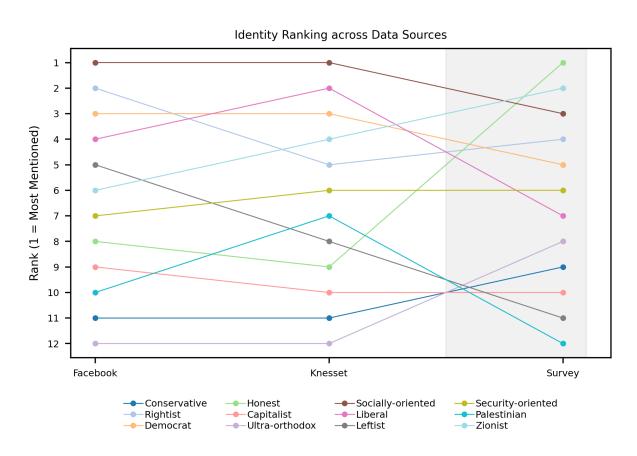


Figure 10: Identity Ranking

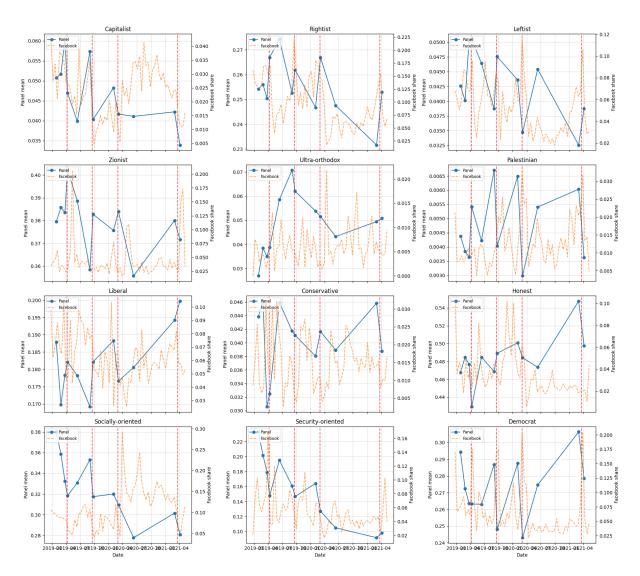


Figure 11: Per-identity time-trends on Facebook (biweekly mean) and survey