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Abstract

Figure captions are crucial for helping read-
ers understand and remember a figure’s key
message. Many models have been devel-
oped to generate these captions, helping au-
thors compose better quality captions more
easily. Yet, authors almost always need to re-
vise generic Al-generated captions to match
their writing style and the domain’s style, high-
lighting the need for personalization. De-
spite language models’ personalization (LaMP)
advances, these technologies often focus on
text-only settings and rarely address scenar-
ios where both inputs and profiles are multi-
modal. This paper introduces LAMP-CAP,'
a dataset for personalized figure caption gen-
eration with multimodal figure profiles. For
each target figure, LAMP-CAP provides not
only the needed inputs, such as figure images,
but also up to three other figures from the same
document—each with its image, caption, and
figure-mentioning paragraphs—as a profile to
characterize the context. Experiments with four
LLMs show that using profile information con-
sistently helps generate captions closer to the
original author-written ones. Ablation studies
reveal that images in the profile are more help-
ful than figure-mentioning paragraphs, high-
lighting the advantage of using multimodal pro-
files over text-only ones.

1 Introduction

Figures like bar charts or line charts are widely
used by scientists, companies, and governments to
communicate key insights (Kim et al., 2021; Fara-
hani et al., 2023). Captions—text placed next to
these figures—are known to be crucial for help-
ing readers understand and remember the figure’s
message (Tang et al., 2023; Kantharaj et al., 2022a;
Meng et al., 2024). Many models have been de-
veloped to generate high-quality captions to help
authors compose captions more easily (Hsu et al.,
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Figure 1: Overview of LAMP-CAP. For each target fig-
ure, the dataset provides multimodal inputs—the figure
image and figure-mentioning paragraphs—and a mul-
timodal profile of up to three other figures (i.e., profile
figures) from the same paper, each with its image, cap-
tion, and related paragraphs. The model generates a
caption for the target figure using the inputs and profile.

2021; Huang et al., 2023; Liu et al., 2023; Masry
et al., 2023). For example, the SCICAP Challenges
in 2023 and 2024 invited global teams to generate
captions for scientific figures in arXiv papers (Hsu
et al., 2025; Kim et al., 2025). Systems like SCI-
CAPENTER also emerged to assist authors by pro-
viding Al-generated captions (Hsu et al., 2024).
Despite these advances, studies show that authors
almost always need to revise generic Al-generated
captions to match their style and the domain’s style,
with one participant noting, “I need to revise the
facade because this is not the right way to present
(the concept)” (Ng et al., 2025a,b). This highlights
the need for personalized caption generation.
Meanwhile, the rise of large language models
(LLMs) has recently fueled interest in personal-
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ized text generation (Zhang et al., 2024; WoZniak
et al., 2024). Benchmarks like LAMP (Salemi
etal., 2024) (LAnguage Models Personalization)
and LONGLAMP (Kumar et al., 2024) were cre-
ated to study how LLMs can tailor text for specific
contexts. However, most of these explorations fo-
cused on text-only settings, where both the input
(used for generation) and profile (used for person-
alization) were text-based. How these text-only
approaches apply to multimodal scenarios—such
as figure caption generation—remains unclear.
This paper introduces LAMP-CAP, a dataset
for personalized figure caption generation with
multimodal figure profiles (§3). LAMP-CAP in-
cludes 110,828 target figures—scientific figures for
which models aim to generate captions for—each
from a distinct arXiv paper. For each target figure,
LAMP-CAP provides the needed inputs (source)—
figure images and figure-mentioning paragraphs
(e.g., “Figure 3 shows...”)—along with up to three
other figures from the same paper, each with its im-
age, caption, and figure-mentioning paragraphs, as
a profile to capture context. Models are then tasked
with generating captions for the target figure using
its image and figure-mentioning paragraphs (mul-
timodal source), given a figure profile of source-
caption pairs from the same paper (multimodal pro-
file for personalization). We used LAMP-CAP to
test caption generation with four LLMs and found
that profile information consistently improved the
similarity of generated captions to ground-truth
captions (§4). Ablation studies revealed that cap-
tions are the most critical profile element, followed
by images, with figure-mentioning paragraphs be-
ing the least important (§4.1). Our work provides
a new benchmark for personalized text generation
and demonstrates the effectiveness of using multi-
modal profiles beyond text-only approaches.

2 Related Work

Figure Caption Generation. Figure caption gen-
eration requires models to understand both the vi-
sual content and the broader context (Kantharaj
et al., 2022b; Wang et al., 2024; Hu et al., 2024;
Obeid and Hoque, 2020). Early approaches, like
F1GCAP and the initial version of SCICAP, relied
solely on figure images as input (Chen et al., 2020;
Hsu et al., 2021). Researchers soon realized this
was insufficient and began incorporating additional
context, such as figure-mentioning paragraphs and
even the document’s title or abstract (Huang et al.,

2023; Yang et al., 2024; Stokes et al., 2022). De-
spite this progress, prior work often overlooked
personalization. Although studies noted that users
often need captions tailored to their style or do-
main (Hsu et al., 2025; Huang et al., 2023), none of
these approaches explicitly provided source-target
pairs that capture the specific generation context
needed for models to learn personalized styles. A
few studies have explored creative personalization
of image captions (Shuster et al., 2019; Anantha Ra-
makrishnan et al., 2025), but these approaches re-
lied on explicit style inputs, making them depen-
dent on user-provided style descriptions.

Personalized LLMs. Personalization of LLMs
has gained attention (Zhang et al., 2024), primarily
in two directions: (i) personalized text generation
(tailoring generated text for specific contexts) and
(ii) downstream task personalization (enhancing tar-
geted applications like recommendation systems).
We focus on the first direction, defining the person-
alization target as a group of users—all co-authors
of a paper—rather than individuals. Prior work,
such as the LaMP-5 task (Salemi et al., 2024) on
Personalized Scholarly Title Generation, has also
treated a paper’s author group as a single entity for
personalization. Most prior work in this space has
been centered on text-only settings (§1). For exam-
ple, LAMP included tasks such as news headline
generation and email subject creation—relying ex-
clusively on text-based inputs and profiles (Salemi
et al., 2024). How these approaches extend to mul-
timodal scenarios remains an open question.

3 LAMP-CAP Dataset

We constructed LAMP-CAP by curating the SCI-
CAP Challenge Dataset (Hsu et al., 2025). We first
selected all papers containing at least two figures.
From each paper, we then randomly designated
one figure as the target figure (the one needing a
caption) and used the remaining figures from that
paper (up to a maximum of three, since the SCICAP
Challenge allowed at most four figures per paper)
as the profile to provide personalization context.
Following the SCICAP Challenge Dataset’s split
(i.e., 80/10/10 train/val/test), LAMP-CAP includes
110,828 target figures: 86,197 for training, 12,361
for validation, and 12,270 for testing. Among these,
54,680 (49.3%) had one profile figure, 26,193
(23.6%) had two, and 30,027 (27.1%) had three, to-
taling 197,075 profile figures. Papers with only one
figure were excluded. See Appendix A for details.
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4 Experimental Results

Experiment Setups. We evaluated four
LLMs on personalized caption generation using
LAMP-CAP:?> (i) GPT-40 (Hurst et al., 2024),
(ii) Llama 4 Scout (MetaAl, 2025), (iii) Gemini
2.5 Flash Preview (DeepMind, 2024), and (iv)
GPT-4.1 Mini (OpenAl, 2024). The first three are
larger models, while the last one is smaller. We
used OpenAl’s API for GPT-40 and OpenRouter
(openrouter.ai) for the others. We focused on
LLMs because large-scale human evaluations
from the SCICAP Challenge showed a clear
performance gap between model classes (Hsu
et al., 2025): only LLMs like GPT-4V consistently
generate captions matching or exceeding those
by human authors, while smaller or specialized
models such as PEGASUS (Zhang et al., 2020a)
and UniChart (Masry et al., 2023) perform poorly.

Building on prior work showing that more pro-
file information improves performance (Tan et al.,
2024), we tested four caption generation settings
with varying amounts and sources of profile in-
put: (1) No Profile: The model generated captions
using only the target figure’s image and figure-
mentioning paragraphs. (2) One Profile: The
model used the same source as in (1) but addi-
tionally used one randomly selected profile figure
from the same paper for personalization. (3) All
Profile: The model used the same source as in (1)
but additionally used all profile figures from the
same paper for personalization. (4) Other Pro-
file: The model used the same source as in (1) but
additionally used one or three randomly selected
profile figure(s) from random other papers. The
setup (4) tests whether performance gains come
from paper-specific context or generic in-domain
examples. See Appendix B for the full prompt.

We cleaned the output by removing unnecessary
reasoning steps or explanations. We also removed
cases (56 out of 12,259) where models failed to
generate valid output. See Appendix C and Ap-
pendix D for details.

Using profile information (from the same pa-
per) makes captions more similar to ground
truth, especially with all profile figures. Table 1
shows the personalized caption generation results
of four LL.Ms, evaluated using BLEU (Papineni

2Qwen-2.5-VL-7B-Instruct was excluded from our main
analysis due to significantly higher failure rate (2.2%,
269/12,259) compared to other models. See Appendix C.

Profile BLEU ROUGE
LLM
Same # 4 B> B3 B4 R1 R2 R-L
Paper < 3
N/A 0 219 .133 .091 .063 .321 .127 248
N 1 189108 070 046 289 .101 218
GPT- 3206 .118 .076 .051 .300 .107 .223
4o ¢ 1 279186 137 .103 384 .178 313
All 292 200 .150 .115 397 .194 328
N/A 0 254 .178 .138 .112 .357 .182 293
1 223 .167 .132 .107 .348 .180 .295
Llama- N
s 3251 .187 .152 .129 368 202 317
Scout 1 372 293 246 211 481 300 423

All .396 .318 .270 .235 .503 .324 .447

N/A 0 .305 .230 .188 .160 .417 .237 .361

Gemini- N 1 .268 .198 .159 .132 .388 .213 .335
2.5 3 279 .205 .164 .137 .398 217 .343
Flash
Preview Y

1 .370 .291 .244 209 .482 .301 .426
All 395 317 .270 .234 .504 .328 .449

N/A 0 .209 .124 .081 .054 .305 .117 .225

1 .216 .133 .091 .063 .325 .132 .250

GPT- N
41 3 .220 .136 .093 .065 .328 .134 .252
Mini v 1 .286 .202 .155 .121 .398 .207 .326

All .300 .218 .171 .137 412 225 .342

Table 1: Performance of LLMs on caption generation
across profile settings. The highest scores are achieved
by using all available profile(s) from the same paper.

et al., 2002) and ROUGE (Lin, 2004).> We used
reference-based metrics to measure how closely
the generated captions matched the original author-
written captions, following a standard evaluation
approach for personalized text generation used in
well-known work like Longl.aMP (Kumar et al.,
2024). The results show that incorporating profile
information consistently improves caption quality
across all four models. Additionally, using all pro-
file figures provides better results than using just
one. See Appendix E for details.

Using profiles from other papers often lowered
BLEU and ROUGE scores, though there were
exceptions. Table 1 suggests that performance
gains primarily came from paper-specific context,
rather than generic in-domain examples. Profiles
from other papers generally hurt performance, but
some models, such as GPT-4.1 Mini, showed slight

3We also explored BERTScore (Zhang et al., 2020b),
which correlated highly with BLEU and ROUGE. See Ap-
pendix E.
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Figure 2: BLEU-4 and ROUGE-2 scores on LAMP-CAP’s Context-Aligned and Context-Misaligned subsets,
showing that personalization is most effective when profile caption are similar to the target (a-1, a-2).

LLM Same BLEU ROUGE
Type B-1 B-2 B-3 B-4 R-1 R2 R-L
GPTodo No 233 .142 .097 .069 .340 .134 270

Yes .302 .208 .157 .121 .406 .201 .336

No .325 .245 .199 .167 .436 .250 .377

Llama-4 Scout
Yes .396 .317 .269 .233 .504 .325 .447

Gemini-2.5 No .326 .246 .201 .169 .440 .254 .384
Flash Preview = Yes .393 .314 .266 .229 .503 .325 .447

No .237 .154 .109 .079 .349 .155 .276
Yes 311 227 .178 .142 .422 234 351

GPT-4.1 Mini

Table 2: LLM performance on figures with one profile
figure. Personalization is more effective when the single
profile figure shares the same type as the target.

improvements. Furthermore, using more other pro-
files tended to reduce the performance drop or, oc-
casionally, provide minor gains.

When profile figures shared the same type as
the target figure, personalization works better.
To examine how figure type affects personaliza-
tion, we analyzed cases with a single profile figure,
splitting them into two groups: those where the pro-
file and target figure types matched (n=8,083) and
those where they did not (n=4,120). Table 2 shows
that matching the figure type resulted in captions
that were significantly closer to the gold caption.

Personalization is more effective when profile
captions are highly similar to the target cap-
tion. To test if personalization is more effective
when profiles are similar to the target, we split
our test set into two groups. We calculated the
similarity (using BERTScore and ROUGE-L) be-
tween each target caption and its available pro-
file captions. The top 25% of examples with the
most similar profiles formed our Context-Aligned
set (n=2,513); the remainder formed the Context-

Profile BLEU ROUGE
# B-1 B-2 B-3 B4 R-1 R-2 R-L
0 .212 .124 .082 .055 .302 .113 .223
1 .289 .198 .145 .109 .390 .181 .312
2 319 215 .159 .121 411 .198 .331
3 332 .231 .175 .136 424 215 .345

Table 3: GPT-40 performance with varying numbers
of profile figures. Scores improve as more profiles are
added, with the largest gain from O to 1 profile.

Misaligned set. The results in Figure 2 confirm our
hypothesis. Performance gains from using profiles
were substantially larger for the Context-Aligned
group (Figures 2a-1 and 2a-2), while the impact
was noticeably smaller for the Context-Misaligned
set ((Figures 2b-1 and 2b-2). (See Appendix F.)

Adding more profile figures consistently im-
proved performance, but the largest gain came
from the first profile. We examined how the
number of profiles affected caption quality using
GPT-40. A subset figure with exactly three profiles
from the same paper was used (n=3,424). For the
1-Profile and 2-Profile settings, profiles were ran-
domly sampled. Table 3 showed clear diminishing
returns as more profiles were added.

4.1 Ablation Study

Captions are the most important profile element,
while images are more influential than para-
graphs. To assess the importance of each profile
element, we conducted an ablation study on the test
set using the GPT-40 model with the One Profile
setting. We tested three conditions by removing
one profile element at a time: (i) figure captions
(No Caption), (ii) figure images (No Image), and
(iii) figure-mentioning paragraphs (No Paragraph).
Figure 3 shows the results. Removing captions had
the most significant impact, as captions directly
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Figure 3: Ablation study on the impact of profile ele-
ments using GPT-40. Results show a clear hierarchy of
importance: caption > image > paragraph.
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Figure 4: Distribution of human preference rankings
(lower is better). A Friedman’s test confirmed a statisti-
cally significant difference between the model configu-
rations (x2 = 28.48, p < 0.001).

guide generation. Removing images also reduced
performance more than removing paragraphs, high-
lighting the greater influence of visual information.
Appendix G shows the detailed results.

4.2 Human Evaluation

We recruited 10 US-based NLP researchers (PhD
students with publication or review experience) for
our human evaluation. The study involved ranking
captions for 50 figures randomly selected from the
arXiv cs.CL domain. For each figure, we provided
the figure’s image, the paper’s title, and abstract as
context. Participants then ranked four correspond-
ing captions based on how well each one helped
them understand the figure. The four captions were:
(i) the original Gold caption, and (ii) No-Profile,
(iii) 1-Profile, and (iv) All-Profile settings generated
by our best-performing model (Gemini, based on
automatic metrics). See Appendix H for details.

1-Profile was the most preferred condition.
Our human evaluation result shows a clear pref-
erence for /-Profile setting, which achieved the
best average rank of 2.27. The other models fol-
lowed in order: No-Profile (2.48) and All-Profile
(2.54). Interestingly, the author-written Gold cap-
tions were ranked last overall with an average rank
of 2.71. Such outcome is reflected in the prefer-
ence distribution (Figure 4): The I-Profile configu-
ration received the most first-place votes (30.6%)
and the fewest last-place votes (17.8%). On con-

trast, the Gold captions were ranked last most
frequently (31.2%). Post-hoc Friedman-Nemenyi
tests showed that 1-Profile and No-Profile captions
were significantly preferred over gold (p < 0.001
and p = 0.03, respectively).

Trade-offs between human-perceived quality
and similarity to gold captions. While the All-
Profile setting generated captions with higher ref-
erence similarity (Table 1), human judges signif-
icantly preferred captions from 1-Profile (p =
0.006). This suggests that optimizing for similarity
may also reproducing flaws from the inconsistently
quality’s caption from arXiv reference (Huang
et al., 2023), reducing the perceived quality.

5 Discussion

Our results with LAMP-CAP show that including
figure images in profiles improves personalized cap-
tion generation, and that more profile information
makes captions closer to the original author-written
captions. Although we focused on personalized
text generation, Zhang et al. noted strong links
between LLM-based personalized text generation
and downstream applications such as recommenda-
tion systems, suggesting that multimodal profiles
could also benefit tasks like multimodal recommen-
dation. Our findings also echo challenges noted by
Zhang et al., such as reduced LLM effectiveness
when profiles lack similarity—a problem linked to
cold-start scenarios in low-resource settings.

We further highlight the limitations of automatic
metrics for evaluating personalized text generation.
As shown in prior work (Salemi et al., 2025), n-
gram-based scores, such as BLEU and ROUGE,
often fail to reflect human judgments of quality
accurately. We hope our work, along with the
LAMP-CAP dataset, motivates the community to
explore multimodal profiles and broaden the scope
of LLM personalization.

6 Conclusion and Future Work

We introduced LAMP-CAP, a new dataset for per-
sonalized caption generation for scientific figures
using multimodal profiles, and showed that profiles
make captions more personalized across four lan-
guage models. Future work includes expanding
profile components, exploring cross-domain gener-
alization, and developing writer-centric evaluation
metrics. We are also developing a caption writing
assistant that generates personalized captions by
analyzing users’ local document context.
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7 Limitations

We acknowledge several limitations in this work.

* First, our approach assumes that each figure
has profile figures from the same arXiv paper,
but this is not always true, especially for pa-
pers with only one figure, which we excluded.
This assumption also limits the method’s use-
fulness in early-stage writing, when context
for personalization is sparse—a classic exam-
ple of the “cold start” problem in personaliza-
tion. However, because authors often write
captions late in the process (Ng et al., 2025a),
our method is well-suited to assist at this criti-
cal stage.

* Second, our work only used basic figure se-
lection strategies, such as random choice or
matching by the same type, rather than more
advanced strategies to further optimize the out-
comes. Our primary goal was to introduce the
concept of the dataset and to encourage fur-
ther research on personalized text generation
with multi-modal profiles by demonstrating
that even basic strategies yield promising re-
sults.

¢ Third, we did not include individual author in-
formation in personalization profiles because
most papers are co-authored, and different fig-
ures and captions may be written by different
authors. Although author-based personaliza-
tion could be explored using their past works,
the collaborative nature of academic writing
makes this difficult.

* Fourth, we recognize the risk of data contami-
nation when testing LLMs on public datasets.
Personalized text generation tasks, including
our own, have historically relied on existing
datasets as their data source. For this study, we
built LAMP-CAP on the well-established and
widely used SCICAP Challenge dataset for fig-
ure caption generation. Because this dataset
is derived from publicly available arXiv pa-
pers, eliminating contamination risks entirely
is difficult. That said, our work is the first
to explore multimodal profiles for scientific
figure captioning, and we believe the trade-
off is justified. Supporting this view, the
ScICAP Challenge’s human evaluation pa-
per (Hsu et al., 2025) ran a small study on

newly published arXiv papers to test contam-
ination effects. Their findings showed that
model preference rankings remained consis-
tent on unseen data, suggesting contamination
does not undermine the validity of results.

* Finally, our automatic evaluation focused on
caption similarity to original captions, which
does not guarantee caption quality. As sug-
gested by our human evaluation results (§4.2),
high similarity indicates that profiles capture
context and style, but it does not ensure the
captions are useful for readers. Future work
could additionally explore automatic evalu-
ation approaches, such as LLMs-as-judges
methods, to assess caption quality and use-
fulness more meaningfully. Scaling the reli-
able but expensive human evaluation is also
an interesting direction.

8 [Ethics Statements

Using LLMs to generate text inherently carries
risks, including producing inaccurate or mislead-
ing information. In scholarly contexts, such errors
could mislead readers. Our approach minimizes
this risk by involving paper authors, who should
review and revise generated captions. If captions
are presented to readers without human validation—
contrary to our intent—the system should clearly
indicate that the captions are Al-generated, not
written by the original authors.
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A LAMP-CAP Dataset Details

Figure 5 provides a detailed breakdown of figure
type across each data split. Figure 6 provides a
detailed distribution across each data split.

B Prompts

In this section, we provide the prompt we used in
Section 4. [IMG-TARGET] and [PARA-TARGET]
represent encoded images and figure-mentioning
paragraphs from target figures. [num_profiles]
indicates the number of profiles used, while
[profile_index] denotes a specific profile’s index.
[IMG-PROFILE], [PARA-PROFILE], and [CAP-
PROFILE] correspond to encoded images, figure-
mentioning paragraphs, and captions from profile
figures, respectively.
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Figure 5: Data split of LAMP-CAP by figure type. The
dataset contains 307,903 figures from 110,828 scientific
papers, split into training (80%), validation (10%), and
testing (10%) sets. Each set includes target and profile
figures. The five main figure types are a) Graph Plot,
b) Node Diagram, c) Equation, d) Bar Chart, and e)
Scatterplot. Graph plots are the most common figure
type across all splits.

Prompt with No Profile. The following prompt
was used for the baseline condition without profile
information:

Your task is to generate a caption for
the Target Figure. We will provide
you with the image of the Target
Figure, labeled as 'Target Figure
Image', and the paragraphs that
mention the Target Figure, labeled
as 'Target Figure Paragraph(s)',
from the same paper.

The elements for the Target Figure will
be labeled as follows:
- Target Figure Image:[IMG-TARGET],

60000
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1 profile
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M Validation (10%) mTesting (10%) M Training (80%)

Figure 6: Profile distribution in LAMP-CAP, showing
the number of target figures with 1, 2, or 3 profile fig-
ures.

Your task is to carefully analyze the
content, tone, structure, and
stylistic elements of these captions

and associated text. Based on this
analysis, generate a caption for the
Target Figure, maintaining the same
writing style. We will provide you
with the image of the Target Figure,
labeled as 'Target Figure Image',
and the paragraphs that mention the
Target Figure, labeled as 'Target
Figure Paragraph(s)', from the same
paper. The elements for the Target
Figure will be labeled as follows:

- Target Figure Image:[IMG-TARGET],

- Target Figure Paragraph(s): [PARA-
TARGET].

- Target Figure Paragraph(s): [PARA-
TARGET].
Prompt with Profile. The following prompt was

used with profile information:

We will present you with the captions,
images, and paragraphs referencing [
num_profiles] scientific figures
from the same paper. These elements
will be labeled as follows:

- Profile Figure [profile_index]:

-- Image [profile_index]: [IMG-PROFILE],

-- Paragraph [profile_index]: [PARA-
PROFILE],

-- Caption [profile_index]: [CAP-PROFILE
1.

C Generation Output Cleaning
Procedure

We performed data output cleaning in three steps.

1. We manually examined cases with BLEU or
ROUGE scores of 0 to identify data issues.
We identified 11 cases (out of 12,270) where
the original captions were incorrectly captured
due to parsing errors—either missing the real
caption content or capturing the wrong text.
In one instance, the parser mistakenly cap-
tured the paper authors name from the bottom-
right corner instead of the caption beneath the
figure on the same page. These cases were
excluded from evaluation.

2. We used GPT-40-mini to clean the generated
captions, removing irrelevant text such as rea-
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soning steps, figure indexes, or any pre- and

suffix that did not belong to the actual caption.

Our cleaning instructions explicitly specified
not to add any additional text or explanations
to the raw output. The following prompt was
used:

You are a helpful assistant that
extracts the actual caption from
text. Ignore any reasoning or
explanation text and only return

the actual caption content.

Also, remove any prefix that
indicates figure index such as
Caption:', 'Fig.', 'Figure',6 or
any numbering before the main
caption text. Extract ONLY the
actual caption from this text,
without any additional text or
explanation: [GENERATED-CAPTION]

Below is an example from arXiv paper
1105.0392, showing the response from the
"Llama-4 Scout" model with "All-Profile"
configuration, before and after cleaning:

RAW OUTPUT The following is the raw
output before cleaning:

Based on the provided elements, I
< Wwill generate a caption for the
— Target Figure.

Target Figure Caption: A

« deterministic algorithm for

— the 1-dimensional case chooses
< a good sensor at each step.

This caption maintains the same

— writing style as Caption 1:
"Four similar rhombi form a set
of regions for which no
stateless algorithm can be
competitive.” It is concise,
informative, and provides a
brief description of the Target
Figure.

A

—
>

e tone and structure of the
caption are consistent with the
provided caption, and it
effectively conveys the main
idea of the Target Figure.

i

Please let me know if you need
— further adjustments!

EXTRACTED CAPTION The following
is the extracted caption after cleaning:

A deterministic algorithm for the
< 1-dimensional case chooses a
— good sensor at each step.

After GPT-40 cleaning, we randomly sam-
pled 100 outputs for human evaluation. Us-
ing binary labels (GOOD/BAD), we assessed
whether the extracted captions were correct.
All 100 sampled extractions were labeled as
GOOD, confirming the cleaning procedure’s
effectiveness.

3. We employed keyword filtering with manual
verification to filtered out failed generation,
including blank responses. Detailed exam-
ples of these error cases are documented in
Table 4. After cleaning, we identified a total
of 56 unique problematic cases across all mod-
els and configurations (out of 12,259), which
were excluded from further analysis.

The Qwen-2.5-VL-7B-Instruct model was ex-
cluded from the main comparative analysis
due to its high rate of generation failures, par-
ticularly when using the profile-based config-
urations. Specifically, this model failed in
2.19% of All-Profile cases and 0.83% of One-
Profile cases, whereas the highest failure rate
for any other model was just 0.07%. For com-
pleteness, we nevertheless report its baseline
performance in Table Table 5.

D Text Preprocessing and Evaluation

For text normalization before evaluation, we im-
plemented a custom preprocessing pipeline using
standard Python libraries that: (1) converts text
to lowercase, (2) removes all punctuation, and (3)
normalizes whitespace.

For evaluation, we used standard NLP metrics
implemented in Python packages: NLTK (version
3.9.1) for BLEU scores (with SmoothingFunction
for smoothing) and Google’s rouge_scorer (ver-
sion 0.1.2) for ROUGE metrics. We used the
default parameters for both packages. The spe-
cific implementations were imported directly from
nltk.translate.bleu_score and rouge_score
modules.
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Model and Config Cases

Examples of Invalid Generations

Qwen_All-Profile 269 Null output

n___mn

"Caption for Target Figure:", "**Caption for the Target Figure:**"
"PLEASE, provide the image of the Target Figure, so that I can..."
"Based on the analysis of the provided captions, images, and paragraphs, your task..."

Qwen_One-Profile 102 Null output

"Could you give me the image of the Target Figure labeled ’Target Figure Image’?"
"Your analysis shows us your own comprehensive and detailed interpretation..."

Qwen_No-Profile 31 Null output

Gemini_No-Profile 24
"nan", "None"

"no caption found"

"The provided paragraphs do not mention the Target Figure."

"Sorry, I lack the necessary information to generate a caption..."
"Please provide the Target Figure Image and the Target Figure Paragraph(s)..."

"we are unable to generate a caption for this figure..."

Gemini_One-Profile 9

"image 1", "Target Figure Image"
"there is no caption to extract"

Gemini_All-Profile

O

"image 1", "image"

Llama_No-Profile

o)}

"There is no caption provided in the text."

mon

Llama_One-Profile 8 "target”, "target figure"

"There is no caption provided in the text."
"Since the Target Figure Image does not contain any specific data or information...

Llama_All-Profile 4 "target”, "target figure"

"not applicable"

4.1 Mini_One-Profile | 1 "no caption provided"

Table 4: Examples of invalid generation across different language models and profile configurations

LLM Profile BLEU ROUGE
Same #
B-1 B-2 B-3 B-4 R-1 R-2 R-L.
Paper < 3
Qwen-2.5- N/A 0 .198 .117 .079 .056 .295 .110 .228
VL-7B- 1 .257 .174 .133 .105 .348 .168 .285
Instruct ~ Same

All .262 .181 .140 .112 .353 .175 .290

Table 5: Performance of the Qwen model on caption
generation with varying profile settings®

* The cross-paper source analysis was not performed for
this model due to its high failure rate in initial experi-
ments compared to other LLMs

E Detail about Caption Evaluation

This appendix session is to supplement the result in
Section 4 regarding the main study of caption gen-
eration using different profile configuration across
4 models.

Figure 9 shows the BLEU-4 distribution across
different language models and profile configura-
tions.

Figure 10 shows the ROUGE-2 distribution
across different language models and profile con-
figurations.

Table 9 shows BERTScore semantic similarity
between the generated and gold captions. The
results correlate strongly with our BLEU and
ROUGE metrics, confirming the same performance
trends. The All-Profile setting achieves the high-

est score, followed closely by /-Profile. Notably,
this analysis reveals a pattern of diminishing re-
turns. The performance leap from No-Profile to
1-Profile is substantially larger than the subsequent
gain from /-Profile to All-Profile, indicating that
while the first profile provides a significant seman-
tic boost, the marginal benefit of additional profiles
is less substantial.

F Context-Alignment Data Partition

This appendix provides additional details on the
Context-Aligned and Context-Misaligned subset
partitioning and evaluation described in Section 4.

Figure 7 presents the distribution of BERTScore
and ROUGE-L between target and profile captions
in the LAMP-CAP Test Set.

Table 6 shows performance metrics for the
Context-Aligned Subset across different LLMs and
profile configurations.

Table 7 presents performance metrics for the
Context-Misaligned Subset across different LLMs
and profile configurations.

G Detailed Result of Ablation Study

This appendix session is to supplement the find-
ing in subsection 4.1 regarding the ablation study.
Table 8 shows the detailed result of ablation study.
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Distribution of Max BERTScore Values between Profile and Target Captions
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Figure 7: Distribution of BERTScore (left) and ROUGE-L (right) metrics between Target and Profile captions in the
LAMP-CAP Test Set. Both these scores share a left-shifted skewed unimodal distribution. The BERTScore plot
shows that the provided profile captions for each target are very semantically related. On the other hand, the broader
spread of ROUGE-L scores shows that profile captions exhibit low lexical overlap. High semantic relatedness and
lexical variety motivates our use of profile captions as key style indicators for personalization.

LLM Profile BLEU ROUGE LLM Profile BLEU ROUGE
Used B-1 B-2 B-3 B-4 R-1 R-2 R-L Used B-1 B-2 B-3 B-4 R-1 R-2 R-L
No .226 .144 .101 .071 .321 .138 .259 No 217 .131 .088 .061 .320 .124 .245

GPT-40 One 437 .347 .289 .242 .533 .345 484 GPT-40 One .238 .144 .097 .067 .345 .135 .269

All 478 .391 .332 .282 .573 .393 .530

All 244 150 .102 .071 .351 .142 275

No .249 .178 .139 .112 .347 .183 .296
One .589 .523 473 427 .676 .536 .646
All 666 .605 .556 .510 .744 .616 .720

Llama-4 Scout

No .255 .178 .138 .112 .360 .181 .292
One .316 .233 .187 .155 .430 .238 .366
All 326 .243 .196 .164 .440 .248 .376

Llama-4 Scout

No .319 .241 .195 .164 .459 .247 .379
One .576 .507 .456 .410 .664 .520 .635
All  .659 .600 .551 .505 .742 .617 .717

Gemini-2.5
Flash Preview

No .301 .227 .186 .159 .414 235 .357
One 317 .235 .189 .157 434 .244 371
All 326 .244 .197 .164 .443 253 .380

Gemini-2.5
Flash Preview

No .188 .116 .078 .053 .282 .116 .220

No .215 .127 .082 .054 .312 .117 .226

GPT-4.1 Mini  One .449 .379 .330 .287 .554 401 .511 GPT-4.1 Mini One .243 .156 .109 .078 .357 .157 278
All  .496 .433 .387 .344 .600 .463 .565 All 249 162 .114 .083 .364 .164 .284
Table 6: Performance on LAMP-CAP Context-aligned  Table 7: Performance on LAMP-CAP Context-

Subset (n=2,513) across LLMs and profile configura-
tions.

H Setup of Human Evaluation Study

This appendix session provides supplementary ma-
terials for the human evaluation study described in
subsection 4.2. Figure 8 shows the interface of the
user study in Microsoft Form.

To supplement the

Our protocol was reviewed and approved by the
Institutional Review Board (IRB) of The Pennsyl-
vania State University (STUDY00025214), which
granted a waiver of written documentation of con-
sent. Consent was implied by participants volun-
tary action of proceeding with and completing the
survey. Each participant received $20 cash compen-
sation upon completion of the study. The following
is the instruction shown to the human participant
before they start the study.

Misaligned Subset (n=9,690) across LLMs and profile
configurations.

We are conducting a human evaluation
study on the quality of captions
generated for scientific figures.

For each question, you will be shown the

paper's title and abstract to
provide context, followed by a
figure and four caption options.

Your task is to rank the captions based
on how well they help you understand

the figure.

Some captions may be generated with the
assistance of AI. However, the goal
is not to identify which captions
are human- or AI-written. Please
focus only on the clarity and
usefulness of each caption in
conveying the figure's message.

There are no right or wrong answers;
please use your own judgment. The
survey includes 50 figures and takes
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Elements BLEU ROUGE

B-1 B-2 B-3 B-4 R-1 R-2 R-L

No Paragraph .299 .199 .146 .110 .393 .184 .314

No Image 273 171 119 .086 .367 .154 .285

No Caption  .189 .109 .071 .048 .274 .100 .199

Table 8: Result from Ablation Study.

Model No-Profile 1-Profile All-Profile
GPT-40 .844 .860 .863
Llama-4 Scout .856 .873 .876
Gemini-2.5

. 874 .
Flash Preview 8 877
GPT-4.1 Mini .844 .860 .863

Table 9: Performance of various LLMs on figure caption
generation, as measured by BERTScore.

about 1.5 hours to complete. Please
use a desktop computer only. To
ensure fair evaluation, please avoid
searching for the original papers
online while completing the task.

And for each figure, we ask them to do the rank-
ing of the captions with the following prompt:

Please rank the four captions below
based on how well they help you
understand the figure.

Drag and drop to reorder them from 1 (
best) to 4 (worst) using your mouse.

I Disclosure of AI Assistance

We used Perplexity and Gemini to facilitate proof-
reading and text refinement.
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* Required
Figure 5 0
Paper Title:

Towards Abstraction from Extraction: Multiple Timescale Gated Recurrent Unit for Summarization

Abstract:

In this work, we introduce temporal hierarchies to the sequence to sequence (seq2seq) model to tackle the
problem of abstractive summarization of scientific articles. The proposed Multiple Timescale model of the Gated
Recurrent Unit (MTGRU) is implemented in the encoder-decoder setting to better deal with the presence of
multiple compositionalities in larger texts. The proposed model is compared to the conventional RNN encoder-
decoder, and the results demonstrate that our model trains faster and shows significant performance gains. The
results also show that the temporal hierarchies help improve the ability of seq2seq models to capture
compositionalities better without the presence of highly complex architectural hierarchies.

Please rank the four captions below based on how well they help you understand the
figure.
Drag and drop to reorder them from 1 (best) to 4 (worst) using your mouse. *  [1}
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1 Comparison of Training performance between multiple time constants.

2 Comparison of training performance between different timescale settings.

Comparison of Training Performance of MTGRU models with different timescale settings.

4 Comparison of multiple timescales.

Figure 8: The user interface for our human evaluation study.
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Figure 9: Distribution of the BLEU-4 across different LLMs and profile configuration.
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Figure 10: Distribution of the ROUGE-2 across different LLMSs and profile configuration.
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