
Findings of the Association for Computational Linguistics: EMNLP 2025, pages 991–1011
November 4-9, 2025 ©2025 Association for Computational Linguistics

Optimizing Cross-Client Domain Coverage for Federated Instruction
Tuning of Large Language Models

Zezhou Wang1, Yaxin Du2, Xingjun Ma3,
Yugang Jiang3, Zhuzhong Qian1 *, Siheng Chen2 *,
1Nanjing University, 2Shanghai Jiao Tong University,

3Fudan University
{zzw.cs@smail, qzz@}nju.edu.cn, {dorothydu, sihengc}@sjtu.edu.cn, {xingjunma, ygj}@fudan.edu.cn

Abstract

Federated domain-specific instruction tuning
(FedDIT) for large language models (LLMs)
aims to enhance performance in specialized do-
mains using distributed private and limited data,
yet identifying key performance drivers and op-
timal augmentation strategies remains challeng-
ing. We empirically establish that cross-client
domain coverage, rather than data heterogene-
ity, is the pivotal factor. We then introduce
FedDCA, an algorithm that explicitly maxi-
mizes this coverage through diversity-oriented
client center selection and retrieval-based aug-
mentation, constructing diverse, non-redundant
cross-client instruction sets. Extensive exper-
iments across multiple domains demonstrate
FedDCA’s superiority over eleven baselines,
achieving performance gains of up to 29.19%
and domain coverage improvements of 4.82%-
21.36%. FedDCA maintains its effectiveness
in diverse and challenging scenarios, includ-
ing data selection, held-out settings where task-
specific public data is scarce and various data
heterogeneity, with manageable privacy risks.
This work clarifies critical FedDIT dynamics
and presents FedDCA as an effective, privacy-
preserving, and scalable solution for advancing
domain-specific LLM tuning.

1 Introduction

Recently, federated instruction tuning (FedIT) has
gained attention as a novel approach that leverages
the principles of federated learning (FL) to facili-
tate collaborative training of large language mod-
els (LLM) in distributed environments while main-
taining the confidentiality of private data (McMa-
han et al., 2017; Ye et al., 2024c; Zhang et al.,
2023b). This methodology allows for the exchange
of model parameters among distributed data hold-
ers, thereby achieving a careful balance between
privacy preservation and efficient model optimiza-
tion. Despite the establishment of various FedIT
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frameworks (Ye et al., 2024c; Kuang et al., 2023;
Zhang et al., 2023b), existing literature has not ade-
quately addressed the practical challenges that Fed-
erated Domain-specific Instruction Tuning (Fed-
DIT) may encounter in real-world applications. For
instance, FedIT generally necessitates a sufficient
amount of instruction data for fine-tuning, which
is often a shortage in domain-specific fine-tuning
contexts (Zhang et al., 2024c).

We explore Federated Domain-specific Instruc-
tion Tuning (FedDIT), an innovative approach that
harnesses federated learning (FL) to unlock the po-
tential of Large Language Models (LLMs) in spe-
cialized domains. A significant hurdle in deploy-
ing such models arises when multiple entities hold
valuable but limited and privacy-sensitive data—a
common scenario in fields like medical diagnosis
(Guan and Liu, 2023; Hu et al., 2023) and financial
risk assessment (Abadi et al., 2024). These entities
require collaborative training of domain-specific
LLMs without direct data sharing (Xu et al., 2024a;
Zhang et al., 2024c). Our findings underscore a key
limitation: exclusive reliance on local, in-domain
data, despite its quality, often results in subpar per-
formance due to insufficient scale (see Table 1).
FedDIT tackles this by integrating carefully de-
signed instruction augmentation strategies (detailed
in Section 2) that expand local datasets while up-
holding privacy. This augmentation is not merely a
supplement but a crucial enabler for robust instruc-
tion tuning and for averting performance decline.
Focusing on practical and high-quality augmenta-
tion (Zhang et al., 2024c; Toshniwal et al., 2024),
we investigate a FedDIT setup employing a server-
hosted public dataset (a cross-domain instruction
set, detailed in Appendix B.1) and utilize various
sampling strategies to realize the data augmenta-
tion (discussed in Section 3). This dataset, abstract-
ing diverse open-source instructions, provides a
versatile foundation for augmentation techniques
designed to elevate model performance within spe-
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cific target domains.
Additionally, the factors affecting FedDIT are

still unclear. Compounding this uncertainty, intro-
ducing augmented instructions may further compli-
cate results, making it difficult to ascertain effec-
tive improvement strategies. We conduct experi-
ments to unveil a significant finding: there is no
monotonic correlation between the degree of non-
independent and identically distributed (non-iid)
and LLM’s performance in the context of FedDIT.
Inspired by Explore-Instruct (Wan et al., 2023),
which highlights the potential of domain coverage
in domain-specific instruction tuning. Unlike pre-
vious metric that measures domain coverage using
the distribution of verb-noun pairs, we define a
more general, representation-based cross-client do-
main coverage metric and investigate its impact on
FedDIT. Our results show that domain coverage
significantly influences model performance within
the corresponding domain.

To maximize cross-client domain coverage with-
out compromising client data privacy, we propose
a novel FedDIT algorithm, FedDCA (Domain
Coverage Augmentation). The inability of di-
rect data sharing under privacy constraints (de-
tailed in Section 5.1) motivates our approach. Ini-
tially, each client computes a set of candidate
cluster centers from its local data; these serve as
privacy-preserving proxies for its semantic distribu-
tion. FedDCA then employs a server-side, domain-
coverage-oriented selection algorithm (detailed in
Section 5.2) to choose a strategic subset (denoted
as client centers) from all uploaded candidate cen-
ters. These client centers then guide server-side
dense retrieval for instruction augmentation. This
selection process serves two critical purposes: 1)
it provides a privacy-preserving way to capture
the semantic diversity of distributed data, and 2) it
enables efficient retrieval of relevant public instruc-
tions that complement the collective needs of the
clients. By strategically optimizing the cross-client
domain coverage, FedDCA efficiently constructs
an augmented train set that enhances the model’s
generalization capability, leading to superior per-
formance on domain-specific tasks.

To substantiate our claims, we conduct a rigor-
ous empirical study. This includes foundational ex-
periments identifying the key performance drivers
in FedDIT, the development and evaluation of our
proposed FedDCA algorithm across multiple spe-
cialized domains (medical, financial, and math-
ematical) against eleven baselines, and in-depth

analyses of its practical aspects such as privacy,
scalability, and robustness in challenging settings
(detailed in Section 6 and Appendix B). Our key
contributions are as follows:

• We empirically reveal a critical finding: in
Federated Domain-specific Instruction Tun-
ing (FedDIT), cross-client domain coverage,
rather than data heterogeneity, substantially
impacts LLM effectiveness. We propose a
novel representation-based metric to quantify
this cross-client domain coverage.

• We propose FedDCA, an algorithm that maxi-
mizes cross-client domain coverage through
diversity-oriented client center selection and
retrieval-based instruction augmentation.

• Extensive experiments across diverse domains
demonstrate FedDCA’s superior effectiveness
and plug-and-play capability, outperform-
ing baselines by at most 29.19% in model
performance and improving relative domain
coverage by 4.82% to 21.36%. We also
show its privacy-preserving capability in Ap-
pendix B.5.

• We demonstrate FedDCA’s robustness and
practical applicability by evaluating its per-
formance in data selection scenarios (achieves
comparable performance using only 10% of
baseline’s data), held-out settings where the
server lack of task-specific public data, and its
consistent effectiveness across varying inter-
client data heterogeneity (Section 6.2 and Ap-
pendices B and C).

2 Related Work

Federated Instruction Tuning. Instruction tun-
ing has been widely applied across various applica-
tion areas of large language models (LLM), serving
as a key technique to enhance the capabilities and
controllability of LLM (Zhang et al., 2023c; Wei
et al., 2022). Recently, federated instruction tuning
(FedIT) has emerged as an effective strategy for
the distributed optimization of LLMs, leveraging
federated learning (FL) protocols to improve the
handling of privacy-sensitive tasks in real-world
scenarios. So far, several FedIT frameworks (Ye
et al., 2024c,b; Zhang et al., 2023b) have been
established to evaluate the effectiveness of FedIT
across multiple datasets, tasks, and FL methods.
While these platforms provide a foundation for re-
search, they have not yet introduced more complex
federated algorithms and deeply investigated the
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challenging problems and factors affecting FedIT,
which are crucial for advancing this field.

Some progress has been made in the study of
FedDIT (Zhang et al., 2024c; Wang et al., 2024; Ye
et al., 2024a), such as FewFedPIT, which addresses
data scarcity by locally generating data using pre-
trained LLMs and is the first to explore memory
extraction attacks within FedIT. Another relevant
approach is FedIT-U2S (Ye et al., 2024a), which
focuses on enabling FedIT when clients only pos-
sess raw, unstructured documents. Similar to our
conceptualization of a server-hosted public dataset
for augmentation, FedIT-U2S also leverages server-
side resources (the example database and the LLM
for instruction generation) to enrich client data,
albeit with a focus on structuring initially unstruc-
tured data rather than augmenting existing instruc-
tions with diverse new ones.

Non-IID data distribution is a common challenge
in FL (Karimireddy et al., 2020; Li et al., 2020;
Sattler et al., 2019; Li et al., 2019, 2021). However,
the impact of data heterogeneity on FedDIT has not
been fully explored. To fully understand the impact
of data heterogeneity on FedDIT and what truly
matters in FedDIT, we conduct a comprehensive
analysis in Section 4.

Domain Instruction Augmentation. In the real
world, there is an urgent need for training LLMs
with specific functionalities (e.g., reasoning ca-
pabilities) or domain-specific LLMs (e.g., code
(Nijkamp et al., 2023; Luo et al., 2024), medi-
cal (Zhang et al., 2023d), financial (Yang et al.,
2023b,a; Zhang et al., 2023a; Wu et al., 2023),
mathematical (Yue et al., 2024; Luo et al., 2023)).

Existing works tend to use open-source domain-
specific instruction tuning datasets for training.
However, the target domain may not always have
corresponding ready-made domain-specific instruc-
tion datasets. Even if they exist, these datasets are
often limited in scale.

Augmentation strategies broadly fall into two
categories: those leveraging existing/mined data
and those generating new instructions. Methods
based on existing or mined data include reusing
human-curated public datasets (Wang et al., 2023;
Zhang et al., 2023e), retrieving from large instruc-
tion pools (Xia et al., 2024; Jiao et al., 2023),
or scaling instruction acquisition from the web
(Yue et al., 2024; Zhou et al., 2024). These ap-
proaches offer access to diverse, potentially high-
quality instructions with generally favorable effi-

ciency and privacy, but depend on the availability
and relevance of such external data for the target
domain. Conversely, generative methods (Wang
et al., 2022; Zhang et al., 2024c; Wang et al., 2024)
create new instructions using LLMs (locally or via
APIs). While potentially highly tailored, they of-
ten incur significant computational/API costs, raise
privacy concerns, and face challenges in ensuring
consistent instruction quality and diversity, as de-
tailed in Appendix B.

In summary, adapting existing instruction aug-
mentation techniques to federated learning presents
significant challenges in balancing data quality, di-
versity, efficiency, privacy, and scalability. Current
methods often involve trade-offs between costly,
quality-variable generative approaches and data-
dependent retrieval strategies. This necessitates
robust augmentation frameworks tailored for Fed-
DIT, motivating our work in this area.

3 Problem Formulation

Federated Domain-specific Instruction Tuning
(FedDIT) is a federated learning approach designed
to improve the performance of LLMs in specific
domains by utilizing limited cross-client private
data in combination with domain-specific instruc-
tion augmentation strategies (Zhang et al., 2024c;
Xia et al., 2024; Wang et al., 2022).

For practical and scalable augmentation within
FedDIT, we conceptualize the primary source
of augmentation instructions as a server-hosted,
multi-domain public dataset (detailed in Ap-
pendix B.1). This strategic choice offers several
key advantages in a federated context. Firstly, it
provides a unified and manageable resource pool,
abstracting the complex origins of public instruc-
tions (whether curated, mined, or pre-generated).
Secondly, server management of this dataset decou-
ples data sourcing from the core federated augmen-
tation logic (such as retrieval strategies), allowing
the latter to focus on optimizing instruction selec-
tion and distribution. Finally, a centralized public
dataset enables efficient server-side pre-processing
and indexing, which ensures consistent data quality
and supports sophisticated retrieval mechanisms
beneficial to all participating clients.

Consider N distributed clients, each with local
private data Dl

k of size N l
k, and augmented data Dg

k

from the server’s public dataset Dp. Due to con-
straints like memory and computation, client ck can
accept at most Np

k public instructions. The server
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maintains Dp that spans multiple domains and is
responsible for data augmentation strategies Λ and
parameter aggregation. For efficiency, we adopt
Low-Rank Adaption (LoRA) (Hu et al., 2022) as
the fine-tuning method, tuning additional parame-
ters ∆ϕ while keeping pre-trained LLM parameters
ϕ frozen.

The objective of FedDIT is to enhance the
domain-specific performance of LLMs through
FL without sharing private data (Ye et al., 2024c;
Zhang et al., 2024c, 2023b), which is defined as:

argmin
∆ϕ

{F (ϕ,∆ϕ) ≜
N∑

k=1

pkFk (ϕ,∆ϕk;Dk;αk)},

(1)
where Fk(·) represents the accumulated instruc-

tion fine-tuning loss of model wϕ+∆ϕk
evaluated

on client ck’s augmented dataset Dl
k ∪Dg

k. Here,
pk denotes client k’s weight based on data ra-
tio, and αk =

Np
k

N l
k+Np

k

represents the proportion
of public data. Equation 1 optimizes the global
model by minimizing the weighted sum of empir-
ical losses across clients’ augmented instructions,
thereby enhancing in-domain utility. The empiri-
cal loss for client ck, Fk(ϕ,∆ϕk;D), is computed
as 1

|D|
∑|D|

j=1 l(wϕ+∆ϕk
;xj), where xj ∈ D, ∀j ∈

{1, 2, . . . , |D|} and l(·) is the instruction tuning
loss function.

For a client ck with private instruction set Dk,
we first encode instructions into embeddings using
encoder wenc. These d-dimensional vectors are
then clustered into ξ groups via k-means, yielding
centroid set Ck = {ck,1, ck,2, . . . , ck,ξ}, which is
subsequently transmitted to the server.

We first introduce the Direct Retrieval baseline,
which performs independent dense retrieval (Zhao
et al., 2022) for each client without explicit consid-
eration of cross-client domain coverage. For each
centroid ck,j , the server retrieves the top-N

p
k
ξ most

similar public instructions using cosine similarity.
The retrieved instructions are aggregated as client
ck’s augmented data Dp

k =
⋃ξ

j=1Rk,j . Finally,
client ck fine-tunes its model wk on the combined
dataset Dk = Dl

k ∪ Dg
k of private and retrieved

public instructions.

4 What Truly Counts in FedDIT

4.1 Data Heterogeneity: A Minor Factor

We adopt the Dirichlet distribution (Wang et al.,
2020; Yurochkin et al., 2019) to construct various

(a) Exp1. Med (b) Exp1. Fin (c) Exp1. Math

(d) Exp2. Perfor-
mance (%)

(e) Exp2. Domain
Coverage

Figure 1: (a)-(c) Performance (%) of different hetero-
geneity in each domain with 10 and 100 clients. (d)-
(e) Performance and domain coverage of iid and non-
iid settings on different domains. Experiments show
that cross-client domain coverage significantly impacts
model effectiveness, while data heterogeneity shows no
monotonic correlation with performance.

heterogeneity (β = [0.01, 0.1, 1, 10]) and use k-
means with ξ = 100 to pseudo labeling instruc-
tions.

We then perform instruction tuning on both 10
and 100 clients with 2 randomly selected clients
participating in each round. For each domain,
we only use the in-domain data and then perform
FedIT. We repeat the experiments for 3 times with
different random seeds (42, 43 and 44) and report
the average performance and the standard deviation
in each domain. As shown in Figures 1(a) to 1(c),
the performance of LLM shows a non-monotonic
correlation with the data heterogeneity, which in-
dicates that the performance of LLM does not di-
rectly depend on data heterogeneity and exist other
factors playing a key role.

4.2 Domain Coverage: A Key Factor

Different from Explore-Instruct, which defines do-
main coverage through the distribution of verb-
noun pairs, we attempt to conduct more in-depth
and extensive experiments to study the effect of
domain coverage on FedDIT. Firstly, we define the
domain coverage in the FL setting, considering the
cross-client data distribution. Assume the dataset
of in-domain data Dd represents the latent data dis-
tribution of this domain and the cross-client data is
defined as Dc = ∪N

k=1

(
Dl

k ∪Dg
k

)
.

Inspired by the submodular function (Krause and
Golovin, 2014), we first define a general coverage
metric. For any two sets of item embeddings, S1

(the reference set) and S2 (the covering set), their
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coverage, denoted d(S1, S2), is given by:

d(S1, S2) =
1

|S1|
∑

s1∈S1

max
s2∈S2

sim(s1, s2), (2)

where sim(·, ·) is the cosine similarity between
embeddings. Then the domain coverage of Dc re-
spect to Dd is d(Dd, Dc∩Dd). The use of Dc∩Dd

ensures that we only consider the in-domain por-
tion of the aggregated client data for this particular
coverage calculation, preventing misleading scores
from out-of-domain client data, consistent with our
original formulation.

To better align with our setup, we explore instruc-
tion augmentation based on both iid and non-iid
cross-client local data distribution and then per-
form dense retrieval (Zhao et al., 2022) for FedDIT
(the Direct Retrieval method). We set the number
of clients to 10, while each client has 100 local
instructions and obtains 1000 augmented public
instructions from the server. For the iid setting,
we randomly sample 1000 from the public dataset
and divide them into 10 shards as each client’s lo-
cal data. For the non-iid distribution, we perform
k-means clustering with ξ = 100. Each client ran-
domly samples 100 instructions from randomly se-
lected distinct clusters and then performs retrieval
for both settings.

Figures 1(d) and 1(e) presents the performance
and the according domain coverage of FedDIT in
different domains with iid and non-iid settings. We
can observe that both iid and non-iid settings out-
perform in some domains, but both collectively in-
dicate that higher domain coverage correlates with
better performance.

5 Method
Based on the above empirical observations, we pro-
pose FedDCA, which enhances domain coverage
to obtain a LLM that performs well on domain-
specific tasks (shown in Figure 2). We formu-
late the cross-client domain coverage optimization
problem and then introduce the FedDCA algorithm.

5.1 Optimization Problem
As domain coverage directly affects the in-domain
performance of the LLM, FedDCA aims to maxi-
mize the domain coverage of the cross-client aug-
mented data Dc with respect to the in-domain
data distribution Dd. However, privacy constraints
prevent clients from sharing local data, meaning
the server lacks direct knowledge of clients’ do-
main information. Consequently, directly iden-
tifying a cross-client dataset that maximizes do-

Figure 2: Overview, a three-stage process. 1) Client-
side: Clients ck perform local instructions clustering
and send cluster centers Ck to the server. 2) Server-side
Augmentation: The server executes diversity-oriented
client center selection to maximize domain coverage
(obtaining P), retrieves augmented data Dg

k based on
these centers, and distributes it to clients. 3) Collabo-
rative Fine-tuning: Clients collaboratively fine-tune
the LLM, exchanging LoRA parameters ∆ϕ with the
server.

main coverage is infeasible. Instead, we leverage
client-provided cluster centers (ξ clusters per client,
obtained by k-means algorithm (Wu, 2012)) as
privacy-preserving proxies for local data. These
centers, typically vector averages, effectively rep-
resent local distributions with manageable privacy
risks (elaborated in Appendix B.5). The core chal-
lenge thus shifts to selecting an optimal set of these
client centers, P (one per client), such that retriev-
ing public instructions based on P enhances cross-
client domain coverage. This formulation provides
a tractable approximation to the original optimiza-
tion problem under inherent privacy constraints.

Additionally, in the FL setting, communication
cost is always a critical factor. Thus, we formulate
the optimization problem as follows:

argmin
P

{
η(P)− d(Dd,P)

}
, (3)

where the first term η(P) =
∑N

i=1 |Pi| represents
the communication overhead of transmitting client
centers. And the second term is the domain cover-
age of the selected client center set P , defined in
Eq.2.

For simplicity, we let ξ be the constant N (fur-
ther discussed in Section 6.3). To better fit the
FL environment and enhance the computational
efficiency, we propose FedDCA as follows.

5.2 FedDCA

Optimizing Eq. 3 to find the ideal client center set
P presents significant practical hurdles. First, an
exhaustive search over all CN

ξN candidate center
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combinations is computationally infeasible due to
its exponential complexity. Second, directly lever-
aging a server-hosted public dataset Dp to guide
client center selection for optimal domain cover-
age is often impractical. This stems from several
factors: 1) privacy constraints limit the server’s
knowledge of individual client data distributions
and their specific domain focuses; 2) the inher-
ent ambiguity and hierarchical nature of ‘domains’
(e.g., ‘medical’ versus specific medical sub-tasks)
complicate precise server-side domain coverage
calculation, which is already costly over a poten-
tially massive Dp; 3) the assumption of a relevant
Dp being available on the server may not hold, par-
ticularly if clients utilize external retrieval or local
self-instruct for augmentation.

These challenges underscore the need for a more
pragmatic selection strategy. Therefore, we pro-
pose FedDCA. As detailed in Alg. 1, FedDCA
seeks a sub-optimal solution in polynomial time
(discussed in Appendix A) and operates on the
server through two main stages: 1) a coverage-
oriented client center selection mechanism, and 2)
client-center-based dense retrieval for data augmen-
tation.

Coverage-oriented Client Center Selection. To
address these challenges, we propose a novel client
center selection strategy that, crucially, does not
rely on a server-side public dataset Dp. Let
Call =

⋃N
i=1 Ci be the set of all candidate clus-

ter centers uploaded by the N clients (where each
client ci provides ξ centers in Ci). Our approach
leverages Call in two ways: 1) We use Call as a proxy
for the target domain distribution. Domain cover-
age is then approximated by evaluating how well a
selected subset of centers covers Call itself, making
the computation tractable and independent of Dp.
2) Instead of an exhaustive search, we employ an it-
erative, coordinate ascent-style algorithm (detailed
in Alg. 1) to select a final set P of N client centers.
This efficiently yields a high-quality, albeit poten-
tially suboptimal P . Based on the Call, the domain
coverage could be calculated as d(Call,P).

Specifically, each client ci locally runs k-means
to produce ξ candidate centers Ci, then uploads
these centers to the server. The server initializes
a selection P by picking one cluster center from
each client (thus |P| = N ) and computes the over-
all coverage solely based on these uploaded centers.
In each iteration, FedDCA performs the following
update (as shown in Alg. 1): it removes the cur-

Algorithm 1 FedDCA: Client Center Selection
1: Initialize:
2: For each client ci, pick any initial center pi ∈ Ci.
3: Let P = {p1, . . . , pN} and compute its coverage

C(P).
4: Ω∗ ← C(P); i← 0
5: while True do
6: P−i ← P \ {pi} ▷ Remove pi from P
7: ν∗ ← pi; Ωold ← Ω∗

8: for q ∈ (Call − P−i) do
9: C = d(Call,P−i ∪ {q}) ▷ Defined in Eq. 2

10: if C > Ω∗ then
11: Ω∗ ← C; ν∗ ← q
12: end if
13: end for
14: if Ω∗ = Ωold then
15: break
16: end if
17: pi ← ν∗; P ← P−i ∪ {pi}; C(P) ← Ω∗; i ←

(i+ 1) mod N
18: end while
19: Output: The selected client center set P .

rently chosen center from P , tries replacing it with
other candidate cluster centers in Call, and keeps the
replacement if it improves the cross-client domain
coverage; this process is repeated until no further
improvement is found.

This Dp-agnostic selection core is computation-
ally tractable and versatile, effective for both data
augmentation and targeted data selection through
the selected client centers P .

Domain Data Retrieval. For each client center
pk, the server performs dense retrieval (Zhao et al.,
2022) on public dataset Dp to get the top-Np

k simi-
lar public instructions, then sends retrieved public
datasets {Dg

1, . . . , D
g
N} to each clients.

Specifically, to avoid the overlap between public
data and local private data, we set a threshold α to
filter the public instructions that have a similarity
score larger than α with the client center.

In summary, through the coverage-oriented
client center selection and domain data retrieval,
FedDCA obtains a better cross-client domain cov-
erage of the augmented data Dg

k, which leads to a
better model performance on the target domain. For
the Discussions part please refer to Appendix A.

6 Experiments

To demonstrate the effectiveness of FedDCA, we
conduct extensive experiments across various do-
mains and with several baselines. For additional
results and analysis, please refer to Appendix B.

6.1 Experimental Setup
Dataset and Evaluation Metrics. To evaluate
the performance of FedDCA, we conduct experi-

996



Method MMLU-Med FPB FiQA TFNS GSM8K

Zero-shot 70.60/- 55.94/- 18.54/- 59.21/- 23.27/-
FedAvg (McMahan et al., 2017) 68.40/0.6990 58.25/0.8529 14.18/0.8529 66.62/0.8529 47.46/0.7871
FedProx (Li et al., 2020) 69.10/- 56.51/- 14.90/- 66.45/- 47.15/-
SCAFFOLD (Karimireddy et al., 2020) 70.20/- 62.71/- 15.27/- 66.49/- 49.27/-
FedAvgM (Hsu et al., 2019) 64.70/- 68.14/- 29.27/- 70.32/- 46.85/-

Random Sampling 71.30/0.7940 64.19/0.9196 13.09/0.9196 65.53/0.9196 47.38/0.8651
Direct Retrieval 72.20/0.8830 66.31/0.9293 19.11/0.9293 67.62/0.9293 50.87/0.8967
LESS (Xia et al., 2024) 71.00/0.7737 60.56/0.8917 16.00/0.8917 61.14/0.8917 43.13/0.8352
FewFedPIT (Zhang et al., 2024c) 68.50/0.8250 56.30/0.8780 14.20/0.8780 59.10/0.8780 42.30/0.8380
Self-Instruct (Wang et al., 2022) 71.90/0.8586 59.73/0.9015 20.67/0.9015 66.54/0.9015 50.79/0.8811
KnowledgeSG (Wang et al., 2024) 73.13/0.9171 66.00/0.9490 32.72/0.9490 71.10/0.9490 51.20/0.9088
FedDCA+FedAvg 74.50/0.9348 67.24/0.9815 35.27/0.9815 73.32/0.9815 52.46/0.9320
FedDCA+FedProx 72.40/- 72.93/- 38.18/- 77.55/- 51.25/-
FedDCA+SCAFFOLD 73.20/- 72.68/- 33.09/- 75.50/- 50.26/-
FedDCA+FedAvgM 68.90/- 71.45/- 31.45/- 72.52/- 49.76/-

Table 1: Performance (%) and domain coverage of FedDCA and other eleven baselines. Due to limited local data
or inappropriate data augmentation strategy, occurs performance degradation in the Unaugmented and Random
Sampling settings (underlined values). Different FL strategy does not affect domain coverage. We can see that
FedDCA outperforms all other baselines.

ments utilizing a server-hosted public dataset con-
sisting of multiple domains’ data (detailed in Ap-
pendix B.1): Alpaca, MedAlpaca (Zhang et al.,
2023d), FinGPT (Yang et al., 2023a), and Math-
Instruct (Toshniwal et al., 2024). Performance is
evaluated on MMLU-Med (medical); FPB, FiQA,
and TFNS (financial); and GSM8K (math). The
former two domains’ metric is Acc. and math’s is
Exact Match. We set the number of clients to 10 by
default, while each client has 100 local instructions
and obtains 1k augmented public instructions by
default from the server. Specifically, following the
construction of the client’s local data heterogeneity
in Section 4, we set the β to 0.1 by default. We also
exhibits FedDCA’s strong robustness to different
levels of data heterogeneity in Appendix C.

Baselines. We compare FedDCA against a range
of baseline methods, categorized into unaugmented
and augmented approaches (further details are
available in Appendix B). Unaugmented Meth-
ods. These include Zero-shot inference, where the
LLM directly predicts without any fine-tuning, and
FedIT. FedIT represents the application of stan-
dard federated learning to clients’ local data, for
which we employ four widely recognized FL al-
gorithms: FedAvg (McMahan et al., 2017), Fed-
Prox (Li et al., 2020), SCAFFOLD (Karimireddy
et al., 2020), and FedAvgM (Hsu et al., 2019). Aug-
mented Methods. This category encompasses sev-
eral strategies. Random Sampling serves as a sim-
ple baseline, randomly selecting Np

k public data
instances for each client. Direct Retrieval, a pre-
cursor to our method, performs dense retrieval from

public data based on each client’s local instructions
independently, without optimizing for cross-client
domain coverage. LESS (Xia et al., 2024) utilizes
gradients from a warmed-up LLM on both training
and a required validation set for its similarity-based
retrieval. For generation-based approaches, Self-
Instruct (Wang et al., 2022) generates new instruc-
tions by prompting a powerful external LLM (e.g.,
GPT-3.5). FewFedPIT (Zhang et al., 2024c) is a
federated few-shot method where the global model
is used for local in-context learning to synthesize
data, aiming to improve both performance and pri-
vacy. Finally, KnowledgeSG (Wang et al., 2024)
employs a server-hosted expert model to generate
and refine synthetic data, which clients then use to
enhance their local models.

6.2 Main Results

Performance & Domain Coverage. Table 1
showcases the performance and corresponding do-
main coverage of FedDCA against various base-
lines across three distinct domains. FedDCA con-
sistently outperforms all eleven baselines, demon-
strating substantial performance improvements of
up to 29.19%. This superior performance is
strongly correlated with its ability to achieve the
highest domain coverage, surpassing other methods
by an average of 4.82% to 21.36%.

While unaugmented methods naturally struggle
due to limited local data and thus restricted domain
coverage, many existing augmentation strategies
also exhibit significant drawbacks. 1) Generation-
based methods present a mixed picture: Knowl-
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+ FedDCA MMLU-Med FPB GSM8K

Random Sampling 71.80 (+0.50) 63.92 (-0.27) 47.82 (+0.44)
Direct Retrieval 72.10 (-0.10) 67.78 (+1.47) 52.53 (+1.66)
LESS 70.80 (-0.20) 61.03 (+0.47) 43.92 (+0.79)
Self-Instruct 70.70 (-1.20) 60.21 (+0.48) 50.25 (-0.54)

Table 2: Plug-and-Play. Performance (%) of FedDCA
with different data augmentation methods. FedDCA
matches baseline’s performance by just 10% of its data
through selection.

edgeSG, leveraging a powerful server-hosted ex-
pert model, achieves strong results while FewFed-
PIT underperform even unaugmented baselines, po-
tentially due to inconsistent synthetic data quality
and diversity. Moreover, these approaches often
entail significant resource demands: KnowledgeSG
and FewFedPIT involve high computational costs
(server-side and client-side), while Self-Instruct
incurs monetary expenses for API calls with the
privacy leakage. The potential lack of quality and
diversity in synthetic instructions further constrains
their effectiveness. 2) Random Sampling and Di-
rect Retrieval, while less costly, lack a strategic
mechanism to ensure comprehensive cross-client
domain coverage. 3) LESS, while performs domain
specific retrieval, requiring access to a validation
set, and additional computation (warmup training).

In conclusion, FedDCA’s strategic data aug-
mentation substantially enhances domain coverage
and model performance, efficiently circumvent-
ing the computational burden and inherent qual-
ity/redundancy challenges of data generation.

Plug-and-Play. We demonstrate FedDCA’s plug-
and-play capability by combining it with other aug-
mentation methods. After sampling 1k instructions
per client through different baselines, FedDCA per-
forms retrieval by the selected client center (200
per client). As shown in Table 2, despite using
only 20% of the sampled data, FedDCA achieves
comparable performance with baselines. This high-
lights FedDCA’s efficient data selection capability
based on the cross-client domain coverage, which
is further discussed in Appendix B.7.

6.3 Ablation Study

Impact of Different Cluster Number. The hy-
perparameter ξ is the number of clusters in the
k-means algorithm. The experiment is conducted
on ξ = [N, 2N, 4N, 8N ], where N is the number
of clients. We report the domain coverage of the
augmented dataset via FedDCA with different ξ on
the three domains in Table 3. Results show that
there is no best ξ for all domains and ξ = N is

(a) Performance (b) Domain Coverage

Figure 3: Impact of similarity threshold α on FedDCA’s
(a) performance (%) and (b) domain coverage. Results
highlight the role of the similarity threshold in enhanc-
ing diversity. Lighter bars indicate FedDCA†.

Domain ξ = 10 ξ = 20 ξ = 40 ξ = 80

Med. 0.9348 0.9478 0.9466 0.9618
Fin. 0.9815 0.9814 0.9819 0.9813
Math. 0.9320 0.9348 0.9344 0.9337

Table 3: Domain Coverage for Different ξ Values. ξ =
N is usually an acceptable choice.

usually an acceptable choice.

Similarity Threshold. Figure 3 presents an ab-
lation study comparing FedDCA (w similarity
threshold α) against FedDCA† (w/o α). FedDCA
achieves superior performance and domain cover-
age, highlighting the crucial role of the similarity
threshold in effectively amplifying the diversity of
augmented instructions and subsequently boosting
model efficacy. Note that the medical domain re-
mains unchanged, as the similarity of all pairwise
embeddings is below 0.7 (the default value for the
similarity threshold α).

We also investigate the impact of different re-
trieval amounts on FedDCA’s performance, de-
tailed in Appendix B.4.

7 Conclusion

This work advances our understanding of Fed-
erated Domain-specific Instruction Tuning (Fed-
DIT), establishing cross-client domain coverage as
paramount over data heterogeneity for high perfor-
mance. FedDCA provides a practical pathway to
optimize this coverage, demonstrating significant
gains through strategic data augmentation. Fed-
DCA’s plug-and-play capability and validated ro-
bustness in challenging scenarios (e.g., scarcity of
task-specific public data, large-scale deployments)
further positions it as a reliable building block for
real-world, privacy-preserving specialized LLM ap-
plications. These findings offer both an applicable
solution and crucial guidance for future federated
system design where domain coverage is the key.
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Limitations

While FedDCA provides a robust and scalable
framework for federated domain-specific instruc-
tion tuning, several avenues remain for further ex-
ploration. Although we have empirically demon-
strated FedDCA’s resilience to the similar cross-
client data distributions (see Appendix C), its per-
formance may still be influenced by the quality and
diversity of both the server-hosted public data and
the client-provided candidate centers. Future work
could investigate the adaptive client-side clustering
to further enhance coverage and robustness. Addi-
tionally, automating hyperparameter selection (e.g.,
the number of clusters per client) and extending
FedDCA to handle evolving data distributions or
continual learning scenarios are promising direc-
tions to further improve its practicality and gener-
alization in real-world deployments.
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A Methodology

A.1 Discussions

Computation. The client center selection pro-
cess, as detailed in Alg. 1, operates on Call, the
set of all N · ξ candidate centers uploaded by
N clients (each providing ξ centers). Since Fed-
DCA is an iterative optimization algorithm, let T
be the number of passes until convergence. In
each pass, the algorithm tries to swap the cur-
rently selected center pi with one of the other
candidate centers from Call (Nξ − N choices).
Each potential swap requires re-evaluating the do-
main coverage C, which is Nξ(N + N logN).
Therefore, the total complexity for one pass is
approximately O(Nξ · (Nξ(N + N logN))) =
O(N3ξ2(1 + logN)). If the algorithm converges
in T passes, the total complexity for client cen-
ter selection is O(T ·N3ξ2(1 + logN)). Overall,
this complexity is polynomial in the number of
clients N (ξ = N by default), rendering the selec-
tion process tractable for typical federated learning
scenarios where N and ξ are manageable.

To empirically validate the convergence speed
(T ) of our client center selection algorithm, we
conducted the client center selection for each do-
main under the default setup for 100 times. The
results show that FedDCA converges remarkably
quickly, with an average of 1.1N passes across all
experiments. This rapid convergence indicates that
the algorithm typically requires only one full it-
eration through all clients, with occasional minor
adjustments in a second round of iteration, making
it highly efficient in practice.

Communication. The communication overhead
of FedDCA is mainly incurred in two phases: (1)
In the domain instruction augmentation phase, each
client uploads ξ cluster centers (typically low-
dimensional vectors, e.g., 1024-d) to the server,
and the server returns Np

k retrieved public instruc-
tions to each client. (2) During model parameter
synchronization, FedDCA follows standard feder-
ated learning (FedIT) procedures, requiring only
the exchange of LoRA parameters ∆ϕk, which sig-
nificantly reduces communication cost.
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Privacy. Comparing FedDCA with other FedIT
methods (Zhang et al., 2024c; Ye et al., 2024c), the
difference lies in the client center selection stage.
In this stage, the client only uploads the cluster
center to the server, which is the average of em-
beddings to its cluster. In addition, the potential
privacy leakage can be further avoided through ho-
momorphic encryption (Acar et al., 2018), which
allows the server to directly compute on ciphertext
for matrix multiplication for dense retrieval.

Robustness to Outliers. The k-means clustering,
a component of our client-side processing, can be
sensitive to outliers in the local data. If a client’s lo-
cal dataset contains significant outliers, these could
potentially skew the resulting cluster centers, and
subsequently affect the server-side selection and
retrieval process. To mitigate this, two main ap-
proaches could be considered. Firstly, more robust
clustering algorithms from existing literature could
be adopted by clients. For instance, Deshpande and
Pratap, 2023 enhances k-means++’s robustness by
capping the selection probability for new centers,
based on the overall clustering cost and an allowed
number of outliers. This prevents distant, poten-
tially outlier, points from dominating the initializa-
tion process and improves clustering in noisy data.
Secondly, clients could perform preliminary data
filtering or cleaning steps before initiating the Fed-
DCA process. This might involve simple heuristic-
based filtering (e.g., keyword-based removal of
irrelevant instructions) or leveraging lightweight
LLM-based tagging to identify and exclude poten-
tial outliers (Bernsohn et al., 2024; Biester et al.,
2024; Zhang et al., 2024a). A comprehensive inves-
tigation into the impact of outliers and the optimal
strategies for enhancing FedDCA’s robustness in
such scenarios is a promising direction for future
work.

A.2 Theoretical Foundation of FedDCA

To establish the theoretical soundness of FedDCA’s
greedy approach, we demonstrate that our optimiza-
tion objective is equivalent to the classic submod-
ular facility location problem. This equivalence
provides crucial theoretical guarantees: it ensures
that our computationally efficient greedy algorithm
achieves at least a 1− 1/e approximation ratio rel-
ative to the optimal solution for selecting the client
centers P , while remaining tractable for practical
federated deployments.

The Optimization Problem in FedDCA. The
overall optimization problem in our paper is for-
mulated as Eq. 3. In our specific problem setting,
the number of cluster centers (ξ) per client is con-
sidered fixed. Therefore, minimizing the objective
function is equivalent to maximizing the domain
coverage term d(Dd,P) through the selected client
centers P .

The Submodular Facility Location Problem.
In its abstract form, we are given: a set of “loca-
tions” or “customers” U that need to be serviced; a
set of potential “facilities” F that can be opened; a
benefit function w(i, j) that quantifies the value of
servicing customer j ∈ U with facility i ∈ F . The
objective is to select a subset of facilities S ⊆ F
of a given size k to maximize the total benefit pro-
vided to all customers:

g(S) =
∑

j∈U
max
i∈S

w(i, j) (4)

Formal Equivalence. The connection between
our domain coverage problem and the facility lo-
cation problem becomes clear when we map the
components: 1) Customers (U) → The set of in-
domain data, Dd; 2) Facilities (F ) → The set of all
candidate centers, Call; 3) Benefit (w(i, j)) → The
cosine similarity between two centers, sim(p, c).

Candidate centers are obtained by clustering
each client’s local data, whereas Dd is the union
of all public in-domain data points. This “non-
diagonal” mapping still matches the standard
facility-location structure because every data point
is evaluated against the chosen center set, regard-
less of origin.

With this mapping, our domain coverage objec-
tive d(Dd,P) has the form of the classic facility
location function g(P) normalized by the size of
the in-domain data, |Dd|. That is, d(Dd,P) =
1

|Dd|g(P).

Monotonicity and Submodularity. The facility
location function g(P) is known to be both mono-
tone and submodular. Our objective d(Dd,P) in-
herits these properties.

Monotonicity: This property is guaranteed be-
cause our benefit function, sim(p, c), is the cosine
similarity from a sentence encoder, which is non-
negative1 (we have plotted histograms of the sim-
ilarity scores for each domain, which fall within

1https://huggingface.co/BAAI/bge-large-en-v1.
5

1002

https://huggingface.co/BAAI/bge-large-en-v1.5
https://huggingface.co/BAAI/bge-large-en-v1.5


Dataset Size Metric

Alpaca 52,002 -
MedAlpaca 33,955 -
MMLU-Med† 1,089 Acc.
FinGPT 76,772 -
FPB† 152 Acc.
FiQA† 35 Acc.
TFNS† 299 Acc.
MathInstruct 224,567 -
GSM8K† 1,319 Exact Match

Table 4: Dataset information of each domain. Public
dataset is composed of these five train sets (Alpaca,
MedAlpaca, FinGPT, MathInstruct, and GSM8K). Test
sets are marked with † and used for evaluation.

the range about [0.2, 0.85]). When adding a new
center to P , the maximum similarity for any data
point c can only increase or stay the same. If a neg-
ative value ever arises, we can rectify the score via
applying an affine shift, which preserves the order
of similarities and therefore the monotonicity. Con-
sequently, the total sum of maximum similarities,
g(P), cannot decrease.

Submodularity (Diminishing Returns): To for-
mally show this, let’s define the marginal gain for a
single data point c ∈ Dd when adding a new center
x to a set of centers S as:

∆c(S, x) = max
(
0, sim(x, c)−max

p∈S
sim(p, c)

)

(5)
This formula calculates the new coverage a cen-

ter x provides to a point c, beyond what is already
provided by the existing set S. Now, consider two
sets of centers A and B such that A ⊆ B. For any
data point c, the maximum similarity from set B
must be at least as large as from set A, so:

max
p∈A

sim(p, c) ≤ max
p∈B

sim(p, c) (6)

Consequently, the marginal gain from adding x
must be smaller for the larger set B. That is, for
any c:

∆c(A, x) ≥ ∆c(B, x) (7)

The total marginal gain of adding center x to a
set S is:

g(S ∪ {x})− g(S) =
∑

c∈Dd

∆c(S, x) (8)

Since the inequality holds for each individual term
in the sum, it must hold for the sum itself. This
demonstrates the diminishing returns property:

g(A∪{x})−g(A) ≥ g(B∪{x})−g(B) for A ⊆ B
(9)

Overall, our problem of maximizing the domain
coverage d(Dd,P) is equivalent to solving the fa-
cility location problem of maximizing g(P), ensur-
ing theoretical guarantees for FedDCA.

In addition, Appendix B.9 empirically validates
these theoretical guarantees, demonstrating that
FedDCA achieves 86.30%-99.85% of the optimal
coverage—significantly exceeding the theoretical
lower bound of 1− 1/e ≈ 63%.

B Experiments

B.1 Train and Test Dataset Information
We evaluate our method on multiple domains in-
cluding medical (MedAlpaca, MMLU-Med), fi-
nancial (FinGPT, FPB, FiQA, TFNS), and math-
ematical reasoning (MathInstruct, GSM8K). Ta-
ble 4 shows the dataset statistics for each domain.
The public dataset used for retrieval consists of the
training sets from these domains and the general
instruction dataset (Alpaca) through concatenation
and random shuffling, while the test sets (marked
with †) are used for evaluation.

B.2 Baselines
To highlight FedDCA’s advantages, Table 5 pro-
vides a comparative overview with existing base-
line methods along six critical dimensions: Pri-
vacy Preserving, API Cost, Additional Information
requirements, potential for Performance Degrada-
tion, orientation towards Domain Coverage, and
the Computational Overhead of Data Augmenta-
tion. These dimensions are crucial for assessing the
practical viability of federated instruction tuning
strategies. We analyze each dimension in detail
below:

• Privacy Preserving: Most evaluated meth-
ods, including FedDCA, inherently preserve
client data privacy by design, as they do not
share raw local data. Self-Instruct is a notable
exception as it involves sending prompts con-
taining potentially sensitive information to an
external API. Our detailed privacy analysis
for FedDCA can be found in Appendices A.1
and B.5.

• API Cost: FedDCA operates without requir-
ing external API calls, thus incurring no as-
sociated costs. In contrast, Self-Instruct, by
leveraging large models like GPT for instruc-
tion generation, entails API expenses.

• Additional Information: FedDCA primarily
relies on clients’ local training data for its op-
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Method Privacy
Preserving

API
Cost

Additional
Information

Performance
Degradation

Domain Coverage
Oriented

Computational Overhead of
Data Augmentation

FedAvg (McMahan et al., 2017) " % % " % -
Random Sampling " % % " % -
LESS (Xia et al., 2024) " % " " % high
FewFedPIT (Zhang et al., 2024c) " % % % % high
KnowledgeSG (Wang et al., 2024) " % % % % high
Self-Instruct (Wang et al., 2022) % " % % % low
Direct Retrieval " % % % % low
FedDCA (ours) " % % % " low

Table 5: Key differences between FedDCA and other baselines. FedDCA demonstrates the ability of: 1) privacy-
preserving, 2) no API cost, 3) no additional information required, 4) avoiding performance degradation, and 5)
aiming at domain coverage optimization. LESS requires additional information, as it needs access to the validation
set for gradient-based retrieval.

erations. Some methods, such as LESS (Xia
et al., 2024), necessitate additional resources
like a validation set for its gradient-based re-
trieval mechanism.

• Performance Degradation Avoidance: A
key objective is to enhance model perfor-
mance or, at minimum, avoid degradation.
As indicated in our main results (Table 1),
FedDCA is designed to prevent performance
drops. In contrast, methods like FedAvg
(when unaugmented), Random Sampling, and
even some generation-based approaches like
FewFedPIT and KnowledgeSG (if generation
quality is not optimal or well-aligned) can risk
performance degradation.

• Domain Coverage Oriented: FedDCA is
uniquely engineered to explicitly optimize
cross-client domain coverage in distributed
environments. This strategic focus is a dis-
tinguishing feature largely absent in the other
compared baselines, which typically do not
have a direct mechanism for maximizing in-
struction diversity across the federation.

• Computational Overhead of Data Augmen-
tation: FedDCA maintains a low compu-
tational overhead for its data augmentation
phase, comparable to methods like LESS
(due to gradient computation and warm-up),
FewFedPIT (local LLM generation), and
KnowledgeSG (expert model generation on
the server) inherently involve higher computa-
tional demands for data augmentation.

In conclusion, these comparisons underscore
FedDCA’s well-rounded design. It effectively ad-
dresses key practical challenges by preserving pri-
vacy, avoiding API costs, minimizing reliance on
additional information, preventing performance

degradation, strategically optimizing domain cover-
age, and maintaining a low computational overhead
for augmentation.

B.3 Implementation Details

We consider FedDIT in the cross-device scenario,
N = 10 clients, R = 30 rounds, where we randomly
sample 2 clients to be available for each round.
Then, each available client performs FedDIT for
10 steps with AdamW optimizer, and the batch size
is B = 32 in a round. The initial learning rate is
5e− 5 with a cosine learning rate scheduler. Our
experiment utilizes the widely used LLM, Llama3-
8B2 as the base model with 2048 max sequence
length and adopts LoRA tuning method. The rank
of LoRA is 16, and the scalar alpha is 16. For
k-means (Wu, 2012), we set cluster num ξ = 10
and for FedDCA we set the similarity threshold
α = 0.7. We utilize bge-large-en-v1.53 as both
the client and server’s encoder as default, which
outputs embeddings of 1024 dimensions.

Specifically, for LESS, we uses LoRA with rank
128 and dropout 0.1 for warmup training on a ran-
dom 5% subset of the public dataset for 4 epochs.
We apply a learning rate peak of 2 × 10−5 with
linear warm-up and cosine decay. Gradients are
extracted from each epoch checkpoint and pro-
jected to a 1024-dimensional space using Johnson-
Lindenstrauss random projections. Data selection
is performed by computing cosine similarity be-
tween training and validation gradient features ag-
gregated across epochs. The top Np

k scoring ex-
amples are selected for final client ck’s instruction
tuning. Additionally, for KnowledgeSG, we utilize

2https://huggingface.co/meta-llama/
Meta-Llama-3-8B

3https://huggingface.co/BAAI/bge-large-en-v1.
5
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Figure 4: Prompts used in the Self-Instruct data generation. (a) Prompt for generating new instructions. Two
examples are randomly sampled from the client’s local data for in-context demonstration. (b) Prompt for generating
responses. We prompt GPT-3.5 to generate responses with a randomly selected example for one-shot in-context
learning.

Figure 5: Impact of different retrieval amounts on Fed-
DCA’s performance (%) and domain coverage. The dot-
ted lines represent the domain coverge. Results demon-
strate FedDCA’s robust applicability across different
augmentation scales.

AlpacaCare (Zhang et al., 2023d), FinGPT (Yang
et al., 2023a) and WizardMath (Luo et al., 2023)
as the server-hosted expert model for each domain
respectively. To generate the Self-Instruct data, we
prompt GPT-3.5 to generate the instruction with
the designed prompt in Figure 4. Specifically, we
randomly sample two examples from the client’s lo-
cal data to guide GPT-3.5 generating the in-domain
instruction and one example from the client’s lo-
cal data for one-shot in-context learning to guide
GPT-3.5 generating responses into the example’s
format.

B.4 Effect of Retrieval Number

Experimental Setup. To assess the impact of the
volume of augmented data, we vary the number of
public instructions retrieved per client by FedDCA.
Specifically, we test retrieval amounts of [100, 200,
400, 800, 1000] instructions per client, while keep-
ing other experimental parameters consistent with
the main setup described in Section 6.1. The ex-
periments are conducted across the three primary
domains (medical, financial, and mathematical).

Results. Figure 5 shows FedDCA’s performance
and domain coverage with varying retrieval

Figure 6: Prompt used for memory extraction attack.

amounts. Both generally increase with more re-
trieved instructions, indicating richer augmentation
enhances learning. The improvement rates slow
after about 400 instructions per client, likely due to
increasing overlap with already covered semantic
space or the model reaching its capacity to bene-
fit from further diverse examples under the given
training regime. Overall, performance and cover-
age continue to rise with retrieval volume.

Notably, domain coverage’s impact on perfor-
mance differs by domain. For example, medical
domain gains are modest, while financial domain
gains are more aligned with coverage increases.
This variance may stem from: 1) The base model’s
initial domain proficiency, which influences its
baseline performance and the marginal benefits of
additional data. 2) The degree of similarity be-
tween the public in-domain data distribution and
the test set distribution, where higher relevance
yields more proportional performance benefits.

B.5 Privacy Analysis

Memory Extraction Attack. We evaluate the
privacy-preserving capability of different ratios of
public data against memory extraction attacks (Car-
lini et al., 2021; Zhang et al., 2024b), which uti-
lizes the autoregression nature of LLM(Xu et al.,
2024b).

We focus on one client’s instruction tuning in
FedDIT, using FedDCA for instruction augmen-
tation with 100 to 1k public instructions. We set
up 10 clients with full participation for 10 rounds.
Specifically, we record the average ROUGE-L
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(a) Different amounts of augmented public data
for FedDIT.

(b) The average ROUGE-L score per round.
Dotted lines represent the base-data-only set-
ting.

Figure 7: Privacy analysis of memory extraction attacks. Data augmentation can effectively mitigate the privacy
leakage risk.

score (Lin, 2004) for client c0 in each round (fol-
lowing the setup in (Zhang et al., 2024c)). As we
use Llama3-8B as our base model and format the
instructions and responses into the Alpaca’s for-
mat, to utilize the auto-regression nature of LLM
to extract the instruction, we prompt the model to
generate the instruction using the prompt in Fig-
ure 6, which is exactly the prefix of the Alpaca’s
template.

For each setting, we repeat memory extraction
100 times and report the average ROUGE-L score.
Specifically, denote the generated N instructions
as I and the client’s local instructions I l. The cal-
culation of the average ROUGE-L score is defined
as 1

N
∑N

i=1 ROUGE-L(Ii, I l).
Figure 7(a) shows no significant correlation be-

tween the public data ratio and privacy-preserving
capability in the same training round. In addi-
tion, only using local data has a higher risk of
privacy leakage than augmented methods. Addi-
tionally, Figure 7(b) shows the trends of the average
ROUGE-L score per round. Initially, the average
ROUGE-L score for augmented settings increases,
then decreases or converges, while the base-data-
only scores continue to rise, especially in the code
domain. This indicates that with more training
rounds, base-data-only fine-tuning captures more
privacy information, while the privacy leakage risk
in augmented fine-tuning decreases or converges.

Domain Inference Attack. The server may infer-
ence the clients’ data domain when the domain data
retrieval is performed on the server side. However,
the proposed algorithm FedDCA is independent
of the presence of a public dataset on the server.
Even if the server does not have a public dataset,
clients can upload their cluster centers to the server,
which selects a set of client centers and sends them

back to the clients. Each client can then retrieve
data from the website based on the received client
center by itself, thereby achieving data augmen-
tation while maximizing the cross-client domain
coverage.

In that case, since the server does not know the
encoder used by the client, it cannot infer the se-
mantic meaning of the embedding. Thus, for the
server, it becomes significantly more challenging
to infer the client’s domain, let alone apply any
privacy protection techniques to the embeddings.

We provide two examples for illustration. Two
different encoders are used as client’s and server’s
respectively: BAAI/bge-large-en-v1.5 (denoted
as w1) and google-bert/bert-large-uncased
(denoted as w2). Both encoders output 1024-
dimensional features.

Example 1: Both w1 and w2 take “hello
world” as input, and the cosine similarity between
their embeddings is 0.1829.

Example 2: Three instructions are used:
• Instruction 1: Create an array of length 5

which contains all even numbers between 1 and

10.

• Instruction 2: Write a replace method for a

string class which replaces the given string

with a given set of characters.

• Instruction 3: What is the sentiment of

this news? Please choose an answer from

{negative/neutral/positive}. Teollisuuden

Voima Oyj, the Finnish utility known as

TVO, said it shortlisted Mitsubishi Heavy’s

EU-APWR model along with reactors from Areva,

Toshiba Corp., GE Hitachi Nuclear Energy, and

Korea Hydro & Nuclear Power Co.

For these instructions, Instruction 1 is passed
to w1 and Instructions 2 and 3 are passed to w2,
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MMLU-Med FPB GSM8K

Zero-shot 70.60/- 55.94/- 23.27/-
Base Data 72.40/0.8377 66.74/0.9339 49.12/0.8709
Random Sampling 69.90/0.8497 61.05/0.9408 47.23/0.8812
FedDCA 73.30/0.9090 67.16/0.9800 50.26/0.9118

Table 6: Scalability. Performance (%) and domain cov-
erage of FedDCA and other baselines. 100 clients with
2 clients per round. Results show the strong scalability
of FedDCA.

which will result in three embeddings: e1, e2, and
e3. The cosine similarity between e1 and e2 is
0.1464, while the similarity between e1 and e3 is
0.1879. Instructions 1 and 2 are in the same domain,
whereas they have a lower cosine similarity.

In conclusion, as demonstrated above, when the
clients do not perform domain-specific instruction
retrieval on the server side, the server cannot infer
the client’s domain based on the uploaded embed-
dings.

B.6 Scalability
Experimental Setup. To evaluate the scalabil-
ity of FedDCA, we conduct experiments with 100
clients, where 2 clients are randomly selected for
FedDIT in each round. As the number of clients
increases, the amount of local data on each client
gradually grows, allowing us to assess how Fed-
DCA performs in larger-scale distributed settings.

Results. Table 6 presents the performance and
domain coverage across different domains. In-
terestingly, we observe that the model trained on
only base data even outperforms Random Sampling
in domains other than code and narrows the gap
with FedDCA. This suggests that with sufficient
local data, the benefits of data augmentation be-
come more nuanced. However, FedDCA maintains
its advantage by consistently achieving higher do-
main coverage and better performance across all
domains, demonstrating its effectiveness in large-
scale federated settings. This superior performance
can be attributed to FedDCA’s strategic approach to
maximizing cross-client domain coverage, which
remains crucial even when dealing with a larger
overall volume of local data distributed across a
greater number of clients.

B.7 Data Selection Scenarios
Experimental Setup. We conduct the experi-
ments on two settings: A) For each domain’s Fed-
DIT, we randomly dispatch the in-domain data
equally to each client. For example, in the code
domain, as the size of the public dataset is 20,022,

Figure 8: Data selection scenarios. We compare the per-
formance of using the full dataset (Setting A) and using
only 10% of data selected through FedDCA (Setting B),
demonstrating FedDCA’s efficiency in data utilization.

each client is assigned about 2,000 samples. Then
we perform FedDIT on each client’s whole data.
B) Following A’s setting, we first perform FedDCA
to determine the client center set, and then we con-
duct the data selection based on the client center
set through dense retrieval to select 200 samples
for each client. Finally, we perform FedDIT on the
selected data.

Results. Figure 8 demonstrates that FedDCA can
achieve comparable performance to training with
the full dataset by using only 10% data through
data selection. This efficiency in data utilization
highlights the effectiveness of FedDCA’s data selec-
tion strategy, which maintains model performance
while significantly reducing the required training
data.

B.8 Held-out Setting
If distributed clients aim to solve tasks based on ex-
isting knowledge, the public dataset will inevitably
contain knowledge relevant to those domains. This
could come from the original corpus (which can be
converted into instruction-response pairs by GPT)
or from pre-constructed instruction datasets on the
website. So the distribution of the public dataset
can be categorized as follows: containing held-
in or held-out instructions. The held-in indicates
that the public dataset contains instructions for the
specific task that clients aim to solve, while the
held-out indicates that the public dataset does not
contain this task’s instructions. The paper’s default
setting is the held-in setting.

Considering the held-out setting in the financial
domain, given that the training set FinGPT and the
test sets FPB, FiQA, and TFNS are all related to
sentiment analysis tasks. We keep the setting of
test sets and replace the FinGPT’s instructions in
public data with data from a financial QA dataset
(Sujet-Finance-Instruct-177k4). The clients’

4https://huggingface.co/datasets/sujet/
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(a) FPB (b) FiQA (c) TFNS

Figure 9: Held-out setting. We report the performance of FedDCA and other baselines for (a) FPB, (b) FiQA, and
(c) TFNS datasets. Results show the robustness of FedDCA in the held-out setting.

local data are still randomly sampled from FinGPT.
This approach yields held-out public data.

Figures 9(a) to 9(c) shows, FedDCA still
achieves performance improvements compared to
other baselines for the held-out setting. Addition-
ally, using the Random Sampling data augmenta-
tion strategy resulted in performance degradation
on the FiQA dataset. This further underscores the
necessity of selecting an appropriate data augmen-
tation strategy.

B.9 Empirical Tightness of FedDCA’s Greedy
Approximation

FedDCA’s optimization objective is equivalent to
the classic sub-modular facility-location problem,
which guarantees that the simple greedy algorithm
attains at least a 1 − 1/e fraction of the optimal
value in the worst case. To gauge how tight this
bound is in practice, we benchmark the FedDCA
algorithm against increasingly stronger (but more
expensive) baselines on three domains: Medical, Fi-
nancial and Mathematical. In particular we position
FedDCA between the beam search (with various
beam widths) and an infeasible brute-force solver
that attempts to enumerate all candidate subsets.
The beam search, which explores multiple promis-
ing branches simultaneously, serves as a realistic
upper bound that is strictly better than greedy yet
still tractable.

Experimental Setup.
1. Metric: Domain coverage d(Dd,P) where

P is the selected N client centers, defined as
Eq. 2.

2. Baselines: Call (default FedDCA) selects
client centers using the union of each client’s
uploaded cluster center set Call as the selection
reference to compute marginal gains; P∗

C is
the unreachable optimum under the same se-
lection reference Call—marked timeout, requir-

Sujet-Finance-Instruct-177k

ing evaluation of
(
100
10

)
≈ 1.73× 1013 distinct

candidate sets; Dd uses Dd as the selection
reference to compute marginal gains, which
is often impractical in real-world federated
settings (please refer to Section 5.2); P∗

D is
the optimum under Dd—also timeout; Beam
search with widths 256, 512, 1024, 2048 and,
for Medical, 9182 (does not exceed the base-
line Dd until width 9182).

3. Approximation ratio: We report

d(Dd,PCall)

maxw d(Dd,Pbeam-w)
× 100%, (10)

where the denominator is the best coverage
attained by the beam search. PCall is the se-
lected client center set by FedDCA using Call
as the selection reference.

Results. As shown in Table 7, FedDCA using
Call already achieves nearly optimal coverage in
Medical and Financial domains, within 99.85% and
99.43% of an extensive beam search respectively,
and still attains a respectable 86.30% in the more
challenging Mathematical domain.

Note that both theoretical optima (Call and Dd as
reference) are computationally unattainable (time-
out), so the beam search constitutes the strongest
practical competitor.

In conclusion, these real-world ratios vastly ex-
ceed the theoretical lower bound of 1−1/e ≈ 63%,
further corroborating that the simple greedy proce-
dure is both efficient and effectively near-optimal
for real-world federated deployments.

C Robustness to Data Heterogeneity

The efficacy of retrieval-based augmentation strate-
gies in FedDIT, such as Direct Retrieval and our
proposed FedDCA, is inherently linked to the se-
mantic characteristics of clients’ local private data,
as these inform the selection of public instructions.
A critical consideration is how varying degrees of
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Domain Call P∗
C Dd P∗

D Beam-256 Beam-512 Beam-1024 Beam-2048 Beam-9182 Approx. Ratio

Med. 0.6772 timeout 0.6782 timeout 0.6776 0.6776 0.6776 0.6778 0.6782 99.85%
Fin. 0.8379 timeout 0.8418 timeout 0.8422 0.8427 0.8427 0.8427 – 99.43%
Math. 0.6391 timeout 0.6699 timeout 0.7401 0.7401 0.7404 0.7405 – 86.30%

Table 7: Empirical tightness analysis of FedDCA’s greedy approximation. Both theoretical optima (P∗
C and P∗

D) are
computationally unattainable (timeout). The approximation ratio is computed against the best beam search result.

inter-client data heterogeneity impact the ability
to construct diverse and comprehensively covering
augmented datasets. Intuitively, if clients possess
highly similar local data, methods relying on these
local signals might struggle to achieve broad cross-
client domain coverage and instruction diversity in
the augmented sets, which are crucial for a well-
generalized global model.

This section, therefore, investigates the robust-
ness of FedDCA, Direct Retrieval, and Random
Sampling to a spectrum of inter-client data het-
erogeneity. We focus on these methods as their
augmentation processes are either directly influ-
enced by local data distributions (FedDCA, Di-
rect Retrieval) or serve as a data-agnostic baseline
(Random Sampling); other generative or complex
retrieval methods often have different operational
dependencies. We control heterogeneity using a
Dirichlet distribution (Dir(β)) over semantic clus-
ters of clients’ private instructions, where smaller β
values yield higher inter-client heterogeneity (more
distinct local data) and larger β values lead to lower
heterogeneity (more similar local data). We evalu-
ate performance across β ∈ {0.01, 0.1, 1.0, 10}.

C.1 Experimental Setup

Inter-Client Data Heterogeneity Control. We
focus on the Financial domain, using FinGPT as the
source for private instructions. First, we perform
k-means clustering (ξ = 100 clusters, consistent
with Section 4.1) on FinGPT instruction embed-
dings to create semantic pseudo-labels. To generate
local data for 10 clients, each holding 100 instruc-
tions, we employ a Dirichlet distribution Dir(β)
over these clusters to define each client’s data com-
position, simulating varying degrees of inter-client
data heterogeneity for β ∈ {0.01, 0.1, 1.0, 10}.

Augmentation and Training. Following the gen-
eral setup in Section 6.1, Random Sampling, Direct
Retrieval (introduced in Section 3), and FedDCA
are used to obtain 1k augmented instructions per
client before commencing FedDIT.

Evaluation Metrics. Model performance is eval-
uated using FPB, FiQA, and TFNS accuracy. Aug-
mented data characteristics are assessed using three
key metrics:

1) Domain Coverage (↑): As defined in Eq. 2,
this measures how well the aggregated client data
(local + augmented) Dc covers the target financial
domain Dd.

2) ICACS (Inter-Client Augmented Centroids
Similarity ↓): For each client k, its augmented
instruction embeddings are clustered (k-means,
ξ = 10) into centers Ck. ICACS is the average
pairwise cosine similarity between all such cluster
centers across different clients. Lower values in-
dicate more distinct augmented sets at a granular
level.

3) RUAI (Ratio of Unique Augmented Instruc-
tions ↑): The ratio of unique instructions within the
total cross-client augmented data pool Dc. Higher
values signify less redundancy.

C.2 Results and Analysis
Table 8 systematically quantifies the impact of inter-
client data heterogeneity on augmentation strate-
gies. For small β (i.e., high heterogeneity), the
cross-client data exhibits substantial diversity, en-
abling Direct Retrieval to access a broader range
of semantic regions in the public pool. This di-
versity translates into clear gains over Random
Sampling in both performance (e.g., +6% FiQA
at β = 0.01) and coverage metrics. However, as
β increases and client data distributions become
more homogeneous, the advantage of Direct Re-
trieval diminishes, with its performance and diver-
sity metrics converging toward those of Random
Sampling. This trend underscores that the effective-
ness of Direct Retrieval is fundamentally driven by
the diversity present in cross-client data.

Conversely, as inter-client heterogeneity de-
creases (i.e., local data distribution becomes more
similar), Direct Retrieval’s effectiveness continu-
ously degrades. Its model performance and domain
coverage drop, showing a more sensitive effective-
ness to the heterogeneity. Results indicate that with
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Dirichlet β Augmentation Model Performance (%) Augmented Data Characteristics

Strategy FPB FiQA TFNS Domain Coverage (↑) ICACS (↓) RUAI (↑)

0.01
Random Sampling 64.20 13.10 65.55 0.920 0.472 0.867

Direct Retrieval 67.20 21.50 69.00 0.938 0.434 0.909
FedDCA 67.90 36.30 74.40 0.985 0.405 0.943

0.1
Random Sampling 64.19 13.09 65.53 0.920 0.472 0.867

Direct Retrieval 66.31 19.11 67.62 0.929 0.441 0.882
FedDCA 67.24 35.27 73.32 0.982 0.411 0.938

1.0
Random Sampling 64.19 13.09 65.53 0.919 0.472 0.867

Direct Retrieval 65.50 17.80 66.79 0.924 0.448 0.879
FedDCA 66.94 34.82 72.66 0.977 0.414 0.927

10
Random Sampling 64.20 13.05 65.45 0.918 0.472 0.867

Direct Retrieval 64.37 15.20 66.10 0.922 0.452 0.871
FedDCA 66.73 34.51 72.23 0.972 0.423 0.921

Table 8: Performance (%), domain coverage, ICACS and RUAI across different levels of client data heterogeneity
(controlled by Dirichlet parameter β) in the Financial Domain. Best model performance, domain coverage, ICACS
and RUAI per β setting are in bold.

more homogeneous local data distributions, Direct
Retrieval tends to fetch more similar public instruc-
tions due to the similarity between each client’s
cluster centers.

Random Sampling exhibits stable, albeit con-
sistently sub-optimal, performance and diversity
metrics across all heterogeneity levels. This sta-
bility stems from its sampling strategy (oblivious
to local data distributions) of the public dataset,
which results in similar augmented data.

Additionally, FedDCA showcases strong robust-
ness. It consistently achieves the best model perfor-
mance across all tested β values. While its diversity
metrics (domain coverage, ICACS, RUAI) show
minor sensitivity to the cross-client data distribu-
tion (optimally diverse at highest heterogeneity).
This resilience stems from its coverage-oriented
client center selection (Algorithm 1), which ef-
fectively prevents redundant augmentation by se-
lecting public instructions that add novel semantic
aspects to the collective, even with similar cross-
client data distributions. In conclusion, these find-
ings underscore FedDCA’s robustness and adapt-
ability irrespective of the specific degree of inter-
client heterogeneity, makes it a more reliable and
effective solution for real-world FedDIT deploy-
ments.

D Augmentation Strategy Visualization

To more intuitively compare the domain coverage
of different instruction augmentation methods, we

randomly sample 5k cross-client instructions ob-
tained through these methods and 10k in-domain
instructions as the background, representing the dis-
tribution of specific domains in the public dataset.
We then visualized the results using t-SNE (van der
Maaten and Hinton, 2008), as shown in Figure 10.
The plot shows that FedDCA encompasses most of
the in-domain data, which is consistent with Fed-
DCA’s domain coverage of each domain shown
in Table 1. Also, we can observe that the random
sampling strategy selects a lot of out-of-domain
data while does not have good coverage in specific
domains.
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(a) Medical

(b) Financial (c) Mathematical

Figure 10: Visualization of cross-client data distribution in different domains, performing t-SNE dimensionality
reduction on retrieved instructions through various augmentation strategies. We randomly sample 10k in-domain
samples as background while randomly sampling 5k samples from the cross-client augmented dataset for different
instruction augmentation methods for comparison.
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