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Abstract

Large language models (LLMs) are designed
to perform a wide range of tasks. To improve
their ability to solve complex problems requir-
ing multi-step reasoning, recent research lever-
ages process reward modeling to provide fine-
grained feedback at each step of the reason-
ing process for reinforcement learning (RL),
but it predominantly focuses on English. In
this paper, we tackle the critical challenge of
extending process reward models (PRMs) to
multilingual settings. To achieve this, we train
multilingual PRMs on a dataset spanning seven
languages, which is translated from English.
Through comprehensive evaluations on two
widely used reasoning benchmarks across 11
languages, we demonstrate that multilingual
PRMs not only improve average accuracy but
also reduce early-stage reasoning errors. Fur-
thermore, our results highlight the sensitivity
of multilingual PRMs to both the number of
training languages and the volume of English
data, while also uncovering the benefits arising
from more candidate responses and trainable
parameters. This work opens promising av-
enues for robust multilingual applications in
complex, multi-step reasoning tasks. In ad-
dition, we release the code to foster research
along this line.1

1 Introduction

Aligning large language models (LLMs) with hu-
man preferences can significantly improve the
model performance across various downstream
tasks (Christiano et al., 2017; Ziegler et al., 2019).
This requires a reward model that is trained on hu-
man preference data (Ziegler et al., 2019; Stiennon
et al., 2020; Shen et al., 2021; Ouyang et al., 2022).
Typically, reward models are trained based on the
final outcome of the LLMs’ response, and we refer
to these as outcome reward models (ORMs) (Cobbe

1https://github.com/weixuan-wang123/
Multilingual-PRM

et al., 2021a; Uesato et al., 2022; Yu et al., 2023a).
However, most of recent work demonstrates that
ORMs fall short on complex multi-step reasoning
tasks (Uesato et al., 2022; Shao et al., 2024). To
overcome this limitation, process reward models
(PRMs) are introduced, providing fine-grained re-
wards at each step of the LLMs’ reasoning (Light-
man et al., 2024; Li et al., 2023; Wang et al., 2024b;
Ma et al., 2023). Previous research has shown that
LLMs supervised by PRMs can effectively produce
better responses (Wang et al., 2024b; Shao et al.,
2024).

Despite these significant advances, recent re-
search on ORMs and PRMs has predominantly
focused on monolingual settings, particularly En-
glish (Lightman et al., 2024; Wang et al., 2024a,b).
However, the exploration of multilingual PRMs re-
mains relatively limited. Therefore, with the advent
of multilingual LLMs, a natural research question
arises: How can we effectively train multilingual
PRMs for complex, multi-step reasoning tasks?

To address this research question, we translate
the existing PRM datasets, PRM800K (Lightman
et al., 2024) and Math-Shepherd (Wang et al.,
2024b), from English into six additional languages,
resulting in a total of seven seen languages for
training. We then train multilingual PRMs using
the collection of these translated datasets. We
define three PRM setups: PRM-MONO, PRM-
CROSS, and PRM-MULTI. The PRM-MONO setup
is trained and evaluated solely on a single language,
the PRM-CROSS setup is trained on one language
but evaluated on all test languages, and the PRM-
MULTI setup is trained on seven seen languages and
evaluated on all test languages. Finally, we conduct
a comprehensive evaluation on two popular reason-
ing tasks (MATH500 and MGSM) across 11 languages
(seven seen languages and four unseen languages)
using three LLMs (METAMATH-MISTRAL-7B,
LLAMA-3.1-8B-MATH, and DEEPSEEKMATH-
7B-INSTRUCT).
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Our main takeaways are summarized as follows:

• Multilingual PRM consistently outper-
forms monolingual and cross-lingual PRMs
across all three LLMs. Our results demon-
strate that PRM-MULTI significantly im-
proves model performance, boosting average
accuracy by up to +1.2 and +1.5 points com-
pared to PRM-CROSS and PRM-MONO, re-
spectively (see Section 5.1).

• Multilingual PRM is sensitive to both the
number of languages and the amount of En-
glish training data. Our experiment shows
that training an optimal multilingual PRM re-
quires careful consideration of how many lan-
guages to include (see Section 5.2) and how
much English data to use (see Section 5.3).

• Multilingual PRM produces fewer errors
in the early steps. We identify the first occur-
rences of wrong predictions made by PRMs
and observe that PRM-MULTI produces fewer
errors in the early steps compared to PRM-
MONO and PRM-CROSS (see Section 6.1).

• Multilingual PRM can benefit more from
more candidate responses and trainable pa-
rameters. Our analysis demonstrates that
PRM-MULTI becomes more advantageous
with a larger number of candidate responses
(see Section 6.2) and when more trainable pa-
rameters are introduced (see Section 6.3).

2 Related Work

Reward Model in Mathematical Reasoning To
advance the accuracy of mathematical reasoning,
reward models (RMs) have emerged as powerful
tools for evaluating and guiding solution generation.
In particular, two principal RM paradigms have gar-
nered significant attention: the Outcome Reward
Models (ORMs) (Cobbe et al., 2021a; Yu et al.,
2023a) and the Process Reward Models (PRMs)
(Uesato et al., 2022; Lightman et al., 2024; Li et al.,
2023; Ma et al., 2023; Wang et al., 2024b; Luo
et al., 2024; Gao et al., 2024; Wang et al., 2024a).
ORMs assign a single score to an entire solution
and thereby focuses on final correctness, whereas
PRMs score each individual step of the reason-
ing process, offering more finer-grained evalua-
tions. As a result, PRMs provide more detailed
guidance and have demonstrated greater potential
in enhancing reasoning capabilities compared to
ORMs (Lightman et al., 2024; Wu et al., 2023).

Figure 1: Framework of PRM.

Multilingual Reward Model Beyond English-
language tasks, the integration of RMs into mul-
tilingual scenarios is still under-explored. Rein-
forcement learning approaches often rely on RMs
predominantly trained on English data (Shao et al.,
2024; Yang et al., 2024a). This over-representation
introduces biases, as these RMs may overfit to
English-specific syntactic and semantic patterns,
limiting their effectiveness in cross-lingual tasks
and motivating the development of multilingual
RMs (Hong et al., 2024). While there is growing
evidence that cross-lingual transfer is feasible (Wu
et al., 2024a; Hong et al., 2024), existing research
often overlooks the unique challenges of multilin-
gual reasoning. After the release of the OpenAI-o1
model (OpenAI, 2024), PRMs, with their capabil-
ity for fine-grained feedback, have attracted even
greater interest. Yet, the performance of multilin-
gual PRMs in diverse linguistic contexts remains
insufficiently investigated (Yang et al., 2024b). To
bridge this gap, we investigate how multilingual
PRMs contribute to solving mathematical tasks
across different languages, aiming to provide in-
sights into how fine-grained process supervision
can enhance reasoning capabilities beyond English,
thereby contributing to the development of more
universally applicable reasoning models.

3 Process Reward Modeling

3.1 PRM Training
Given a question p and its solution s, the ORM
assigns a single value to s to indicate if s is correct.
We stack a binary classifier on top of the LLM and
train the ORM with the binary cross-entropy loss:

LORM =

− (ys log(rs) + (1− ys) log(1− rs))
(1)

where ys is the ground truth label for the solution s
(ys = 1 if s is correct, otherwise ys = 0), and rs is
the probability score that s is correct.

In contrast, the PRM evaluates each reasoning
step of the solution s. The PRM is trained using
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the following loss function:

LPRM =

−
K∑

i=1

ysi log(rsi) + (1− ysi) log(1− rsi)
(2)

where si is the i-th step of the solution s, ysi is the
ground truth label for step si, rsi is the score as-
signed to si by the PRM, and K is the total number
of reasoning steps in the solution s. Compared to
ORM, PRM provides more detailed and reliable
feedback by evaluating individual steps.

3.2 Ranking for Verification

Following Wu et al. (2024b); Lightman et al.
(2024); Wang et al. (2024b), we evaluate the per-
formance of PRM using the best-of-N selection
evaluation paradigm (Charniak and Johnson, 2005;
Cobbe et al., 2021b). Specifically, given a question,
multiple solutions are sampled from an LLM (re-
ferred to as the generator) and re-ranked using a
reward model (referred to as the verifier). For each
solution, as shown in Figure 1, PRM assesses the
correctness of each reasoning step. The scores for
all steps are averaged to compute an overall score
for the solution. The highest-scoring solution is
then selected as the final output. This approach en-
hances the likelihood of selecting solutions contain-
ing correct answers, thereby improving the success
rate of solving mathematical problems with LLMs.

3.3 Reinforcement Learning with Process
Supervision

Using the trained PRM, we fine-tune LLMs with
Policy Optimization (PPO) (Schulman et al., 2017)
in a step-by-step manner. This method differs from
the conventional strategy that uses PPO with an
ORM, that only gives a reward at the end of the
response. Conversely, our step-by-step PPO offers
rewards at the end of each reasoning step.

While we analyse PRM both intrinsically (us-
ing best-of-N), and extrinsically (using PPO), we
focus on best-of-N for a clean testbed without con-
founders from reinforcement learning.

4 Experimental Setups

Training Datasets We combine the PRM800K
(Lightman et al., 2024) and Math-Shepherd (Wang
et al., 2024b) as training data to finetune PRMs,
and translate the combined dataset from English
(en) to six languages: German (de), Spanish (es),

French (fr), Russian (ru), Swahili (sw), and Chi-
nese (zh) with using NLLB 3.3B (Costa-jussà et al.,
2022). The reasoning step statistics are presented
in Table 4 (Appendix A), and the parallel examples
across seven languages have the same number of
reasoning steps. To ensure high translation qual-
ity, we use regular expressions to filter out trans-
lated training instances that contain discrepancies
in numbers or equations compared to the original
English dataset.

Test Dataset We evaluate the performance of
LLMs using two widely used math reasoning
datasets, MGSM (Shi et al., 2022) and MATH500
(Wang et al., 2024b). For the MATH500 datset, we
translate it from English to ten languages: Ben-
gali (bn), German (de), Spanish (es), French (fr),
Japanese (ja), Russian (ru), Swahili (sw), Telugu
(te), Thai (th), and Chinese (zh) with Google Trans-
late, which is consistent with the languages in-
cluded in the MGSM dataset. Furthermore, we also
categorize the languages involved in the down-
stream tasks into two groups based on the training
data of PRM: seen languages (en, de, es, fr, ru,
sw, and zh) and unseen languages (bn, ja, te, and
th). To ensure the quality of our testset, we employ
two human translators to post-edit the translated
examples for each high-resource language (de, es,
fr, ru, zh, and ja) and leverage GPT-4O to revise the
translations in low-resource languages (bn, sw, te,
and th). More details are shown in Appendix B.

Multilingual PRM Setups To better understand
PRMs in the context of multilingual research, we
define three setups: PRM-MONO, PRM-CROSS,
and PRM-MULTI. The PRM-MONO setup is
trained and evaluated on the same single language,
serving as the baseline for monolingual PRMs. The
PRM-CROSS setup is trained on one language but
evaluated on all 11 test languages. Specifically,
in this work, we train PRM-CROSS on the En-
glish PRM dataset unless otherwise specified. Fi-
nally, the PRM-MULTI setup represents the mul-
tilingual PRM, which is both trained on all the
seen languages and evaluated on all 11 test lan-
guages. To enhance the reliability and general-
izability of our study, we train our multilingual
PRM (verifier) based on the QWEN2.5-MATH-
7B-INSTRUCT (Yang et al., 2024a), and leverage
three diverse LLMs as the generator: METAMATH-
MISTRAL-7B (Yu et al., 2023b), LLAMA-3.1-
8B-MATH (fine-tuned with the MetaMath dataset
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MATH500 µALL µSEEN µUNSEEN en de es fr ru sw zh ja bn te th

METAMATH-MISTRAL-7B

BASELINE 22.1 24.3 18.2 26.8 26.2 28.2 25.4 27.4 13.4 23.0 25.0 18.0 10.6 19.2
PRM-MONO - 42.5 - 49.0 44.4 45.8 45.6 46.0 25.0 41.8 - - - -
PRM-CROSS 39.4 43.1 39.1 49.0 45.4 45.0 46.8 46.4 25.2 43.8 43.6 31.4 22.0 34.6
PRM-MULTI 39.6 43.1 39.4 50.2 45.6 47.4 45.4 45.2 25.2 42.8 43.6 32.6 21.8 35.2

LLAMA-3.1-8B-MATH

BASELINE 22.1 24.3 18.1 30.4 22.4 27.4 25.4 22.0 15.4 27.4 20.0 16.6 16.0 19.8
PRM-MONO - 43.3 - 49.0 46.2 45.8 44.2 45.8 26.2 46.2 - - - -
PRM-CROSS 40.9 43.6 36.3 49.0 48.8 46.6 44.8 44.8 26.0 45.2 43.0 36.0 28.2 37.8
PRM-MULTI 41.7 44.8 36.4 51.0 48.8 45.8 46.0 46.2 28.4 47.2 42.0 34.6 30.2 38.6

DEEPSEEKMATH-7B-INSTRUCT

BASELINE 26.4 32.5 15.7 42.0 35.6 36.4 35.0 36.4 9.6 32.4 33.2 9.8 4.6 15.2
PRM-MONO - 55.1 - 63.0 59.0 60.4 59.0 60.2 29.2 55.0 - - - -
PRM-CROSS 50.2 54.9 41.9 62.4 60.0 59.8 61.4 57.4 29.4 54.0 54.4 38.2 32.4 42.6
PRM-MULTI 51.3 55.6 43.7 63.8 58.6 60.2 60.2 61.4 30.6 54.2 55.8 38.0 35.6 45.4

Table 1: Different PRMs’ best-of-N sampling (N = 64) performance on MATH500 with the generator of METAMATH-
MISTRAL-7B, LLAMA-3.1-8B-MATH, and DEEPSEEKMATH-7B-INSTRUCT. µALL, µSEEN, and µUNSEEN indicate
the macro-average of results across all the languages, the seen languages, and the unseen languages, respectively.

(Dubey et al., 2024)),2 and DEEPSEEKMATH-7B-
INSTRUCT (Shao et al., 2024). The details of train-
ing these PRMs are presented in Appendix C.

5 Recipes for Multilingual PRM Training

In this section, we conduct a series of experiments
to investigate the performance of multilingual PRM.
We examine how PRM-MULTI compares to PRM-
MONO and PRM-CROSS (Section 5.1), the impact
of the number of training languages (Section 5.2),
and the effect of varying the proportion of English
in the training data (Section 5.3).

5.1 Monolingual, Cross-lingual, or
Multilingual PRMs?

Building on Wu et al. (2024b)’s findings that cross-
lingual ORMs outperform monolingual ones, we
investigate the impact of multilingualism on PRMs.
Specifically, we compare PRM-MONO, PRM-
CROSS, and PRM-MULTI to determine which setup
offers best performance across languages.

Setup We include three setups in this work. The
PRM-MONO is trained and evaluated on each in-
dividual language from the set of seen languages.
The PRM-CROSS is trained exclusively on an En-
glish dataset and evaluated on all 11 test languages.
Finally, the PRM-MULTI is trained on all seen lan-
guages and tested on all 11 test languages.

2https://huggingface.co/gohsyi/Meta-Llama-3.
1-8B-sft-metamath

Multilingual PRMs perform best, followed by
cross-lingual PRMs, while monolingual PRMs
achieve the worst performance, on the seen lan-
guages. As shown in Table 1, PRM-MULTI con-
sistently achieves the highest performance across
multiple language generators on the seen languages,
surpassing PRM-MONO and PRM-CROSS by +1.5
and +1.2 with LLAMA-3.1-8B-MATH generator,
respectively. This indicates that incorporating data
from multiple languages for PRM training signif-
icantly enhances the model’s ability across differ-
ent languages. When comparing PRM-MONO and
PRM-CROSS, we observe that PRM-CROSS out-
performs the PRM-MONO for the English-centric
METAMATH-MISTRAL-7B and LLAMA-3.1-8B-
MATH generators. Results with statistical signifi-
cance are presented in Appendix G. We hypothe-
size that this advantage stems from the pre-training
phase: these generators are predominantly trained
on English data but have limited exposure to multi-
lingual corpora. As a result, fine-tuning on English
PRM data enhances the reasoning capabilities of
PRMs, facilitating greater cross-lingual transfer.
More monolingual results are in Appendix D.

Multilingual PRMs generalize better on the un-
seen languages. Both PRM-CROSS and PRM-
MULTI are evaluated on four additional unseen lan-
guages. As shown in Table 1, PRM-MULTI demon-
strates superior overall performance on the unseen
languages in terms of µUNSEEN. These results sug-
gest that training PRMs on multilingual datasets
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Figure 2: Best-of-N Performance on MGSM of PRMs
trained using various subsets of English, German, Span-
ish, French, Russian, Swahili, and Chinese, with the gen-
erator of LLAMA-3.1-8B-MATH. The averages scores
across all 11 languages.

can effectively enhance model generalization to the
unseen languages. More results on general-purpose
LLM are provided in Appendix F.

In conclusion, these findings demonstrate that
training a single multilingual PRM is an effective
strategy for broad cross-lingual coverage, outper-
forming models trained either on a target language
or on English alone. This outcome supports that
PRM-MULTI is particularly advantageous for ex-
panding the capabilities of PRMs in multilingual
settings. More results on MGSM are in Appendix E.

5.2 Does More Languages Lead to Better
Multilingual PRMs?

While multilingual PRMs have demonstrated sig-
nificant improvements, the question of how many
languages are needed to achieve the best perfor-
mance remains an open research problem. In this
section, we address this research question by ex-
ploring the relationship between the number of
training languages and the resulting performance.

Setup We conduct experiments by training PRMs
on datasets ranging from a single language up to all
seven languages. In this section, the number of total
training examples of all PRMs are fixed. When
the number of languages exceeds one, the total
training examples are evenly distributed across all
the selected languages. For evaluation, we test all
PRMs on 11 different languages. The evaluation
scores are averaged for each test language across all
PRMs trained with the same number of languages.

More languages do not result in better multi-
lingual PRMs. As shown in Figure 2, the over-
all performance (AVG) improves as the number of
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Figure 3: Best-of-N sampling performance of LLAMA-
3.1-8B-MATH with PRMs finetuned on a training set
where P% of the data is in English and (100 - P)% is uni-
formly distributed across six other languages. Each tick
on the X-axis represents a specific tuning set configura-
tion. The dash lines in blue, red, and green, indicate the
average scores of all the languages, the seen languages,
and the unseen languages, respectively.

training languages increases up to five languages.
Beyond this point, adding more languages does not
lead to further gains. Additionally, results from
five individual languages (four seen languages and
one unseen language) demonstrate that, although
the optimal number of training languages varies
across these languages, increasing the number of
languages never leads to better performance. These
findings suggest that increasing the number of train-
ing languages does not necessarily enhance mul-
tilingual PRMs. A key reason for this is the fixed
amount of training data: as the number of lan-
guages grows, the training examples per language
decrease. This reduction hinders sufficient training
for seen languages and negatively impacts cross-
lingual transfer to unseen languages.

5.3 How Much English Data Do We Need for
Multilingual PRMs?

While multilingual training with equal number
of training examples in each language (PRM-
MULTI) generally improves performance compared
to English-only training (PRM-CROSS), we ob-
serve some exceptions on certain languages, as
shown in Table 1. This observation prompts us
to investigate how varying the number of English
examples can affect the multilingual PRMs.

Setup To explore this, we create data mixtures
with varying percentages of English examples
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(P%), with the remaining (100− P )% examples
evenly distributed among six languages: German,
Spanish, French, Russian, Swahili, and Chinese.
Each PRM trained on these mixtures is then evalu-
ated across all 11 languages.

Moderate amount of English data can lead to
better multilingual PRMs. As shown in Fig-
ure 3, incorporating a small amount of English data
into the training mixture can lead to notable per-
formance improvements across languages. Specif-
ically, even as little as 1% of English examples
significantly enhances performance, particularly
for unseen languages. Interestingly, the majority of
performance gains occur when English data consti-
tutes less than 50% of the training mixture. How-
ever, when the proportion of English data exceeds
50%, performance begins to decline slightly across
languages. Furthermore, training on 70% English
data outperforms training solely on English (100%),
suggesting that retaining some multilingual data
introduces valuable variation and enhances the gen-
eralization capacity of multilingual PRMs. These
findings indicate that as the proportion of English
data increases, the PRMs may not be adequately
trained on other seen languages, and unseen lan-
guages may benefit less from cross-lingual trans-
fer. This highlights the importance of maintaining
diverse and balanced language representation in
multilingual training for optimal performance.

6 Analysis

In this section, we present a comprehensive analy-
sis of our multilingual PRM, focusing on five criti-
cal aspects: error positions (Section 6.1), number of
solutions (Section 6.2), integration of LoRA with
PRM (Section 6.3), comparative evaluation with
multilingual ORM (see Section 6.4), and imple-
ment PPO with multilingual PRM (see Section 6.5).

6.1 Which Steps Are More Prone to Errors?

PRMs provide fine-grained feedback on each in-
termediate step of a model’s chain-of-thought rea-
soning process. Errors at intermediate steps can
propagate through the reasoning chain, ultimately
affecting the final answer. Therefore, we investi-
gate the earliest errors made by PRMs during the
reasoning process, following Zheng et al. (2024).

Setup We select a subset of instances from the
PRM800K Russian test set where the final answers
made by PRM-MONO, PRM-CROSS, and PRM-
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Figure 4: Percentage distribution of the first error posi-
tions corresponding to the step in the reasoning on the
PRM800K testset.
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Figure 5: Best-of-N sampling performance of LLAMA-
3.1-8B-MATH using different verification strategies
across distinct numbers of solutions on MATH500.

MULTI are incorrect. For these instances, we iden-
tify the first occurrences of incorrect predictions
from these PRMs. We classify the first error posi-
tions into three groups: early (steps 1 to 5), middle
(steps 6 to 10), and later (steps 11 to 15).

Multilingual PRMs produce fewer errors at
early steps. The distribution of the earliest error
positions, visualized in Figure 4, reveals a clear dis-
tinction between the three PRM configurations. In
both PRM-MONO and PRM-CROSS, a significant
proportion of errors occurs within the early steps.
In contrast, PRM-MULTI demonstrates fewer er-
rors within this range and exhibits a slightly higher
number of errors in later steps. These observa-
tions suggest that PRM-MULTI may be less prone
to error propagation in the reasoning process, en-
abling it to maintain a more reliable reasoning
trajectory. Consequently, PRM-MULTI can effec-
tively achieve better overall performance.

6.2 Do More Candidates Drive Better
Performance?

Recent research suggests that providing more can-
didate solutions can significantly boost the perfor-
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MATH500

MISTRAL LLAMA DEEPSEEK

Verifier µALL µSEEN µUNSEEN µALL µSEEN µUNSEEN µALL µSEEN µUNSEEN

BASELINE 22.11 24.34 18.20 22.07 24.34 18.10 26.38 32.48 15.70
SC 29.20 31.80 24.65 30.60 33.31 25.85 44.96 49.29 37.40
ORM 39.54 42.63 34.25 40.49 43.14 35.85 50.96 55.54 42.95
PRM-MULTI 39.55 43.11 33.30 41.71 44.77 36.35 51.25 55.57 43.70

MGSM

MISTRAL LLAMA DEEPSEEK

Verifier µALL µSEEN µUNSEEN µALL µSEEN µUNSEEN µALL µSEEN µUNSEEN

BASELINE 49.63 61.65 28.60 56.18 64.23 42.10 52.95 63.02 35.30
SC 56.51 69.37 34.00 63.13 74.57 43.10 70.76 75.37 62.70
ORM 64.84 76.40 44.60 65.20 77.43 43.80 74.44 79.00 66.45
PRM-MULTI 65.45 77.09 45.10 71.93 82.00 54.30 75.42 80.51 66.50

Table 2: Multilingual PRMs’ best-of-N (N = 64) sampling performance on MATH500 and MGSM with three generators:
METAMATH-MISTRAL-7B, LLAMA-3.1-8B-MATH, and DEEPSEEKMATH-7B-INSTRUCT. We use QWEN2.5-
MATH-7B-INSTRUCT to finetune the ORM and PRM-MULTI. µALL, µSEEN, and µUNSEEN indicate the macro-average
of results across all the languages, the seen languages, and the unseen languages, respectively.

mance of PRM (Wang et al., 2024a,b). To explore
if this applies in multilingual settings, we examine
the impact of varying the number of candidates on
PRM-MONO, PRM-CROSS, and PRM-MULTI.

Setup We conduct experiments on the MATH500
benchmark using the LLAMA-3.1-8B-MATH gen-
erator to compare the performance of PRM-MULTI,
PRM-CROSS, and PRM-MONO. For each ap-
proach, we vary the number of candidates N from
2 to 64. This allows us to assess how the number of
candidate solutions influences performance across
different PRM strategies in a multilingual context.

Multilingual PRMs yield better performance
with more candidate solutions. Figure 5 illus-
trates that PRM-MULTI consistently outperforms
both PRM-CROSS and PRM-MONO, with its ad-
vantage growing more pronounced as the number
of candidates (N) increases. This finding under-
scores the scalability of multilingual PRM in di-
verse linguistic scenarios. Overall, these obser-
vations reinforce the conclusion that multilingual
PRM not only maintains superior performance but
also scales well as more candidates are introduced.

6.3 Are Multilingual PRMs Compatible with
Parameter-Efficient Finetuning?

Recent research has demonstrated the effectiveness
of parameter-efficient finetuning (PEFT) across a
variety of tasks (Houlsby et al., 2019; Li and Liang,
2021). Therefore, we explore whether the PEFT
approaches, such as LoRA (Hu et al., 2022), also

perform well on multilingual PRMs.

Setup To investigate this question, we employ
LoRA on the key, query, and value attention matri-
ces. Specifically, we use a rank of 8 and a dropout
rate of 0.05 for both multilingual and cross-lingual
PRMs. We train for three epochs with a batch size
of 64 and a learning rate of 1e−5.

LoRA is computationally efficient, but not as
good as its fully-finetuning counterpart in multi-
lingual PRMs. Figure 6 demonstrates that fully
fine-tuning (FFT) consistently outperforms LoRA
in both cross-lingual and multilingual settings. The
performance gap becomes larger on the MATH500
dataset, which contains more complex questions
compared to MGSM, suggesting that FFT is better
suited for tasks requiring deeper reasoning and un-
derstanding. These findings align with prior re-
search, which indicates that while PEFT methods
may fall short of FFT when tasks demand higher
complexity or reasoning capabilities (Biderman
et al., 2024). Interestingly, although LoRA-based
methods generally lag behind FFT, multilingual
LoRA achieves stronger results than cross-lingual
LoRA. This highlights the benefits of leveraging
multilingual data during parameter-efficient fine-
tuning, as multilingual data likely provides richer
data diversity and linguistic coverage.
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Figure 6: Comparison between parameter-efficient fine-
tuning (LoRA) PRM and fully fine-tuning (FFT) PRM
with LLAMA-3.1-8B-MATH generator.

6.4 Does PRM Surpass ORM in the
Multilingual Scenario?

In this section, we explore whether PRM also out-
performs Outcome Reward Model (ORM) and self-
consistency (SC) in multilingual settings.

Setup Following Lightman et al. (2024); Wang
et al. (2024b), we evaluate the performance of
PRM-MULTI by comparing it with other verifier
methods, including: Direct prediction (BASELINE),
Self-consistency (majority voting) (SC), and ORM.
Specifically, we train a multilingual ORM using
uniform example budgets across seven seen lan-
guages. Then we assess the performance of veri-
fiers on seven seen languages as well as on four
additional unseen languages.

Multilingual PRM outperforms SC and ORM
across all languages and generators. The re-
sults presented in Table 2 confirm that PRM consis-
tently achieves higher accuracy on two benchmarks
across multiple languages. Specifically, when using
the LLAMA-3.1-8B-MATH as the generator, PRM
improves average accuracy by +19.64 points on the
MATH500 dataset and by +15.75 points on the MGSM
dataset in terms of µALL, compared to the BASE-
LINE of direct prediction. These substantial gains
suggest PRM’s potential to enhance reasoning per-
formance in a multilingual setting. Furthermore,
PRM also surpasses both SC and ORM. For ex-
ample, PRM exceeds SC and ORM by margins of
up to +8.80 and +6.73 points on MGSM, respectively,
when using LLAMA-3.1-8B-MATH as the genera-
tor. Additionally, PRM demonstrates performance
improvements for both seen and unseen languages.
With the DEEPSEEKMATH-7B-INSTRUCT gener-
ator on MGSM, PRM achieves respective gains of
+17.49 and +31.20 for the seen and unseen lan-

BASELINE PPO-ORM PPO-PRM

English 78.40 80.40 82.40
German 68.80 64.00 68.80
Spanish 72.00 71.20 76.00
French 67.60 68.00 71.60
Russian 69.60 68.40 71.20
Swahili 33.60 38.80 41.20
Chinese 59.60 64.00 62.80
Japanese 48.80 46.80 49.20
Bengali 45.20 41.20 40.40
Telugu 17.60 20.40 18.00
Thai 56.80 51.20 56.80

Average 56.18 55.85 58.04

Table 3: Zero-shot evaluation on MGSM for LLAMA-3.1-
8B-MATH improved via PPO with PRM-MULTI.

guage sets, compared to the BASELINE.

6.5 Can Multilingual PRM Enhance LLMs?
In this section, we demonstrate that the multilin-
gual PRM can be used as the reward model for
finetuning the LLMs under a RL paradigm.

Setup We design experiments to improve
LLAMA-3.1-8B-MATH using RL where we adopt
the PPO strategy (Schulman et al., 2017) on the
MetaMathQA training set (Yu et al., 2023b). We
then evaluate the resulting policy models on MGSM
using top-1 accuracy in a zero-shot setting. Due
to the computational constraints, we only generate
one response during the fine-tuning process.

Reinforcement learning with multilingual PRM
further improves the performance of LLMs.
The results shown in Table 3 indicate that step-by-
step PPO with PRM-MULTI (PPO-PRM) consis-
tently outperforms a standard supervised fine-tuned
BASELINE and PPO with ORM (PPO-ORM).
LLAMA-3.1-8B-MATH with PPO-PRM achieves
average boosts of +1.86 and +2.19 across 11 lan-
guages, compared to BASELINE and PPO-ORM,
respectively. These findings highlight the impor-
tance of fine-grained multilingual rewards. These
gains demonstrate that process rewards can refine
policy decisions for both reasoning steps and final
outputs with RL. More results are in Appendix H.

7 Conclusion

Through comprehensive evaluations spanning 11
languages, our work demonstrates that multilingual
PRMs significantly enhance the ability to perform
complex, multi-step reasoning tasks in various lan-
guages, consistently outperforming both monolin-
gual and cross-lingual counterparts. Furthermore,
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our findings highlight that PRM performance is sen-
sitive to the number of languages and the volume
of English training data. The multilingal PRMs
also benefit from more candidate responses and
model parameters. These results underscore the
importance of diverse language training in provid-
ing fine-grained rewards and open up promising
avenues for multilingual reasoning.

8 Limitations

While we have demonstrated the effectiveness of
multilingual PRMs, our study has not comprehen-
sively explored the wide range of reward optimiza-
tion methods (Rafailov et al., 2024; Azar et al.,
2024), some of which may not benefit from cross-
lingual reward model transfer. Nevertheless, best-
of-N and PPO, the two techniques leveraged in
this paper, are highly representative of current prac-
tices, particularly given the consistently strong per-
formance of best-of-N (Gao et al., 2023; Rafailov
et al., 2024; Mudgal et al., 2023). Furthermore,
while our results show that multilingual PRMs out-
perform both cross-lingual and monolingual PRMs,
our experiments are limited to 11 languages. Ex-
tending this approach to a broader set of languages
and evaluating its impact across diverse linguistic
families is an important avenue for future work.
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#exam. max min mean
PRM800K trainset 404K 56 1 6.39
Math-Shepherd 445K 30 1 6.23
PRM800K testset 5071 53 1 22.11

Table 4: Dataset statistics of the datasets in this work,
including number of examples, maximum, minimum,
and average number of steps in the answers.

A Data Statistics

The dataset statistics are summarized in Table 4.
These include the total number of examples, as well
as the maximum, minimum, and average number
of reasoning steps in the answers across all exam-
ples. For the selection criteria for the six languages,
there are two key desiderata for the language se-
lection in our work. Firstly, the examples must be
accurately translatable into the target language by
MT systems. Secondly, the target language must
allow for proper evaluation. With these desiderata
in mind, we selected six high-resource languages
covered by the MGSM dataset. This choice en-
sures that the translated data closely aligns with
the original English dataset and allows us to focus
on comparing model strategies without introducing
the added variability that lower-resource language
translations might cause. We will clarify this in our
future revision.

B Translation Details

Due to imbalanced resources across languages,
translation has become a standard method for multi-
lingual research. Recent research has demonstrated
that machine-translated datasets are comparable to
human-translated ones and can be directly used for
training and evaluation (Chen et al., 2024; Thell-
mann et al., 2024).

In this study, after translating the English dataset
into foreign languages, we use regular expressions
to filter out the translated training instances that
contain discrepancies in numbers or equations com-
pared to the original English dataset. This ensures
the correctness of the mathematical content. For
the translated multilingual MATH500 test set, we
employ two human translators to post-edit the test
instances in high-resource languages (de, es, fr, ru,
zh, and ja) by correcting inaccurate translations
and verifying the consistency of mathematical no-
tations. We pay $0.05 USD for each example, re-
sulting in a total cost of $150 USD for post-editing.
For the low-resource languages (bn, sw, te, and th)
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Figure 7: Performance of PRM-MONO trained on seven
seen languages and evaluated on all 11 languages based
on the MATH500 with LLAMA-3.1-8B-MATH generator.

in MATH500, we leverage GPT-4O to post-edit the
translations.

To verify the quality of our translations, we use
Google Translate to back-translate the multilingual
MATH500 and 1,000 random training instances from
each training set into English. We then calculate the
BLEU score using the original English instances
as the reference translation. As shown in Table 5,
the high BLEU scores confirm the quality of the
translations in our datasets.

C Training Details

We train the PRMs by fine-tuning all parame-
ters of QWEN2.5-MATH-7B-INSTRUCT using the
AdamW optimizer with a learning rate of 10−5

and a batch size of 8. This process is conducted
over two epochs on 4 NVIDIA A100 GPUs (80GB).
During training, we use a linear learning rate sched-
ule with a warm-up phase that constitutes 10% of
the total training steps.

D Cross-lingual Transfer of PRMs

Following Wu et al. (2024b), we assess the perfor-
mance of cross-lingual PRMs to inspect if language
similarity like the script or mutual intelligibility
might affect the levels of reasoning verification
cross-lingual transfer.

Setup We train PRMs on monolingual versions
of the data in German, Spanish, French, Russian,
Swahili, and Chinese, and evaluate their transfer to
other languages.

No clear signal indicates that language similar-
ity strongly correlates with cross-lingual trans-
fer. We present the cross-lingual transfer results
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de es fr ru sw zh ja bn te th

Train 81.2 88.4 87.3 74.0 87.3 80.8 - - - -
Test 85.9 91.5 91.0 73.0 90.3 84.4 84.3 65.3 65.8 80.9

Table 5: BLEU scores of back-translation examples with using the original English data.

in Figure 7 and observe that there is no clear conclu-
sion regarding the factors that impact cross-lingual
transfer. For instance, the PRM trained on Russian
data achieves the highest accuracy when evaluating
French, Swahili, Chinese, Telugu, and Thai. No-
tably, these languages neither share the same script
nor belong to the same language family as Russian.
This observation suggests that linguistic similarity,
in terms of script or language family, may not be
a decisive factor in cross-lingual transfer. These
findings underscore the uncertainty in predicting
cross-lingual transfer performance based solely on
language similarity. In practice, selecting a diverse
set of representative languages for training a mul-
tilingual PRM may be a more effective strategy to
address this uncertainty and improve performance
across a wide range of target languages.

E Breakdown Results of MGSM for
PRM-MONO, PRM-CROSS, and
PRM-MULTI

We present the breakdown of results for each lan-
guage on the MGSM in Table 6. The results indi-
cate that the PRM-MULTI consistently outperforms
both the PRM-MONO and PRM-CROSS models
across languages. This observation aligns with the
conclusion drawn in Section 5.1, highlighting the
advantages of multilingual training for PRMs.

F Results on General-Purpose LLM

We provide the results of the general LLM
Qwen2.5-7B-Instruct on MATH500 in Table 7. It can
be observed that the multilingual PRM achieves
consistent conclusions when applied to the general
LLM.

G Statistical Significance Results

We follow Koehn (2004) to perform bootstrap re-
sampling for statistical significance testing. We
present the average results across 30 random seeds
along with their corresponding standard deviations
in Table 8. We observe that PRM-MULTI outper-
forms the other two baselines with statistical signif-
icance in terms of µALL, µSEEN, and µUNSEEN. The

symbol † indicates that the improvement achieved
by PRM-MULTI is statistically significant at sig-
nificance level α = 0.05 when compared to PRM-
CROSS. These results confirm that the contribution
of multilingual training is significant, improving
generalizability and aligning well with the conclu-
sion that “Multilingual PRMs generalize better on
the unseen languages”.

Checkpoint Bengali English French

BASELINE 45.2 78.4 67.6
Checkpoint-500 46.8 80.0 69.2
Checkpoint-1150 (final) 40.4 82.4 71.6

Table 9: The influence of final checkpoint selection
strategy during the PPO training process.

H Influence of Checkpoint Selection

We observe a decline in Bengali performance in
both ORM and PRM, as shown in Table 3. Upon
evaluating the performance at each intermediate
checkpoint, our analysis indicates that this behav-
ior stems from the PPO training process and the
strategy used for selecting the final checkpoint, as
illustrated in Table 9. Specifically, since the check-
point is selected based on the average loss across all
languages, the one that minimizes the overall loss
does not necessarily yield optimal performance for
individual languages. In this case, Bengali appears
to follow a distinct learning rate trajectory com-
pared to other languages. We acknowledge this
limitation and plan to investigate language-specific
adjustments to the training process in future work.
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MGSM µALL µSEEN µUNSEEN en de es fr ru sw zh ja bn te th

METAMATH-MISTRAL-7B

PRM-MONO - 76.0 - 90.8 78.8 81.2 81.6 86.0 36.0 77.6 - - - -
PRM-CROSS 65.2 76.7 45.2 90.8 84.4 85.2 82.4 86.8 27.2 80.0 76.2 43.0 7.6 54.0
PRM-MULTI 65.5 77.1 45.1 89.2 83.2 86.0 82.4 86.4 33.2 79.2 75.6 43.2 8.0 53.6

LLAMA-3.1-8B-MATH

PRM-MONO - 81.7 - 92.4 83.2 88.0 80.4 82.4 62.4 83.2 - - - -
PRM-CROSS 68.8 79.3 50.6 92.4 82.0 88.0 82.0 79.2 50.4 80.8 72.8 39.6 20.8 69.2
PRM-MULTI 71.9 82.0 54.3 90.4 87.6 88.0 83.6 83.2 59.6 81.6 74.0 48.0 23.6 71.6

DEEPSEEKMATH-7B-INSTRUCT

PRM-MONO - 80.5 - 96.4 86.4 90.4 85.2 88.0 32.0 85.0 - - - -
PRM-CROSS 74.0 79.0 65.1 96.4 86.0 91.2 85.6 87.2 18.4 88.4 80.0 57.6 51.6 71.2
PRM-MULTI 75.4 80.5 66.5 95.2 84.0 92.4 86.4 89.2 30.0 86.4 80.8 60.8 52.4 72.0

Table 6: Different PRMs’ best-of-N sampling (N = 64) performance on MGSM with the generator of METAMATH-
MISTRAL-7B, LLAMA-3.1-8B-MATH, and DEEPSEEKMATH-7B-INSTRUCT. µALL, µSEEN, and µUNSEEN indicate
the macro-average of results across all the languages, the seen languages, and the unseen languages, respectively.

MATH500 µALL µSEEN µUNSEEN en de es fr ru sw zh ja bn te th

BASELINE 36.3 37.9 33.4 44.2 40.6 41.6 40.2 40.8 20.8 37.4 40.6 38.2 20.2 34.4
PRM-MONO - 54.2 - 61.0 57.6 58.0 57.0 58.2 31.6 56.2 - - -
PRM-CROSS 53.2 57.1 55.7 63.6 60.8 60.4 60.4 61.6 33.8 59.4 60.8 58.8 36.8 56.4
PRM-MULTI 54.0 58.2 56.7 64.8 61.6 61.8 61.2 62.2 35.2 60.6 61.2 58.6 38.2 57.8

Table 7: Performance on general LLM Qwen2.5-7B-Instruct.

µALL µSEEN µUNSEEN en de es fr ru sw zh ja bn te th

METAMATH-MISTRAL-7B

PRM-MONO - 42.5
±0.6 - 49.0

±0.4
44.3
±0.6

45.9
±0.5

45.6
±0.5

45.9
±0.6

25.0
±1.0

41.9
±0.8 - - - -

PRM-CROSS
39.3
±0.6

43.1
±0.5

32.8
±0.7

49.0
±0.4

45.3
±0.5

45.1
±0.5

46.7
±0.4

46.4
±0.6

25.2
±0.9

43.8
±0.5

43.5
±0.4

31.3
±0.9

22.0
±0.7

34.5
±0.6

PRM-MULTI
39.6
±0.5

43.1
±0.5

33.3
±0.6†

50.3
±0.3†

45.6
±0.5

47.4
±0.3†

45.3
±0.4

45.2
±0.5

25.2
±0.8

42.9
±0.4

43.6
±0.4

32.5
±0.8†

21.9
±0.7

35.2
±0.5†

LLAMA-3.1-8B-MATH

PRM-MONO - 43.3
±0.5 - 49.0

±0.4
46.2
±0.5

45.9
±0.4

44.2
±0.5

45.7
±0.5

26.3
±0.8

46.1
±0.4 - - - -

PRM-CROSS
40.9
±0.6

43.6
±0.5

36.2
±0.7

49.0
±0.4

48.8
±0.4

46.5
±0.4

44.8
±0.5

44.8
±0.4

26.1
±0.8

45.2
±0.5

43.1
±0.8

35.9
±0.7

28.1
±0.6

37.6
±0.6

PRM-MULTI
41.8
±0.4†

44.8
±0.4†

36.4
±0.5

51.1
±0.2†

48.9
±0.4

45.8
±0.4

46.1
±0.4†

46.3
±0.3†

28.4
±0.7†

47.3
±0.3†

42.0
±0.6

34.7
±0.5

30.3
±0.5†

38.6
±0.4†

DEEPSEEKMATH-7B-INSTRUCT

PRM-MONO - 55.1
±0.4 - 63.0

±0.3
59.0
±0.3

60.3
±0.4

59.1
±0.4

60.3
±0.4

29.2
±0.4

54.9
±0.3 - - - -

PRM-CROSS
50.2
±0.4

54.9
±0.4

41.9
±0.6

62.5
±0.3

59.9
±0.4

59.8
±0.4

61.4
±0.3

57.4
±0.5

29.5
±0.5

54.0
±0.3

54.4
±0.4

38.1
±0.5

32.5
±0.7

42.6
±0.6

PRM-MULTI
51.3
±0.4†

55.6
±0.3†

43.8
±0.5†

63.8
±0.2†

58.7
±0.3

60.2
±0.2

60.3
±0.3

61.4
±0.4†

30.5
±0.3†

54.2
±0.3

55.9
±0.3†

38.0
±0.5

35.6
±0.5†

45.5
±0.6†

Table 8: The average results across 30 random seeds along with their corresponding standard deviations on MATH500.
† indicates that the improvement achieved by PRM-MULTI is statistically significant when compared to PRM-
CROSS.
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