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Abstract

Speaker verification is a typical zero-shot learn-
ing task, where inference of unseen classes is
performed by comparing embeddings of test
instances to known examples. The models per-
forming inference must hence naturally gen-
erate embeddings that cluster same-class in-
stances compactly, while maintaining separa-
tion across classes. In order to learn to do so,
they are typically trained on a large number
of classes (speakers), often using specialized
losses. However real-world speaker datasets of-
ten lack the class diversity needed to effectively
learn this in a generalizable manner. We intro-
duce CAARMA, a class augmentation frame-
work that addresses this problem by generating
synthetic classes through data mixing in the
embedding space, expanding the number of
training classes. To ensure the authenticity of
the synthetic classes we adopt a novel adversar-
ial refinement mechanism that minimizes cate-
gorical distinctions between synthetic and real
classes. We evaluate CAARMA on multiple
speaker verification tasks, as well as other rep-
resentative zero-shot comparison-based speech
analysis tasks and obtain consistent improve-
ments: our framework demonstrates a signif-
icant improvement of 8% over all baseline
models. The code is available at: https:
//github.com/massabaali7/CAARMA/

1 Introduction

Speaker verification is fundamentally a zero-shot
learning (ZSL) task, where verification is accom-
plished by comparing embeddings from enrollment
and verification samples without the need for fur-
ther training (Wan et al., 2018). This process
aligns with the principles of ZSL, where models
are expected to operate effectively on unseen data.
Therefore, while the following discussion is framed
within the broader context of ZSL, it is specifically
tailored to address the challenges in speaker verifi-
cation.

(2) (b)

Figure 1: (a) When trained with fewer classes the model
can spread the embeddings of individual classes out
while still learning to classify the training data accu-
rately and with large margins. This will not, however
translate to compact representations for newer unseen
classes. (b) With additional synthetic classes (shaded
grey), the model must now learn to compact classes
more. This will translate to more compact unseen
classes as well.

To address the challenge of limited class diver-
sity in training datasets, a common issue in speaker
verification, we propose a novel augmentation-
based training paradigm. This approach leverages
synthetic data augmentation to enhance the robust-
ness and generalization capabilities of speaker ver-
ification systems, particularly in low-diversity en-
vironments. Our method not only stays true to the
essence of ZSL by facilitating effective generaliza-
tion to new speakers but also introduces a practical
solution to overcome the inherent limitations of
traditional training datasets.

Effective zero-shot learning lies in generating
embeddings that cluster same-class (in our case,
same-speaker) instances closely while maintaining
separation between different classes (Zhu et al.,
2019). Traditional training approaches for ZSL
models rely on two key components: exposure to
a large number of diverse classes and the use of
specialized loss functions that promote both inter-
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class separation and intra-class compactness (Min
et al., 2020). The underlying principle here is that
by learning from a sufficiently large number of
classes, and through proper encouragement embod-
ied in the losses, the model learns not merely to
separate the classes it has seen, but the more gen-
eral principle that instances from a class must be
clustered closely together while begin separated
from those from other classes (Xian et al., 2018).

However, when the training datasets lack the
necessary variety of classes (speakers), this can
severely limit the model’s ability to develop ro-
bust and transferable representations (Xie et al.,
2022). Indeed, it may be argued that in the high-
dimensional space of the embeddings, any finite
set of training classes is insufficient to cover the
space adequately. This limitation leads to models
that fail to generalize effectively to unseen cate-
gories, resulting in suboptimal zero-shot inference
performance (Gupta et al., 2021).

Popular approaches to address training data
limitations often rely on data augmentation tech-
niques. Methods such as AutoAugment (Cubuk
et al., 2019) and SpecAugment (Park et al., 2019)
generate new samples by modifying existing ones
through transformations like geometric distortions,
time warping, and frequency masking. However,
while these techniques increase intra-class diver-
sity, they do not introduce new classes, limiting
their effectiveness in zero-shot learning scenarios.
Of most relevance to our paper are mixup-based
data augmentation techniques, e.g. (Verma et al.,
2019; Yun et al., 2019), that aim to enhance training
by generating new samples through interpolation
(Han et al., 2021) of both the features and their
labels. Regardless of the interpolation, yet these
methods also do not generate new classes; they
merely improve the generalization of the model by
mapping mixed data to mixed-class labels. Still
other methods use generative models such as Vari-
ational Autoencoders (VAEs), Generative Adver-
sarial Networks (GANSs), diffusion models efc. to
generate authentically novel data to enhance the
training (Min et al., 2019); however these too are
generally restricted to generating novel instances
for known classes, limiting their effectiveness in
zero-shot scenarios (Pourpanah et al., 2022). Thus,
while these approaches are generally very success-
ful in improving generalization in classification
problems, they fail at addressing the problem ZSL
learning faces, that of increasing the number of
classes themselves, leading to inconsistent general-

ization to unseen classes (Xie et al., 2022).

In this paper, we introduce Class Augmen-
tation with AdversaRial Mixup regulariAztion
(CAARMA), a data augmentation framework to
introduce synthetic classes (speakers) to enhance
ZSL training for speaker verification. CAARMA
utilizes a mixup-like strategy to generate data from
fictitious speakers. However, unlike conventional
mixup which mixes data in the input space, which
would arguably be meaningless in our setting (a
straight-forward mix of two speech recordings will
merely result in a mixed signal, and not a new
speaker), the mixup is performed in the embedding
space in a manner that permits assignment of new
class identities to the mixed-up data. Critically, we
must now ensure that the mixed-up embeddings
resemble those from actual speakers. We do so
through a discriminator that is used to minimize
categorical distinctions between synthetic and au-
thentic data through adversarial training.

We demonstrate CAARMA’s effectiveness
through extensive evaluation on speaker verifica-
tion, where it achieves substantial improvements in
generalizing to diverse speaker distributions. Ad-
ditional experiments on other ZSL speech tasks
further validate our approach’s broad applicability.

Our main contributions are as follows:

* We introduce CAARMA, a novel class aug-
mentation framework that addresses the fun-
damental limitation of class diversity in zero-
shot learning by generating synthetic classes
termed as Sythetic Label Mixup (SL-Mixup)
through embedding-space mixing, rather than
conventional input-space augmentation.

* We develop an adversarial training mechanism
that ensures the synthetic classes generated
through our mixing strategy maintain statis-
tical authenticity by minimizing categorical
distinctions between real and synthetic em-
beddings.

* We achieve significant performance improve-
ments in zero-shot inference, demonstrated
through an 8% improvement over baseline
models in speaker verification tasks, with en-
hanced generalization to diverse speaker dis-
tributions and verified applicability across var-
ious zero-shot learning tasks.
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2 Related-Work

Mixup. The development of mixup strategies has
evolved substantially since Mixup’s original intro-
duction by (Zhang et al., 2018), which generated
virtual samples and mixed labels by linearly com-
bining two input samples and their corresponding
labels. This pioneering method proved particularly
successful in enhancing data diversity and improv-
ing generalization in visual classification tasks. Ex-
tensions such as ManifoldMix (Verma et al., 2019)
applied this concept to hidden layers, while Cut-
Mix (Yun et al., 2019) introduced a patch-based
approach by blending rectangular sections of im-
ages, offering a novel alternative for augmenting
training data. Subsequent mixup strategies focused
on tailoring data mixing to specific contexts or im-
proving the precision of mixing. Static policies
like SmoothMix (Lee et al., 2020), GridMix (Baek
et al., 2021), and ResizeMix (Qin et al., 2023) used
hand-crafted cutting techniques, while dynamic ap-
proaches such as PuzzleMix (Kim et al., 2020) and
AlignMix (Venkataramanan et al., 2022) incorpo-
rated optimal-transport methods to determine mix
regions with greater flexibility. For Vision Trans-
formers, strategies such as TransMix (Chen et al.,
2022) and TokenMix (Liu et al., 2022b) focused
on leveraging attention mechanisms to refine mix-
ing operations, particularly for transformer archi-
tectures (Dosovitskiy et al., 2021). Recent devel-
opments have adapted mixup techniques to tasks
beyond classification, such as regression. C-Mixup,
for instance, applies sample mixing based on label
distances, using a symmetric Gaussian kernel to se-
lect samples that improve regression performance
(Cai et al., 2021). Further enhancing robustness,
RC-Mixup integrates C-Mixup with multi-round
robust training, creating a feedback loop where
C-Mixup helps identify cleaner data, and robust
training improves the quality of data for mixing
(Liu et al., 2022a). These specialized approaches
reveal mixup’s adaptability across various machine
learning tasks, enhancing model performance and
data resilience. However, it’s important to note that
none of these methods involve mixing in the em-
bedding space, which could allow for the creation
of entirely new and synthetic class identities,

Synthetic speech. Recent advancements in syn-
thetic audio generation have emphasized the cre-
ation of diverse and high-quality datasets, crucial
for training and evaluating audio-based Al models.
A notable innovation is ConversaSynth, a frame-

work utilizing large language models (LLMs) to
generate synthetic conversational audio across var-
ied persona settings (Gao et al., 2022). This method
begins with generating text-based dialogues, which
are then rendered into audio using text-to-speech
(TTS) systems. The synthetic datasets produced are
noted for their realism and topic variety, proving
beneficial for tasks such as audio tagging, clas-
sification, and multi-speaker speech recognition.
These capabilities make ConversaSynth a valuable
tool for developing robust, adaptable Al models
that can handle diverse audio data and complex
conversational contexts. In the domain of speaker
verification, SpeechMix introduces a novel method
by mixing speech at the waveform level, carefully
adjusting ratios to preserve the distinct characteris-
tics of speaker identity (Jindal et al., 2020). How-
ever, like many other generative and augmentation
techniques, SpeechMix primarily focuses on ma-
nipulating known speaker voices rather than gener-
ating new identities, thereby limiting its utility for
enhancing speaker diversity critical for effective
zero-shot learning. In the context of speaker veri-
fication, discriminative neural clustering (Li et al.,
2021) employs clustering techniques to enhance
speaker diarization by learning discriminative em-
beddings, but it does not address class diversity
through synthetic class generation as CAARMA
does. Synthio employs a unique approach by using
text-to-audio (T2A) diffusion models to augment
small-scale audio classification datasets (Joassin
and Alvarez-Melis, 2022). It enhances composi-
tional diversity and maintains acoustic consistency
by aligning T2A-generated synthetic samples with
the original dataset using preference optimization.
Additionally, exploring style transfer in synthetic
audio, recent work by Ueda et al. employs a VITS-
based voice conversion model, conditioned on the
fundamental frequency (FO0), to produce expres-
sive variations from neutral speaker voices (Ueda
et al., 2024). This method achieves cross-speaker
style transfer in a FastPitch-based TTS system, in-
corporating a style encoder pre-trained on timbre-
perturbed data to prevent speaker leakage. This
technique enhances the utility of synthetic data in
applications requiring rich stylistic diversity. These
developments underline the increasing sophistica-
tion of synthetic audio generation techniques, from
multi-speaker conversations in ConversaSynth to
Synthio’s optimized T2A augmentation for clas-
sification, and cross-speaker style transfers with
VITS-based models. They collectively demonstrate

9734



the power of synthetic data to enrich audio model
training by adding diversity and realism. However,
these methods still face limitations in generating
entirely new speaker identities, which is critical
for expanding the range of recognizable voices in
speaker verification systems. CAARMA addresses
this gap by directly mixing in the embedding space,
creating synthetic speakers that enhance zero-shot
learning capabilities. CAARMA not only preserves
speaker characteristics but also significantly ex-
pands the diversity of speaker identities, offering
a superior solution for training more robust and
adaptable speaker verification systems.

3 Class Augmentation with Adversarial
Mixup Regularization

3.1 Overview

As mentioned in Section 1, ZSL models learn
their ability to compactly cluster same-class em-
beddings while maintaining separation between
classes primarily through exposure to a large num-
ber of classes during training; the more classes
they are exposed to in training, the better they
are able to generalize to unseen classes. In the
speaker verification setting, this translates to train-
ing the model with recordings from a large num-
ber of speakers; the more the number of training
speakers the better the model generalizes. To im-
prove this generalization CAARMA attempts to
increase the number of speakers by creating syn-
thetic speakers while training. Synthetic speakers
may be created through generative methods such
as (Cornell et al., 2024); however this approach
does not scale. Instead, CAARMA creates them
through a simple mixup strategy, as convex com-
binations of real speakers, with a key distinction:
the mixup is performed in the embedding space,
where the classes are expected to form compact
(and generally convex) clusters. In order to ensure
that these synthetic speakers are indeed representa-
tive of actual speakers, CAARMA utilizes a mixup
discriminator, a discriminator which attempts to
distinguish between synthetic and real speakers: if
this discriminator is fooled, the synthetic speakers
are statistically indistinguishable from real ones.
When training the model, a conventional loss
such as the Additive Margin Softmax (AM-
Softmax) (Wang et al., 2018) is used. The synthetic
classes, which are created dynamically during train-
ing, are included by dynamically also expanding
the class labels in the loss. In addition, the model

also attempts to adversarially fool the discriminator.
Once the model is trained, the discriminator is no
longer needed and is discarded.

3.2 Framework

Our framework consists of three main components:
an encoder for embedding generation, a synthetic
label mixup mechanism for class augmentation,
and an adversarial training scheme with a seman-
tic discriminator. Figure 2 illustrates the complete
pipeline of our approach. The process begins with
a waveform input that is transformed into a Mel-
spectrogram. This spectrogram serves as input
to the encoder £, which generates embeddings e
that capture discriminative speaker characteristics.
These embeddings undergo our SL-Mixup strategy,
which generates synthetic embeddings ey, by mix-
ing embeddings e based on their closest neighbor
weights W. Each synthetic embedding receives
a corresponding synthetic label I Dy, within the
mini-batch. The framework employs two primary
loss functions: the encoder loss L, for original
embeddings and the synthetic loss Ly, for syn-
thetic embeddings. A Self-Supervised Learning
(SSL) model serves as the mixup discriminator
to distinguish between real (1) and synthetic (5)
embeddings. A discriminator loss £p guides the
discriminator to maximally distinguish between R
and S. On the other hand, a generator loss Lgen
guides the encoder to “fool” the discriminator, so
that it perceives no distinction between real and
synthetic embeddings.

3.3 Encoder

The encoder £ transforms Mel-spectrograms
into discriminative embeddings e that capture
speaker-specific acoustic features. We employ
an MFA-Conformer model (Zhang et al., 2022)
as our encoder architecture, which combines
feed-forward networks (FFNs), multihead self-
attention (MHSA), and convolution modules. The
model incorporates positional embeddings to han-
dle variable-length input sequences effectively. For
training, we utilize the AM-Softmax function as
our encoder 108s Ley.

o5 (cos(0y)—m)
ﬁreal = - 10g C

=1 es-cos(0;)

where s is a scaling factor used to stabilize gradi-
ents, C represents the number of classes, cos(6,)
denotes the cosine similarity for the true class, and
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Figure 2: Illustration of CAARMA framework. (a) The encoder (£) extracts embeddings from Mel-spectrograms,
which are processed by a classification head (#) for speaker identification and through Mix-Up for synthetic
embedding generation. (b) Both real and synthetic embeddings are fed into a pretrained SSL model that acts as a
discriminator, distinguishing between real and synthetic samples.

m is an additive margin that enhances class separa-
tion by increasing inter-class distances.

3.4 Synthetic Label Mixup

Our SL-Mixup strategy generates synthetic em-
beddings esy, within each mini-batch by mixing
embeddings e according to their closest neigh-
bor weights W, as detailed in Algorithm 1. This
approach ensures synthetic embeddings remain
within the same manifold as real embeddings,
avoiding arbitrary generation. The strategy creates
synthetic labels IDsy, and embeddings dynami-
cally during training, enabling effective represen-
tation learning and facilitating the potential use of
unlabeled data. To ensure that synthetic speakers
are minimally confusable with their component
speakers, we only combine pairs of speakers with a
fixed weight of 0.5. This approach maintains a bal-
anced contribution from each component speaker,
preventing synthetic embeddings from collapsing
into a single identity while maintaining inter-class
separation. The synthetic loss Lgy, is computed
using the AM-Softmax loss function applied to
synthetic embeddings egy,. This loss is integrated
into the main encoder 10ss Ly, scaled by 1/,
where A represents the number of speakers. This
integration ensures proper alignment of synthetic

Algorithm 1 SL-Mixup

Input: Feature matrix X, Label vector Y,
Weight matrix W
Initialize Wy, < 0, Yyn < 0, Xy <= 0
for y; € Y do
distances < ||[W[:,i] — W, jll|2
label_set \ {7}
neighbor(y;) < arg min(distances)
end for
for ¢ € Batch do
l; < Yi], la < neighbor(l;)
Weynl[:, 4] <= 0.5 x (W[, 1] + W, lo])
Yiyn[i] <= new_label(l1,l2)
index[i] < find(Y = l3)
Xoynlt] < 0.5 x (X[i] + X[index[d], :])
end for
Return: Xy, Yy, Wiyn

Vj €

embeddings within the embedding manifold.

3.5 Adversarial Training

Our adversarial training process alternates be-
tween optimizing the encoder and discriminator,
as described in Algorithm 2. This optimization
scheme continuously refines the embedding mani-
fold through the interaction between real and syn-
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Algorithm 2 Adversarial Training with Synthetic
Embeddings

Input: Feature extractor f(X), Model M, Dis-
criminator D, Dataset D (waveforms X and la-
bels Y), Adversarial weight A\,qy
for each epoch e € [1, Nepochs| do
for each batch (X,Y) € D do
Extract features F' = Mel(X)
Compute embeddings e = E(F)
Compute AM-Softmax 1oss Lrea
Generate synthetic embeddings egy, via
mixup
Compute real predictions D(e) and fake
predictions D (egyn)
Compute discriminator loss:
Lp =BCE(D(e), 1) + BCE(D(egyn),0)
Update D using VLp
Compute generator loss
Lc = BCE(D(esyn), 1) + BCE(D(e), 0)
Adjust Ay based on Ly /L
Compute total 10sS Liotal = Lreal + AaavLa

Update M using V Lol
end for
end for
Return: Trained M and D

thetic embeddings:

 Discriminator Training: The discriminator
D learns to differentiate between real embed-
dings e and synthetic embeddings ey, using
features extracted from multiple model layers.
The discriminator loss is defined as:

Lp =BCE(D(e),1) + BCE(D(egyn), 0)
()
where BCE represents binary cross-entropy
loss.

* Generator Loss: The encoder incorporates
a generator loss Lg that guides embedding
alignment with the manifold structure:

L = BCE(D(egyn), 1) + BCE(D(e), 0)
(2)

3.6 Mixup Discriminator

To enhance the discriminative power of our frame-
work, we incorporate a self-supervised model (Hu-
BERT) (Hsu et al., 2021) as a mixup discrimina-
tor. This discriminator leverages the pre-trained

representations to provide richer gradients during
adversarial training, improving the stability and
quality of the learned embeddings. The seman-
tic discriminator processes embeddings through
an adapter module that projects them into a com-
patible feature space. The adapter consists of a
down-projection layer with spectral normalization,
followed by fully connected layers with GELU
activation (Hendrycks and Gimpel, 2016). We em-
ploy skip connections and layer normalization to
ensure stable training. The discriminator extracts
features from multiple HuBERT (Hsu et al., 2021)
layers (7,9, 11, and 12) to capture diverse speaker
characteristics. These features are combined using
learnable weights and processed through a resid-
ual classification block with spectral normalization
and LeakyReLU activation (Xu, 2015) to determine
whether an embedding is real or synthetic.

4 Experiments

4.1 Datasets

We utilize four datasets in our proposed ap-
proach: VoxCelebl (Nagrani et al., 2017), Vox-
Celeb2 (Chung et al., 2018), and two datasets
from the Dynamic-SUPERB (Huang et al., 2024)
benchmark such as HowFarAreYou and DailyTalk
datasets. The dataset statistics are summarized in
Table 1. These datasets were employed across dif-
ferent tasks to evaluate the adaptability and gener-
alizability of our pipeline:

* Speaker Identification: The primary task of
our study involves speaker identification using
VoxCelebl and VoxCeleb2. These large-scale
datasets contain speech recordings from thou-
sands of speakers.

* Speaker Distance Estimation The How-
FarAreYou dataset originates from the
3DSpeaker dataset, designed to assess the dis-
tance of a speaker from the recording device.
The task involves predicting distance labels
(e.g., 0.4m, 2.0m) based on speech recordings.

* Emotion Recognition: We use the DailyTalk
dataset to classify the emotional state (anger,
disgust, fear, happiness, sadness, surprise,
neutral) of a speaker based on speech utter-
ances. This dataset contains speech samples
labeled with seven distinct emotion categories.
To maintain consistency with other datasets,
we resample all recordings to 16 kHz before
processing.
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ID DATASET CLASSES UTTERANCES
1 VOXCELEB1 1211 153,516

2 VOXCELEB2 5994 1,087135

3 HOWFARAREYOU 3 3,000

4 DAILYTALK 7 16,600

Table 1: Dataset statistics used in our experiments.

ID Lsy», AT MD RESULTS
1 3.33
2 v 3.28
3 v 3.15
4 v v 3.18
5 v v 3.17
6 v v v 3.09

Table 2: EER Results for MFA Conformer baseline,
Adversarial Training (AT), Mixup Discriminator (MD),
and Synthetic Loss Ly, using VoxCeleb1 for the SV
tasks.

Table 1 provides an overview of the datasets used
in our experiments, including the number of classes
and total utterances per dataset.

4.2 Experimental Setup
4.2.1 Model Architecture

We train two baseline architectures for speaker ver-
ification:

ECAPA-TDNN (Desplanques et al., 2020):
Contains three SE-Res2Blocks with 1024 channels
(20.8M parameters).

MFA-Conformer (Zhang et al., 2022): Em-
ploys 6 Conformer blocks with 256-dimensional
encoders, 4 attention heads, and convolution kernel
size of 15 (19.7M-20.5M parameters).

Both architectures generate 192-dimensional em-
beddings for fair comparison. For emotion and dis-
tance tasks, we utilize HuBERT-Large (pretrained
on LibriSpeech) with 1024-dimensional embed-
dings and 768 hidden units.

4.2.2 Adversarial Training

We incorporate adversarial training into our base-
line experiments. In this approach, each model is
retrained from scratch within our adversarial frame-
work. The discriminator is trained concurrently
with the encoder. The discriminator’s role is to
effectively distinguish between real and synthetic
embeddings, enforcing a well-structured represen-
tation.

Mixup discriminator To determine the most in-
formative HuBERT hidden layers for speaker rep-
resentation, we conduct an ablation study. We
experiment with different layer configurations,

ENCODER BASELINE AT AT+Lgyn
ECAPA TDNN 4.22 396 3.87
MFA CONFORMER  3.33 3.18 3.09

Table 3: EER Results for two different encoders
ECAPA-TDNN and MFA Conformer showing perfor-
mance in baseline, Adeversarial Training (AT), and Syn-
thetic Loss (L sy, ) on VoxCeleb1-O.

ID HIDDEN LAYERS EER (%) MINDCF
1 hs, he, ho, h12 3.22 0.31
2 he, hr, hs, ho 3.12 0.30
3 hz,hg, hi1, h12 3.09 0.28

Table 4: Ablation study of different hidden layers for
Mixup Discriminator (MD) reporting EER (%) and
minDCF.

including {hs, he, ho, h12}, {h7, hg, h11, h12},
{hg, h7,hg,hg} and evaluate their impact on
model performance.

4.2.3 Implementation Details

We implement all baseline systems and discrimi-
nators using the PyTorch framework (Yun et al.,
2019). Each utterance is randomly segmented
into fixed 3-second chunks, with 80-dimensional
Fbanks as input features, computed using a 25
ms window length and a 10 ms frame shift, with-
out applying voice activity detection. All models
are trained using AM-Softmax loss with a mar-
gin of 0.2 and a scaling factor of 30. We use the
AdamW optimizer with an initial learning rate of
0.001 for model training, while the discriminator
is optimized separately with AdamW at an ini-
tial learning rate of 2e-4. To prevent overfitting,
we apply a weight decay of le-7 and use a linear
warmup for the first 2k steps, though no warmup is
applied to the discriminator. Training is conducted
on NVIDIA V100 GPUs with a batch size of 50,
and all models are trained for 30 epochs.

Computational Complexity: CAARMA intro-
duces no additional computational cost during in-
ference, as the discriminator is not used, and infer-
ence remains identical to the baseline model. Dur-
ing training, the primary computational overhead
arises from two components: (1) the forward and
backward passes through the discriminator, and (2)
the computation of the AM-Softmax loss for both
real and synthetic (mixup) data. Since synthetic em-
beddings are dynamically generated from real-data
embeddings, no additional embedding computa-
tions are required. In our experiments, synthetic
data is generated in a 1:1 ratio with real data, ef-
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ID Model # Parameters EER(%) minDCF Utterances # Speakers

1 MFA-Conformer 19.8M 12.82 0.770 12,335 100

2  MFA-Adversarial 19.8M 11.83 0.790 12,335 100

3 MFA-Conformer 19.8M 0.86 0.066 1,240,651 7,205

4  MFA-Adversarial 19.8M 0.81 0.036 1,240,651 7,205

Table 5: Performance overview of all systems on VoxCeleb1-O

gﬁg’; IS;; rssEeoN g?;ELINE ?;50(7 tion with different model configurations.
HOWFARSPK 27.91% 29979 Using the MFA Conformer as the Encoder, we

Table 6: Classification accuracies for Hubert Encoder
baseline and with Adversarial Training on two different
tasks.

fectively quadrupling the compute time for the loss
calculations (doubling for AM-Softmax on real and
synthetic data, and doubling for the discriminator).
However, as the loss computation constitutes a mi-
nor fraction of the overall training cost, the total
increase in training time remains modest. Addition-
ally, since mixup data is computed dynamically,
the memory overhead is negligible.

5 Results & Analysis

To validate the effectiveness of our approach, we
conduct comprehensive experiments across speaker
verification, emotion classification, and speaker dis-
tance estimation tasks. Our analysis demonstrates
significant improvements through adversarial re-
finement on model generalization.

5.1 Speaker Verification Task

We evaluate our models on VoxCeleb1-O, the of-
ficial test set of VoxCelebl. For evaluating the
performance, we use the Equal Error Rate (EER)
and minimum Detection Cost Function (minDCF).
EER represents the point where the false accep-
tance rate equals the false rejection rate, providing
a single measure of verification accuracy (lower
is better). The minDCF quantifies the cost of de-
tection errors, balancing false positives and false
negatives, with lower values indicating better per-
formance. These metrics assess the model’s ability
to distinguish between same-speaker and different-
speaker pairs effectively.

5.1.1 Small Scale

Our 1initial evaluations focused on models trained
on VoxCelebl to facilitate thorough experimenta-

conduct several experiments (Table 2) reporting the
EER. The addition of synthetic loss alone (Model
1Dy) yield slight improvements over the base-
line (Model I D;). More substantial gains were
achieved through adversarial training (Model 1 D3),
with further improvements observed when incorpo-
rating the mixup discriminator (Model I D). The
best performance was achieved by Model IDg,
which combined all three components: synthetic
loss, mixup discriminator, and adversarial training.

To further validate the generalizability of our ap-
proach, we implement it with an alternative speaker
encoder. As shown in Table 3, the combination of
adversarial training and mixup discriminator im-
proved performance by 6.56% compared to the
baseline. Adding synthetic loss further enhanced
the improvement to 8.29%.

We conduct an ablation study to identify the
most informative hidden layers for speaker repre-
sentation. Table 4 presents the EER and minDCF
across various layer configurations. Our analysis
revealed that layers 7, 9, 11, and 12 provide the
most effective speaker characteristics representa-
tion, suggesting that later layers capture more valu-
able speaker-specific information.

5.1.2 Large Scale

To demonstrate scalability, we train on the com-
bined VoxCelebl and VoxCeleb2 datasets, creat-
ing a substantially larger training corpus. As sum-
marized in Table 5, the MFA-Conformer encoder
(Model I D3) achieves strong baseline performance,
which is further enhanced through adversarial re-
finement (Model 1 Dy).

Specifically, adversarial training reduces the
EER from 0.86% to 0.81% and nearly halves the
minDCF from 0.066 to 0.036. These improvements
are consistent with the small-scale trends, confirm-
ing that our framework scales robustly to larger and
more diverse speaker populations.

Importantly, we note that even in the limited-
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diversity setting of VoxCelebl—where only 100
speakers are present—our approach still yields con-
sistent gains (Model IDs 1-2). This suggests that
the framework is not merely leveraging broader
class coverage in large-scale datasets, but is also
effective in scenarios with constrained speaker di-
versity. In practice, this means that our method im-
proves speaker verification robustness both under
resource-rich conditions and under more restrictive
data availability.

Overall, these results highlight that adversarial
training is beneficial across training regimes: it gen-
eralizes well to large-scale, diverse datasets while
still offering tangible improvements when diversity
is limited.

5.2 Emotion and Speaker Distance Tasks

To demonstrate the generalizability of our approach
across different speech processing domains, we
evaluate its effectiveness on emotion classifica-
tion and speaker distance estimation using the Dai-
lyTalk and HowFarAreYou test sets, respectively.
As shown in Table 6, our method improved classi-
fication accuracy across both tasks: emotion classi-
fication accuracy increased from 83% to 85.50%,
while speaker distance estimation improved from
77.91% to 79.97%. These results demonstrate that
our approach can be effectively integrated with var-
ious models across various domains.

6 Conclusion

In this work, we introduce CAARMA, a novel
class augmentation framework designed to tackle
the challenge of limited class diversity in zero-
shot inference tasks. Our approach synthesizes
strategic data mixing with an adversarial refine-
ment mechanism to align real and synthetic classes
effectively within the embedding space. We vali-
date CAARMA'’s effectiveness in speaker verifica-
tion, achieving an 8% improvement over baseline
models, and extend its application to emotion clas-
sification and speaker distance estimation, where
it also shows significant gains. These results un-
derscore CAARMA’s capability to enhance em-
bedding structures in various zero-shot inference
scenarios. Our framework offers a scalable solu-
tion to the class diversity problem, facilitating inte-
gration into existing systems without the need for
new real-world data collection. With our code re-
leased publicly, we anticipate that CAARMA will
aid both research and practical applications in zero-

shot learning. Future work will focus on expanding
CAARMA’s utility to larger datasets and other do-
mains, such as computer vision.

Limitations

The CAARMA framework, while showcasing no-
table enhancements in speaker verification and
zero-shot learning tasks, is subject to several lim-
itations that merit further exploration. Although
it performs well in controlled settings, its scala-
bility to extremely large or diverse datasets, as
well as its applicability to real-world scenarios with
high speaker variability, has yet to be fully estab-
lished. This also adds complexity to the implemen-
tation and increases computational demands, which
may restrict accessibility for those with limited re-
sources.

Ethics Statement

The CAARMA framework is developed with a
commitment to ethical considerations, especially
concerning privacy and the potential for surveil-
lance misuse. It is crucial to ensure that this tech-
nology, while advancing the capabilities of speaker
verification systems, is employed within the con-
fines of strict ethical guidelines and privacy regula-
tions to prevent any invasion of individual privacy.
As this framework facilitates the generation of syn-
thetic data, we also focus on preventing biases that
could arise in synthetic datasets, ensuring fair rep-
resentation across different groups. In adherence to
the ACL Ethics Policy, we emphasize transparency
in the deployment of CAARMA and advocate for
its use in ethically justifiable manners that respect
individual rights and data integrity.
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