FIER: Fine-Grained and Efficient KV Cache Retrieval for Long-context LLM Inference
Dongwei Wang, Zijie Liu, Song Wang, Yuxin Ren, Jianing Deng, Jingtong Hu, Tianlong Chen, Huanrui Yang
Abstract
The Key-Value (KV) cache reading latency increases significantly with context lengths, hindering the efficiency of long-context LLM inference. To address this, previous works propose retaining a small fraction of KV cache based on token importance. For example, KV eviction uses static heuristics to retain tokens, while KV retrieval dynamically selects query-relevant tokens for more adaptive cache management. However, we observe that important tokens are often sparsely distributed across the long context. This sparsity makes existing page-level KV retrieval inaccurate, as each page may include irrelevant tokens and miss critical ones. In this work, we propose Fier, a **Fi**ne-Grained and **E**fficient KV cache **R**etrieval method. Fier uses 1-bit quantized keys to estimate the importance of each token, resulting in efficient and precise retrieval. Experiments show that Fier matches full KV performance using only 11% of the cache budget across various long-context tasks, reducing decoding latency by 1.2× to 1.5×.- Anthology ID:
- 2025.findings-emnlp.515
- Volume:
- Findings of the Association for Computational Linguistics: EMNLP 2025
- Month:
- November
- Year:
- 2025
- Address:
- Suzhou, China
- Editors:
- Christos Christodoulopoulos, Tanmoy Chakraborty, Carolyn Rose, Violet Peng
- Venue:
- Findings
- SIG:
- Publisher:
- Association for Computational Linguistics
- Note:
- Pages:
- 9702–9713
- Language:
- URL:
- https://preview.aclanthology.org/author-page-yu-wang-polytechnic/2025.findings-emnlp.515/
- DOI:
- 10.18653/v1/2025.findings-emnlp.515
- Cite (ACL):
- Dongwei Wang, Zijie Liu, Song Wang, Yuxin Ren, Jianing Deng, Jingtong Hu, Tianlong Chen, and Huanrui Yang. 2025. FIER: Fine-Grained and Efficient KV Cache Retrieval for Long-context LLM Inference. In Findings of the Association for Computational Linguistics: EMNLP 2025, pages 9702–9713, Suzhou, China. Association for Computational Linguistics.
- Cite (Informal):
- FIER: Fine-Grained and Efficient KV Cache Retrieval for Long-context LLM Inference (Wang et al., Findings 2025)
- PDF:
- https://preview.aclanthology.org/author-page-yu-wang-polytechnic/2025.findings-emnlp.515.pdf