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Abstract

Large Vision-Language Models (LVLMs) have
achieved significant progress in tasks like vi-
sual question answering and document under-
standing. However, their potential to com-
prehend embodied environments and navigate
within them remains underexplored. In this
work, we first study the challenge of open-
vocabulary object navigation by introducing
DIVSCENE, a large-scale dataset with 4,614
houses across 81 scene types and 5,707 kinds
of target objects. Our dataset provides a much
greater diversity of target objects and scene
types than existing datasets, enabling a compre-
hensive task evaluation. We evaluated various
methods with LVLMs and LLMs on our dataset
and found that current models still fall short
of open-vocab object navigation ability. Then,
we fine-tuned LVLMs1 to predict the next ac-
tion with CoT explanations. We observe that
LVLM’s navigation ability can be improved
substantially with only BFS-generated shortest
paths without any human supervision, surpass-
ing GPT-4o by over 20% in success rates.

1 Introduction

Large Vision-Language Models (LVLMs), such as
Qwen2.5-VL (Bai et al., 2025), GPT-4o (OpenAI,
2023), and others (Zhu et al., 2025), have demon-
strated state-of-the-art performance on a variety of
vision-and-language tasks. However, their ability
to comprehend embodied environments and navi-
gate within them has been less explored, primarily
due to the limited diversity of scenes and objects
in current navigation benchmarks. For example,
Matterport-3D (Chang et al., 2017) only considers
21 types of target objects in 90 private homes, and
ProcTHOR (Deitke et al., 2022) contains 16 object
types in four kinds of rooms (i.e., bedroom, living
room, kitchen, and bathroom).

1Our code and data are available at https://github.
com/zhaowei-wang-nlp/DivScene.

Navigation Instruction:
You are an agent placed in a 3D environment. The step 
length is 0.25 meters, and your rotation degree is 90. The
possible actions are: 1) MoveAhead: Moves the agent…

MoveAhead

RotateRight

…
🤔
💭

Which?

1. My position is…

2. In the view, no...

3. MoveAhead!
🤔
💡

Got it!

Target: floor lamp

Visual observation
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LVLM Next 
action

CoT

Figure 1: Illustration of our open-vocabulary object
navigation. When fine-tuning LVLMs, we build CoT
explanation traces to help them better grasp the rationale
of object navigation.

In this work, we propose the new task of open-
vocab object navigation and first study LVLMs’
performance on the task, where an agent is required
to navigate to a wide range of target objects with-
out a pre-defined vocabulary. With this purpose,
we introduce a new dataset, DIVSCENE, which fea-
tures the most comprehensive range of scene types
and target objects to the best of our knowledge.
Specifically, we collect 81 scene types based on the
MIT Scenes Dataset (Quattoni and Torralba, 2009).
Then, we use LLMs to automatically compose di-
verse house descriptions by adding attributes to
those scene types, such as “a bakery with tile-
patterned walls.” We input these descriptions into
a language-guided framework, Holodeck (Yang
et al., 2024), to build houses automatically with
the strong ability of GPT-4 (OpenAI, 2023). In
total, we compile 4,614 houses across 81 distinct
scene types on the AI2THOR platform (Kolve et al.,
2017). For benchmarking and training LVLMs,
we further sampled shortest-path episodes in the
houses from DIVSCENE. Specifically, we dis-
cretize houses into grid maps with a fixed step
size and randomly sample target objects in each
house. Then, we search for the shortest paths from
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the agent’s initial position to target objects with
BFS. In total, we collect about 23K shortest-path
episodes, forming the DIVSCENEep. In total, our
episode data contains 5,707 types of target object,
significantly surpassing existing object navigation
datasets (Deitke et al., 2020; Chang et al., 2017).
This makes it a comprehensive testbed for evaluat-
ing the open-vocab navigation capabilities.

With our collected data, we benchmarked vari-
ous methods based on LVLMs and LLMs, includ-
ing blind LLMs, LLMs with image captioning,
open-source LVLMs, and proprietary LVLMs. Our
results show that most current models are still un-
able to explore environments and navigate toward
open-vocabulary objects. Specifically, most mod-
els failed to outperform a random baseline, while
GPT-4o achieves a success rate of slightly above
30%, far from adequate for real-world applications.
To enhance their navigation ability, we further stud-
ied fine-tuning LVLMs on the data sampled in our
DIVSCENE. Specifically, we propose a new nav-
igational LVLM, called NATVLM (Navigational
Chain-of-Thought VLM), which is fine-tuned from
Idefics 2 (Laurençon et al., 2024) on our sampled
episodes in DIVSCENEep. As shown in Figure 1,
the model is tuned to process the current observa-
tion, such as the egocentric view and the agent’s sta-
tus, and generate the next action. We train Idefics 2
with imitation learning (IL; Brohan et al., 2022) us-
ing BFS-generated shortest paths in DIVSCENEep.
To further improve the navigation ability, we also
manually collect CoT explanation traces of each ac-
tion prediction (Mitra et al., 2023; Ho et al., 2023)
to help Idefics 2 understand the underlying ratio-
nale behind the navigation task.

In our experiments, we surprisingly discovered
that simply imitating the shortest paths constructed
by breadth-first search can be an effective approach
to enhance the open-vocab navigation ability of
LVLMs. Our NATVLM model outperforms off-
the-shelf LVLMs and LLMs by a large margin,
achieving a success rate approximately 20% higher
than GPT-4o. Compared to existing IL-based meth-
ods, which rely on training models with large cor-
pora of costly human demonstrations (Brohan et al.,
2022; Wei et al., 2023), our approach offers a far
more efficient and economical alternative. Further,
we carry out thorough ablation studies to show the
efficacy of CoT explanation traces in action predic-
tion. Moreover, few-shot experiments demonstrate
the robustness of our agent. Last but not least, we
validate the generalization ability of our agent on

three unseen datasets: ProcTHOR (Deitke et al.,
2022), iTHOR (Weihs et al., 2021), and HM3D (Ra-
makrishnan et al., 2021).

2 Related Work

Object Navigation: The Reinforcement Learning
has long been used for tackling object navigation
tasks (Zhu et al., 2017; Druon et al., 2020; Ehsani
et al., 2021). However, recent studies (Ehsani et al.,
2023) show that RL requires extensive reward shap-
ing, limiting its practicality. Alternatively, im-
itation learning (Pomerleau, 1988; Zhang et al.,
2018) has also been applied to these tasks, inspir-
ing many subsequent works (Brohan et al., 2022,
2023; Ehsani et al., 2023). However, existing works
only focus on closed-vocab object navigation tasks,
mainly due to the limited diversity of current bench-
marks. For example, Matterport-3D (Chang et al.,
2017) only considers 21 kinds of target objects in
private homes. ProcTHOR (Deitke et al., 2023a)
solely contains 16 target objects in four kinds of
rooms. Although HM3D-OVON (Yokoyama et al.,
2024b) attempts to broaden the diversity, the num-
ber of object categories is still limited to 379, and
there are only 181 scenes, making it difficult to
fully reflect the open-vocab nature of real-world
scenarios. In constrast, we introduce DIVSCENE,
a dataset comprising 5,707 categories of target ob-
jects among 22,696 object types, spanning 4,614
distinct scenes. Therefore, our dataset reflects a
more diverse nature of real-world settings with an
open vocabulary.

VLMs and LLMs for Embodiment: LLMs and
VLMs (Achiam et al., 2023; Touvron et al., 2023;
Lu et al., 2024) have emerged as the foundation for
solving embodied tasks (Pan et al., 2023; Majum-
dar et al., 2024). A few methods have employed
contrastive VLMs (Radford et al., 2021; Li et al.,
2022) as the visual encoders (Khandelwal et al.,
2022; Majumdar et al., 2022) or object-grounding
tools (Gadre et al., 2023; Dorbala et al., 2023) for
navigation. Yu et al. (2023) utilizes an LLM as
the planning backbone with a captioning model for
perception. Following them, many improvements
have been proposed (Cai et al., 2024; Chen et al.,
2023; Zhou et al., 2023; Shah et al., 2023). While
these works still focus on a small set of target ob-
jects, we explore the potential of recent LVLMs for
open-vocabulary object navigation.
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Figure 2: Data collection process. On the left, we show the process of collecting scenes. We prompt GPT-4o to
collect textual house descriptions and use Holodeck to build houses. On the right, we show an episode built in the
house, where we use BFS to find the shortest path. Then, actions and observations are collected.

3 Task Definition

We study the open-vocab object navigation task
involving an agent in an environment to find the
target object belonging to a given category. The
object categories in the open-vocabulary setting
are denoted by C = {c0, c1, c2, . . .}, which is not
restricted to a predefined set. The houses can be
described by H = {h0, h1, . . . , hn}, and n is the
total number of scenes. In each episode, the em-
bodied agent is initialized at a random position pi
with rotation ri in a house hi. Then, the embodied
agent is required to perform instance-level object
navigation, where it gets a target object within the
category ci at the position oi. Thus, an episode
can be represented as E(i) = {hi, pi, ri, ci, oi}. At
each time step t, the embodied agent observes the
environment and predicts the next action at. Fol-
lowing previous work (Yu et al., 2023; Zhu et al.,
2024), the observation comprises an RGB image
of the egocentric view and the agent status (i.e., its
position and rotation).

Our new houses are all collected on the
AI2THOR platform (Kolve et al., 2017), and thus
the action space, signified as A, covers: MOVEA-
HEAD, ROTATERIGHT, ROTATELEFT, and DONE.
By default, the MOVEAHEAD action moves the
agent 25 centimeters, and ROTATELEFT (or ROTA-
TERIGHT) rotates the agent 90 degrees. The DONE

action is used by the agent to indicate that the navi-
gation task is complete. When the agent takes the
DONE action or reaches the max action limit, the
episode is considered successful if the distance to
the target object is below 1.5 meters. Based on the
actions, an environment can be discretized as a 0.25
× 0.25-meter grid map of all reachable positions.

485 school, 560 wine, 1809 dental office, 25 sunroom

school
roomdental office

Figure 3: Examples of houses with different scene types.

4 Data Collection for DIVSCENE and
DIVSCENEep

Existing object navigation studies only focus on
limited types of scenes and objects. To fill this
gap, we first curate a large-scale scene dataset
DIVSCENE, featuring 4,614 scenes. Then, 23K
shortest-path episodes with 5,707 kinds of target
objects were sampled using breadth-first search
(BFS), forming the DIVSCENEep dataset. We illus-
trate the details in Figure 2.

4.1 Scene Collection for DIVSCENE

We adopt Holodeck (Yang et al., 2024) to build
scenes, easing human labor. Holodeck takes tex-
tual house descriptions as input and uses GPT-4
to decide the layout, styles, and object selections.
To collect diverse houses, we first manually com-
pile 81 scene types across five categories by sup-
plementing the MIT scene dataset (Quattoni and
Torralba, 2009), like music studio and home office.

Then, we build textual house descriptions based
on randomly chosen scene types by adding house
attributes. We consider 12 house attributes, such as
room style, users of the room, etc. We randomly
sample 1-3 attributes and prompt GPT-4 to assign
specific values to them. Given the scene type and
attribute values, a house description is then writ-
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ten by GPT-4. Here, we prompt GPT-4 under the
in-context learning setting (Brown, 2020), and five
exemplars are provided to generate the description
for the final test example. See full details of scene
types and attributes in Appendix A.1 and concrete
prompts in Appendix A.2. With a strict data filter-
ing (Appendix A.3), we obtained 4,614 houses. We
present a few houses in Figure 3 and more exam-
ples in Appendix E.

4.2 Episode Collection for DIVSCENEep

There are three steps in our episode sampling
method. First, we sample the agent’s initial po-
sition and the target object. Then, we use BFS to
find the shortest paths in the 0.25× 0.25-meter grid
map. Finally, we obtain the action sequence and
corresponding observations. We show an example
on the right side of Figure 2.

First, as discussed in Section 3, houses are dis-
cretized as grid maps of the fixed step size. We
randomly sample an initial position from the grip
map for the agent. Then, a target object is ran-
domly sampled from all available objects in the
environment. To encourage diversity, objects of the
same type as those sampled in previous episodes
are removed from the pool when sampling for new
episodes in the same house. We also impose that
the target objects are between 0.3m and 2.0m in
height to ensure they are observable to the agent.

Second, we find the shortest path in the grid map
that navigates a multi-room, cluttered environment.
We can obtain the ground truth information from
AI2-THOR, like reachable positions and objects’
coordinates. We use BFS to find the shortest path
from the initial position to the target object. More
details are in Appendix A.4. This ground truth
information is not provided to agents for inference
and is only used to produce episodes for training.

With the shortest path, we then derive the se-
quence of actions needed to achieve navigation.
Basically, between two adjacent positions in the
shortest path, we add a MOVEAHEAD action if the
agent’s rotation remains unaltered. Otherwise, we
first use ROTATERIGHT or ROTATELEFT to adjust
the orientation and then add a MOVEAHEAD action
(more details in Appendix A.5). Thus, we obtain
an action sequence that can steer the agent to the
target object. We execute all actions in AI2THOR
and collect observations at each step, including the
agent’s status and egocentric images.

Metric ProcTHOR iTHOR DivScene
Scene types 4 4 81
Rooms per house 3.78 1.00 2.35
Room size (m2) 25.21 34.24 30.15
Obj. types per house 16.25 30.92 32.17
Obj. per house 35.64 47.26 111.42
Obj. types 38 116 22,696

Table 1: A comparison of ProcTHOR, iTHOR, and our
dataset. “Obj.” refers to objects.

4.3 Statistics and Comparison

In DIVSCENE, we collected 4,614 houses across
81 scene types. To the best of our knowledge, this
dataset covers the widest range of scenes. We show
the diversity of our collected houses in Figure 6 by
plotting most types under each category. Thanks
to Objaverse (Deitke et al., 2023b), the collected
houses contain objects from 22,696 different types,
including very common objects such as fridges,
beds, shelves, and sofas, and rare objects such as
multicolored bookshelf and vintage wooden bench.

Then, we randomly pick one house of each scene
type to build a test set of 81 houses. Similarly, we
randomly select 27 houses of distinct scene types as
the validation set. DIVSCENE is divided into train-
ing, validation, and test sets, covering 4,506, 27,
and 81 houses. On the training set, we sample five
episodes in each scene with different target objects.
Four episodes are selected in each house in the
evaluation sets to balance the evaluation efficiency
and accuracy. In total, the DIVSCENEep dataset
contains 22,962 episodes and 5,707 different kinds
of target objects.

We provide a detailed comparison of scene com-
plexity between our dataset and the other two
datasets: iTHOR (Weihs et al., 2021) and Proc-
THOR (Deitke et al., 2022). As shown in Table 1,
our dataset includes the most objects and scenes,
and room sizes and numbers in our dataset remain
consistent with manually created ones in iTHOR.
More statistics are shown in Appendix A.6.

5 NatVLM

In this section, we describe our NATVLM model. It
is fine-tuned from Idefics 2 (Laurençon et al., 2024)
through imitation learning on shortest paths from
DIVSCENEep to enhance the navigation ability. At
each time step t, the model processes environment
observations st and generates the next action at in a
manner consistent with instruction tuning. Figure 1
provides an overview of NATVLM.
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5.1 Instruction Compilation

We manually build instructions for each time step
in an episode, which contains four parts: (i) the
instruction provides a brief introduction to the ob-
ject navigation task, such as possible actions and
step length; (ii) we add the current environment
observation, including the target object, its posi-
tion, the agent’s position and rotation, and visual
observation; (iii) we provide the agent’s positions
and actions for the recent M = 8 steps, along with
the visual observations from the recent K = 4
steps, to help the agent capture navigation history;
(iv) the instruction asks the model to predict the
next action by considering the current observation
and navigation history in accordance with the CoT
explanation in the responses. We show the specific
instruction template in Appendix B.1.

5.2 Response with CoT Explanation

We tune the Idefics 2 to generate the next ac-
tion when instructions are given. Specifically, we
encode actions as natural language and use the
model’s generative capabilities to decode the next
action. Nonetheless, we found that merely requir-
ing LVLMs to output the next action leads to un-
satisfactory results. The model only grasps the
surface-level styles of the prompt but misses the
underlying rationales of object navigation.

To enhance its understanding of the object navi-
gation task, we manually build responses with CoT
explanation traces during the navigation process.
The structure of the responses covers three steps. In
the first step, we have the agent compare its current
position with the target and determine whether it
needs to move forward or take other actions. After
this, the agent is asked to check the obstacles in
the visual observation to see whether it needs to
rotate. In the last step, the agent gives the final
decision based on the analyses in the first two steps.
In contrast to writing explanations with LLMs (Mi-
tra et al., 2023), we manually write the prompt
template of explanation traces, leaving the position
information to be filled in with coordinates at each
step. Meanwhile, we employ a few postprocessing
steps, like action balancing and conflict filtering.
We show concrete prompts and postprocessing de-
tails in Appendices B.2 and B.3, respectively.

5.3 Imitation Learning Objective

With collected instructions and responses, we em-
ploy imitation learning to train NATVLM to mimic

decision-making from shortest-path demonstra-
tions. Specifically, we adopt the Behavior Cloning
(BC) framework, where the goal is to learn a policy
πθ(at|st) that maps the current state st (environ-
ment observation) to the action at at each time step
t. We minimize the negative log-likelihood of the
shortest-path actions over collected observation-
action pairs (st, at) obtained from trajectories in
DIVSCENEep, which is denoted as D. The objec-
tive function is given by:

LBC(θ) = −E(st,at)∼D
[
log πθ(at|st)

]
, (1)

where θ represents the learnable parameters of
Idefics 2. As we aforementioned, the state st is
included in the instruction, and the action at in-
cludes the CoT explanation besides the next action.

6 Experiment

We conduct extensive experiments to evaluate both
off-the-shelf LVLMs and LLMs, as well as models
that have been fine-tuned using DIVSCENEep.

6.1 Metrics

A model navigates in a house until it chooses
the DONE action or reaches the maximum action
limit of 200 steps. We report the metrics Success
Rate (SR), Success weighted by Path Length (SPL;
Anderson et al., 2018), and Success weighted by
Episode Length (SEL; Eftekhar et al., 2023). An
episode is considered successful when the target
object appears in the agent egocentric observa-
tion and is less than 1.5 meters away. Specifi-
cally, SR and SPL are computed as 1

N

∑N
i=1 Si

and 1
N

∑N
i=1 Si

li
max(li,pi)

, where N is the number
of episodes, Si is the indicator of success, li is the
length of the shortest path, and pi is the length of
the predicted trajectory. For SEL, we replace li
and pi with the action number of the shortest and
predicted paths.

6.2 Evaluated Methods

Besides NATVLM, we comprehensively evalu-
ate four off-the-shelf methods and one fine-tuned
method on our sampled dataset2:
Blind LLMs are text-only LLMs that simply pre-
dict the next action based on the textual instruction
without considering any visual information. This

2We do not include complicated frameworks built on
LVLMs as they are out of the evaluation scope. More in
Appendix C.5.
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Methods Backbone Valid Test All
SR SPL SEL SR SPL SEL SR SPL SEL

Random - 9.26 8.19 9.26 6.79 5.77 6.79 8.03 6.98 8.03

Blind LLMs

Llama 2 (7B) 8.33 7.26 3.64 9.57 7.63 6.28 8.95 7.45 4.96
Llama 2 (13B) 9.26 7.69 3.12 10.19 8.62 4.14 9.72 8.15 3.63
Llama 3.1 (8B) 11.11 9.40 5.56 12.04 9.50 6.19 11.57 9.45 5.88
Mistral (7B) 8.33 7.16 4.13 9.88 7.89 3.78 9.11 7.53 3.96

LLMs w/ Captions

Llama 2 (7B) 11.11 9.30 5.06 12.96 10.90 8.19 12.04 10.10 6.62
Llama 2 (13B) 9.26 7.56 4.03 12.35 9.93 5.95 10.80 8.74 4.99
Llama 3.1 (8B) 12.96 10.73 2.75 16.67 13.50 6.28 14.82 12.12 4.52
Mistral (7B) 11.11 9.65 3.43 11.76 9.65 2.72 11.43 9.65 3.07

Open LVLMs

Qwen-VL (7B) 10.19 8.75 9.14 7.41 6.05 6.66 8.80 7.40 7.90
Llava 1.5 (7B) 12.04 10.07 9.88 12.35 10.03 10.30 12.20 10.05 10.09
Llava 1.5 (13B) 12.04 10.50 11.05 10.62 8.73 9.75 11.33 9.62 10.40
Idefics 2 (8B) 21.30 17.88 14.31 20.68 17.18 16.49 20.99 17.53 15.40
Qwen2.5-VL (7B) 11.11 8.96 10.94 10.20 8.14 9.70 10.65 8.55 10.32
InternVL3 (8B) 11.43 9.62 10.26 11.46 9.59 11.46 11.45 9.61 10.86
Gemma3 (12B) 15.74 12.96 5.94 22.22 18.36 5.17 18.98 15.66 5.55

API LVLMs GPT-4v 33.33 28.79 18.81 32.10 26.39 18.26 32.72 27.59 18.54
GPT-4o 37.04 31.82 29.47 38.27 31.74 27.92 37.66 31.78 28.70

Fine-Tuned LVLMs Idefics 2 (8B) 29.63 25.01 23.18 26.54 22.11 21.42 28.09 23.56 22.30

NATVLM (Ours) Idefics 2 (8B) 57.41 47.84 47.90 54.94 44.45 45.83 56.17 46.15 46.86

Table 2: Performance of all models DIVSCENEep. “All” means the average of both evaluation sets. The highest
scores are bolded. In the “LLMs w/Captions” baseline, we use Llava 1.5 as the captioning model.

method references how far we can get solely us-
ing prior world knowledge and random guessing.
For the LLM choice, we evaluate Llama 2 (7B,
13B) (Touvron et al., 2023), Llama 3.1 (8B) (Dubey
et al., 2024), and Mistral (7B) (Jiang et al., 2023).
Socratic LLMs w/ Image Captions is the simplest
method that leverages visual information. Here, we
use an image captioning model to convert egocen-
tric images into language descriptions, allowing
LLMs to obtain the content of visual information.
We employ Llava 1.5 (Liu et al., 2024a) as the cap-
tioning model while using the same LLMs as those
in the “Blind LLM” baseline.
Open-Source LVLMs are directly tested without
any further tuning. They are capable of processing
images in addition to textual queries. Here, we test
Llava 1.5 (7B, 13B) (Liu et al., 2024b,a), Qwen-VL
(7B) (Bai et al., 2023), Idefics 2 (8B) (Laurençon
et al., 2024), Qwen2.5-VL (7B) (Bai et al., 2025),
InternVL3 (8B) (Zhu et al., 2025), and Gemma3
(12B) (Team et al., 2025).
API-based LVLMs we evaluated include GPT-
4v (OpenAI, 2023) and GPT-4o (OpenAI, 2024).
They can process multiple images and achieve state-
of-the-art performance on multimodal tasks.
Fine-Tuned LVLM: For fine-tuned LVLMs on our
data, we also evaluated fine-tuning Idefics 2 (Lau-
rençon et al., 2024) on our sampled trajectories
without any CoT explanation traces.

6.3 Main Evaluation

We present the results of all off-the-shelf and fine-
tuned methods on the validation and test sets in
Table 2. We also include the performance of select-
ing a random action at each step (i.e., Random) as
a reference. In general, the fine-tuned NATVLM
achieves the best performance on object navigation,
exceeding other methods by a large margin. For
example, NATVLM can successfully navigate to
57.41% of episodes on the validation set, increas-
ing by about 20% compared to the GPT-4o baseline.
Meanwhile, according to the higher SPL and SEL
on both test and validation sets, NATVLM can nav-
igate to target objects with better efficiency.

For the off-the-shelf methods, the blind LLMs
achieve performance slightly higher than the ran-
dom results. For example, Llama 3.1 (8B) achieves
a success rate of 11.57%, about 4 points higher than
the random guess. In the meantime, we observe
that the performance of all LLMs only improved
marginally when we added the captioning model
to provide additional perceptual information. This
result shows that the captioning model can miss
important image content details, leading to unsatis-
factory improvement. On the other hand, we find
that LVLMs can achieve the best results across all
baselines. For example, the closed-source LVLMs,
GPT-4v and GPT-4o, can successfully navigate to

9671



Methods Valid Test Test Diff
SR SPL SEL SR SPL SEL ∆SR ∆SPL ∆SEL

NATVLM (Ours) 57.41 47.84 47.90 54.94 44.45 45.83 - - -

⋄ w/o ET 29.63 25.01 23.18 26.54 22.11 21.42 ↓28.40 ↓22.34 ↓24.41
⋄ w/o ET & w Gold 28.70 24.12 23.38 30.86 25.46 25.58 ↓24.08 ↓18.99 ↓20.25

⋄ w Gold Label 59.26 49.01 51.33 62.96 50.54 54.12 ↑8.02 ↑6.09 ↑8.29
⋄ w Diff-EQ 54.63 45.02 46.48 54.32 43.59 46.84 ↓0.62 ↓0.86 ↑1.01

Table 3: The ablation study. ∆∗ columns show score differences. We remove explanation traces and test different
methods of position comparisons. We bold the highest scores except for the gold label test (⋄ w Gold Label).

target objects in more than 30% cases. In addition,
Idefics 2 (8B) attains success rates exceeding 20%
on both validation and test sets.

6.4 Ablation Evaluation

To better understand the role of CoT explanation
traces in NATVLM, we conduct two ablation stud-
ies to analyze its contribution. First, we verify the
efficacy of CoT explanation traces. Then, we ana-
lyze different ways to compare the positions of the
agent and target object. The results of experiments
are shown in Table 3.

First, we remove explanation traces in the in-
struction tuning data (⋄w/o ET). Thus, we fine-tune
the agent to only generate the next action. We find
that the performance of our agent drastically drops,
verifying that explanation traces can help LVLMs
to better understand the underlying rationales of
object navigation. Furthermore, we enhance the
agent’s input by providing the gold label of the po-
sitional difference between the agent and the target
object (⋄ w/o ET & w Gold). We observe that the
gold labels cannot help much, as the performance
only fluctuates somewhat.

Then, we study the effects of the position com-
parison, the crucial component in our explanation
traces. The default prompt is to directly generate
the position difference: “the difference to the tar-
get object is [position_diff]” as shown in Table 11,
where [position_diff] is a placeholder. First, we
provide the global label of positional differences in
the input instructions (⋄ w Gold Label). The results
in Table 3 show that providing global labels can
improve the performance of our agent, suggesting
that our agent may occasionally compute the po-
sitional difference with errors. Next, we test the
difference-equation prompt (⋄ w Diff-EQ), where
we fine-tune our agent to generate an equation for
computing the positional difference. However, writ-
ing the equation of computation only leads to small
variations in performance. All the abovementioned
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Figure 4: Design investigation. We provide different
numbers of recent visual observations with the embod-
ied agent. See scores of all metrics in Appendix C.2

prompts are shown in Appendix C.1.

6.5 Design Investigation

In this experiment, we thoroughly investigate a few
design decisions regarding the image number and
step number of recent positions and actions. We
also test NATVLM with different prompts shown
in Appendices C.2 and C.3

The default design provides NATVLM with four
images. In addition, we test its performance us-
ing different numbers of input images, including
2, 6, and 8 images. The results are plotted in Fig-
ure 4. First, we observe a decline in the agent’s
performance when provided with only two images,
showing that using fewer images leads to worse
performance. For instance, our agent finishes the
navigation successfully only 50% of the time, un-
derperforming the 4-image baseline. Moreover,
increasing the number of images to 6 or 8 does not
result in further improvements. Thus, we choose to
provide NATVLM with four images for the trade-
off between accuracy and efficiency.

We also investigate the effect of recent positions
and actions on navigation performance. By default,
we provide NATVLM with information about the
recent 8 steps. Here, we test the performance when
we provide the positions and actions of 4, 12, and
16 steps. As illustrated in Table 4, a substantial per-
formance improvement is evident when increasing
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Number Valid Test
SR SPL SEL SR SPL SEL

4 steps 46.30 38.66 39.82 45.99 37.45 39.60
8 steps 57.41 47.84 47.90 54.94 44.45 45.83
12 steps 42.59 35.92 36.43 50.93 41.15 43.20
16 steps 51.85 43.01 42.72 53.40 43.03 44.08

Table 4: Our agents receive various numbers of recent
actions and positions. See all metrics in Appendix C.3.

% Data Test Test Diff w GPT-4o
SR SPL SEL ∆SR ∆SPL ∆SEL

20 38.89 31.40 32.13 ↑0.62 ↓0.34 ↑4.21
40 38.27 31.00 30.79 ↓0.00 ↓0.74 ↑2.87
60 52.12 42.25 44.40 ↑13.85 ↑10.51 ↑16.48
80 49.69 40.26 42.49 ↑11.42 ↑8.52 ↑14.57

100 54.94 44.45 45.83 ↑16.67 ↑12.71 ↑17.91

Table 5: Few-shot learning ability. See scores of the
validation set and more prompts in Appendix C.4.

the number of steps from 4 to 8. However, further
increases in step count yield limited returns. Thus,
we provide our agent with 8 steps.

6.6 Few-shot Learning Evaluation

NATVLM undergoes instruction tuning with an
extensive training dataset, DIVSCENEep. In this
section, we design a few-shot experiment to con-
firm its ability to generalize with fewer data. While
the original training data contains five episodes
per house, we train the model with only 1, 2, 3,
and 4 episodes, representing 20%, 40%, 60%, and
80% of the full data. The results are shown in Ta-
ble 5. For clarity, we also compare our models with
the GPT-4o baseline. We can find that our agent
has strong few-shot learning abilities. With only
20% percent training data, our agent can perform
similarly to GPT-4o and generalize well on un-
seen houses. Meanwhile, the results demonstrate a
gradual performance improvement as we incremen-
tally increase the data volume, with performance
plateauing at approximately 80% of the full dataset.
We provide more analysis in Appendix C.4.

6.7 Zero-shot Transferring Evaluation

We further evaluate NATVLM on other house
datasets: iTHOR (Weihs et al., 2021), Proc-
THOR (Deitke et al., 2022), and HM3D (Ramakr-
ishnan et al., 2021). We directly use NATVLM
tuned on DIVSCENEep to conduct zero-shot trans-
ferring evaluation. Since we do not tune hyperpa-
rameters on these datasets, we treat each dataset
as a whole test set without any validation set. We
show the results on iTHOR and ProcTHOR in Ta-

Models iTHOR ProcTHOR
SR SPL SEL SR SPL SEL

Qwen-VL (7B) 23.67 19.96 19.27 10.83 9.04 6.28
Llava 1.5 (7B) 24.12 20.32 20.34 16.04 13.53 14.02
Llava 1.5 (13B) 19.47 16.21 17.48 13.12 11.07 11.85
Idefics 2 (8B) 28.54 23.39 18.49 17.29 14.33 11.05

NATVLM 72.79 59.34 59.28 53.12 44.37 43.04
⋄ w/o ET 38.27 32.15 31.43 31.25 26.87 26.20
⋄ w Diff-EQ 72.32 58.98 62.35 54.59 45.53 46.80

Table 6: Zero-shot transferring on iTHOR and Proc-
THOR.

4269-6

Ground

Truth

Real

Prediction

start

end

Figure 5: Error analysis. The agent needs to find a soda
can in the lower right corner of a game room. The left
image shows the predicted path, and the right image
shows the ground truth in the grid map. The agent fails
to find the soda can and wanders within a limited area.

ble 6. We also report the performance of open-
source VLMs and some ablated models as base-
lines. The results show that our agent surpasses
all the baselines on both datasets, indicating that
our framework has a strong ability to generalize in
other environments. We include results on HM3D
and setup details in Appendix C.5.

6.8 Case Study

In Figure 5, we provide an example of error anal-
ysis of NATVLM. The left image shows the pre-
dicted path in the real scene, and the right image
shows the ground truth in the corresponding grid
map. Here, the agent needs to find a soda can after
walking through the whole room. There are 46
actions in the shortest path. Instead of heading to-
wards the goal, the agent just meanders in a limited
area. This shows that NATVLM cannot finish the
navigation with a long trajectory and has limited
exploration. We leave the development of models
better at exploring environments for future work.

7 Conclusion

In this work, we first study the open-vocab ob-
ject navigation and evaluate extensive LVLMs and
LLMs. Meanwhile, we collect a large-scale scene
dataset, DIVSCENE, featuring 4,614 scenes. Over
22K episodes are sampled with the shortest paths
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by BFS. Our evaluation shows that current LVLMs
and LLMs still fall short of the ability of open-
vocab object navigation. Then, we also fine-tuned
LVLMs with the shortest paths through imitation
learning, where we also introduced CoT explana-
tions. Experiments show that the navigation abil-
ity of LVLMs can be improved significantly. For
future work, a promising direction is to enable
LVLMs to navigate over longer horizons.

Limitation

While we conducted extensive experiments, our
model still has some failure cases due to long navi-
gation horizon or exploration, as we discussed in
Section 6.8. This might be because, due to the
limited context window, we can only provide ex-
isting models with recent historical information.
Thus, a promising direction for future work is to
improve the memory (Du et al., 2025) or long-
context (Team et al., 2025; Wang et al., 2025) capa-
bilities of LVLMs to enable navigation over longer
horizons.

Ethics Statement

Our scene dataset DIVSCENE is built upon the
publicly available AI2THOR platform (Kolve
et al., 2017) and the Holodeck framework (Yang
et al., 2024). We further extend our experi-
ments on iTHOR (Weihs et al., 2021) and Proc-
THOR (Deitke et al., 2022), both of which are
open-source datasets. We provide the complete de-
tails of the implementation of our NATVLM agent
and baselines in Appendix D, including the learn-
ing rate, batch size, hard device, API access, etc.
Meanwhile, we show the details of all the post-
processing data in Appendices A.3 and B.3.
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A DIVSCENE and DIVSCENEep Details

A.1 Scene Type Details and Attribute List
This section lists all scene types we collected by
complementing the MIT scene dataset. In total,
there are 81 scene types across five different cate-
gories, as shown in Table 7.

To collect diverse house descriptions, we add
various attributes to a randomly sampled scene type.
Here, we consider 12 different attributes as shown
in Table 8. We ask GPT-4 to assign a value to each
attribute and write a house description.

A.2 Textual House Description Prompt
We use in-context learning to prompt the GPT-4
to write textual house descriptions of 81 different
scene types. Here, we show the concrete prompt
we used in Table 9. We randomly sample 1-3 house
attributes and ask GPT-4 to assign a value to them.
Then, a house description is written based on the
given scene type and attribute values. We use five
exemplars in the in-context learning setting.

A.3 Postprocessing of Textual House
Description

After we collect textual house descriptions from
GPT-4, we also introduce three filters to ensure
their diversity and quality.

• We first introduce a ROUGE-L filter. To encour-
age diversity, a new description is discarded
when its ROUGE-L similarity (Lin, 2004) with
any existing description is above 0.8, following
previous works (Wang et al., 2022, 2024).

• Second, if we cannot correctly parse the output
in the first step and find the values of the given
attributes, we remove the example.

• Third, if we cannot find the house description
in the second step in the output from GPT-4, we
remove the example. The last two steps mean
that the output does not follow the output format
specified in the instructions and exemplars (see
Table 9).

A.4 Breadth-First Search for Shortest Path
We use a BFS-based planner to find the shortest
path from the initial position to a target point on
the grid map. Notice that the target object is not
necessarily anchored to a point on the grid map for
realism. Thus, we find the grid point nearest to the
target object as the destination of the navigation.

The algorithm is shown in Algorithm 1, which
is based on a priority queue. We design the BFS-
based planner to pick the path with the fewest ro-
tations to make it easier for LLMs to imitate. In
detail, we add more costs when rotation changes
since the agent needs one more rotation action be-
fore moving ahead, as shown at the 12th line in
Algorithm 1.

A.5 Action Derivation Algorithm
We show the action derivation algorithm in Algo-
rithm 2. Between two adjacent positions in the
shortest path, we add a MOVEAHEAD action if
the agent’s rotation remains unaltered. Otherwise,
we first use ROTATERIGHT or ROTATELEFT to ad-
just the orientation and then add a MOVEAHEAD

action. After reaching the target object, we then
rotate the agent so that the object is approximately
centered in the agent’s egocentric view.

A.6 Data Diversity
To study what types of scenes are gathered under
each category, we identify the category-type struc-
ture of houses in DIVSCENE. We plot the top 10
most common scene types under each category in
Figure 6. Then, we study the diversity of target ob-
jects in the episodes we sampled in DIVSCENEep.
We plot the top 15 most common scene types and
their top 5 target object types in Figure 7. Overall,
we see quite diverse scenes and target objects in
our datasets.

B NATVLM Instruction Data

In this section, we give the concrete prompts used
in fine-tuning NATVLM.

B.1 Instruction Template
We show the instruction template we used in the
Table 10. There are four parts in the instruction tem-
plate, including a brief task introduction, episode-
specific information, the status of recent steps, and
the prediction steps that need to be considered. We
leave a lot of placeholders for the episode and step
information.

B.2 Response Template
Previous works usually collect explanation traces
using GPT-4 (Mitra et al., 2023; Mukherjee et al.,
2023; Ho et al., 2023). In contrast, we collect
explanation traces with manually written templates.
The templates and examples are shown in Tables 11
and 13. For ROTATERIGHT and ROTATELEFT, we
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Category Scene Type

Store
(16 types)

bakery, grocery store, clothing store, deli, laundromat, jewellery shop, bookstore, video store, florist
shop, shoe shop, toy store, furniture store, electronics store, craft store, music store, sporting goods
store

Home
(21 types)

bedroom, nursery, closet, pantry, children room, lobby, dining room, corridor, living room, bathroom,
kitchen, wine cellar, garage, sunroom, cabinet, study room, apartment, home office, basement, attic,
laundry room

Public spaces
(9 types)

prison cell, library, waiting room, museum, locker room, town hall, community center, convention
center, recreation center

Leisure
(14 types)

buffet, fast-food restaurant, restaurant, bar, game room, casino, gym, hair salon, arcade, spa, concert
hall, ski lodge, lounge, club

Working place
(21 types)

hospital room, kindergarten, restaurant kitchen, art studio, classroom, laboratory, music studio, oper-
ating room, office, computer room, warehouse, greenhouse, dental office, TV studio, meeting room,
school room, conference room, factory floor, call center, reception area, nursing station

Table 7: The categories and scene types used in our DIVSCENE dataset. In total, there are five categories and 81
scene types in our dataset.

Attribute Example Value Attribute Example Value

Room Style victorian, rustic Flooring soft and cushioned, hard
Objects in the Room computers, desks, chairs, servers Theme industrial, contemporary
Number of Rooms single room Lighting bright, warm ambient
Configurations individual cubicles Window small, slightly slanted
Users of the Room children of various ages Room Size spacious, medium-sized
Era contemporary, modern Wall Treatment artistic paintings, calming color

Table 8: The 12 attributes we used to collect house descriptions. We also provide an example value of each attribute.

identified the three most common scenarios for
rotation based on heuristic rules. Then, we wrote
the template for each of them. The first scenario
is that the distance difference between the agent
and the target object becomes zero in the agent’s
rotation. Thus, the agent needs to navigate in the
other direction. The second scenario involves the
presence of obstacles in the agent’s current path,
necessitating a rotation to navigate around them.
The final scenario involves adjusting the agent’s
rotation to center the target within its field of view,
occurring at the end of the navigation process.

B.3 Data Postprocessing

Directly using all actions in every trajectory to con-
duct imitation learning brings about an extremely
imbalanced dataset. As shown in Table 12, 77.94%
actions are MOVEAHEAD. Then we downsampled
MOVEAHEAD actions in the instruction dataset.
We only retain 25% of the MOVEAHEAD actions
resulting in a more balanced dataset.

Then, we also remove conflicting data. We find
that steps from different trajectories within the
same house occasionally exhibit conflicting infor-
mation. They have the exact same input informa-
tion but different action predictions. This happens

when two overlapped trajectories diverge at some
point due to different target objects. Those con-
flicting data can confuse the fine-tuned LVLM and
lead to worse performance. Thus, we remove those
conflicting data from our dataset.

We show the final distribution of our dataset in
Table 12 (w/ Postproc).

C Supplementary Experiment Details

In this section, we provide supplementary experi-
ment results and show the prompt details.

C.1 Ablation Study Prompt

We change the prompt templates for tuning our
agent NATVLM in the ablation studies.

(1) For adding the gold label of position differ-
ence (⋄ w/o ET & w Gold and ⋄ w Gold Label),
we append a new sentence “The difference to the
target object is [position_diff]” to the end of the
Episode-Specific Information part of the instruc-
tion template.

(2) For removing the explanation traces, the Pre-
diction Steps part of the instruction template is
replaced with one shorter sentence, “Please gener-
ate the next step given the above states.”
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Task Instruction: Create a detailed and fluent description for a house based on the given scene type and features in two
steps. Step 1: provide the value of each feature. Step 2: write a short phrase to describe the scene type with the values.

Exemplar1 Input: The given house type is “arcade.” The feature list is: “(1) Objects in the room.”
Exemplar1 Output: Step 1: (1) a pool table\n Step 2: An arcade with a pool table

Following Exemplars: Exemplar 2, ..., Exmplar 5

Testing Input: The given house type is “office.” The feature list is: “(1) Number of Rooms (2) Users of the Room (3)
Configurations.”

Table 9: The prompt we used to collect textual house descriptions using GPT-4. Here, we use 5 exemplars in the
in-context learning. We show one example here for saving space.
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circle) under each room category (inner circle) in the
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Figure 7: The top 15 most common scene types (inner
cycle) and their top 5 target object types (outer cycles).

(3) For the difference-equation prompt in
the ⋄ w Diff-EQ experiment, we replace [po-
sition_diff] in all explanation traces with the
equation: [grid_obj_pos] - [agent_pos] = [posi-
tion_diff].

C.2 Full Results of the Image Number
Experiment

We provide the full results of the image number
experiment of all metrics in Table 14. Besides the
default prompt structure, we also conduct experi-
ments with the difference-equation prompt, which
is introduced as “⋄ w Diff-EQ” in the ablation
study.

C.3 Full Results of the Action Number
Experiment

We provide the full results of the action number
experiment with the default prompt in Table 15.
We also provide the results with the difference-
equation prompt in Table 16. The prompt is used

as “⋄ w Diff-EQ” in the ablation study.

C.4 Full Results of the Few-Shot Experiment
We provide the full results of the few-shot learning
with the default prompt in Table 17. We also pro-
vide the results with the difference-equation prompt
in Table 18. The prompt is used as “⋄ w Diff-EQ”
in the ablation study.

C.5 Zero-shot Transferring Evaluation
iTHOR and ProcTHOR both encompass four dis-
tinct scene types: bedrooms, living rooms, kitchens,
and bathrooms. iTHOR has 30 rooms for each
scene type, designed by professional 3D artists.
Meanwhile, ProcTHOR is a procedural house-
generation system that constructs 10,000 unique
houses automatically. Similar to iTHOR, we sam-
ple 30 houses for each scene type from ProcTHOR.
Four episodes are sampled in each house to evalu-
ate our agent.

On the HM3D dataset, we test NATVLM on all
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Algorithm 1 BFS Search for Shortest Paths
1: Input: reachable_pos, start_point, end_point, start_rotation
2: Initialize priority queue Q, distance map d_map, and parent map p_map
3: Enqueue (0, start_point, start_rotation) to Q
4: while Q not empty do
5: (cost, current, rotation)← Dequeue from Q
6: if current = end_point then
7: return ReconstructPath(p_map, current)
8: end if
9: for r ∈ {North, East, South, West} do

10: neighbor ← GetNeighbor(current, r) ▷ Four cardinal directions
11: if neighbor ∈ reachable_pos then
12: newCost← cost+ (1 if r = rotation else 2) ▷ More cost if rotation changed
13: if neighbor not visited or newCost < d_map[neighbor] then
14: d_map[neighbor] = newCost ▷ Update distance
15: p_map[neighbor] = current ▷ Update parent
16: Enqueue (newCost, neighbor, r) to Q
17: end if
18: end if
19: end for
20: end while
21: return No path found

1. Brief Introduction: You are an agent placed in a 3D environment. Your step length is 0.25 meters, and your rotation
degree is 90.
The possible actions are:
1. MoveAhead: Moves the agent forward by 0.25 meters in the direction it is currently facing. For example, if the agent is at
(x, y) facing 0 degrees (north), MoveAhead will result in (x, y + 0.25). If the agent is facing 90 degrees (east), MoveAhead
will result in (x + 0.25, y). If the agent is facing 180 degrees (south), MoveAhead will result in (x, y - 0.25). If the agent is
facing 270 degrees (west), MoveAhead will result in (x - 0.25, y).
2. RotateRight: Rotate right for 90 degrees (clockwise).
3. RotateLeft: Rotate left for 90 degrees. (counterclockwise).
4. Done: Indicate that you are near to the target object and finish the task.

2. Episode-Specific Information: You need to find a [obj_type] at the position [obj_pos]. To achieve this, we recommend
you move to the position [grid_obj_pos] with a rotation of [grid_obj_rotation].
Currently, you are at [agent_pos] with a rotation of [agent_rotation].

3. Status of Recent Steps: The history of recent states are:
Position: [recent_agent_pos], Rotation: [recent_agent_rotation], Action: [recent_action]
. . .
Position: [recent_agent_pos], Rotation: [recent_agent_rotation], Current View: [recent_agent_image], Action: [re-
cent_action]

4. Prediction Steps: Please generate the next step given the above states with the following steps: 1) Consider your rotation
and position. 2) Check the images to see obstacles or the target object. 3) Decide the action.

Table 10: Instruction Template we used to fine-tune the LVLM: Idefics 2. There are four steps in the template, and
we leave step-wise and episode information with placeholders. [obj_type] and [obj_pos] are the type of target
object and its location. On the grid map, we also provide the nearest point on the grid map [grid_obj_pos] with a
rotation [grid_obj_rotation]. [agent_pos] and [agent_rotation] are the agent’s position and rotation. There are
also placeholders for the recent status: [recent_agent_pos], [recent_agent_rotation], [recent_agent_image], and
[recent_action]. Notice that we provide the information of the recent 8 steps and only provide the recent 4 images
for inference efficiency.

houses. We compare our model with a lot of base-
lines on the HM3D dataset, including two lines of

work: fine-tuned methods and zero-shot methods.
As shown in Table 19, the SPL scores of baselines
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Algorithm 2 Get a Sequence of Actions from a Shortest Path

1: Input: shortest_path, start_rotation, target_object
2: agent_rotation← start_rotation
3: Initialize empty action_list
4: prior_p← shortest_path[0]
5: for current_p in shortest_path[1 :] do
6: path_rotation← compute_path_rotation(current_p, prior_p)
7: if path_rotation ̸= agent_rotation then
8: Append appropriate rotation action(s) to action_list ▷ RotateRight or RotateLeft
9: agent_rotation← path_rotation

10: end if
11: Append “MoveAhead” to action_list
12: end for
13: object_rotation← compute_object_rotation(target_object, shortest_path[−1])
14: if object_rotation ̸= agent_rotation then
15: Append final rotation action(s) to action_list ▷ Adjust the view for the target object
16: end if
17: Append “Done” to action_list
18: return action_list

MOVEAHEAD

Template:
1) In the direction of my rotation, [agent_rotation] degrees ([cardinal_direction]), the difference to the target object is
[position_diff] m. I need to move further [cardinal_direction].
2) There is no obstacle in front of me in recent images.
3) MoveAhead

Example:
1) In the direction of my rotation, 90 degrees (east), the difference to the target object is 0.5m. I need to move further east.
2) There is no obstacle in front of me in recent images.
3) MoveAhead

DONE

Template:
1) My position and rotation are equal to the recommended one.
2) I can see the target [obj_type] in the image of the current state.
3) Done

Example:
1) My position and rotation are equal to the recommended one.
2) I can see the target label marker in the image of the current state.
3) Done

Table 11: Response templates we used to build CoT explanation traces for MOVEAHEAD and DONE.

Action w/o Postproc w/ Postproc
# Num % Prop # Num % Prop

MOVEAHEAD 221,598 77.94% 57,760 49.32%
ROTATELEFT 19,596 6.89% 18,412 15.72%
ROTATERIGHT 19,527 6.87% 18,403 15.72%
DONE 23,610 8.30% 22,529 19.24%

Table 12: The distribution of collected actions before and after post-processing. The original dataset is very
imbalanced since most of the actions are MOVEAHEAD. Then, we downsample the MOVEAHEAD actions with a
rate of 0.25. We also filtered the conflicting data.
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First scenario: distance difference becomes zero

Template:
1) In the direction of my rotation, [agent_rotation] degrees ([cardinal_direction]), the difference to the recommended
position is 0.00m. Thus, I need to move in another direction, where the difference is [other_position_diff] m, and the
rotation is [other_agent_rotation] degrees.
2) Obstacles don’t affect rotation.
3) RotateRight/RotateLeft

Example:
1) In the direction of my rotation, 180 degrees (south), the difference to the recommended position is 0.00m. Thus, I need to
move in another direction, where the difference is 1.25m, and the rotation is 90 degrees.
2) Obstacles don’t affect rotation.
3) RotateLeft

Second scenario: Obstacles

Template:
1) In the direction of my rotation, [agent_rotation] degrees ([cardinal_direction]), the difference compared to the target
object is [position_diff] m.
2) There are obstacles in front of me, as shown in current images. I need to rotate in another direction. In the other direction,
the difference is [other_position_diff] m, and the rotation is [other_agent_rotation] degrees.
3) RotateRight/RotateLeft

Example:
1) In the direction of my rotation, 180 degrees (south), the difference compared to the target object is 1.50m.
2) There are obstacles in front of me, as shown in current images. I need to rotate in another direction. In the other direction,
the difference is 1.25m, and the rotation is 270 degrees.
3) RotateRight

Third scenario: View Adjustion

Template:
1) My position is the same as the recommended one: [grid_obj_pos]. However, my rotation is [agent_rotation] degrees,
facing [cardinal_direction]. I need to adjust the rotation to center the target within its field of view.
2) Obstacles don’t affect rotation.
3) RotateRight/RotateLeft

Example:
1) My position is the same as the recommended one: (0.50, 1.25). However, my rotation is 90 degrees, facing east. I need to
adjust the rotation to center the target within its field of view.
2) Obstacles don’t affect rotation.
3) RotateRight

Table 13: Response templates we used to build CoT explanation traces for three common rotation scenarios.

Number Valid Test All
SR SPL SEL SR SPL SEL SR SPL SEL

2 images 50.00 41.64 40.23 50.00 40.71 41.03 50.00 41.17 40.63
4 images 57.41 47.84 47.90 54.94 44.45 45.83 56.17 46.15 46.86
6 images 45.37 37.61 35.37 50.31 40.88 38.70 47.84 39.25 37.03
8 images 49.07 40.82 41.52 54.01 43.61 46.22 51.54 42.22 43.87

(a) Performance of the default prompt.

Number Valid Test All
SR SPL SEL SR SPL SEL SR SPL SEL

2 images 46.30 38.54 38.93 52.16 42.13 44.76 49.23 40.34 41.84
4 images 54.63 45.02 46.48 54.94 44.04 47.40 54.78 44.53 46.94
6 images 49.07 40.82 38.88 51.23 41.56 40.20 50.15 41.19 39.54
8 images 55.56 45.81 43.40 57.41 46.39 44.40 56.48 46.10 43.90

(b) Performance of the difference-equation prompt.

Table 14: The investigation of the hyperparameter: image number. We provide different numbers of recent visual
observations of the embodied agent. Besides the default prompt we use, we also evaluate the difference-equation
prompt. We bold the best performance.
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Number Valid Test All
SR SPL SEL SR SPL SEL SR SPL SEL

4 steps 46.30 38.66 39.82 45.99 37.45 39.60 46.14 38.05 39.71
8 steps 57.41 47.84 47.90 54.94 44.45 45.83 56.17 46.15 46.86
12 steps 42.59 35.92 36.43 50.93 41.15 43.20 46.76 38.53 39.81
16 steps 51.85 43.01 42.72 53.40 43.03 44.08 52.62 43.02 43.40

Table 15: Hyperparameter investigation. Our agents receive various numbers of recent actions and positions within
the default prompt.

Number Valid Test All
SR SPL SEL SR SPL SEL SR SPL SEL

4 steps 45.37 37.76 40.04 52.47 42.87 46.45 48.92 40.31 43.25
8 steps 54.63 45.02 46.48 54.94 44.04 47.40 54.78 44.53 46.94
12 steps 51.85 42.80 44.06 60.19 48.10 51.63 56.02 45.45 47.84
16 steps 56.48 46.39 47.89 59.26 47.52 50.82 57.87 46.95 49.36

Table 16: Hyperparameter investigation. We provide different numbers of recent actions and positions to the
embodied agent. We use the difference-equation prompt in this table. The best performance is bolded.

% Data Valid Test Test Diff w GPT-4o
SR SPL SEL SR SPL SEL ∆SR ∆SPL ∆SEL

20 37.04 30.86 30.22 38.89 31.40 32.13 ↑0.62 ↓0.34 ↑4.21
40 33.33 27.95 27.13 38.27 31.00 30.79 ↓0.00 ↓0.74 ↑2.87
60 49.07 40.68 42.01 52.12 42.25 44.40 ↑13.85 ↑10.51 ↑16.48
80 50.00 41.46 43.36 49.69 40.26 42.49 ↑11.42 ↑8.52 ↑14.57

100 57.41 47.84 47.90 54.94 44.45 45.83 ↑16.67 ↑12.71 ↑17.91

Table 17: Few-shot learning ability. We test our agent with different proportions of training data with the default
prompt.

% Data Valid Test Test Diff w GPT-4o
SR SPL SEL SR SPL SEL ∆SR ∆SPL ∆SEL

20 37.96 32.01 36.72 32.10 26.45 31.15 ↓6.17 ↓5.29 ↑3.23
40 38.89 32.76 38.14 33.33 27.07 31.94 ↓4.94 ↓4.67 ↑4.02
60 62.96 51.47 52.19 58.95 47.34 49.53 ↑20.68 ↑15.60 ↑21.61
80 57.41 46.79 45.73 57.10 45.98 46.58 ↑18.83 ↑14.24 ↑18.66

100 54.63 45.02 46.48 54.94 44.04 47.40 ↑16.67 ↑12.30 ↑19.48

Table 18: The evaluation of the few-shot learning ability of our agent NATVLM. We test our agent with different
proportions of sampled episodes in each room. We compare the results with the GPT-4o and test the difference-
equation prompt in this table.

are mostly lower than 30%. In contrast, the SPL
score of NATVLM is 34.11%, 10 points higher
than theirs.

Meanwhile, we want to emphasize that those
LLM or VLM-based complicated navigation frame-
work (Ramrakhya et al., 2023; Majumdar et al.,
2022; Zhou et al., 2023; Yokoyama et al., 2024a;
Yin et al., 2024; Long et al., 2024) usually involve a
lot more information than NATVLM. For example,
our method only takes ego-centric RGB images
as input, while those methods also get depth in-
formation, scene graphs, local policy navigation
tools, extra VLMs (like GPT-4) besides backbone
VLM, semantic segmentation, and panoramic field

of views. This makes the comparison inherently
unfair, as their methods rely on significantly more
resources and additional modalities.

Meanwhile, we also do not include those com-
plicated frameworks in other experiments due to
the following reasoning: (1) They fall outside
the evaluation scope of the current LVLMs; (2)
They utilize different simulation platforms, such as
Habitat (Szot et al., 2021), rather than AI2THOR,
which introduces significant compatibility issue
with AI2THOR; (3) As abovementioned, they also
introduce a lot of extra information beyond than
ego-centric RGB, making the evaluation unfair.
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Methods SPL SR

Fine-tuned
ProcTHOR (Deitke et al., 2022) 31.8 54.4
PIRLNav (Ramrakhya et al., 2023) 27.1 64.1

Zero-Shot
ProcTHOR (zero-shot) 7.7 13.2
ZSON (Majumdar et al., 2022) 12.6 25.5
ESC (Zhou et al., 2023) 22.3 39.2
VLFM (Yokoyama et al., 2024a) 30.4 52.5
SG-Nav (Yin et al., 2024) 24.8 53.9
InstructNav (Long et al., 2024) 20.9 58.0
NATVLM (Our) 34.1 41.5

Table 19: Comparison of different models on HM3D, including fine-tuned and zero-shot methods.

D Implementation Details

We train our agent NATVLM from Idefics 2 on
8 NVIDIA A100 GPUs using the Megation-LM
framework (NVIDIA, 2021). All parts of the
Idefices 2 are fine-tuned, including the LLM, vi-
sion encoder, and modality projector. We load
the model in BF16 and fine-tune it for one epoch
with the learning rate and batch size of 2e-5 and
64, respectively. The best checkpoint is selected
according to the sum of all metrics on the val-
idation set. The image size sampled from the
AI2THOR is 300 × 300. For the baselines, we
use the same instructions as our agent and ask
them to predict the next action directly. Similarly,
we also provide the history of the recent 8 steps
(i.e., actions and agent positions) and the visual
observation of the recent 4 steps. The exceptions
are blind LLMs and Llava 1.5, which can handle
zero and one image, respectively. We access the
closed-source LVLMs via the OpenAI API3 with
the specific versions of gpt-4-vision-preview
and gpt-4o-2024-08-06.

Here, we discuss the computational cost. For
training, we use 8×A100 GPUs to train our model.
After adding the CoT traces, the training time in-
creases from 10 hours to 17 hours, which is accept-
able. Meanwhile, we use 1 A100 GPU to deploy
the model. The generation time increases from
0.28s to 1.03s per query when we add the CoT
traces. In practice, we can use more GPUs to speed
up the inference. For example, RT-2 (Brohan et al.,
2023) uses a multi-TPU cloud service to achieve a
frequency of 5Hz for a 5B model and 3Hz for a 55B
model. The computational cost, both in training
and inference, is reasonable in our experiments.

3https://platform.openai.com/docs/api-reference

E More House Examples

In this section, we present more houses built in our
DIVSCENE dataset in Figure 9.

E.1 Comparison with ProcTHOR
In Figure 8, we compare houses from our dataset
and ProcTHOR with the same number of rooms (8
rooms). Obviously, our scene is more complex with
more objects. Quantitively, our scene contains 466
objects, and the scene from ProcTHOR contains
only 74 objects.
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(a) a community center with versatile flooring (b) a house from ProcTHOR

Figure 8: Comparing our houses with ProcTHOR.

(a) a warehouse with large windows
(b) a meeting room with artistic paint-
ings

(c) a toy store with a magical kingdom
theme.

(d) an operating room used by sur-
geons and nurses featuring light-
colored tiles on the walls. (e) an industrial locker room

(f) a community center with a versatile
and inclusive theme featuring a spa-
cious room size.

Figure 9: Examples of different houses in DIVSCENE.
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