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Abstract

World models achieve remarkable success in
predicting future states and planning in com-
plex environments, and Large Language Mod-
els (LLMs) serve as promising foundations to
build general world models. However, their
performances are usually constrained by the
limited external knowledge to specific environ-
ments. Existing research attempts to enhance
LLM-based world models through prompt-
ing or fine-tuning approaches, which are ei-
ther requiring human knowledge or computa-
tionally extensive. Therefore, we introduce
Retrieval-Augmented World Models (RAWM),
a novel framework that leverages retrieval-
augmented generation to efficiently integrate
external knowledge into LLM-based world
models. Our main contributions are threefold:
(i) We introduce a memory system and design
an embedding model to retrieve relevant expe-
riences as the in-context examples to improve
the world model’s predictive accuracy. (ii) We
develop a reinforcement learning (RL) training
pipeline that fine-tunes a small MLP head on
the pre-trained embedding model using Proxi-
mal Policy Optimization (PPO), further enhanc-
ing prediction performance. (iii) We conduct
extensive experiments across three diverse en-
vironments, i.e., Game24, BlocksWorld, and
BabyAI, demonstrating that RAWM consis-
tently outperforms baseline models and ex-
hibits strong generalizability. By leveraging
the retrieval-augmented generation and the ef-
ficient RL training pipeline, RAWM dynam-
ically utilizes relevant historical experiences
and equips LLMs with environment-specific ex-
ternal knowledge without retraining, enabling
more accurate and generalizable predictions.

1 Introduction

Why World Model is Important? The world
model (Ha and Schmidhuber, 2018) emerges to
be an important module in decision making due to
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the celebrating success of MuZero (Schrittwieser
et al., 2020) and Dreamer (Hafner et al., 2019, 2021,
2025). As learned accurate simulators, world mod-
els encode rich representations of the complex dy-
namics of the environment to predict the future
states and the rewards. World models are critical
for several key capabilities, such as generalization
to novel tasks (Byravan et al., 2020; Robey et al.,
2021; Young et al., 2023), efficient planning (Sekar
et al., 2020; Hamrick et al., 2021; Schrittwieser
et al., 2020), and offline learning (Schrittwieser
et al., 2021; Yu et al., 2020, 2021). Beyond
decision-making tasks, recent works such as Ge-
nie (Bruce et al., 2024) and Vista (Gao et al., 2024)
demonstrate that world models can be general-
purpose world simulators and users can directly
interact with them for playing and planning.
Why LLM-based World Models? The past five
years witness the remarkable success of large lan-
guage models (LLMs) in enormous text genera-
tion and understanding tasks (Brown et al., 2020;
OpenAI, 2023). LLMs serve as the world model
explicitly in Reasoning via Planning (RAP) (Hao
et al., 2023) and Reason for Future, Act for Now
(RAFA) (Liu et al., 2023), where the LLMs pre-
dict the next states based on the actions executed
at current states, e.g., the states of blocks in the
BlocksWorld (Valmeekam et al., 2023), for plan-
ning. LLMs serve as the world model implicitly in
the widely-used Tree of Thoughts (ToT) (Yao et al.,
2023), as well as Graph of Thoughts (GoT) (Besta
et al., 2024), where the LLMs need to predict the
states and evaluate the thoughts for the selection of
the thoughts to advance the reasoning. The main ad-
vantage of LLM-based world models is that LLMs
are pre-trained over internet-scale data and can
capture diverse patterns in different environments.
More discussion can be found in Appendix A.1
Why LLM-based World Models May Fail? How-
ever, the pre-trained LLMs may lack the external
knowledge of specific environments, which pro-
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Room 1 (Current Room)

Room 2 (Next Room)

WM

What can I see if I move to 
the next room?

I don’t know.

Rawm

I saw a chair in the current 
room. As both rooms are 
similar, there may be a 
chair in the next room.

Figure 1: Why retrieval is needed?

hibits them to be accurate world models. For the
example in Figure 1, the LLM cannot provide the
accurate predictions whether there is a chair in
room 2 if room 2 is never been visited. To address
this issue, we can carefully design the prompts to
add the specific knowledge to help the LLMs in
making predictions, e.g., the rules for objects and
actions (Wang et al., 2024b; Gu et al., 2024b). How-
ever, the knowledge is even usually not available
for humans. Alternatively, we can fine-tune the
LLMs on the specific environments (Xiang et al.,
2023; Chae et al., 2025). However, the training of
LLMs brings additional complexities for building
the world models with LLMs and may also hurt the
generalizability of LLMs across different tasks.
Our Contributions. To tackle these challenges,
we propose Retrieval-Augmented World Models
(RAWM). Specifically, our contributions are three-
fold. First, inspired by the retrieval-augmented gen-
eration (RAG) (Lewis et al., 2020), we introduce
the memory, which stores the pre-collected experi-
ences from the environments, and the embedding
model, which is used for querying relevant experi-
ence to assist the world model to make predictions.
Second, we introduce the reinforcement learning
(RL) training pipeline, which adds a small MLP
head to the pre-trained embedding model and trains
the MLP layer with proximal policy optimization
(PPO) (Schulman et al., 2017). Third, we collect
the data from Game24, BlocksWorld and BabyAI,
and extensive experiments demonstrate RAWM can
significantly outperform the world model without
retrieved experiences and the pre-trained embed-
ding models and demonstrate the generalizability.
RAWM is an efficient way for LLMs to obtain the
environment-specific knowledge to build the better
world models without training LLMs, and our RL
training pipeline can further improve the prediction
accuracy of LLM-based world models efficiently.

2 Related Work

World Models and LLMs. MuZero (Schrittwieser
et al., 2020) and Dreamer (Hafner et al., 2019) are

the two prominent examples of the world model for
complex decision making tasks. Trajectory trans-
former (Janner et al., 2021) leverages transformer
to model the decision making as a sequence mod-
eling problem. The world models trained in these
methods are environment specific and cannot gener-
alize to other environments. Recently, researchers
leverage LLMs to build general world models for
reasoning and decision making (Hao et al., 2023;
Wang et al., 2024b; Yang et al., 2024b; Lin et al.,
2024). Specifically, RAP (Hao et al., 2023) and
RAFA (Liu et al., 2023) use LLMs to predict next
states explicitly and planning methods for deci-
sion making. While ToT (Yao et al., 2023) and
GoT (Besta et al., 2024) use LLMs as the world
model implicitly to evaluate the different thoughts.
Retrieval-Augmented Generation. RAG is an
efficient way for LLMs to incorporate the ex-
ternal knowledge for generation and understand-
ing (Lewis et al., 2020; Gao et al., 2023). Specifi-
cally, RAG leverages the retrieval model to query
the relevant experiences from the memory, which
are further provided to the LLMs as the in-context
examples. Different from simple prompting, where
the external knowledge is provided by human-
written prompts (Wang et al., 2024b), and simple
in-context learning, where the in-context examples
are randomly picked (Hao et al., 2023), RAG can
provide better examples for accurate predictions.
Compared with fine-tuning (Xiang et al., 2023),
RAG is a more efficient way to integrate external
knowledge into LLM-based world models.
RL for LLM. RL is a powerful method to train
the model with trial and error (Sutton and Barto,
2018). In addition to the applications of RL in
games and robotics (Silver et al., 2017) to optimize
the LLMs, such as optimizing the prompts (Deng
et al., 2022) and the decoding process (Wan et al.,
2024), recent works also leverage RL to improve
the reasoning capabilities of LLMs, e.g., DeepSeek-
R1 (Guo et al., 2025). However, RL fine-tuning
of LLMs is usually time-consuming and computa-
tional extensive. In this work, instead of directly
fine-tuning LLMs, we leverage the RL method to
train the embedding efficiently to find the better ex-
amples to boost the prediction of the world model.

3 Preliminaries

In this section, we present the preliminaries of
RAWM, including the formulation of the deci-
sion making, the LLMs, and the world models.
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Markov Decision Process (MDP). A decision
making problem is usually represented as a Markov
decision process (MDP) (Sutton and Barto, 2018),
which is defined by the tuple M = (S,A, T,R, γ),
where S is the state space, A is the action space,
T : S ×A→ S is the transition dynamics, which
specifies the next state s′ given the current state s
and action a, R : S × A → R is the reward func-
tion, which specifies the agent’s reward given the
current state s and action a, and γ is the discount
factor. The agent’s policy is πθ : S × A → [0, 1],
parameterized by θ, which takes the state s as the
input and outputs the action a.
Large Language Models (LLMs). Large Lan-
guage models (LLMs) learn from text data using
unsupervised/self-supervised learning. LLMs opti-
mize the joint probabilities of variable-length sym-
bol sequences as the product of conditional proba-
bilities by P (x) =

∏n
i=1 P (si|s1, ..., si−1), where

(s1, s2, ..., sn) is the variable-length sequence of
symbols. With the billions of parameters and ex-
tensive training data, the vast amounts of common
knowledge encoded in LLMs lead to the remark-
able generalization across various NLP tasks with
simple prompting and in-context learning, and with-
out task-specific fine-tuning (Touvron et al., 2023;
OpenAI, 2023). Among them, RAG (Lewis et al.,
2020) is viewed as a powerful method to incorpo-
rate external knowledge to LLMs for generation.
World Models. The world model Ω is introduced
to predict the dynamics of the environment, thus
supporting the decision making process. Specifi-
cally, the world model is trained or prompted to
predict the next state s′, the reward r, and the termi-
nal function d, given the current state s and action
a. The world model can be one or multiple neu-
ral networks specially trained on the environments
for the three prediction tasks (Hafner et al., 2019;
Schrittwieser et al., 2020), which cannot general-
ize across different environments. Recent works
leverage LLMs to build the general world models,
where the prompting (Xie et al., 2024), in-context
learning (Wang et al., 2024b), and even fine-tuning
methods (Xiang et al., 2023; Lin et al., 2024) are
used. In this work, we primarily focus on the pre-
diction of the next state, which is the most impor-
tant feature, as both the reward and terminal are
usually derived from the next state visited1.

1Both rule-based and LLM-based rewards are considered
in RAP (Hao et al., 2023) based on the predicted next states.
We can also leverage the similarity between the next states and
task instructions to determine the rewards (Fan et al., 2022).

4 Retrieval-Augmented World Models

In this section, we introduce Retrieval-Augmented
World Models (RAWM). We will first introduce
the architecture of RAWM and then introduce the
RL training pipeline for the retrieval process.

4.1 Architecture

Figure 2: The overview of RAWM.

The architecture of RAWM is displayed in Fig-
ure 2. We introduce a memory Ξ, which stores the
pre-collected experiences, an embedding model,
which is used to rank and retrieve the relevant expe-
riences. Specifically, given the query q = (s, a) ∈
Q, where Q is the query dataset, we will use the em-
bedding model to query topK relevant experiences
c = ⟨ck⟩, where ck = (sk, ak, s

′
k), k = 1, . . . ,K.

The retrieved experiences c will be concatenated
with the query q to form the input to the world
model Ω. We note that for the environments where
the states are not texts, e.g., BabyAI (Chevalier-
Boisvert et al., 2019a), we need to first transform
them into the text representation.
Prompt Design. For the prompt design, any in-
formation related to the environments will not be
provided to the world model, including the tasks,
the object and action rules. We expect that all
the environment knowledge is provided by the in-
context examples retrieved from the memory. The
prompt template is displayed as follows:

Prompt Template

System prompt:
"After being given a current state and an action, directly
give the next state after performing the action."
Content prompt:
Current state: <text of the current state>
Action: <text of the selected action>
Next state: <text of the next state> or <for prediction>

The system prompt provides a general descrip-
tion of the prediction tasks, and the content prompt
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includes the query and the context examples. For
the context examples, the next state is provided,
while for the query, the next state is predicted by
the world model Ω. Similarly, this content template
is also used to get the embeddings of both query
dataset and the memory for the retrieval process.
Trainable Embedding of Transitions. We use
the pre-trained embedding model ϕ to encode the
transitions into the M -dimensional vector repre-
sentation. Specifically, for the query dataset, we
only encode the state and the action, and for the
memory, we encode the state, the action and the
next state. However, the embedding model is
trained over general corpus, which would be not
suitable to the specific environment, so adapting
the embedding model is needed. There are sev-
eral methods to adapt the embedding model to the
specific environment: i) fine-tuning all parame-
ters in ϕ, which is not training efficient, ii) low-
rank adaption (LoRA) (Hu et al., 2022), which
introduces trainable low-rank decomposition ma-
trices for each layer to reduce the parameters to be
trained. Though the number of trained parameters
is reduced, LoRA still requires to leverage the full
embedding model to inference. Besides, both full-
parameter fine-tuning and LoRA requires that the
access of the parameters of the pre-trained embed-
ding model and cannot be applied to close-source
models, e.g., text-embedding-3. Therefore, in-
spired by the linear probe (Radford et al., 2021),
we introduce a trainable MLP module above the
pre-trained embedding model, which is denoted
as ψ. Therefore, the embedding process for both
query data and the memory can be represented as:

eq = ψ(ϕ(s, a)),∀(s, a) ∈ Q, (1)

ec = ψ(ϕ(s, a, s′),∀(s, a, s′) ∈ Ξ. (2)

We will introduce the RL training pipeline of ψ in
the next section and the parameters in ϕ are frozen.
Compared with the full parameter fine-tuning and
the LoRA, this method only requires the pre-trained
embedding to encode the data in the query dataset
and the memory once, and the number of trainable
parameters is even significantly less than LoRA.
Retrieval-Augmented Predictions. To query the
relevant experiences, a similarity measure, e.g., co-
sine similarity, is used to rank the examples in the
memory, which is denoted as sim(·). Therefore,

c = {ck|k ∈ topK(sim(eq, ec)),∀c ∈ Ξ}, (3)

where topK(·) is selecting the indices with the top-
K maximum values. The K retrieved examples c

will be formed the in-context examples and append
before the query for the prediction. We concate-
nate the in-context examples with the query in a
reverse order, i.e., the examples with larger sim-
ilarities will be the later examples, and the query
is the last one. We found that this reverse order
is important for the generalization of the embed-
ding model in different K values, as the reverse
order can ensure the last several examples be the
same, (e.g., for K ∈ {1, 2}, the top-1 example
is the same, which is the last example before the
query in the prompt), thus leading to a more stable
generalization performance of the world model.
Evaluation Measure. The evaluation measure is
important for the RL training. We follow RAP (Hao
et al., 2023) to design the reward: given the output
o from the world model, which may include a set
of the conditions, e.g., the predicted state of blocks,
and s′ is the target, we will calculate the accuracy of
the prediction, denoted as v(o, s′)2. Alternatively,
we can calculate the log likelihood of the target s′,
which is used in the original RAG (Lewis et al.,
2020). However, this may require the access of the
logits of the LLMs and cannot be applied to the
closed-source models, e.g., GPT-4o.

4.2 Training

In this section, we introduce the efficient RL
pipeline to train the embedding models, i.e., train-
ing of the MLP head ψ specifically. Typically, the
retriever in RAG is trained with supervised learn-
ing (Lewis et al., 2020). However, in RAWM, the
world models are not trained and we cannot com-
pute the gradient of the embedding directly. Be-
sides, as the retriever needs to explore to choose the
examples for the better prediction with the world
model, RL is one of the straightforward methods
to optimize the embedding model.
One-step Decision Making. To apply RL methods
to optimize the embedding model, we need to build
the MDP Mψ for the embedding ψ3:
• State space Sψ : {ϕ(s, a),∀(s, a) ∈ Q} ∪
{ϕ(s, a, s′), ∀(s, a, s′) ∈ Ξ}, i.e., the embed-
dings of all data from query dataset and the mem-
ory generated by the pre-trained model ϕ.

• Action space Aψ ∈ RM , where M ′ is the out-
put dimension of ψ, i.e., ψ will transform the

2The world model can generate multiple outputs for
stochastic transitions without affecting our RL pipeline, but
we focus on deterministic transitions for simplicity.

3Please distinguish Mψ with the one used for the environ-
ment M, where Mψ is introduced only for the training.
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embeddings by ϕ to M ′-dimensional vectors.
• Reward r = v(Ω(q, c), s′), where Ω(q, c) is the

output of the world model Ω with the input (q, c).
We note that Mψ is a one-step decision making
problem, i.e., Mψ always ends after the first time
step, so the transition function and the discount
factor are not necessary for the RL training.
Design of ψ. Before diving into the RL training,
we first discuss about the design of ψ. A simple
setting for ψ is a randomly initialized MLP, which
means this initialization will start with the random
embedding for the training and ignore the embed-
dings generated by the pre-trained model ϕ. On
the other hand, we can initialize the MLP with an
identify matrix, i.e., ψ = I .4 Both methods have
their own advantages and disadvantages: for the
random initialization, we can arbitrarily choose the
output dimension and the activation function of ψ,
but the training will start with a relatively worse
performance, while for the identify initialization,
the output dimension of ψ must be the same with ϕ,
i.e., M ′ = M , and the training will start with the
performance of the pre-trained embedding model.
RL Training. RL methods rely on the trial-and-
error process to explore the solution space for
better policies. The primary RL method is Q-
learning (Watkins and Dayan, 1992; Mnih et al.,
2015), which can only be used on the prob-
lems with discrete actions, and the policy gradi-
ent methods are proposed for the problems with
both discrete and continuous actions (Sutton et al.,
1999; Mnih et al., 2016; Haarnoja et al., 2018).
PPO (Schulman et al., 2017) is an on-policy pol-
icy gradient method, which is a simplified, but
more data efficient and reliable, variant of Trust
Region Policy Optimization (TRPO) (Schulman
et al., 2015), which leverages the “trust region” to
bound the update of the policy to avoid training
collapse. Compared with TRPO, PPO is more data
efficient and with more reliable performances than
TRPO, while only using the first-order optimiza-
tion for computational efficiency. Specifically, PPO
is maximizing the objective

J(ψ) = E [min (ρψ · r,
clip(ρψ, 1− ϵ, 1 + ϵ) · r)] , (4)

where ρψ is the importance sampling ratio condi-
tional on ψ, r is the reward, and ϵ is the hyperpa-
rameter which controls the boundary of the trust

4With a slight abuse of notations, we use ψ to represent
both the MLP and the trainable parameters.

region. We note that the advantages in the general
PPO implementation is replaced with the reward.
We only provide a short introduction of PPO in this
section, as we take PPO as a blackbox for optimiz-
ing ψ. The full training procedure is displayed in
Algorithm 1. Other RL methods, e.g., soft actor
critic (SAC) (Haarnoja et al., 2018), can also be
used and for more details of RL, we refer readers
to the book (Sutton and Barto, 2018).

Algorithm 1 Training of RAWM

1: Input: World model Ω, pre-trained embed-
ding model ϕ, memory M, Query dataset Q,
number of retrieval candidates K

2: Initialize the MLP ψ.
3: Computing the embeddings with ϕ, i.e.,

Qϕ = {ϕ(s, a), ∀(s, a) ∈ Q} and Mϕ =
{ϕ(s, a, s′), ∀(s, a, s′) ∈ M}.

4: for iter ∈ {1, 2, . . . } do
5: Update the memory embedding Mψ =

{ψ(ϕ(s, a, s′)),∀(s, a, s′) ∈ M}.
6: for (s, a) in Q do
7: Compute query embedding ψ(ϕ(s, a)).
8: Select top-K relevant transitions c from

M with the embedding in Mψ.
9: Generate the prediction o and compute

the reward v(o, s′).
10: end for
11: Train ψ with PPO, i.e., Eq. (4).
12: end for

5 Experiments

In this section, we present extensive experiments
to evaluate the performance of RAWM. We first in-
troduce the setup and then the results and analysis.

5.1 Setup
Environments. The environments considered in
this work include (as shown in Figure 3)
• Game24: a mathematical puzzle game where

four numbers are given (e.g., 10, 3, 6, and 4)
and the player can only use the basic arithmetic
operations, i.e., (+,−,×,÷), to obtain 24 (e.g.,
10 × (6 ÷ 3) + 4). This puzzle is widely used
to benchmark the LLMs’ reasoning capabili-
ties (Yao et al., 2023) and the LLMs need to
generate a sequence of operations to obtain 24.
In this game, the world model needs to correctly
generate the remaining number when an opera-
tion is executed, i.e., 10, 2, 4 are the remaining
numbers when 6÷ 3 is executed.
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(a) Game24 (b) BlocksWorld (c) BabyAI

Figure 3: Environments

• BlocksWorld: a simple world of blocks where a
set of blocks is placed on the plat and the player
needs to perform the basic actions, i.e., pick up,
put down, stack, and unstack, to transform
the blocks to a target configuration (Valmeekam
et al., 2023; Hao et al., 2023). In this game, the
world model needs to predict the states for all
blocks (e.g., the blue block is on top of the red
block) after an action is executed (e.g., stack blue
block on the red block).

• BabyAI: a suite of partial-observable environ-
ments based on grid world with objects where the
agent needs to complete the tasks defined with
language instructions (Chevalier-Boisvert et al.,
2019a) with the actions, i.e., turn left, turn
right, move forward and pick up. We use the
text description of the states in (Carta et al., 2023)
for the environments. In this environment, the
world model needs to predict the locations of the
objects after performing the action.

Datasets. Given the environments, we need to col-
lect the datasets for the memory, query and test
datasets, respectively. We use the query dataset
to train the embedding with RL and use the test
dataset to validate the performance of the trained
models. For Game24 and BlocksWorld, the num-
ber of all possible transitions are less than 10K,
therefore, we use the Depth-First Search (DFS) to
enumerate all transitions to form the full datasets.
While for BabyAI, we cannot enumerate all tran-
sitions due to the complexity of the environments.
Therefore, we utilize the bot provided in (Chevalier-
Boisvert et al., 2019b) to collect the data, where we
enumerate all valid actions to gather the transitions
along the action sequences generated by the bot.
After the collection, we choose the separate subsets
to form the three datasets without any overlap-
ping to avoid any data leakage. Specifically, we
have three datasets, i.e., memory, query and test,
where the memory is used for retrieval, the query
dataset provides the validation rewards for the RL
training and the test dataset is used for the evalu-
ation. We provide the details of the environments
and the protocol for data collection in Appendix C.

Model Selection. We use the embedding model
Alibaba-NLP/gte-Qwen2-1.5B-instruct as the
pre-trained ϕ, which is the leading open-source text
embedding model on MTEB (Li et al., 2023). For
the world model, we choose the Qwen-2.5 instruct
model series with the model sizes as {1.5B, 3B,
7B} (Yang et al., 2024a)5. The AWQ quantized
models are chosen for efficient inference. For the
configuration of ψ, we consider a three layer MLP
with Tanh() activation function for the random ini-
tialization and a single layer without any activation
function for the identity initialization.6 Due to the
limited computational resources, we primarily train
the embedding with the 1.5B LLM and demonstrate
the generalizability to larger models. We provide
the detailed justification in Appendix E.
RL Training. For the efficiency, we consider sev-
eral implementation tricks. i) Compared with the
training of the MLP ψ, the inference of the world
model is much more time-consuming. Therefore,
we enlarge the number of batch sizes and for each
batch, we sample multiple times, which can stabi-
lize the training. ii) We also consider fixing the
embeddings in the memory, i.e., only the embed-
dings of the query datasets are trained, and do not
observe the advantages. Therefore, we update the
embedding of both datasets. iii) The output dimen-
sion of the random initialization is much smaller
than the output dimension of the identity initial-
ization, which enjoys the training stabilities with
larger learning rates and smaller memory usages
when retrieval. The hyperparameters for the RL
training of ψ is provided in Appendix F.
Methods Evaluated. The methods evaluated in
the experiments are: i) zero-shot: the world models
give the prediction without any in-context exam-
ples (Wang et al., 2024b), ii) random: the world
models give the prediction with randomly selected
in-context examples from M (Hao et al., 2023), iii)
RAWMψ,rand: RAWM with the randomly initializa-
tion of ψ, which differs from the previous method,
iv) RAWMψ,eye: RAWM with the identity initializa-
tion of ψ, equivalent to the pre-trained embedding
model ϕ, v) RAWMRL

ψ,rand: RAWM with randomly
initialized ψ and RL training, and vi) RAWMRL

ψ,eye:
RAWM with identity initialized ψ and RL training.
More justifications about the selection of methods
for evaluation are displayed in Appendix A.8.

5https://huggingface.co/spaces/Qwen/Qwen2.5
6We would note that RAWM can work for both close-source

and open-source embedding and world models. We choose
open-source models for efficient training and inference.
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Game24 BlocksWorld BabyAI

Model Method
K = 1 K = 2 K = 1 K = 2 K = 1 K = 2

train test train test train test train test train test train test

1.5B

zero-shot 0.5224 0.5455 0.5224 0.5455 0.3804 0.3849 0.3804 0.3849 0.3786 0.3772 0.3786 0.3772
random 0.5586 0.5664 0.5714 0.5959 0.4848 0.4822 0.4975 0.4991 0.3851 0.3856 0.3973 0.4030

RAWMψ,rand 0.5156 0.5219 0.5322 0.5534 0.5386 0.5402 0.5597 0.5589 0.3415 0.3479 0.3527 0.3484
RAWMψ,eye 0.5352 0.5474 0.5510 0.5600 0.5659 0.5697 0.5878 0.5888 0.4427 0.4446 0.4710 0.4671

3B

zero-shot 0.4888 0.4971 0.4888 0.4971 0.3644 0.3661 0.3644 0.3661 0.3303 0.3330 0.3303 0.3330
random 0.6703 0.6719 0.6984 0.7010 0.4717 0.4706 0.5089 0.5083 0.3912 0.3908 0.4073 0.4052

RAWMψ,rand 0.7041 0.7043 0.7269 0.7292 0.5729 0.5739 0.6005 0.6019 0.3855 0.3892 0.3985 0.3991
RAWMψ,eye 0.7022 0.7179 0.7313 0.7463 0.6127 0.6102 0.6440 0.6397 0.4355 0.4297 0.4646 0.4633

7B

zero-shot 0.5957 0.6121 0.5957 0.6121 0.5215 0.5207 0.5215 0.5207 0.4201 0.4254 0.4201 0.4254
random 0.8241 0.8267 0.8712 0.8667 0.5897 0.5838 0.6021 0.6072 0.4084 0.4181 0.4178 0.4221

RAWMψ,rand 0.8362 0.8375 0.8724 0.8703 0.6274 0.6240 0.6332 0.6314 0.4301 0.4322 0.4403 0.4355
RAWMψ,eye 0.8511 0.8527 0.8781 0.8734 0.6472 0.6452 0.6556 0.6541 0.4484 0.4501 0.4633 0.4693

Table 1: Performance of RAWM with the retrieval mechanism over three environments.

5.2 Evaluation

There are three main research questions (RQs) in-
vestigated in this section:
• RQ1: Can the retrieval methods in RAWM im-

prove the performance of world model?
• RQ2: Can the RL training pipeline in RAWM

improve the performance of the world model,
compared with pre-trained models?

• RQ3: Can the learned model generalize across
different settings, e.g., different values of K?

5.2.1 Analysis of RQ1

To investigate the RQ1, we conduct the experi-
ments of RAWM on the different sizes of the world
model, i.e., 1.5B, 3B and 7B, over the three envi-
ronments. We consider the values of K as {1, 2}.
The experiment results are displayed in Table 1.
From the results, we observe that the performances
over the train and test yield the same trend, which
avoids the over-fitting to the specific dataset.

With more in-context examples selected, the
performance of the world model is significantly
improved, which is consistent with other re-
search (Agarwal et al., 2024). Another interest-
ing observation is that increasing the model sizes
of LLMs does not necessarily improve the perfor-
mance of the world models. For example, the 3B
world model performs worse than the 1.5B world
model in BabyAI as the LLMs do not have the
external knowledge of specific environments.

We also observe that given the same number
of the in-context examples, the pre-trained model
(i.e., RAWMψ,eye) can retrieve more relevant ex-
amples for the world models across different sizes
in BlocksWorld and BabyAI. While for the 1.5B

world model of Game24, the pre-trained models
perform worse than the random examples. There-
fore, optimizing for a better embedding model can
potentially further improve the performance.

5.2.2 Analysis of RQ2
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Figure 4: Training curves on BlocksWorld.

We then present the results of the RL training
pipeline of RAWM. Due to the limitation of the
resource, we only conduct the training on the world
models with 1.5B LLMs. The results of different
configurations of ψ across different environments
are displayed in Figure 5.

From the results, we observe that the RL training
can improve upon the initialization, which indicates
the capability of RL to optimize the embedding
model through exploration. We observe that both
initialization can outperform the pre-trained em-
bedding model, i.e., RAWMψ,eye, in Game24 and
BlocksWorld, while the random initialization fails
to find a better embedding than the pre-trained one
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Figure 5: Performance of the RL training pipeline in RAWM over three environments.

Game24 BlocksWorld BabyAI

Method
K = 3 K = 5 K = 3 K = 5 K = 3 K = 5

train test train test train test train test train test train test

random 0.5745 0.5862 0.5669 0.5866 0.5096 0.5125 0.5261 0.5228 0.4044 0.4071 0.4220 0.4165
RAWMψ,rand 0.5431 0.5443 0.5538 0.5635 0.5702 0.5711 0.5730 0.5738 0.3522 0.3551 0.3696 0.3636
RAWMψ,eye 0.5533 0.5528 0.5660 0.5765 0.6016 0.5994 0.6178 0.6149 0.4838 0.4753 0.4816 0.4860

RAWMRL
ψ,rand (K = 1) 0.5766 0.5974 0.6002 0.6106 0.6001 0.6022 0.6199 0.6200 0.4716 0.4624 0.4745 0.4702

RAWMRL
ψ,eye (K = 1) 0.5893 0.5950 0.5976 0.6053 0.6038 0.6042 0.6222 0.6220 0.4878 0.4877 0.4982 0.4872

RAWMRL
ψ,rand (K = 2) 0.6097 0.6344 0.5901 0.5999 0.6100 0.6129 0.6198 0.6202 0.4732 0.4711 0.4738 0.4741

RAWMRL
ψ,eye (K = 2) 0.5912 0.6020 0.5981 0.6067 0.6049 0.6052 0.6215 0.6205 0.4864 0.4852 0.4976 0.4888

Table 2: Shot generalization of the 1.5B world model trained with RL.

in BabyAI. The training curves are displayed in Fig-
ure 4. Typically, the random initialization will let
the model train from a relatively low performance
and we observe a drop of the performance due to
the exploration for better embedding model (i.e.,
Figure 4b). And for the identity initialization, the
training is more stable with smaller learning rates
(i.e., Figures 4c and 4d). These results indicate the
effectiveness of our RL training pipeline.7

Our RL training pipeline can also be used to di-
agnose the failure of the retrieval-augmented gen-
eration systems. If the RL pipeline cannot find a
better embedding to improve the world model’s per-
formance, then the user would replace the LLMs
for the world models and the datasets.8

5.2.3 Analysis of RQ3
The results of shot generation are displayed in Ta-
ble 2, where the embedding models trained with
random and identity initializations of K ∈ {1, 2}
are evaluated over the K ∈ {3, 5}, i.e., the gener-
alization over shots. From the results, we observe
that with larger values ofK, the performance of the
world model will be further improved. The embed-

7We note that the improvement that RL training can bring
will largely be influenced by the LLMs’ capabilities.

8Different from the factual QA (Gao et al., 2023) where
we can manually check whether the retrieved examples are
correct or not, RAWM relies on the LLM’s inherit understand-
ing capabilities for the prediction and human cannot manually
check the correctness of the retrieval. Therefore, a systematic
method, e.g., RL, is needed for diagnosing the system.

ding models trained with RL pipeline demonstrate
to be more capable for the generalization over shots,
compared with the pre-trained embedding model.

Game24 BlocksWorld BabyAI

Method Train Test Train Test Train Test

RAWMψ,rand 0.8724 0.8703 0.6332 0.6314 0.4403 0.4355
RAWMψ,eye 0.8781 0.8734 0.6556 0.6541 0.4633 0.4693

RAWMRL
ψ,rand 0.8799 0.8829 0.6631 0.6630 0.4518 0.4484

RAWMRL
ψ,eye 0.8852 0.8812 0.6597 0.6560 0.4700 0.4721

Table 3: Model generalization of 1.5B →7B (K = 2).
We also consider the generalization over differ-

ent LLMs, which is more difficult than the shot
generalization. Table 3 displays the results of gener-
alizing the RL trained embedding model from 1.5B
to 7B. We observe that the RL trained embedding
admits better generalizability than the pre-trained
embedding model, i.e., the RL-trained embedding
is environment-specific, rather than model-specific.

6 Conclusions

In this work, we introduce Retrieval-Augmented
World Models (RAWM), which leverage the
retrieval-augmented generation for efficient integra-
tion of external knowledge into LLM-based world
models. We then introduce an efficient RL training
pipeline to further improve the performance. Ex-
tensive experiments demonstrate the effectiveness
and the generalizability of RAWM. RAWM is an
efficient method to build the highly capable LLM-
based world models without fine-tuning LLMs.

9491



Limitations

There are several limitations of current work.
• Current RAWM focuses on prediction of next

states. In future work, we will consider to build
the full-pipeline decision making systems where
RAWM serves as the key module for integrating
the external knowledge of the environments au-
tomatically and efficiently.

• Current RAWM is based on the pre-collected ran-
dom dataset, which may require a large number
of data to achieve good performance. Besides,
the quality of the datasets may significantly influ-
ence the performance. We will consider to let the
model to proactively collect the data and improve
the performance automatically.

• Current RAWM is based on LLM and the environ-
ments are represented by texts. RAWM can be ex-
tended to handle the multi-modal environments,
e.g., text and image, where both embedding mod-
els and world models will be multi-modal models.
We will explore this direction in future work.

We expect that RAWM can serve as a general frame-
work to build highly capable multi-modal world
model with automatic data collection and self-
improving, to finally support decision making in
complex tasks.
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A Frequently Asked Questions (FAQs)

A.1 More Discussion about the Importance of
(LLM-based) World Models

Despite the remarkable successes achieved by
MuZero (Schrittwieser et al., 2020) and Dreamer
v3 (Hafner et al., 2025), world model is still not
a very popular concept in the current literature.
Therefore, we will add more discussion about the
importance of world models, particularly LLM-
based world models.
Applications of World Models. There are two
main directions of the applications of world mod-
els. First, world models can support the reasoning
and decision making, as they can predict what will
happen after an action is executed. Accurately pre-
dicting what will happen is critical for the planning
and decision making in high-stake scenarios, e.g.,
financial management, and the long-term reason-
ing, such as math proof. Second, the world models
can be viewed as world simulators, like a game
engine, where players can choose the actions to
execute and the world model will generate the next
states (Bruce et al., 2024). This brings great poten-
tial for researcher to develop highly capable agents
within the world models.
LLM-based World Models. Large Language
Models (LLMs) serve as an ideal foundation for
constructing general world models due to their
training on internet-scale data. These models ef-
fectively capture diverse knowledge and patterns
present in various environments. We note that
LLM-as-a-judge (Gu et al., 2024a) can be viewed
as a special case of LLM-based world models.

A.2 Advantages of RAWM

Prompting Fine-tuning RAWM

Human knowledge Yes No No
Closed-source models Yes No Yes
Generalizable across models Maybe Yes No Yes

Table 4: Comparison of Different Approaches

There are several advantages of RAWM, com-
pared with other methods for LLM-based world
models, as shown in Table 4:
• RAWM does not require the fine-tuning of LLMs,

where the fine-tuning of LLMs is usually time
and computation extensive. Besides, the fine-
tuning may also hurt the capabilities of LLMs on
other tasks. RAWM is a plug-and-play framework
to transform the LLMs into world models.

• RAWM does not require the manually design of
the prompts, i.e., instructions and in-context ex-
amples, for LLMs, which is usually labor inten-
sive to optimize the prompts. RAWM automati-
cally retrieve the in-context examples from mem-
ory to assist the world models for predictions.

• RAWM introduces the efficient RL training to
further improve the world models with retrieval-
augmented generation. We note that with the RL
training pipeline, RAWM can find the capability
limit of the memory and the world model, thus
can be used to diagnose the systems.

• RAWM can train the embedding of the experi-
ences which can generalize across different shots
and different LLMs, which indicates that the em-
bedding encodes the knowledge of environments.

A.3 Differences from Other RAG Scenarios
We would add some discussion about the differ-
ences between RAWM and other RAG scenarios.

Most of the RAG scenarios leverage the exter-
nal memory to provide the factual knowledge to
LLMs. For example, GPT-4o’s knowledge cutoff is
October 2023, and the model will have no knowl-
edge after that, e.g., “who won the 2024 United
States presidential election?” If we provide the
news about the election, the model will definitely
give the correct answer.

However, for RAWM, the test states are not
present in either the query or memory datasets.
The system must retrieve similar states and apply
reasoning about the query states to generate pre-
dictions. This characteristic distinguishes RAWM

from other RAG scenarios, presenting a more chal-
lenging task that heavily depends on the model’s
reasoning capabilities.

A.4 Comparison with RAP and RAFA
The primary objective of RAP (Hao et al., 2023)
and RAFA (Liu et al., 2023) is decision making,
where RAP leverages the MCTS to search in the
LLM-based world models and RAFA is more com-
plicated to collect the experiences and make the
decision with searching in the LLM-based world
models. Both methods combine the search with the
LLM-based world models for decision making.

However, their designs of the world models
are simple and not investigate the performance of
the world models. Specifically, RAP leverage the
prompting and manually designed examples for the
LLM-based world models, and RAFA would take
the experience collected by itself as the in-context
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examples. They primarily focus on the success rate
and totally ignore the prediction performance of the
world models. In this work, we would like to iso-
late the world models and focus on the prediction
performance, as what did in (Wang et al., 2023).
We believe that investigating the LLM-based world
models solely would be necessary and boost the
research of leveraging LLM-based world models
for decision making.

Given their descriptions, i) the world models in
RAP are exactly the RAWM-rand, i.e., the ran-
domly picked in-context examples, and ii) the
world models in RAFA are the RAWM-eye, i.e.,
the in-context examples are retrieved through a pre-
trained embedding model. Therefore, the world
models used in RAP and RAFA has already been
considered in the evaluation and we will add the
discussion of this in the revision of the paper.

A.5 Why Focusing on Next State Prediction?

Next state prediction is the most important fea-
ture for the world model (Wang et al., 2024b).
The reward and the terminal can usually derived
from the next state. For example, for Game24 and
BlocksWorld, we can derive the reward to check
whether the remaining number is 24 and whether
the next state is the same as the goal state, respec-
tively. Therefore, we focus on next state prediction.

A.6 Why Not Larger LLMs?

We note that Qwen/Qwen2.5-1.5B-Instruct is a
highly capable LLM, which achieves 60.9% ac-
curacy on the MMLU benchmark. Therefore, we
choose this small LLM as the base model for the
RL training for the efficiency.

We also consider the models with sizes 3B and
7B for inference, which achieve 65.6% and 72.4%
accuracy on MMLU benchmark, respectively.

Due to the limited computational budget, we
primarily train on the 1.5B models, and test the
generalizability of the trained embedding models
on 3B and 7B models. We expect that with more
powerful base LLM models, RAWM can further
improve the performance for the RL training.

A.7 Influences of Datasets

We note that the quality of the datasets will signif-
icantly influence the performance of the systems,
similar to the curation of the training datasets of
LLMs (Wang et al., 2024a). As a preliminary at-
tempt, in this work, we only consider the randomly

pre-collected dataset and do not conduct any ma-
nipulation and selection of the data.

As discussed in the limitation section, in the
future work, we will let the systems to proactively
collect the data for better performance, which is in
line with the RL literature (Sutton and Barto, 2018),
where the data are collected during training.

A.8 Selection of Baselines
The selected baselines are primarily to evaluate
the effectiveness of the RAG and the RL training
pipelines to improve the prediction accuracy of the
LLM-based world models.

We also aware that full-parameter or parameter-
efficient fine-tuning (PEFT), e.g., LoRA (Hu et al.,
2022), can also improve the performance of the
LLM-based world models. However, this may re-
quire fine-tuning the LLM’s parameters, as well
as additional computational resources, which may
also hurt the generalizability of the base LLMs.
We want to argue that one of the main advantages
of RAWM is integrating the external knowledge
into LLMs without changing the LLMs’ parame-
ters, therefore, we do not consider the fine-tuning
methods as our baselines for a fair comparison.

A.9 What If RL Training Cannot Improve?
RL training is a powerful framework. However, due
to the trial-and-error process, RL training may be
more complicated than supervised learning. Here
we provide some guidance for the training:
• Smaller learning rate with the identity initializa-

tion would be safer for the better performance
than pre-trained models. While random initializa-
tion can potentially find better embedding models
with longer training.

• We would also note that the improvement of RL
training may also depend on the data in the mem-
ory and the LLMs for the world model. There-
fore, if no good hyperparameters for the improve-
ment, please consider larger LLMs and memory.

A.10 Efficiency of RAWM

The detailed comparison between RAWM and fine-
tuning: i) the optimized parameters, where for the
Qwen 1.5B, the full-parameter fine-tuning would
be 1.5B, LoRA would reduce the parameters to be
tuned to approximated 1%, i.e., 15M, while our
fine-tuned MLP would just be roughly 10K param-
eters, ii) the memory used, we only leverage the
LLMs for sampling, while fine-tuning LLMs would
require additional memory usages, roughly 3 times
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of the inferences. Compared with the memory used
for fine-tuning, the memory used for fine-tuning
the MLPs can be ignored.

A.11 Code and Dataset Availability

We release all the code and datasets. The
code can be accessed at: https://github.com/
joannacyang/rawm.

B Related Work

World Models in Decision Making. World mod-
els are actively explored by researchers to fur-
ther improve the agent’s performance and the sam-
ple efficiency (Ha and Schmidhuber, 2018; Janner
et al., 2019; Hafner et al., 2019; Schrittwieser et al.,
2020). Dreamer (Hafner et al., 2019) is a practical
model-based reinforcement learning algorithm that
introduces the belief over states as a part of the
input to the model-free DRL algorithm used. Tra-
jectory Transformer (Janner et al., 2021) trains the
transformer to predict the next state and action as a
sequence modeling problem for continuous robot
control. MuZero (Schrittwieser et al., 2020) is a re-
markable success of model-based RL, which learns
the world model and conducts the planning in the
latent space. The world model with LLM in (Xi-
ang et al., 2023) is trained to gain the environment
knowledge, while maintaining other capabilities of
the LLMs. Dynalang (Lin et al., 2024) proposes the
multi-modal world model, which unifies videos and
texts for the future prediction in decision making.
LLMs as World Simulators. World simula-
tors are developed to model the dynamics of the
world (Bruce et al., 2024). LLMs serve as the
world simulators due to their generalizability across
tasks. Specifically, the LLMs (i.e., GPT-3.5 and
GPT-4) are evaluated to predict the state transitions,
the game progress and scores with the given ob-
ject, action, and score rules, where these rules are
demonstrated to be crucial to the world model pre-
dictions (Wang et al., 2024b). The world models
with LLMs in (Xie et al., 2024) need to additionally
identify the valid actions.
World Models in LLMs. The concept of world
model can also be explored in the deliberation
reasoning of LLMs. Specifically, Reasoning via
Planning (RAP) (Hao et al., 2023) leverages the
planning methods (e.g., Monte Carlo Tree Search
(MCTS)) with the world model with LLMs for plan
generation and math reasoning, where LLMs need
to predict the next state and the reward to guide the

search. Tree of Thought (ToT) (Yao et al., 2023)
implicitly leverages the LLMs as the world model
to predict the next state and the reward for the
search over different thoughts. Reason for future,
act for now (RAFA) (Liu et al., 2023) combines the
planning and reflection with the world model for
complex reasoning tasks.

C Environments and Data Collection

C.1 Game24

Figure 6: Game24

Game24 is an interesting puzzle game, where
four integer numbers in {1, 2, 3, . . . , 13} are given,
the player needs to use the basic arithmetic oper-
ators, i.e., +,−,× and ÷, and use each number
exactly once to form 24. This puzzle game is used
in (Yao et al., 2023) and (Liu et al., 2023) to bench-
mark the LLM’s reasoning capabilities.

The instances of Game24 used in this work
can be accessed at https://github.com/
princeton-nlp/tree-of-thought-llm/blob/
master/src/tot/data/24/24.csv. The state of
Game24 is the remaining numbers and the action
is applying the operator between two remaining
numbers. Here is an example of the transition:
{

"state": (1.0, 1.0, 5.0, 8.0),
"action": "1.0 + 1.0",
"next_state": (2.0, 5.0, 8.0),
"reward": False ,

}

We provide the python-style code to transform
the transitions to natural language examples in Al-
gorithm 2.

C.2 BlocksWorld

BlocksWorld is a widely used benchmark
to evaluate the planning capabilities of
LLMs (Valmeekam et al., 2023; Hao et al.,
2023). All the instances of the BlocksWorld can be
accessed at https://github.com/karthikv792/
LLMs-Planning/tree/main/plan-bench/
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Algorithm 2 Transitions to in-context examples for
Game24

# transition is the dict with "state", "
action", "next_state" and "reward"

def transition2example_game24(
transition , is_query=False ,
is_next_state_prediction=True

):
example = ""

example += "current state: {}\n".
format(transition["state"])
example += "action: {}\n".format(
transition["action"])

if not is_query:
if is_next_state_prediction:

example += "next state: {}\n
".format(transition["next_state"])

else:
example += "reward: {}\n".

format(transition["reward"])

return example

Figure 7: BlocksWorld

instances/blocksworld. We build the envi-
ronment by transforming the instances to MDPs,
which can provide the transitions. Here is an
example of the transition:
{

"state": "the red block is clear ,
the hand is empty , the orange block
is on top of the yellow block , the
red block is on top of the orange
block , the yellow block is on top of
the blue block , and the blue block

is on the table.",
"action": "unstack the red block
from on top of the orange block",
"next_state": "the orange block is
clear , the red block is in the hand ,
the hand is holding the red block ,

the orange block is on top of the
yellow block , the yellow block is on
top of the blue block , and the blue
block is on the table.",
"reward": False ,
"info": {

"goal": "the red block is on top
of the blue block , the blue block

is on top of the yellow block and

the yellow block is on top of the
orange block"
},

}

We provide the python-style code to transform the
transitions to natural language examples in Algo-
rithm 3.

Algorithm 3 Transitions to in-context examples for
BlocksWorld

# transition is the dict with "state", "
action", "next_state" and "reward"

def transition2example_bw(transition ,
is_query=False ,
is_next_state_prediction=True):
example = ""

example += "goal state: {}\n".format
(transition["info"]["goal"])
example += "current state: {}\n".
format(transition["state"])
example += "action: {}\n".format(
transition["action"])

if not is_query:
if is_next_state_prediction:

example += "next state: {}\n
".format(transition["next_state"])

else:
example += "reward: {}\n".

format(transition["reward"])

return example

C.3 BabyAI

Figure 8: BabyAI

{
"mission": "go to a red box after
you pick up the purple key",
"state": [

"You carry a purple key",
"You see a wall 2 steps left",
"You see a blue ball 2 steps

forward",
"You see a yellow ball 1 step

right and 1 step forward",
"You see a purple ball 2 steps

right and 2 steps forward",
"You see a red box 2 steps right

and 1 step forward",
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],
"action": "turn right",
"reward": 0,
"done": False ,
"next_state": [

"You carry a purple key",
"You see a purple ball 2 steps

left and 2 steps forward",
"You see a blue ball 2 steps

left",
"You see a red box 1 step left

and 2 steps forward",
"You see a yellow ball 1 step

left and 1 step forward",
"You see a green key 4 steps

forward",
"You see a green key 1 step

right",
"You see a red box 2 steps right

and 1 step forward",
"You see a yellow key 3 steps

right and 3 steps forward",
"You see a red ball 3 steps

right",
],

}

C.4 Statistics of Datasets

Table 5 provides the statistics of the datasets used
for the RL training and testing.

Memory Query Test

Game24 2882 2882 5764
BlocksWorld 2416 2416 4833

BabyAI 3124 1562 3124

Table 5: Statistics of the datasets

D Prompts

Design of Prompts. To make the world model
as general as possible, we do not specifically de-
sign the prompts. The system prompt of the world
model is "After being given a current state
and an action, directly give the next
state after performing the action." We do
not provide the description of the task, such as "I
am playing with a set of blocks where I
need to arrange the blocks into stacks.",
which is game specific and it needs human to write
the specific prompts.
Content Prompt for LLMs. We present the tem-
plate for building the full prompt, i.e., the in-
context examples and the query, for the LLMs in
Algorithm 6.

Algorithm 4 Transitions to in-context examples for
BabyAI

# transition is the dict with "state", "
action", "next_state" and "reward"

def transition2example_babyai(
transition , is_query=False ,
is_next_state_prediction=True

):
def state_to_string(state):

state_string = ""
for idx , sta in enumerate(state)

:
state_string += sta
if idx == len(state) - 1:

continue
else:

state_string += ", "
return state_string

example = ""

example += "mission: {}\n".format(
transition["mission"])

example += "current state: {}\n".
format(state_to_string(transition["
state"]))
example += "action: {}\n".format(
transition["action"])

if not is_query:
if is_next_state_prediction:

example += "next state: {}\n
".format(

state_to_string(
transition["next_state"])

)
else:

example += "reward: {}\n".
format(transition["reward"])

return example

E Model Selection

E.1 World Models
We expect to transform the LLMs into world mod-
els without any manually prompt engineering or
fine-tuning of LLMs. Therefore, the world models
are the general LLMs. The most capable open-
source LLM models are the Qwen-2.5-instruct se-
ries models (Yang et al., 2024a). Due to the limited
resources, we only consider the models with sizes
in {1.5B, 3B, 7B} for inference and the 1.5B model
for RL training. We note that RAWM can work for
both open-source and close-source models.

For the embedding model, we choose
the General Text Embedding (gte) fam-
ily (Li et al., 2023). We choose
Alibaba-NLP/gte-Qwen2-1.5B-instruct
as the embedding model, which is the leading
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Algorithm 5 Prompt template

system_prompt = (
"After being given a current state and

an action , "
"directly give the next state after

performing the action."
)
message = [

{
"role": "system",
"content": system_prompt ,

},
{"role": "user", "content": prompt},

]

open-source model on MTEB.

Emb. Model ϕ Alibaba-NLP/gte-Qwen2-1.5B-instruct

World Model Ω
Qwen/Qwen2.5-1.5B-Instruct-AWQ
Qwen/Qwen2.5-3B-Instruct-AWQ
Qwen/Qwen2.5-7B-Instruct-AWQ

Table 6: LLMs for Embedding and World Models

E.2 Architectures of MLP Head
Algorithm 7 presents the python implementation of
the two types of initialization of the MLP. Table 7
displays the comparison of the two initializations.

Random Identity

Output dimension Arbitrary Same to ϕ
Initial performance Low High

Training instabilities Low High

Table 7: Comparison between two initialization

F Hyperparameters of RL Training

Hyperparameters. The hyperparameters of RL
training are displayed in Table 8 and Table 9.
Guidance of Hyper-parameter Tuning. The two
most important hyper-parameters for the RL train-
ing is the learning rate and the update epochs. With
more output dimensions, both learning rates and
the update epochs should be decreased to stabi-
lize the training. We recommend the learning rate
1e− 4 and update epochs 10 as the starting points
for hyper-parameter tuning.

G Additional Experiment Results

The training curves for Game24 and BabyAI are
shown in Figure 9 and Figure 10 respectively.

Algorithm 6 Generating prompts for LLMs

def get_query_examples_prompts(
query_transitions ,
memory_transitions=None ,
exp_name=None ,

):
query_prompts = []
for idx in range(len(
query_transitions)):

query_prompt =
transition2example(

query_transitions[idx],
is_query=True , exp_name=exp_name

)
memory_prompt = ""
if memory_transitions is not

None:
for memory_transition in

reversed(memory_transitions[idx]):
memory_prompt +=

transition2example(
memory_transition ,

exp_name=exp_name
)

query_memory_prompt =
memory_prompt + query_prompt + "next
state:"

query_prompts.append(
query_memory_prompt)

return query_prompts

Hyperparameter Value

norm_adv True
clip_coef 0.2

entropy_coef 0.2
max_grad_norm 0.2

eps 1e-5

Table 8: Fixed Hyperparameters

Env Method Hyperparameter Value

Game24
RAWMRL

ψ,rand
learning_rate 1e-4

update_epochs 10

RAWMRL
ψ,eye

learning_rate 1e-5
update_epochs 5

BlocksWorld
RAWMRL

ψ,rand
learning_rate 1e-4

update_epochs 20

RAWMRL
ψ,eye

learning_rate 1e-5
update_epochs 10

BabyAI
RAWMRL

ψ,rand
learning_rate 3e-6

update_epochs 10

RAWMRL
ψ,eye

learning_rate 5e-5
update_epochs 10

Table 9: Modified Hyperparameters
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Algorithm 7 MLP initializations

# base_emb_dim: dimension of the pre -
trained embedding model , i.e., 1536

# final_emb_dim: dimension of the MLP ,
36 for rand and 1536 for eye

def layer_init(layer , std=np.sqrt (2),
bias_const =0.0, with_diag=False):
if with_diag:

torch.nn.init.eye_(layer.weight)
torch.nn.init.constant_(layer.

bias , 0.0)
else:

torch.nn.init.orthogonal_(layer.
weight , std)

torch.nn.init.constant_(layer.
bias , bias_const)
return layer

mlp_eye = nn.Sequential(
layer_init(

nn.Linear(
base_emb_dim , final_emb_dim),
with_diag=True

),
)

mlp_rand = nn.Sequential(
layer_init(nn.Linear(

base_emb_dim , 64)),
nn.Tanh(),
layer_init(nn.Linear (64,

64)),
nn.Tanh(),
layer_init(nn.Linear (64,

final_emb_dim), std =0.01) ,
)
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Figure 9: Training curves on Game24.
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Figure 10: Training curves on BabyAI.
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