Likelihood Variance as Text Importance
for Resampling Texts to Map Language Models

Momose Oyama'? Ryo Kishino!

'Kyoto University

Hiroaki Yamagiwa'

Hidetoshi Shimodaira'~
2RIKEN

oyama.momose@sys.1i.kyoto-u.ac.jp, kishino.ryo.32s@st.kyoto-u.ac.jp
{h.yamagiwa, shimo}@i.kyoto-u.ac.jp

Abstract

We address the computational cost of construct-
ing a model map, which embeds diverse lan-
guage models into a common space for com-
parison via KL divergence. The map relies on
log-likelihoods over a large text set, making the
cost proportional to the number of texts. To re-
duce this cost, we propose a resampling method
that selects important texts with weights propor-
tional to the variance of log-likelihoods across
models for each text. Our method significantly
reduces the number of required texts while pre-
serving the accuracy of KL divergence esti-
mates. Experiments show that it achieves com-
parable performance to uniform sampling with
about half as many texts, and also facilitates
efficient incorporation of new models into an
existing map. These results enable scalable and
efficient construction of language model maps.

1 Introduction

In recent years, an increasing number of studies
have been conducted to systematically compare
and organize language models (Yax et al., 2025;
Zhuang et al., 2025; Zhu et al., 2025; Horwitz
et al., 2025; Zhou et al., 2025; Harada et al., 2025;
Pasquini et al., 2025). In this context, Oyama et al.
(2025) proposed a method to estimate Kullback-
Leibler (KL) divergence between language models
based on log-likelihood vectors. In this method,
language models with different architectures are
embedded into a common space, and visualizing
this creates a map of language models (Fig. 1).
The model map is constructed using a text set
Dy ={x1,--- ,zn}. Since Dy is a sample from
a broader text population Df = {xJ{, Cee acjvo 1, it
introduces sampling error relative to the true rela-
tionships between models in the population'. Ad-
ditionally, the computational cost, which is propor-
tional to the number of texts IV, is also an issue.

'When the entire Pile corpus is converted into 1,024-byte
text chunks, the total number of texts is No = 5,703,791.
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Figure 1: The model map calculated with D is visu-
alized using t-SNE. Each point in the scatter plot cor-
responds to one of the 1,018 language models (Oyama
et al., 2025) downloaded from Hugging Face. The sam-
pling error for each point was estimated using the boot-
strap resampling method and is shown as an ellipse. See
Appendix B for details.

The primary motivation of this study is to reduce
the computational costs associated with adding new
models to the map. To address this issue, we pro-
pose a resampling procedure in which n texts are
drawn with replacement from the dataset Dy . The
resulting set, denoted by D7, consists of d unique
texts (d < n), which is then used to efficiently
reconstruct the model map with the newly added
models. When we discuss the distance between
models calculated using log-likelihood vectors and
the reliability of the model map, it is crucial to
focus on the sampling error with respect to the
population.

To estimate the resampling error of the distance

Our code and data are available at https://github.
com/shimo-1ab/modelmap.
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between models measured based on D relative
to the true distances in the population, two types
of errors need to be considered. The first is the
sampling error that the original data D has with
respect to the population DT, and the second is
the resampling error incurred when selecting D7
from Dy.

Since uniform resampling from data Dy may
waste many samples on less informative texts, we
propose a method that preferentially resamples
texts with large variance in log-likelihoods across
models. This approach builds on the column sam-
pling method of Drineas and Kannan (2001), origi-
nally proposed for approximating matrix products.
Through experiments, we demonstrate that our text
resampling method achieves an estimation error
comparable to that of uniform random sampling
while requiring only about half as many texts. Fur-
thermore, it facilitates the efficient incorporation
of new models into an existing model map while
maintaining accuracy.

2 Background
2.1 Map of Language Models

The map of K language models p1, ..., px is con-
structed based on a text set Dy = {x1, -+ ,ZN}.
The log-likelihood of model p; for text x, is de-
noted by log p;(x5), and the log-likelihood matrix
L € REXN js composed of these elements. Let
Q € RE*N be the matrix obtained by applying
double centering® to matrix L. The i-th row vector
q; € RY of this matrix serves as the coordinate for
language model p;. Oyama et al. (2025) showed
that the KL divergence between models p; and p;
can be estimated by the following equation:

2KL(pi, pj) =~ |l@: — q;|*/N.
2.2 Length Squared Sampling

The idea of resampling text based on its importance
is derived from column sampling methods, which
probabilistically select a small number of columns
from a matrix A = (AM, ..., AN)) € REXN o
approximate the matrix product AA .

In the representative Length Squared (LS) sam-
pling method (Drineas and Kannan, 2001), each
column A(®) is sampled with a probability propor-
tional to the square of its Euclidean norm, || A(*)||2.
This is known to minimize the expected Frobenius
norm of the approximation error for AAT.

2Centering is performed row-wise (per model) and then
column-wise (per text).

3 Resampling Texts for Model Map

3.1 Text Resampling Method

We apply the idea of LS sampling to reduce the
number of texts used for the model map, while
estimating the model distance |lq; — g;||* as ac-
curately as possible. To determine the probability
7 that text x4 is resampled from dataset Dy =
{z1,...,zNn}, we utilize the information in the
double centered log-likelihood matrix Q € RE*V,

LS Sampling. Following the column sampling
framework of Drineas and Kannan (2001), we first
propose to define the resampling probability for
text x4 as

o o |2,

The squared norm ||Q(*)||2 is proportional to the
variance of the log-likelihoods for text x5 across
models. This probability assignment is known to be
optimal for approximating the inner product qzT qj,
but not necessarily optimal for our goal of approxi-
mating the squared Euclidean distance ||q; — g;]|2.

KL Sampling. To directly address this goal, we
introduce a novel resampling scheme, which we
call KL sampling. Here, the resampling probability
for text x is defined as

K

S (@les) — gyl

i.j=1

Mg X

Here, ¢;(x) represents the (i, s)-th component of
matrix Q € RF>*Y We show in Appendix C that
this method yields an optimal approximation of the
squared Euclidean distance ||q; — g;]|?.

Baseline: Uniform Sampling. All texts are re-
sampled with equal probability 7, = 1/N.

3.2 Model Map with Resampled Texts

Let ﬁn be the dataset obtained by resampling n
texts from D, and the set of d unique texts in lN?n
be D} = {zu,, ..., Ty, }. We denote c(u;) as the
number of times each text z,,, was resampled, such
that S0 ¢(us) = n.

We construct the log-likelihood matrix Ly €
RE*4 ysing the d resampled texts and obtain éd
by double centering. In row-wise centering, the col-
umn L") corresponding to the resampled text Ty
should be weighted by w,,, = c(u;)/nmy,,, based
on the resampling probability s and the number
of times it was resampled c(u;). Let ¢; € R? be
the row vector of éd. The distance between model
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(a) Relative error €;; = (g:5—g:5)/ max(gsj, o), normalized
by g;; for each model pair.

Error to Population (Absolute)

Sampling Error (k): D> D
--- Experiment Theory

Resampling Error (6): D' - D - D
—— Uniform —— KL — LS

3040 3340 5000 6320

/
7

0 2000 4000 6000 8000 10000

Unique Samples: d
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Figure 2: The error (RMSE) aggregated over all pairs of models, defined as 6\ethod,n for resampling methods
and &4 for ordinary sampling, plotted against the number of unique texts d. The errors are averaged over R = 100
trials. Panels show evaluation based on (a) relative error for each model pair (Section 4.1), and (b) absolute error
(Section 4.2). In both evaluations, LS sampling and KL sampling show similar performance. This paper primarily

explains the simpler LS sampling method.

d 500 2,500 5,000 7,500
Uniform 58244 2,877+ 18 N/A N/A
KL 196+2 1,070+10 2,496 +22 4,780 + 33
LS 19542  895+9 2202+19 4,229 + 30

Table 1: Average and standard deviation of the number
of unique texts d’ required by each resampling method
to achieve estimation accuracy comparable to that of
ordinary sampling with d texts?.

p; and p; is calculated as the weighted squared
Euclidean distance using wg = (wy,, . .., Wy, ):

Gj(@u))’,

d
18~ B, = 3 e (@) -
where g;(x,, ) is the (7, t)-th component of matrix
@d € RE*4 This weighted distance serves as
an estimate of the original distance defined under
uniform sampling without weights.

4 Evaluation of Resampling Methods

4.1 Error of Resampled Estimates

The dataset Dy is a random sample from the text
population DT, and D,, is resampled dataset from
Dpy. The squared Euclidean distances computed

from D, Dy, and D, are, respectively, ggj =
(N/NO)HQZT—(I}HQ,QU = llgi—q;l*. 95 = llGi —

%, where q] € R™ denotes the coordinate

3The values are computed from the resampled dataset D,
where n’ is the smallest resample size such that OMethod,n’ <
kq. Here, £q denotes the baseline error when d unique texts
are directly sampled.

of p; in DT, and the scaling ensures comparability
across different dimensionalities®.

Our objective is to evaluate the error, namely
how much g;; deviates from the population value

gj ;» Which cannot be directly computed in practice.

Since Ny > N, direct computation of g;-rj is infea-
sible, and we therefore estimate the error using Dy .
Details of this estimation procedure are provided
in Appendix D.

Resampling Error to Population (Gniethod,n)-
Let GMethod,n (Method € {LS, KL, unif }) be the
iT i in the
population DT. This is estimated by considering
the following two errors:

estimated error relative to the true value g

N _ 2 2
OMethod,n = \/Tunif,N + 7—Method,n’

Here, Tynif, v 1s the bootstrap estimate (Efron and
Tibshirani, 1994) of the sampling error that Dy
itself has with respect to the population D, Sim-
ilarly, T\ethod,n 15 the Root Mean Squared Error
(RMSE) of the resampling with respect to Dy. Itis
calculated from the aggregated MSE of the relative

error €;; = (gij — gij)/max(gij, o) as
L5~y (50)?
2 r
TMethod,n = K2R Z Z <€¢j ) )
i,j=1r=1

where ?3?7) denotes the relative error obtained in
the r-th of R independent resampling trials. In the

4 gj ,; and g;; are rescaled to match the scale of g;;.
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experiments, we set g = 1073, R = 100, and
varied n from 10 to 10,000.

Baseline: Sampling Error (%5,). Let %, be the
aggregated relative error of g;; with respect to the
true value gg ; in the population. In this sampling,
all n texts are unique, so the number of unique
texts is d = n. The bootstrap estimate (Efron and

Tibshirani, 1994) of ky, is A, = Tunif,n-

Results. Figure 2a shows the relationship be-
tween the number of unique texts d and the esti-
mated error with respect to the population for each
resampling method. The dotted line represents the
estimated error k4 when d texts are directly ran-
domly sampled from the population Df, and the
thick gray solid line shows its theoretical value,
computed as y/N/d iy. The colored solid lines
represent the estimated error o'method,» When resam-
pling from Dy using each method. Comparing the
blue solid line (Uniform resampling from D) and
the black dotted line (direct sampling from DY),
Uniform resampling from D results in an error
comparable to directly sampling the same num-
ber of texts from the population’. In contrast, LS
sampling and KL sampling achieve, with a smaller
number of unique texts, an error comparable to
the estimated error <4 of random sampling d texts
from the population. As can be seen from Table 1,
an error comparable to k5 oo is achieved with LS
sampling using an average of d = 2,202 texts, and
with KL sampling using an average of d = 2,496
texts, which is about half the number of texts re-
quired by uniform sampling from the population to
achieve similar error. These results suggest that LS
sampling and KL sampling can achieve compara-
ble estimation accuracy with about half the number
of unique texts by selecting important texts.

4.2 Discussion on LS and KL Sampling

In Section 4.1, the error was normalized by the
magnitude of KL divergence for each model pair
to evaluate the relative error with respect to KL
divergence. In contrast, the KL. sampling method
directly optimizes E[Zfi:l@m —9i;)? | DN,
which corresponds to minimizing the sum of ab-
solute squared errors. Accordingly, we evaluate
the error without normalization for each model
pair. Specifically, we redefine the error as €;; =

(Gij — 9i3)/C, with C = 755 371 gij.

5In Uniform resampling, weighting according to the num-
ber of duplicates slightly degrades performance.

The results of this evaluation are shown in
Fig. 2b. While KL sampling yields slightly smaller
errors under the absolute-error evaluation (Fig. 2b),
LS sampling can be slightly better under the
relative-error evaluation (Fig. 2a). In both cases,
however, the performance difference is very small.
Therefore, we focus on the simpler LS sampling
method, since it achieves performance comparable
to KL sampling.

5 Efficiency of Resampled Text Subset
5.1 Resampling Error of Model Map

Settings. We resample n texts with replacement
from Dy with N = 10,000, resulting in d unique
texts®. We adopt LS sampling as the resampling
method. Model coordinates are computed from
log-likelihoods over the sampled texts and visual-
ized using t-SNE. To evaluate variability due to
resampling, we repeated the process 100 times per
setting. Here, d denotes the average number of
unique texts across trials. See Appendix B.2 for
details.

Results. Figure 3(a) shows three model maps;
ellipses indicate the standard deviation of model
positions. The first two maps show similar stability,
indicating that LS sampling achieves robustness
comparable to that of uniform sampling while re-
quiring fewer texts.

5.2 Adding New Models

We tested whether a small set of texts selected by
LS sampling is sufficient for incorporating new
models into the existing model map.

Settings. From the log-likelihoods of 898 mod-
els created before April 10, 2024, we sampled
n = 2,900 texts via LS sampling, resulting in
d = 2,192 unique texts. The remaining 120 models
were treated as new additions’. This setting uses
a single resampling trial, so d is the actual num-
ber of unique texts. We computed log-likelihoods
for the newly added models using only these texts
and visualized the updated map. To quantitatively
evaluate efficiency, we compared the computation
time of log-likelihoods using the 2,192 texts se-
lected by LS sampling with that using all 10,000
texts, and also calculated the correlation between

®To verify that this set of 10,000 texts is not biased, we
repeated the experiments with another disjoint set of 10,000
texts. See Appendix B.1 for details.

"Model creation dates were obtained using the Hugging
Face APIL.
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(a) Resampling Error of Model Map

(b) Adding New Models
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Figure 3: (a) Model maps based on LS (n = 2,900, d = 2,202), uniform (n = 10,000, d = 6,320), and uniform
(n = 2,500, d = 2,209) sampling. Each map shows the mean coordinates and their variability as ellipses across 100
trials. The mean squared error (MSE) of each setting, summarized over the 100 trials, is also indicated in the plots
for quantitative comparison. (b) Model maps with 120 new models added to existing 898 models. The left panel
uses d = 2,192 unique texts selected by LS sampling with n = 2,900. The right panel uses all N = 10,000 texts.

LS All 8
New Models d=2192 d=10,000 KL Corr.
DeepSeek-R1-Distill-Llama-8B 1.94 min 8.55 min 0.996
Meta-Llama-3-8B 1.84 min 8.06 min 0.997
Phi-3-medium-128k-instruct 4.48 min 18.88 min 0.996
Mistral-7B-v0.3 2.11 min 8.98 min 0.997
Qwen2-1.5B 1.08 min 4.78 min 0.997

Table 2: Computation time of log-likelihoods using the
2,192-text subset selected by LS sampling and the full
10,000-text set. All computations were performed on a
single RTX 6000 Ada GPU.

the estimated KL divergences. This evaluation was
conducted on five representative models among the
120 new ones.

Results. As shown in Fig. 3(b), the result closely
matches the full map based on all N = 10,000
texts, indicating that reliable placement is achiev-
able with a small subset. Table 2 shows that, when
using the 2,192 texts selected by LS sampling, log-
likelihood computation is at least four times faster.
Moreover, this efficiency comes with almost no loss
in accuracy: the KL divergences estimated from
this small subset are nearly identical to those from
the full dataset, achieving a Pearson correlation
of ~ 0.997.

5.3 Prediction of Downstream Performance

Following Oyama et al. (2025), we used model
coordinates based on d unique texts to predict
the average performance on six downstream tasks
(Fig. 4). Although the resampling methods differ

8Pearson correlation between KL divergences obtained
with the 2,192-text subset and those with the full 10,000-text
set, computed for each new model across its 898 divergences
with the existing models.

6-TaskMean
1.00
o
0 0.75
C
g 0.50
© —— Uniform
(0]
Po.25 A1)
0.00 — L
10! 102 103

Unique Samples: d

Figure 4: Pearson’s correlation r between predicted and
actual scores on the average of six downstream tasks,
shown as a function of the number of unique texts d.

in KL estimation, prediction performance is nearly
identical across methods, suggesting that the re-
sulting coordinates span comparable subspaces. At
d = 1,000, all methods achieve r =~ 0.92-0.93, in-
dicating that even a relatively small number of texts
suffices for accurate prediction. See Appendix E
for details.

6 Conclusion

We proposed text selection methods to reduce
the computational cost of constructing model
maps. Our experiments showed that these methods
achieve estimation accuracy comparable to uniform
sampling while requiring only about half as many
texts, and that they also enable efficient incorpo-
ration of new models into an existing map. These
findings facilitate more efficient comparative anal-
ysis of large-scale language models.
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Limitations

* The aspect of data sampling has not been thor-
oughly explored in this study, apart from the
simple experiment presented in Appendix B.1.
Future work is needed to understand the ex-
tent to which our discussions generalize to
datasets different from the D used here.

* Regarding the experiments for adding new
models, we did not include a detailed discus-
sion on the number or types of the new models
added.

* While LS and KL sampling both outper-
formed uniform sampling in KL divergence
estimation, the difference disappeared in
downstream performance prediction, where
all methods performed similarly. This sug-
gests that improvements in distance estima-
tion do not necessarily lead to gains in down-
stream utility, and the relationship between
the two warrants further investigation.
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ments on downstream task performance prediction.
All authors contributed to writing the manuscript.
M.O. coordinated the writing process and took the
lead on the overall composition, while each author
wrote the parts corresponding to their contributions.
The project was supervised by M.O. and H.S.

B Details of Model Map Construction
B.1 Log-Likelihood Data of Language Models

In our experiment, we used log-likelihood
data (Oyama et al., 2025)° for K = 1,018 lan-
guage models, calculated on N = 10,000 texts
extracted from the Pile (Gao et al., 2020).

In the experiment described in Section 5.1 for
adding new models to the model map, we clipped
the log-likelihood matrix L of the existing 898
models at the lower 2nd percentile value —1495.9,
following Oyama et al. (2025). The log-likelihood
values of the newly added 120 models were also
clipped using —1495.9 as the threshold.

To verify that this set of 10,000 texts is not
biased, we sampled a new, entirely different set
of 10,000 texts from the Pile and re-computed
the distances (i.e., KL divergences) for all pairs
among 100 models randomly sampled from the
1,018 models. The distances calculated on this new
set showed a Pearson correlation of 0.997 with the
distances from our original text set.

B.2 Visualization of Model Map

This section details the procedure for generating the
t-SNE (van der Maaten and Hinton, 2008) visual-
izations and standard deviational ellipses presented
in Fig. 1 and Fig. 3.

Coordinjlte Computation. First, the model coor-
dinates Q4 € R¥*? are computed according to the
method described in Section 3.2. These coordinates
are subsequently reduced to two dimensions using
the t-SNE algorithm. To assess variability of each
resampling method, this entire procedure, from re-
sampling to the final t-SNE mapping, is repeated
R = 100 times. To ensure consistency across these
trials, the stochastic t-SNE process is standardized:
the initial coordinates for each run are determined
by applying PCA to the model coordinate matrix
Q) and the random_state parameter is fixed to
42.

Coordinate Alignment. Let X, € RE*2Z denote
the matrix of t-SNE coordinates obtained from the
r-th trial (r = 1,..., R), and let X,of € RX*2
be the reference coordinates derived from apply-
ing t-SNE to the matrix Q@ € RX*Y_ To enable
meaningful comparison across the R trials, we
need to align these coordinate sets, as t-SNE re-
sults have inherent translational and rotational am-

9https: //github.com/shimo-1lab/modelmap/tree/
main/1000models
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LS Uniform Uniform

d=2202 d=6,320 d=2,209

Bias? 3.19 3.00 4.95
Variance 4.65 4.23 10.83
MSE 8.22 7.42 17.48

Table 3: Bias?, Variance, and MSE for model maps
constructed using each sampling method. For each of
1,018 models, the values are calculated over R = 100
trials relative to the reference coordinate (Y;or) created
from all N = 10,000 texts. The table reports the median
values for these metrics across all 1,018 models.

biguities. The alignment process begins by cen-
tering each coordinate set: Y, := X, — X, and
Yiet = Xyef — Xyef- Subsequently, Orthogonal
Procrustes analysis (Schonemann, 1966) is applied.
For each Y,., we find an orthogonal transformation
matrix U, € R?*? that best aligns it with Yy¢¢. The

final aligned coordinates are given by Z, := Y, U,.

Centrography. After aligning all R = 100 sets
of coordinates, we analyze the variability of each

model point. Let z\"”) € R2 be the 2D coordi-
nate vector for model ¢ from the r-th aligned set
Z, € RE*2_ For each model coordinate, the mean
coordinate z; = % Zle zz-(r) and the covariance
matrix Cov(z;) € R?*2 are calculated across the
R trials. The standard deviational ellipses (Yuill,
1971) shown in Fig. 1 and Fig. 3 are derived from
these covariance matrices, with their height, width,
and angle determined by the eigenvalues and eigen-

vectors of Cov(z;).

Quantitative Evaluation. We quantitatively
evaluate the stability and accuracy of the model
maps created using LS and Uniform sampling.
The mean squared error (MSE) was calculated
for each model ¢ based on the aligned coordi-

nate sets {Z,}1% and the reference coordinate

Yoor = [08F,-,42f] T € RE*2 The MSE is
decomposed into bias, which indicates the accu-
racy, and variance, which reflects the stability of
the resampling process:

R
_ . 1 _
MSE = ||z — 422 + = Y |z - z)?
———— Rr:l

Bias?

Variance

Table 3 shows the median values of these metrics
across 1,018 models. The results indicate that LS
sampling achieves comparable accuracy and sta-
bility than Uniform sampling with less than half

the number of unique texts. Furthermore, when the
number of unique texts is similar (approximately
2,200), LS sampling exhibits lower bias and vari-
ance, demonstrating that LS sampling can construct
more accurate and stable maps.

C KL Sampling

Notation. We resample a text x5 from the dataset
Dy = {z1,...,xn} with probability 7,. Let
the n resampled texts be denoted by D, =
(Tays - -+ s o, ). Define Q = (QU1) ... Qun)) €
REX7 and g; € R™ as the i-th row vector of Q.
Denoting the (i, t)-th element of Q as g;(zy, ), we
see that this value is equal to ¢;(x,,). Note that,
unlike the notation used in Section 3.2, g allows for
duplication of the resampled texts and its columns
are resampled from the double-centered matrix Q.

Letw, = (1/nmy,,...,1/nm,, )" € R™be the
weights on the resampled texts, where

1

Ny,

Wt =

fort = 1,...,n, and let W = diag(w,) be the
corresponding diagonal matrix. Note that, unlike
Section 3.2 where duplicate texts were summarized
by counts ¢(uy), here duplicates are explicitly rep-
resented in D, so c¢(u;) is not needed. Define
9ij = llgi — g;|1* and gij = [|Gi — Gjllw,,» where
the weighted norm is taken with respect to w,,.

Throughout Appendix C, the expectation oper-
ator E[-] is taken with respect to the resampling
procedure, conditional on the dataset Dp. That is,
E[] should be interpreted as E[- | Dy].

LS Sampling. According to Drineas and Kan-
nan (2001), the expected Frobenius norm of the
approximation error E [HQWQT - QQTH%’] is
minimized when the resampling probabilities sat-
isfy 7y oc |Q®)||2.

KL sampling (Proposed). Instead of approxi-
mating the inner products in Q, we aim to approxi-
mate the sum of the pairwise distances. We prove
that the resampling probabilities 75 that minimize

E ijzl(gjij - gz’j)ﬂ are given by

K

Z (qi(zs) — QJ($S))4-

1,j=1

Mg X

Lemma 1. Forany i, j € {1,..., K}, itholds that

E [ﬁz‘j] = Gij-
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Proof. Since each resampled column is indepen-
dently chosen from {1,..., N} with probability
s, the expectation removes 75 and yields the full
sum over all texts, as shown below:

E[gs5]
=E[||g — q;|%,]

n

> (i) - @(wm»?]

t=1

=E

_ iZE L) o)

1L
~ Z Z 7?8(%@8) — 4 (x5))*ms
t=1 s=1
= [lgi — g;l?

O]

Lemma 2. The variance of the weighted distance
after resampling is given by

Var (gi5)
N
1 1 4 1 4
> e CICORIICN) RS AR
Proof. Since the n resampled columns are indepen-
dent, the variance of the sum equals the sum of the
variances of each term. Thus, by expanding the

variance of each term and taking expectations with
respect to g, we obtain

Var(gi;)

1 2
- (- al?)’)
1h 1

(ae) ~ 0@~ ai - g5
— “Na(x) — a:(x — Zlla; — a4
nszlﬂ's qi\Ts qj\Ts an q;

O]

Proposition 1. The resampling probabilities 7
that minimize E [Zi[,{j:l(gij - gij)ﬂ are given by

K

Z (Qi(xs) - Qj(l's))4'

ij=1

Ts X

4
Proof. Let Ay = ij:l(qi(:xs) — gj(zs))" for
s=1,...,N.ByLemma 1, we have

K K
E > @i —9i)| = Var(gi)-
ij—1 ig—1

Therefore, by Lemma 2, we aim to minimize

M1
f(ﬂ-la"'aﬂN):Z;As
s=1 9%

subject to the constraint Zivz 1 ms = 1. Let

g(m1, .., TN, A)

N
= f(m,...,78) + A (Zws1>,
s=1

0
By setting 3 J
Ts

= 0, we obtain

2 = A,
Solving this with respect to 7, we have

VA

My = —r— .
Zi\/f:l VA
When 73 > 0,
24 2A
V2f(my,...,7N) :diag<31,...,3N>.
Ty T

This Hessian is positive semidefinite, and positive
definite if A; > 0 for all s. The feasible set
{m > ,ms =1, mg > 0}, called the probabil-
ity simplex, is convex. Since f is convex on this
simplex (strictly convex when A; > 0 for all s),
the stationary point obtained above (with 7, = 0
whenever A; = 0) is the global minimizer under
the constraint.

O

D Estimating the Population Error of
Resampled Distances

This section provides a detailed discussion of the
error evaluation method introduced in Section 4.1.
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Sampling Error. We consider the case where
a dataset D,, = (x1,...,,) of size n is sam-
pled from a large population of texts DI =
(iL‘J{, ey x}rvo) Here we use n (instead of N used
in the main text) to denote a general sample size, in
order to analyze the error as a function of the num-
ber of sampled texts. We assume that Ny > n
and n is sufficiently large. Let LT ¢ RE*No
and L € RX*" denote the log-likelihood matri-
ces evaluated on D' and D,,, respectively. Their
doubly centered versions are denoted by QT =
Q... QI("N)] and Q = [QW,...,QM),
with row vectors q;r € RM and q; € R" repre-
senting the coordinates of model p; in each case.
Since n is sufficiently large, the average vector used
in centering Q can be well approximated by that of
Q', and thus each column of @ may be regarded as
a random sample drawn without replacement from
the columns of Q1.

We focus on the squared Euclidean distance be-
tween two models p; and p;. To ensure comparabil-
ity with the case where the data size isn = N, we
introduce a scaling factor to normalize the estimate
and define:

N
g = llai - qj|°
N n
- Zl (gi(ws) — g5 (xs))Q )
s=
N
gl = FOH(IZ —qf|?
No
N foty i)
M (df=]) = gj(=h)) "

We define the sampling error as
ij = 9ij — 93

Since the terms {(q;(zs) — ¢;(z5))?}"_; can be

regarded as random samples from {(q;r (azl) -

q; (xl))2 Mo, gij is an unbiased estimator of g;rj,

and thus the sampling error satisfies E[e;;] = 0.
The mean squared error (MSE) of this sampling

error is then given by

= E[ej].

1’]7

Following the formulation in Section 4.1, we then
aggregate these errors across all model pairs by
considering their relative magnitudes:

K 2
2 1 Kijn

Ky =

)

2
K ij=1 max(gjﬁ €0)?

where £¢ > 0 is a small constant to avoid division
by zero.

Bootstrap Estimate of Sampling Error. We
consider a bootstrap procedure that randomly sam-
ples n texts uniformly with replacement from the
dataset D,, (we note that D, may later be re-
placed by Dy). That is, each text in D, is se-
lected with equal probability s = 1/n. Let
Dyp = (Z1,...,%n) = (zu,, .. ) denote the
resampled dataset. The log—likel~1hood matrix and
its doubly centered version for D,, are denoted by
L € RE*" and Q € RE>*m = [QW), ..., Q™)],
respectively, and the coordinate vector of model
p; is denoted by g; € R". When n is sufficiently
large, the mean vector used for centering ) can be
well approximated by that of @, so each column
of @ may be regarded as a random sample (with
replacement) from the columns of Q.

Unlike in Section 3.2, where resampling with
replacement was handled by recording the number
of duplicates and incorporating them as weights,
we here represent the resampled data explicitly by
allowing duplicate entries in the coordinate vec-
tors q;. Thus, the difference is only notational,
and both approaches describe the same underlying
resampling process.

As in the previous subsection, we focus on the
squared Euclidean distance between models p; and
p;. To ensure comparability with the case of dataset
size n = N, we scale the estimate as follows:

. N .
gij = *qu' - gj|?
72 Qz 375

The terms {(¢i(Zs) — ¢;(Zs))?}"_; can be viewed
as a bootstrap sample drawn (with replacement)
from the set {(gi(zs) — qj(xs))*}7_,. We define
the resampling error as

— qj( 338))2-

€ij = Gij — Gij»
which satisfies E[e;; | D,] = 0 by construction.

The conditional mean squared error (MSE) of g;;
given D, is defined as

zgn_E[NQ |D]

In practice, we estimate this quantity by performing
R independent bootstrap trials and computing

Tin = R Z (AX)> ’

r=1
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where éf;) is the resampling error from the r-th
trial.

This quantlty Z] ,, serves as the bootstrap esti-

mate of "‘% in (Efron and Tibshirani, 1994):
i = i

We may also replace D,, with Dy; in that case,
this procedure corresponds to an n-out-of-N boot-
strap (Bickel and Sakov, 2008; Shimodaira 2014),
and 7'1] », Temains a valid estimator of ’% - Intu-
itively, replacing D,, by a larger dataset Dy does
not alter the distributional behavior of the resam-
pled dataset D,,, because its properties are deter-
mined solely by the resample size n rather than the
population size. Moreover, the resampling MSE
obeys a standard scaling law T ZQJ n X n~!, and can
be approximated by the theoretical relation
2 N 2

Tij,n = zg N-

n

Following Section 4.1, we define the aggregated
resampling MSE as

2
2 _ le n
umfn - E .
K2 57 max (9ij,€0)?
Here Tf] ,, 1s based on uniform resampling from

D with equal probability. This corresponds to the
uniform resampling case discussed in Section 4.1.
The above discussion on TZJ ,, also applies to the
aggregated quantity 7, mfn, since it is simply the
average of the pairwise relative errors. Accordingly,
the bootstrap estimate of the sampling MSE #2 is
given by

_ .2
Ky = 7—unif,n'

The scaling law yields the approximation

9 N

_ 2
Tunif,n = gT unif, N *

Decomposition of Population Error. In the pre-
vious subsection, we assumed uniform resampling,
where each text is drawn with equal probability.
Here, however, we consider the general case of
weighted resampling. We consider a two-stage
sampling procedure: first, we obtain a dataset Dy
by randomly sampling N texts from the population
DT; then, we perform weighted resampling with Te-
placement from D to obtain a smaller dataset D,
of size n. As described in Section 3, we consider
three types of resampling weights: LS sampling,
KL sampling, and uniform sampling.

The estimated squared distance based on the re-
sampled data is defined as
9 = 1@ = Gillz,

Here we adopt the notation for the weights with-
out ¢(uy), because in D,, duplicates are explicitly
represented rather than summarized by counts (see
Appendix C). Thus each resampled entry carries
the weight w; = 1/(nm,, ), which incorporates the
scaling factor N /n so that the estimate matches the
scale for sample size N. In particular, for uniform
sampling (m,, = 1/N), this weight exactly reduces

to N/n.

We now analyze the error of the resampling esti-
mator g;; relative to the true value g;-r ; in the popu-
lation. Define the error as

Tz T
€ij = 9i5 — 9i5-
This error can be decomposed as
el: = Gij — 9i7) + (95 — 9l,)

= &ij + &ij,

where £;; and €;; denote the resampling error and
the sampling error, respectively.

Taking the expectation of the squared error, we
obtain the decomposition of the MSE:

mn—[@)]
E[(&;) +ei5)%)
=E[E [Eij | Dn]]
+ 2E[E[g;; | Dnlei;]) + E[E?j]
= E[Tin,n] + ’f?j,m
since the resampling error satisfies E[€;; | Dn] =
0. Here, we define the conditional MSE
Tijm = EEG | D],

which in practice is estimated from resampling er-
rors ~(J)
Dy. The term niij = E[e ij] can be estimated
by the bootstrap MSE under uniform resampling

of size N, denoted by 77 T umit, N - Accordingly, we

obtained via weighted resampling from

estimate o2, S BY

A2
Uij,n = 2] n + ng,unif,N'

As in Section 4.1, we define the aggregated pop-
ulation MSE from afj’n by

K 2
2 1 Tijn

K ij=1 max(gjj750)2

ag
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Let 72 denote the aggregated resampling MSE, de-

fined from 72 as

ij,m
K 2
21 ) ign
n K2 27
max(g;i, €
ij=1 (gljv 0)

which is in the same form as 72

hif., 1D the previous
subsection but allows the resampling to use LS,

KL, or uniform weights. Substituting the estimate

A 2 . 2 . . 2 .
0;jn into o7 in the expression of oy, yields the
estimate:

52 2 2

Op = Tn + 7-unif,N‘

Note that while o2 is defined using the true dis-
tances gj ; in the denominator, its estimator 72 re-
places them by the empirical distances g;; com-

puted from Dy .

E Model Performance Prediction

We computed the log-likelihoods of the unique
texts contained in the resampled data and, follow-
ing Oyama et al. (2025), used these values to pre-
dict model performance. This section describes the
experiments in detail.

E.1 Model Performance

Following Oyama et al. (2025), we used the Open
LLM Leaderboard v1 (Beeching et al., 2023) as
the source of model performance scores!?. The
leaderboard provides scores for the following six
benchmark tasks'!: AI2 Reasoning Challenge
(ARC) (Clark et al., 2018), HellaSwag (Zellers
et al., 2019), MMLU (Hendrycks et al., 2021),
Truthful QA (Lin et al., 2022), Winogrande (Sak-
aguchi et al., 2019), and GSM8K (Cobbe et al.,
2021).

In addition to these benchmark scores, we fol-
lowed Oyama et al. (2025) and also predicted (i)
the average across the six tasks (hereafter referred
to as 6-TaskMean) and (ii) the mean log-likelihood
¢; of the log-likelihood vector ¢; € RY .

E.2 Dataset Configuration

The number of resampled texts was set to

n € {10, 20, ...,90,100,200, .. ., 900,
1,000, 2,000, . . ., 9,000, 10,000}

10https ://huggingface.co/spaces/
open-11m-1leaderboard-old/open_l1lm_leaderboard

""Benchmark scores are available for 996 of the 1,018 mod-
els released by Oyama et al. (2025). For convenience, we
denote this subset size by K throughout this section.

As explained in Section 3, resampling n texts
from Dy yields l~)n, and from this resampled
set we extract a set of d unique texts, D} =
{Zu,,--. @y, }. Using these d texts, we com-
puted the log-likelihood matrix L; € R5*? and
then formed the doubly-centered matrix Qd =

[@1,...,qx]" € REX? with scaling weights
T
um:(%%rnﬁ%? e R

For each benchmark task, the dataset is
given as {(q1,v1),...,(qK,vK)}, where q; =
(Gi(Tuy)s - Gi(u,)) T € RY s the i-th row of
éd corresponding to language model p;, and v; €
[0, 100] is its benchmark score.

E.3 Regression Formulation

As in Oyama et al. (2025), we adopted ridge regres-
sion to predict each benchmark score. The matrix
of explanatory variables is

QuW,"? e RExd, (1)

where the diagonal matrix Wdl/ 2 € Rixd hag

C(ﬂﬂ on its t-th diagonal entry!?. Let v =

Ny,
(vi,...,vg)" € RX denote the vector of target
variables. The objective function, parameterized

by 6 € RY, is defined as
L(0) = [lv — QaW,"%0||> + a|0]|2
d )

where o € Ry is a hyperparameter controlling
the strength of regularization.

E.4 Training Setup

We partitioned the set of models into five folds ac-
cording to their model types, as defined in Oyama
et al. (2025). We then trained the parameters and
predicted the benchmark scores. Training was per-
formed with RidgeCV from scikit-learn (Varoquaux
et al., 2015). To account for randomness, we re-
peated the data split with five different random
seeds. As the evaluation metric, we computed Pear-
son’s correlation coefficient () between the pre-
dicted and true benchmark scores for each split and
averaged the results.

2We adopt Qdel /2 as the matrix of explanatory vari-

ables rather than Qg itself. Let W, = diag(wg), whose

t-th diagonal entry is % Since WC}/QW;/2 = Wy, we
wr

have Qdel/Q(Qdel/Q)T = Q4W,Q, . Then Lemma 1

of Drineas and Kannan (2001) gives E[QaWaQ. | = QQ".

Thus, pre-multiplying by Wd1 /2 preserves this desirable ex-
pectation while appropriately re-scaling the features.
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Figure 5: Pearson’s correlation coefficient () between the predicted scores and the benchmark scores as a function
of the number of unique texts d (determined by the resampling size n), plotted separately for each resampling
method. Solid lines indicate the mean across five different data splits, and the shaded bands show +1 standard
deviation. For every task and every method, predictive performance improves as d increases.

n d  Method ARC HellaSwag MMLU Truthful QA Winogrande GSMBK 6-TaskMean  mean log-likelihood
10 Uniform 0.682 4 0.014 0.650 £ 0.014 0.614 £0.022  0.396 £ 0.056  0.662 £ 0.008 0.400 &£ 0.099  0.625 % 0.026 0.671 £ 0.007

10t 9 KL 0.494 +0.029 0.559 +0.010 0.417 +0.034  0.120 == 0.101  0.448 £ 0.025 0.281 £ 0.063  0.429 £ 0.041 0.524 £ 0.012
9 LS 0.116 £ 0.051  0.138 +0.036  0.082 4= 0.045 -0.016 = 0.065 0.124 £ 0.040 0.199 £ 0.061  0.104 £ 0.043 0.258 £ 0.030

100 Uniform 0.896 £ 0.012 0.877 £ 0.007 0.852 £0.012 0.705 £ 0.052 0.878 £ 0.007 0.706 & 0.034  0.872 % 0.006 0.909 £ 0.010

102 99 KL 0.888 £ 0.012 0.870 = 0.015 0.861 +=0.006  0.655 = 0.036 0.875 £ 0.021 0.674 £ 0.043  0.857 &£ 0.008 0.928 £ 0.018
99 LS 0.885 + 0.005 0.847 +0.008 0.81240.016  0.722 +0.023 0.874 £ 0.009 0.733 £ 0.039  0.868 = 0.006 0.910 £ 0.012

949  Uniform 0.933 4 0.004 0.905 4 0.005 0.903 4= 0.007  0.849 £ 0.015 0.929 £ 0.004 0.821 £ 0.012  0.925 =+ 0.005 0.946 £ 0.014

103 912 KL 0.937 £ 0.003 0.898 +0.006 0.899 +0.010  0.832 +0.025 0.926 £ 0.002 0.847 £ 0.022  0.933 £ 0.007 0.960 £ 0.012
898 LS 0.923 +0.003  0.880 = 0.004 0.906 = 0.007  0.840 = 0.012 0911 £ 0.007 0.822 £ 0.041  0.919 =£ 0.009 0.943 £ 0.015

6,335 Uniform  0.942 £ 0.002  0.905 £ 0.004 0.916 £ 0.006  0.879 £ 0.018 0.933 £ 0.005 0.857 £ 0.018 0.945 + 0.004 0.989 =+ 0.006

10% 5240 KL 0.937 £ 0.002 0.896 £ 0.005 0.917 £ 0.005  0.885 £ 0.009 0.930 £ 0.003 0.857 £ 0.026  0.941 + 0.005 0.988 £ 0.006
5,080 LS 0.935 +0.002 0.897 +0.006 0.918 +0.007 0.882 £ 0.014 0.931 £ 0.005 0.851 £ 0.019 0.941 £ 0.004 0.986 £ 0.007

Table 4: Summary of the representative values from Fig. 5. For each resampling method, and for n =
10%,102,10%,10* (with the corresponding numbers of unique texts d), the table reports Pearson’s correlation
r between the predicted and true benchmark scores, together with £1 standard deviation.

For each training set (i.e., the four folds in
the outer five-fold CV), we conducted an in-
ner five-fold cross-validation to select o from
{10,...,10%}, again following Oyama et al.
(2025). The predicted scores were then clipped
to the range [0, 100]. When the target variable v
was the mean log-likelihood (1, ...,lx) € RE,
we searched o in {1074, ..., 10*} and did not clip
the predictions.

E.5 Results

Figure 5 shows Pearson’s correlation coefficient
between the predicted scores and the benchmark
scores for Uniform, KL, and LS sampling as a
function of the number of unique texts d for each
resampling size n. Table 4 summarizes represen-
tative values obtained for each method at n =
10%, 102,103, 10* (and the corresponding d).

For all tasks and all methods, Pearson’s correla-
tion coefficient r increases as d grows. As shown
in Table 4, even at d ~ 100, the predicted scores
already achieve r ~ (.85 under every resampling
method, and only minor differences are observed
among the strategies. Hence, predictive perfor-
mance depends almost solely on the number of
unique texts d.

This behavior can be interpreted as follows:
when d < K (K =~ 10°), the column vectors of
édeI /2 ¢ RExd span a subspace of insufficient
dimensionality, limiting the expressive power of the
regression model. As d increases, the feature space
expands and ridge regression becomes effective,
leading to a rapid improvement in performance;
however, once d > 10 provides sufficient dimen-
sionality, further gains in correlation are gradual.
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