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Abstract

We address the computational cost of construct-
ing a model map, which embeds diverse lan-
guage models into a common space for com-
parison via KL divergence. The map relies on
log-likelihoods over a large text set, making the
cost proportional to the number of texts. To re-
duce this cost, we propose a resampling method
that selects important texts with weights propor-
tional to the variance of log-likelihoods across
models for each text. Our method significantly
reduces the number of required texts while pre-
serving the accuracy of KL divergence esti-
mates. Experiments show that it achieves com-
parable performance to uniform sampling with
about half as many texts, and also facilitates
efficient incorporation of new models into an
existing map. These results enable scalable and
efficient construction of language model maps.

1 Introduction

In recent years, an increasing number of studies
have been conducted to systematically compare
and organize language models (Yax et al., 2025;
Zhuang et al., 2025; Zhu et al., 2025; Horwitz
et al., 2025; Zhou et al., 2025; Harada et al., 2025;
Pasquini et al., 2025). In this context, Oyama et al.
(2025) proposed a method to estimate Kullback-
Leibler (KL) divergence between language models
based on log-likelihood vectors. In this method,
language models with different architectures are
embedded into a common space, and visualizing
this creates a map of language models (Fig. 1).

The model map is constructed using a text set
DN = {x1, · · · , xN}. Since DN is a sample from
a broader text population D† = {x†1, . . . , x†N0

}, it
introduces sampling error relative to the true rela-
tionships between models in the population1. Ad-
ditionally, the computational cost, which is propor-
tional to the number of texts N , is also an issue.

1When the entire Pile corpus is converted into 1,024-byte
text chunks, the total number of texts is N0 = 5,703,791.
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Figure 1: The model map calculated with DN is visu-
alized using t-SNE. Each point in the scatter plot cor-
responds to one of the 1,018 language models (Oyama
et al., 2025) downloaded from Hugging Face. The sam-
pling error for each point was estimated using the boot-
strap resampling method and is shown as an ellipse. See
Appendix B for details.

The primary motivation of this study is to reduce
the computational costs associated with adding new
models to the map. To address this issue, we pro-
pose a resampling procedure in which n texts are
drawn with replacement from the dataset DN . The
resulting set, denoted by D∗

d, consists of d unique
texts (d ≤ n), which is then used to efficiently
reconstruct the model map with the newly added
models. When we discuss the distance between
models calculated using log-likelihood vectors and
the reliability of the model map, it is crucial to
focus on the sampling error with respect to the
population.

To estimate the resampling error of the distance

Our code and data are available at https://github.
com/shimo-lab/modelmap.
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between models measured based on D∗
d relative

to the true distances in the population, two types
of errors need to be considered. The first is the
sampling error that the original data DN has with
respect to the population D†, and the second is
the resampling error incurred when selecting D∗

d

from DN .
Since uniform resampling from data DN may

waste many samples on less informative texts, we
propose a method that preferentially resamples
texts with large variance in log-likelihoods across
models. This approach builds on the column sam-
pling method of Drineas and Kannan (2001), origi-
nally proposed for approximating matrix products.
Through experiments, we demonstrate that our text
resampling method achieves an estimation error
comparable to that of uniform random sampling
while requiring only about half as many texts. Fur-
thermore, it facilitates the efficient incorporation
of new models into an existing model map while
maintaining accuracy.

2 Background

2.1 Map of Language Models
The map of K language models p1, . . . , pK is con-
structed based on a text set DN = {x1, · · · , xN}.
The log-likelihood of model pi for text xs is de-
noted by log pi(xs), and the log-likelihood matrix
L ∈ RK×N is composed of these elements. Let
Q ∈ RK×N be the matrix obtained by applying
double centering2 to matrix L. The i-th row vector
qi ∈ RN of this matrix serves as the coordinate for
language model pi. Oyama et al. (2025) showed
that the KL divergence between models pi and pj
can be estimated by the following equation:

2KL(pi, pj) ≈ ∥qi − qj∥2/N.

2.2 Length Squared Sampling
The idea of resampling text based on its importance
is derived from column sampling methods, which
probabilistically select a small number of columns
from a matrix A = (A(1), . . . , A(N)) ∈ RK×N to
approximate the matrix product AA⊤.

In the representative Length Squared (LS) sam-
pling method (Drineas and Kannan, 2001), each
column A(s) is sampled with a probability propor-
tional to the square of its Euclidean norm, ∥A(s)∥2.
This is known to minimize the expected Frobenius
norm of the approximation error for AA⊤.

2Centering is performed row-wise (per model) and then
column-wise (per text).

3 Resampling Texts for Model Map

3.1 Text Resampling Method
We apply the idea of LS sampling to reduce the
number of texts used for the model map, while
estimating the model distance ∥qi − qj∥2 as ac-
curately as possible. To determine the probability
πs that text xs is resampled from dataset DN =
{x1, . . . , xN}, we utilize the information in the
double centered log-likelihood matrix Q ∈ RK×N .

LS Sampling. Following the column sampling
framework of Drineas and Kannan (2001), we first
propose to define the resampling probability for
text xs as

πs ∝ ∥Q(s)∥2.
The squared norm ∥Q(s)∥2 is proportional to the
variance of the log-likelihoods for text xs across
models. This probability assignment is known to be
optimal for approximating the inner product q⊤i qj ,
but not necessarily optimal for our goal of approxi-
mating the squared Euclidean distance ∥qi − qj∥2.

KL Sampling. To directly address this goal, we
introduce a novel resampling scheme, which we
call KL sampling. Here, the resampling probability
for text xs is defined as

πs ∝

√√√√
K∑

i,j=1

(qi(xs)− qj(xs))4.

Here, qi(xs) represents the (i, s)-th component of
matrix Q ∈ RK×N . We show in Appendix C that
this method yields an optimal approximation of the
squared Euclidean distance ∥qi − qj∥2.

Baseline: Uniform Sampling. All texts are re-
sampled with equal probability πs = 1/N .

3.2 Model Map with Resampled Texts
Let D̃n be the dataset obtained by resampling n
texts from DN , and the set of d unique texts in D̃n

be D∗
d = {xu1 , . . . , xud

}. We denote c(ut) as the
number of times each text xut was resampled, such
that

∑d
t=1 c(ut) = n.

We construct the log-likelihood matrix Ld ∈
RK×d using the d resampled texts and obtain Q̃d

by double centering. In row-wise centering, the col-
umn L(ut) corresponding to the resampled text xut

should be weighted by wut = c(ut)/nπut , based
on the resampling probability πs and the number
of times it was resampled c(ut). Let q̃i ∈ Rd be
the row vector of Q̃d. The distance between model

9454



0 2000 4000 6000 8000 10000
Unique Samples: d

10 1

100

2202 2496 5000 6320

Error to Population

Resampling Error ( ): D D D
Uniform KL LS

Sampling Error ( ): D D
Experiment Theory

(a) Relative error ẽij = (g̃ij−gij)/max(gij , ε0), normalized
by gij for each model pair.
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(b) Absolute error ẽij = (g̃ij − gij)/C for each model pair,
where C = 1

K2

∑K
i,j=1 gij .

Figure 2: The error (RMSE) aggregated over all pairs of models, defined as σ̂Method,n for resampling methods
and κ̂d for ordinary sampling, plotted against the number of unique texts d. The errors are averaged over R = 100
trials. Panels show evaluation based on (a) relative error for each model pair (Section 4.1), and (b) absolute error
(Section 4.2). In both evaluations, LS sampling and KL sampling show similar performance. This paper primarily
explains the simpler LS sampling method.

d 500 2,500 5,000 7,500

Uniform 582± 4 2,877± 18 N/A N/A
KL 196± 2 1,070± 10 2,496± 22 4,780± 33
LS 195± 2 895± 9 2,202± 19 4,229± 30

Table 1: Average and standard deviation of the number
of unique texts d′ required by each resampling method
to achieve estimation accuracy comparable to that of
ordinary sampling with d texts3.

pi and pj is calculated as the weighted squared
Euclidean distance using wd = (wu1 , . . . , wud

):

∥q̃i − q̃j∥2wd
:=

d∑

t=1

c(ut)

nπut

(q̃i(xut)− q̃j(xut))
2 ,

where q̃i(xut) is the (i, t)-th component of matrix
Q̃d ∈ RK×d. This weighted distance serves as
an estimate of the original distance defined under
uniform sampling without weights.

4 Evaluation of Resampling Methods

4.1 Error of Resampled Estimates
The dataset DN is a random sample from the text
population D†, and D̃n is resampled dataset from
DN . The squared Euclidean distances computed
from D†, DN , and D̃n are, respectively, g†ij =

(N/N0)∥q†i −q†j∥2, gij = ∥qi−qj∥2, g̃ij = ∥q̃i−
q̃j∥2wd

, where q†i ∈ RN0 denotes the coordinate

3The values are computed from the resampled dataset D̃n′ ,
where n′ is the smallest resample size such that σ̂Method,n′ ≤
κ̂d. Here, κ̂d denotes the baseline error when d unique texts
are directly sampled.

of pi in D†, and the scaling ensures comparability
across different dimensionalities4.

Our objective is to evaluate the error, namely
how much g̃ij deviates from the population value
g†ij , which cannot be directly computed in practice.

Since N0 ≫ N , direct computation of g†ij is infea-
sible, and we therefore estimate the error using DN .
Details of this estimation procedure are provided
in Appendix D.

Resampling Error to Population (σ̂Method,n).
Let σ̂Method,n (Method ∈ {LS,KL,unif}) be the
estimated error relative to the true value g†ij in the
population D†. This is estimated by considering
the following two errors:

σ̂Method,n =
√
τ2unif,N + τ2Method,n.

Here, τunif,N is the bootstrap estimate (Efron and
Tibshirani, 1994) of the sampling error that DN

itself has with respect to the population D†. Sim-
ilarly, τMethod,n is the Root Mean Squared Error
(RMSE) of the resampling with respect to DN . It is
calculated from the aggregated MSE of the relative
error ẽij = (g̃ij − gij)/max(gij , ε0) as

τ2Method,n =
1

K2R

K∑

i,j=1

R∑

r=1

(
ẽ
(r)
ij

)2
,

where ẽ
(r)
ij denotes the relative error obtained in

the r-th of R independent resampling trials. In the
4g†ij and g̃ij are rescaled to match the scale of gij .
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experiments, we set ε0 = 10−3, R = 100, and
varied n from 10 to 10,000.

Baseline: Sampling Error (κ̂n). Let κn be the
aggregated relative error of gij with respect to the
true value g†ij in the population. In this sampling,
all n texts are unique, so the number of unique
texts is d = n. The bootstrap estimate (Efron and
Tibshirani, 1994) of κn is κ̂n = τunif,n.

Results. Figure 2a shows the relationship be-
tween the number of unique texts d and the esti-
mated error with respect to the population for each
resampling method. The dotted line represents the
estimated error κ̂d when d texts are directly ran-
domly sampled from the population D†, and the
thick gray solid line shows its theoretical value,
computed as

√
N/d κ̂N . The colored solid lines

represent the estimated error σ̂Method,n when resam-
pling from DN using each method. Comparing the
blue solid line (Uniform resampling from DN ) and
the black dotted line (direct sampling from D†),
Uniform resampling from DN results in an error
comparable to directly sampling the same num-
ber of texts from the population5. In contrast, LS
sampling and KL sampling achieve, with a smaller
number of unique texts, an error comparable to
the estimated error κ̂d of random sampling d texts
from the population. As can be seen from Table 1,
an error comparable to κ̂5,000 is achieved with LS
sampling using an average of d = 2,202 texts, and
with KL sampling using an average of d = 2,496
texts, which is about half the number of texts re-
quired by uniform sampling from the population to
achieve similar error. These results suggest that LS
sampling and KL sampling can achieve compara-
ble estimation accuracy with about half the number
of unique texts by selecting important texts.

4.2 Discussion on LS and KL Sampling

In Section 4.1, the error was normalized by the
magnitude of KL divergence for each model pair
to evaluate the relative error with respect to KL
divergence. In contrast, the KL sampling method
directly optimizes E[

∑K
i,j=1(g̃ij − gij)

2 | DN ],
which corresponds to minimizing the sum of ab-
solute squared errors. Accordingly, we evaluate
the error without normalization for each model
pair. Specifically, we redefine the error as ẽij =

(g̃ij − gij)/C, with C = 1
K2

∑K
i,j=1 gij .

5In Uniform resampling, weighting according to the num-
ber of duplicates slightly degrades performance.

The results of this evaluation are shown in
Fig. 2b. While KL sampling yields slightly smaller
errors under the absolute-error evaluation (Fig. 2b),
LS sampling can be slightly better under the
relative-error evaluation (Fig. 2a). In both cases,
however, the performance difference is very small.
Therefore, we focus on the simpler LS sampling
method, since it achieves performance comparable
to KL sampling.

5 Efficiency of Resampled Text Subset

5.1 Resampling Error of Model Map
Settings. We resample n texts with replacement
from DN with N = 10,000, resulting in d unique
texts6. We adopt LS sampling as the resampling
method. Model coordinates are computed from
log-likelihoods over the sampled texts and visual-
ized using t-SNE. To evaluate variability due to
resampling, we repeated the process 100 times per
setting. Here, d denotes the average number of
unique texts across trials. See Appendix B.2 for
details.

Results. Figure 3(a) shows three model maps;
ellipses indicate the standard deviation of model
positions. The first two maps show similar stability,
indicating that LS sampling achieves robustness
comparable to that of uniform sampling while re-
quiring fewer texts.

5.2 Adding New Models
We tested whether a small set of texts selected by
LS sampling is sufficient for incorporating new
models into the existing model map.

Settings. From the log-likelihoods of 898 mod-
els created before April 10, 2024, we sampled
n = 2,900 texts via LS sampling, resulting in
d = 2,192 unique texts. The remaining 120 models
were treated as new additions7. This setting uses
a single resampling trial, so d is the actual num-
ber of unique texts. We computed log-likelihoods
for the newly added models using only these texts
and visualized the updated map. To quantitatively
evaluate efficiency, we compared the computation
time of log-likelihoods using the 2,192 texts se-
lected by LS sampling with that using all 10,000
texts, and also calculated the correlation between

6To verify that this set of 10,000 texts is not biased, we
repeated the experiments with another disjoint set of 10,000
texts. See Appendix B.1 for details.

7Model creation dates were obtained using the Hugging
Face API.
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(a) Resampling Error of Model Map

<
(b) Adding New Models

LS
d = 2202

Uniform
d = 6320

Uniform
d = 2209

LS
d = 2192

All Texts
N = 10000

MSE=8.22 MSE=7.42 MSE=17.48

llama-1
llama-2

llama-3
mistral

gpt_neox
gptj

gemma
opt

bloom
falcon

deepseek
others

New 120 Models
Existing 898 Models

Figure 3: (a) Model maps based on LS (n = 2,900, d = 2,202), uniform (n = 10,000, d = 6,320), and uniform
(n = 2,500, d = 2,209) sampling. Each map shows the mean coordinates and their variability as ellipses across 100
trials. The mean squared error (MSE) of each setting, summarized over the 100 trials, is also indicated in the plots
for quantitative comparison. (b) Model maps with 120 new models added to existing 898 models. The left panel
uses d = 2,192 unique texts selected by LS sampling with n = 2,900. The right panel uses all N = 10,000 texts.

New Models
LS

d = 2,192
All

d = 10,000
KL Corr.8

DeepSeek-R1-Distill-Llama-8B 1.94 min 8.55 min 0.996
Meta-Llama-3-8B 1.84 min 8.06 min 0.997
Phi-3-medium-128k-instruct 4.48 min 18.88 min 0.996
Mistral-7B-v0.3 2.11 min 8.98 min 0.997
Qwen2-1.5B 1.08 min 4.78 min 0.997

Table 2: Computation time of log-likelihoods using the
2,192-text subset selected by LS sampling and the full
10,000-text set. All computations were performed on a
single RTX 6000 Ada GPU.

the estimated KL divergences. This evaluation was
conducted on five representative models among the
120 new ones.

Results. As shown in Fig. 3(b), the result closely
matches the full map based on all N = 10,000
texts, indicating that reliable placement is achiev-
able with a small subset. Table 2 shows that, when
using the 2,192 texts selected by LS sampling, log-
likelihood computation is at least four times faster.
Moreover, this efficiency comes with almost no loss
in accuracy: the KL divergences estimated from
this small subset are nearly identical to those from
the full dataset, achieving a Pearson correlation
of ∼ 0.997.

5.3 Prediction of Downstream Performance

Following Oyama et al. (2025), we used model
coordinates based on d unique texts to predict
the average performance on six downstream tasks
(Fig. 4). Although the resampling methods differ

8Pearson correlation between KL divergences obtained
with the 2,192-text subset and those with the full 10,000-text
set, computed for each new model across its 898 divergences
with the existing models.
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Figure 4: Pearson’s correlation r between predicted and
actual scores on the average of six downstream tasks,
shown as a function of the number of unique texts d.

in KL estimation, prediction performance is nearly
identical across methods, suggesting that the re-
sulting coordinates span comparable subspaces. At
d = 1,000, all methods achieve r ≈ 0.92–0.93, in-
dicating that even a relatively small number of texts
suffices for accurate prediction. See Appendix E
for details.

6 Conclusion

We proposed text selection methods to reduce
the computational cost of constructing model
maps. Our experiments showed that these methods
achieve estimation accuracy comparable to uniform
sampling while requiring only about half as many
texts, and that they also enable efficient incorpo-
ration of new models into an existing map. These
findings facilitate more efficient comparative anal-
ysis of large-scale language models.
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Limitations

• The aspect of data sampling has not been thor-
oughly explored in this study, apart from the
simple experiment presented in Appendix B.1.
Future work is needed to understand the ex-
tent to which our discussions generalize to
datasets different from the DN used here.

• Regarding the experiments for adding new
models, we did not include a detailed discus-
sion on the number or types of the new models
added.

• While LS and KL sampling both outper-
formed uniform sampling in KL divergence
estimation, the difference disappeared in
downstream performance prediction, where
all methods performed similarly. This sug-
gests that improvements in distance estima-
tion do not necessarily lead to gains in down-
stream utility, and the relationship between
the two warrants further investigation.
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B Details of Model Map Construction

B.1 Log-Likelihood Data of Language Models
In our experiment, we used log-likelihood
data (Oyama et al., 2025)9 for K = 1,018 lan-
guage models, calculated on N = 10,000 texts
extracted from the Pile (Gao et al., 2020).

In the experiment described in Section 5.1 for
adding new models to the model map, we clipped
the log-likelihood matrix L of the existing 898
models at the lower 2nd percentile value −1495.9,
following Oyama et al. (2025). The log-likelihood
values of the newly added 120 models were also
clipped using −1495.9 as the threshold.

To verify that this set of 10,000 texts is not
biased, we sampled a new, entirely different set
of 10,000 texts from the Pile and re-computed
the distances (i.e., KL divergences) for all pairs
among 100 models randomly sampled from the
1,018 models. The distances calculated on this new
set showed a Pearson correlation of 0.997 with the
distances from our original text set.

B.2 Visualization of Model Map
This section details the procedure for generating the
t-SNE (van der Maaten and Hinton, 2008) visual-
izations and standard deviational ellipses presented
in Fig. 1 and Fig. 3.

Coordinate Computation. First, the model coor-
dinates Q̃d ∈ RK×d are computed according to the
method described in Section 3.2. These coordinates
are subsequently reduced to two dimensions using
the t-SNE algorithm. To assess variability of each
resampling method, this entire procedure, from re-
sampling to the final t-SNE mapping, is repeated
R = 100 times. To ensure consistency across these
trials, the stochastic t-SNE process is standardized:
the initial coordinates for each run are determined
by applying PCA to the model coordinate matrix
Q̃d and the random_state parameter is fixed to
42.

Coordinate Alignment. Let Xr ∈ RK×2 denote
the matrix of t-SNE coordinates obtained from the
r-th trial (r = 1, . . . , R), and let Xref ∈ RK×2

be the reference coordinates derived from apply-
ing t-SNE to the matrix Q ∈ RK×N . To enable
meaningful comparison across the R trials, we
need to align these coordinate sets, as t-SNE re-
sults have inherent translational and rotational am-

9https://github.com/shimo-lab/modelmap/tree/
main/1000models
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LS
d = 2,202

Uniform
d = 6,320

Uniform
d = 2,209

Bias2 3.19 3.00 4.95
Variance 4.65 4.23 10.83
MSE 8.22 7.42 17.48

Table 3: Bias2, Variance, and MSE for model maps
constructed using each sampling method. For each of
1,018 models, the values are calculated over R = 100
trials relative to the reference coordinate (Yref ) created
from all N = 10,000 texts. The table reports the median
values for these metrics across all 1,018 models.

biguities. The alignment process begins by cen-
tering each coordinate set: Yr := Xr − X̄r and
Yref := Xref − X̄ref . Subsequently, Orthogonal
Procrustes analysis (Schönemann, 1966) is applied.
For each Yr, we find an orthogonal transformation
matrix Ur ∈ R2×2 that best aligns it with Yref . The
final aligned coordinates are given by Zr := YrUr.

Centrography. After aligning all R = 100 sets
of coordinates, we analyze the variability of each
model point. Let z(r)

i ∈ R2 be the 2D coordi-
nate vector for model i from the r-th aligned set
Zr ∈ RK×2. For each model coordinate, the mean
coordinate z̄i =

1
R

∑R
r=1 z

(r)
i and the covariance

matrix Cov(zi) ∈ R2×2 are calculated across the
R trials. The standard deviational ellipses (Yuill,
1971) shown in Fig. 1 and Fig. 3 are derived from
these covariance matrices, with their height, width,
and angle determined by the eigenvalues and eigen-
vectors of Cov(zi).

Quantitative Evaluation. We quantitatively
evaluate the stability and accuracy of the model
maps created using LS and Uniform sampling.
The mean squared error (MSE) was calculated
for each model i based on the aligned coordi-
nate sets {Zr}100r=1 and the reference coordinate
Yref =

[
yref
1 , · · · ,yref

K

]⊤ ∈ RK×2. The MSE is
decomposed into bias, which indicates the accu-
racy, and variance, which reflects the stability of
the resampling process:

MSE = ∥z̄i − yref
i ∥2︸ ︷︷ ︸

Bias2

+
1

R

R∑

r=1

∥z(r)
i − z̄i∥2

︸ ︷︷ ︸
Variance

Table 3 shows the median values of these metrics
across 1,018 models. The results indicate that LS
sampling achieves comparable accuracy and sta-
bility than Uniform sampling with less than half

the number of unique texts. Furthermore, when the
number of unique texts is similar (approximately
2,200), LS sampling exhibits lower bias and vari-
ance, demonstrating that LS sampling can construct
more accurate and stable maps.

C KL Sampling

Notation. We resample a text xs from the dataset
DN = {x1, . . . , xN} with probability πs. Let
the n resampled texts be denoted by D̃n =
(xu1 , . . . , xun). Define Q̃ = (Q(u1), . . . , Q(un)) ∈
RK×n, and q̃i ∈ Rn as the i-th row vector of Q̃.
Denoting the (i, t)-th element of Q̃ as q̃i(xut), we
see that this value is equal to qi(xut). Note that,
unlike the notation used in Section 3.2, q̃ allows for
duplication of the resampled texts and its columns
are resampled from the double-centered matrix Q.

Let wn = (1/nπu1 , . . . , 1/nπun)
⊤ ∈ Rn be the

weights on the resampled texts, where

wt =
1

nπut

for t = 1, . . . , n, and let W = diag(wn) be the
corresponding diagonal matrix. Note that, unlike
Section 3.2 where duplicate texts were summarized
by counts c(ut), here duplicates are explicitly rep-
resented in D̃n, so c(ut) is not needed. Define
gij = ∥qi − qj∥2 and g̃ij = ∥q̃i − q̃j∥wn , where
the weighted norm is taken with respect to wn.

Throughout Appendix C, the expectation oper-
ator E[·] is taken with respect to the resampling
procedure, conditional on the dataset DN . That is,
E[·] should be interpreted as E[· | DN ].

LS Sampling. According to Drineas and Kan-
nan (2001), the expected Frobenius norm of the
approximation error E

[
∥Q̃WQ̃⊤ −QQ⊤∥2F

]
is

minimized when the resampling probabilities sat-
isfy πs ∝ ∥Q(s)∥2.

KL sampling (Proposed). Instead of approxi-
mating the inner products in Q, we aim to approxi-
mate the sum of the pairwise distances. We prove
that the resampling probabilities πs that minimize
E
[∑K

i,j=1(g̃ij − gij)
2
]

are given by

πs ∝

√√√√
K∑

i,j=1

(qi(xs)− qj(xs))
4.

Lemma 1. For any i, j ∈ {1, . . . ,K}, it holds that

E [g̃ij ] = gij .
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Proof. Since each resampled column is indepen-
dently chosen from {1, . . . , N} with probability
πs, the expectation removes πs and yields the full
sum over all texts, as shown below:

E[g̃ij ]
= E[∥q̃i − q̃j∥2wn

]

= E

[
n∑

t=1

1

nπut

(q̃i(xut)− q̃j(xut))
2

]

=
1

n

n∑

t=1

E
[

1

πut

(qi(xut)− qj(xut))
2

]

=
1

n

n∑

t=1

N∑

s=1

1

πs
(qi(xs)− qj(xs))

2πs

= ∥qi − qj∥2
= gij .

Lemma 2. The variance of the weighted distance
after resampling is given by

Var (g̃ij)

=
1

n

N∑

s=1

1

πs

(
qi(xs)− qj(xs)

)4
− 1

n
∥qi − qj∥4.

Proof. Since the n resampled columns are indepen-
dent, the variance of the sum equals the sum of the
variances of each term. Thus, by expanding the
variance of each term and taking expectations with
respect to πs, we obtain

Var(g̃ij)

= Var

(
n∑

t=1

1

nπut

(
q̃i(xut)− q̃j(xut)

)2
)

=
n∑

t=1

Var

(
1

nπut

(
q̃i(xut)− q̃j(xut)

)2)

=
n∑

t=1

(
1

n2

N∑

s=1

1

πs

(
qi(xs)− qj(xs)

)4

−
( 1
n
∥qi − qj∥2

)2)

=
1

n

N∑

s=1

1

πs

(
qi(xs)− qj(xs)

)4
− 1

n
∥qi − qj∥4.

Proposition 1. The resampling probabilities πs

that minimize E
[∑K

i,j=1(g̃ij − gij)
2
]

are given by

πs ∝

√√√√
K∑

i,j=1

(qi(xs)− qj(xs))
4.

Proof. Let As =
∑K

i,j=1

(
qi(xs) − qj(xs)

)4 for
s = 1, . . . , N . By Lemma 1, we have

E




K∑

i,j=1

(g̃ij − gij)
2


 =

K∑

i,j=1

Var(g̃ij).

Therefore, by Lemma 2, we aim to minimize

f(π1, . . . , πN ) =
N∑

s=1

1

πs
As

subject to the constraint
∑N

s=1 πs = 1. Let

g(π1, . . . , πN , λ)

= f(π1, . . . , πN ) + λ

(
N∑

s=1

πs − 1

)
.

By setting
∂g

∂πs
= 0, we obtain

λπ2
s = As.

Solving this with respect to πs, we have

πs =

√
As∑N

s′=1

√
As′

.

When πs > 0,

∇2f(π1, . . . , πN ) = diag

(
2A1

π3
1

, . . . ,
2AN

π3
N

)
.

This Hessian is positive semidefinite, and positive
definite if As > 0 for all s. The feasible set
{π :

∑
s πs = 1, πs ≥ 0}, called the probabil-

ity simplex, is convex. Since f is convex on this
simplex (strictly convex when As > 0 for all s),
the stationary point obtained above (with πs = 0
whenever As = 0) is the global minimizer under
the constraint.

D Estimating the Population Error of
Resampled Distances

This section provides a detailed discussion of the
error evaluation method introduced in Section 4.1.
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Sampling Error. We consider the case where
a dataset Dn = (x1, . . . , xn) of size n is sam-
pled from a large population of texts D† =
(x†1, . . . , x

†
N0

). Here we use n (instead of N used
in the main text) to denote a general sample size, in
order to analyze the error as a function of the num-
ber of sampled texts. We assume that N0 ≫ n
and n is sufficiently large. Let L† ∈ RK×N0

and L ∈ RK×n denote the log-likelihood matri-
ces evaluated on D† and Dn, respectively. Their
doubly centered versions are denoted by Q† =
[Q†(1), . . . ,Q†(N0)] and Q = [Q(1), . . . ,Q(n)],
with row vectors q†i ∈ RN0 and qi ∈ Rn repre-
senting the coordinates of model pi in each case.
Since n is sufficiently large, the average vector used
in centering Q can be well approximated by that of
Q†, and thus each column of Q may be regarded as
a random sample drawn without replacement from
the columns of Q†.

We focus on the squared Euclidean distance be-
tween two models pi and pj . To ensure comparabil-
ity with the case where the data size is n = N , we
introduce a scaling factor to normalize the estimate
and define:

gij =
N

n
∥qi − qj∥2

=
N

n

n∑

s=1

(qi(xs)− qj(xs))
2 ,

g†ij =
N

N0
∥q†i − q†j∥2

=
N

N0

N0∑

s=1

(
q†i (x

†
s)− q†j(x

†
s)
)2

.

We define the sampling error as

εij = gij − g†ij .

Since the terms {(qi(xs) − qj(xs))
2}ns=1 can be

regarded as random samples from {(q†i (x
†
s) −

q†j(x
†
s))2}N0

s=1, gij is an unbiased estimator of g†ij ,
and thus the sampling error satisfies E[εij ] = 0.

The mean squared error (MSE) of this sampling
error is then given by

κ2ij,n = E[ε2ij ].

Following the formulation in Section 4.1, we then
aggregate these errors across all model pairs by
considering their relative magnitudes:

κ2n =
1

K2

K∑

i,j=1

κ2ij,n

max(g†ij , ε0)
2
,

where ε0 > 0 is a small constant to avoid division
by zero.

Bootstrap Estimate of Sampling Error. We
consider a bootstrap procedure that randomly sam-
ples n texts uniformly with replacement from the
dataset Dn (we note that Dn may later be re-
placed by DN ). That is, each text in Dn is se-
lected with equal probability πs = 1/n. Let
D̃n = (x̃1, . . . , x̃n) = (xu1 , . . . , xun) denote the
resampled dataset. The log-likelihood matrix and
its doubly centered version for D̃n are denoted by
L̃ ∈ RK×n and Q̃ ∈ RK×n = [Q̃(1), . . . , Q̃(n)],
respectively, and the coordinate vector of model
pi is denoted by q̃i ∈ Rn. When n is sufficiently
large, the mean vector used for centering Q̃ can be
well approximated by that of Q, so each column
of Q̃ may be regarded as a random sample (with
replacement) from the columns of Q.

Unlike in Section 3.2, where resampling with
replacement was handled by recording the number
of duplicates and incorporating them as weights,
we here represent the resampled data explicitly by
allowing duplicate entries in the coordinate vec-
tors q̃i. Thus, the difference is only notational,
and both approaches describe the same underlying
resampling process.

As in the previous subsection, we focus on the
squared Euclidean distance between models pi and
pj . To ensure comparability with the case of dataset
size n = N , we scale the estimate as follows:

g̃ij =
N

n
∥q̃i − q̃j∥2

=
N

n

n∑

s=1

(q̃i(x̃s)− q̃j(x̃s))
2 .

The terms {(q̃i(x̃s)− q̃j(x̃s))
2}ns=1 can be viewed

as a bootstrap sample drawn (with replacement)
from the set {(qi(xs) − qj(xs))

2}ns=1. We define
the resampling error as

ε̃ij = g̃ij − gij ,

which satisfies E[ε̃ij | Dn] = 0 by construction.
The conditional mean squared error (MSE) of g̃ij
given Dn is defined as

τ2ij,n = E
[
ε̃2ij | Dn

]
.

In practice, we estimate this quantity by performing
R independent bootstrap trials and computing

τ2ij,n =
1

R

R∑

r=1

(
ε̃
(r)
ij

)2
,
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where ε̃
(r)
ij is the resampling error from the r-th

trial.
This quantity τ2ij,n serves as the bootstrap esti-

mate of κ2ij,n (Efron and Tibshirani, 1994):

κ̂2ij,n = τ2ij,n.

We may also replace Dn with DN ; in that case,
this procedure corresponds to an n-out-of-N boot-
strap (Bickel and Sakov, 2008; Shimodaira, 2014),
and τ2ij,n remains a valid estimator of κ2ij,n. Intu-
itively, replacing Dn by a larger dataset DN does
not alter the distributional behavior of the resam-
pled dataset D̃n, because its properties are deter-
mined solely by the resample size n rather than the
population size. Moreover, the resampling MSE
obeys a standard scaling law τ2ij,n ∝ n−1, and can
be approximated by the theoretical relation

τ2ij,n =
N

n
τ2ij,N .

Following Section 4.1, we define the aggregated
resampling MSE as

τ2unif,n =
1

K2

K∑

i,j=1

τ2ij,n
max(gij , ε0)2

.

Here τ2ij,n is based on uniform resampling from
DN with equal probability. This corresponds to the
uniform resampling case discussed in Section 4.1.
The above discussion on τ2ij,n also applies to the
aggregated quantity τ2unif,n, since it is simply the
average of the pairwise relative errors. Accordingly,
the bootstrap estimate of the sampling MSE κ2n is
given by

κ̂2n = τ2unif,n.

The scaling law yields the approximation

τ2unif,n =
N

n
τ2unif,N .

Decomposition of Population Error. In the pre-
vious subsection, we assumed uniform resampling,
where each text is drawn with equal probability.
Here, however, we consider the general case of
weighted resampling. We consider a two-stage
sampling procedure: first, we obtain a dataset DN

by randomly sampling N texts from the population
D†; then, we perform weighted resampling with re-
placement from DN to obtain a smaller dataset D̃n

of size n. As described in Section 3, we consider
three types of resampling weights: LS sampling,
KL sampling, and uniform sampling.

The estimated squared distance based on the re-
sampled data is defined as

g̃ij = ∥q̃i − q̃j∥2wn
.

Here we adopt the notation for the weights with-
out c(ut), because in D̃n duplicates are explicitly
represented rather than summarized by counts (see
Appendix C). Thus each resampled entry carries
the weight wt = 1/(nπut), which incorporates the
scaling factor N/n so that the estimate matches the
scale for sample size N . In particular, for uniform
sampling (πut = 1/N ), this weight exactly reduces
to N/n.

We now analyze the error of the resampling esti-
mator g̃ij relative to the true value g†ij in the popu-
lation. Define the error as

ε†ij = g̃ij − g†ij .

This error can be decomposed as

ε†ij = (g̃ij − gij) + (gij − g†ij)

= ε̃ij + εij ,

where ε̃ij and εij denote the resampling error and
the sampling error, respectively.

Taking the expectation of the squared error, we
obtain the decomposition of the MSE:

σ2
ij,n = E[(ε†ij)

2]

= E[(ε̃ij + εij)
2]

= E[E[ε̃2ij | DN ]]

+ 2E[E[ε̃ij | DN ]εij ] + E[ε2ij ]
= E[τ2ij,n] + κ2ij,N ,

since the resampling error satisfies E[ε̃ij | DN ] =
0. Here, we define the conditional MSE

τ2ij,n = E[ε̃2ij | DN ],

which in practice is estimated from resampling er-
rors ε̃

(r)
ij obtained via weighted resampling from

DN . The term κ2ij,N = E[ε2ij ] can be estimated
by the bootstrap MSE under uniform resampling
of size N , denoted by τ2ij,unif,N . Accordingly, we
estimate σ2

ij,n by

σ̂2
ij,n = τ2ij,n + τ2ij,unif,N .

As in Section 4.1, we define the aggregated pop-
ulation MSE from σ2

ij,n by

σ2
n =

1

K2

K∑

i,j=1

σ2
ij,n

max(g†ij , ε0)
2
.
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Let τ2n denote the aggregated resampling MSE, de-
fined from τ2ij,n as

τ2n =
1

K2

K∑

i,j=1

τ2ij,n
max(gij , ε0)2

,

which is in the same form as τ2unif,n in the previous
subsection but allows the resampling to use LS,
KL, or uniform weights. Substituting the estimate
σ̂2
ij,n into σ2

ij,n in the expression of σ2
n yields the

estimate:
σ̂2
n = τ2n + τ2unif,N .

Note that while σ2
n is defined using the true dis-

tances g†ij in the denominator, its estimator τ2n re-
places them by the empirical distances gij com-
puted from DN .

E Model Performance Prediction

We computed the log-likelihoods of the unique
texts contained in the resampled data and, follow-
ing Oyama et al. (2025), used these values to pre-
dict model performance. This section describes the
experiments in detail.

E.1 Model Performance
Following Oyama et al. (2025), we used the Open
LLM Leaderboard v1 (Beeching et al., 2023) as
the source of model performance scores10. The
leaderboard provides scores for the following six
benchmark tasks11: AI2 Reasoning Challenge
(ARC) (Clark et al., 2018), HellaSwag (Zellers
et al., 2019), MMLU (Hendrycks et al., 2021),
TruthfulQA (Lin et al., 2022), Winogrande (Sak-
aguchi et al., 2019), and GSM8K (Cobbe et al.,
2021).

In addition to these benchmark scores, we fol-
lowed Oyama et al. (2025) and also predicted (i)
the average across the six tasks (hereafter referred
to as 6-TaskMean) and (ii) the mean log-likelihood
ℓ̄i of the log-likelihood vector ℓi ∈ RN .

E.2 Dataset Configuration
The number of resampled texts was set to

n ∈ {10, 20, . . . , 90, 100, 200, . . . , 900,
1,000, 2,000, . . . , 9,000, 10,000}.

10https://huggingface.co/spaces/
open-llm-leaderboard-old/open_llm_leaderboard

11Benchmark scores are available for 996 of the 1,018 mod-
els released by Oyama et al. (2025). For convenience, we
denote this subset size by K throughout this section.

As explained in Section 3, resampling n texts
from DN yields D̃n, and from this resampled
set we extract a set of d unique texts, D∗

d =
{xu1 , . . . , xud

}. Using these d texts, we com-
puted the log-likelihood matrix Ld ∈ RK×d and
then formed the doubly-centered matrix Q̃d =
[q̃1, . . . , q̃K ]⊤ ∈ RK×d with scaling weights

wd =
(
c(u1)
nπu1

, . . . , c(ud)
nπud

)⊤
∈ Rd.

For each benchmark task, the dataset is
given as {(q̃1, v1), . . . , (q̃K , vK)}, where q̃i =
(q̃i(xu1), . . . , q̃i(xud

))⊤ ∈ Rd is the i-th row of
Q̃d corresponding to language model pi, and vi ∈
[0, 100] is its benchmark score.

E.3 Regression Formulation
As in Oyama et al. (2025), we adopted ridge regres-
sion to predict each benchmark score. The matrix
of explanatory variables is

Q̃dW
1/2
d ∈ RK×d, (1)

where the diagonal matrix W
1/2
d ∈ Rd×d has√

c(ut)
nπut

on its t-th diagonal entry12. Let v =

(v1, . . . , vK)⊤ ∈ RK denote the vector of target
variables. The objective function, parameterized
by θ ∈ Rd, is defined as

L(θ) = ∥v − Q̃dW
1/2
d θ∥2 + α∥θ∥2,

where α ∈ R>0 is a hyperparameter controlling
the strength of regularization.

E.4 Training Setup
We partitioned the set of models into five folds ac-
cording to their model types, as defined in Oyama
et al. (2025). We then trained the parameters and
predicted the benchmark scores. Training was per-
formed with RidgeCV from scikit-learn (Varoquaux
et al., 2015). To account for randomness, we re-
peated the data split with five different random
seeds. As the evaluation metric, we computed Pear-
son’s correlation coefficient (r) between the pre-
dicted and true benchmark scores for each split and
averaged the results.

12We adopt Q̃dW
1/2
d as the matrix of explanatory vari-

ables rather than Q̃d itself. Let Wd = diag(wd), whose
t-th diagonal entry is c(ut)

nπut
. Since W

1/2
d W

1/2
d = Wd, we

have Q̃dW
1/2
d (Q̃dW

1/2
d )⊤ = Q̃dWdQ̃

⊤
d . Then Lemma 1

of Drineas and Kannan (2001) gives E
[
Q̃dWdQ̃

⊤
d

]
= QQ⊤.

Thus, pre-multiplying by W
1/2
d preserves this desirable ex-

pectation while appropriately re-scaling the features.
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Figure 5: Pearson’s correlation coefficient (r) between the predicted scores and the benchmark scores as a function
of the number of unique texts d (determined by the resampling size n), plotted separately for each resampling
method. Solid lines indicate the mean across five different data splits, and the shaded bands show ±1 standard
deviation. For every task and every method, predictive performance improves as d increases.

n d Method ARC HellaSwag MMLU TruthfulQA Winogrande GSM8K 6-TaskMean mean log-likelihood

101
10 Uniform 0.682 ± 0.014 0.650 ± 0.014 0.614 ± 0.022 0.396 ± 0.056 0.662 ± 0.008 0.400 ± 0.099 0.625 ± 0.026 0.671 ± 0.007
9 KL 0.494 ± 0.029 0.559 ± 0.010 0.417 ± 0.034 0.120 ± 0.101 0.448 ± 0.025 0.281 ± 0.063 0.429 ± 0.041 0.524 ± 0.012
9 LS 0.116 ± 0.051 0.138 ± 0.036 0.082 ± 0.045 -0.016 ± 0.065 0.124 ± 0.040 0.199 ± 0.061 0.104 ± 0.043 0.258 ± 0.030

102
100 Uniform 0.896 ± 0.012 0.877 ± 0.007 0.852 ± 0.012 0.705 ± 0.052 0.878 ± 0.007 0.706 ± 0.034 0.872 ± 0.006 0.909 ± 0.010

99 KL 0.888 ± 0.012 0.870 ± 0.015 0.861 ± 0.006 0.655 ± 0.036 0.875 ± 0.021 0.674 ± 0.043 0.857 ± 0.008 0.928 ± 0.018
99 LS 0.885 ± 0.005 0.847 ± 0.008 0.812 ± 0.016 0.722 ± 0.023 0.874 ± 0.009 0.733 ± 0.039 0.868 ± 0.006 0.910 ± 0.012

103
949 Uniform 0.933 ± 0.004 0.905 ± 0.005 0.903 ± 0.007 0.849 ± 0.015 0.929 ± 0.004 0.821 ± 0.012 0.925 ± 0.005 0.946 ± 0.014
912 KL 0.937 ± 0.003 0.898 ± 0.006 0.899 ± 0.010 0.832 ± 0.025 0.926 ± 0.002 0.847 ± 0.022 0.933 ± 0.007 0.960 ± 0.012
898 LS 0.923 ± 0.003 0.880 ± 0.004 0.906 ± 0.007 0.840 ± 0.012 0.911 ± 0.007 0.822 ± 0.041 0.919 ± 0.009 0.943 ± 0.015

104
6,335 Uniform 0.942 ± 0.002 0.905 ± 0.004 0.916 ± 0.006 0.879 ± 0.018 0.933 ± 0.005 0.857 ± 0.018 0.945 ± 0.004 0.989 ± 0.006
5,240 KL 0.937 ± 0.002 0.896 ± 0.005 0.917 ± 0.005 0.885 ± 0.009 0.930 ± 0.003 0.857 ± 0.026 0.941 ± 0.005 0.988 ± 0.006
5,080 LS 0.935 ± 0.002 0.897 ± 0.006 0.918 ± 0.007 0.882 ± 0.014 0.931 ± 0.005 0.851 ± 0.019 0.941 ± 0.004 0.986 ± 0.007

Table 4: Summary of the representative values from Fig. 5. For each resampling method, and for n =
101, 102, 103, 104 (with the corresponding numbers of unique texts d), the table reports Pearson’s correlation
r between the predicted and true benchmark scores, together with ±1 standard deviation.

For each training set (i.e., the four folds in
the outer five-fold CV), we conducted an in-
ner five-fold cross-validation to select α from
{101, . . . , 109}, again following Oyama et al.
(2025). The predicted scores were then clipped
to the range [0, 100]. When the target variable v
was the mean log-likelihood (ℓ̄1, . . . , ℓ̄K) ∈ RK ,
we searched α in {10−4, . . . , 104} and did not clip
the predictions.

E.5 Results
Figure 5 shows Pearson’s correlation coefficient
between the predicted scores and the benchmark
scores for Uniform, KL, and LS sampling as a
function of the number of unique texts d for each
resampling size n. Table 4 summarizes represen-
tative values obtained for each method at n =
101, 102, 103, 104 (and the corresponding d).

For all tasks and all methods, Pearson’s correla-
tion coefficient r increases as d grows. As shown
in Table 4, even at d ≈ 100, the predicted scores
already achieve r ≈ 0.85 under every resampling
method, and only minor differences are observed
among the strategies. Hence, predictive perfor-
mance depends almost solely on the number of
unique texts d.

This behavior can be interpreted as follows:
when d ≪ K (K ≈ 103), the column vectors of
Q̃dW

1/2
d ∈ RK×d span a subspace of insufficient

dimensionality, limiting the expressive power of the
regression model. As d increases, the feature space
expands and ridge regression becomes effective,
leading to a rapid improvement in performance;
however, once d ≳ 103 provides sufficient dimen-
sionality, further gains in correlation are gradual.
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