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Abstract

Scientific evaluation of Large Language Mod-
els is an important topic that quantifies any
degree of progress we make with new mod-
els. Even though current LLMs show high
level of accuracy on benchmark datasets, the
single-sample approach to evaluating them is
not sufficient as it ignores high entropy of LLM
responses. We introduce a Monte-Carlo eval-
uation framework for evaluating LLMs that
follows behavioral science methodologies and
provides statistical guarantees for estimates of
performance. We test our framework on mul-
tiple LLMs to see if they are susceptible to
cognitive biases. We find significant effect of
prompts that induce cognitive biases in LLMs,
raising questions about their reliability in social
sciences and business.

1 Introduction

Large Language Models (LLMs) have demon-
strated remarkable capabilities across a wide range
of natural language tasks, from question answering
to creative writing, reasoning, and code generation.
Despite the strong focus of current literature on
mathematics, coding, and general question answer-
ing capabilities of Large Language Models, LLM
use is expanding well beyond these areas. LLMs
are increasingly integrated into critical applications
across diverse fields such as healthcare (Clusmann
et al., 2023; Nazi and Peng, 2023; Singhal et al.,
2025), education (Dong et al., 2024; Gan et al.,
2023; Wang et al., 2024), and decision support
systems (Xu et al., 2024; Benary et al., 2023; Li
et al., 2022). In particular, there is growing interest
in the application of Large Language Models in
social sciences. Consumer behavior researchers
are exploring how LL.Ms can simulate and replace
human participants (Aher et al., 2023). There is
unprecedented reliance on Al agents in making
consumption decisions (Dellaert et al., 2020).
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Despite this interest from researchers and con-
sumers, the scientific literature has not addressed
two major gaps in our understanding of LLM be-
havior in social sciences settings. First, there is
an absence of a proper evaluation framework for
social sciences problems that properly accounts for
high entropy of LLM responses. Second, there is a
lack of LLLM evaluation beyond the standard bench-
mark datasets on coding, mathematics, and gen-
eral questions answering. To address the first gap,
we define a Monte-Carlo evaluation framework to
gain a reliable estimate of LLM performance. This
framework accounts for the high level of entropy
(MacKay, 2003) in LLM responses, which is ne-
glected by the standard evaluation practice. To ad-
dress the second gap, we formulate an experimental
setup inspired from consumer behavior literature
that allows scientific testing of LLMs’ performance
in consumption settings. We focus specifically on
the problem of pricing in economics and business.

In our investigation, we ground our analy-
sis in consumer choice theory by drawing on
established models from behavioral economics,
namely stochastic utility theory (Manski, 1977) and
prospect theory (Tversky and Kahneman, 1974),
which predict that consumer decisions stem from
underlying latent utilities and that choices vary ac-
cording to risk preferences, perceived value, and
budget constraints. By analogously modeling the
magnitude of maximum willingness-to-pay (WTP)
elicited from LLMs, we evaluate whether these
models, which have traditionally been applied to
human decision-makers, hold predictive power for
artificial decision-making systems.

We further interrogate whether LLM responses
reflect systematic deviations from traditional ratio-
nal behavior, such as anomalies in consistency and
anchoring effects (Strack and Mussweiler, 1997;
Ariely et al., 2003), by comparing the simulated
choice patterns against norms predicted by eco-
nomic theory.
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Simultaneously, our study delves into emer-
gent behavior using complex decision patterns that
arise from the high-dimensional, data-driven learn-
ing process of LLMs, despite the absence of an
explicitly programmed decision-making module.
Specifically, we aim to uncover whether the LLMs,
when tasked with consumer-like evaluations (e.g.,
Google’s Project Mariner; DeepMind (2025)), pro-
duce non-linearities or clustering in willingness-
to-pay that mirror cognitive biases or contextual
influences observed in human subjects.

This article makes two main contributions. First,
we identify and formalize the limitations of single-
sample evaluation approaches for high-entropy
LLMs, and introduce a Monte-Carlo sampling
framework for LLM evaluation that provides sta-
tistical reliability metrics beyond accuracy, which
can be applied to general LLLM evaluation as well
as social sciences and business. Second, we show
limitations of LLMs in uncertain decision mak-
ing, by quantifying the between- and within- LLM
variance as well as their susceptibility to cognitive
biases.

2 Related work

Consumer behavior and artificial intelligence
Consumers are increasingly utilizing artificial in-
telligence (AI) models in their everyday consump-
tion. There is a rich literature on how consumers’
respond to Al-generated outputs. Artificially In-
telligent Voice Assistants (AIVAs) are commonly
used in everyday purchase decisions (Dellaert et al.,
2020). In their decision-making, consumers tend
to trust AI models to the point of "overdepending"
on them even when those the responses are sub-
optimal (Banker and Khetani, 2019). Specifically,
in the context of online shopping, consumers rely
on Al decision making without much thought (Jain
et al., 2024). There is also an increase in intelligent
LLM-based agents that seek to replace humans in
making purchase decision (e.g., Google’s Project
Mariner (DeepMind, 2025))

Large Language Model bias As Large Lan-
guage Models continue to improve in natural lan-
guage generation and consumers increase their trust
and reliance on Al-generated decisions, it is imper-
ative to understand potential LLM biases when it
comes to decision making.

In recent years, there has been an emergence and
growth in research on algorithmic bias. Algorith-
mic bias refers to a phenomenon where a machine

learning model displays similar social patterns as
the ones embedded in the data used to train the
model (Johnson, 2021). Prior research has investi-
gated various cases where LLLMs show social biases
(Gallegos et al., 2024). This phenomenon has been
mostly attributed to the implicit and explicit biases
present in the training data of the LLMs (John-
son, 2021) and the uncurated nature of the training
data (Gallegos et al., 2024). Another factor identi-
fied as the source of social biases in LLMs is the
benchmark datasets used to fine-tune these models.
Gallegos et al. (2024) argue that LLMs are opti-
mized on datasets that do not represent the broad
population that will end up using these models.

Cognitive biases in Large Language Models
Cognitive biases have long been one of the main
points of focus for social sciences researchers
(Haselton et al., 2015). They refer to systematic
biases that deviate from rational decision making
(Dowling et al., 2020). Many behavioral biases
have been studied in consumer behavior includ-
ing framing effects (Lee et al., 2015; Cheema and
Patrick, 2008; Diehl, 2005; Morwitz et al., 1998;
Levin and Gaeth, 1988; Yang et al., 2013; Cox and
Cox, 2001), overgeneralization (Andrews et al.,
1998), overconfidence (Soman, 1998; Lambrecht
and Skiera, 2006) and anchoring effects (Adaval
and Wyer Jr, 2011; Ariely et al., 2003). Prior re-
search has investigated the presence of cognitive bi-
ases in Large Language Models (Ross et al., 2024;
Jones and Steinhardt, 2022; Macmillan-Scott and
Musolesi, 2024; Echterhoff et al., 2024). For code
generation, Jones and Steinhardt (2022) tested two
LLMs on some of the most common cognitive bi-
ases including anchoring bias and framing effects.
The article provides indication of cognitive biases
in LLMs for coding by showing how prompting
LLMs can negatively affect their performance by
introducing cognitive biases. Even though these
articles provide helpful indication of the presence
of cognitive biases in LLMs, their methodologi-
cal approach uses single-sample estimation to ana-
lyze LLLM behavior, which ignores high entropy of
LLMs and does not provide a complete picture for
stochasticity of LLM responses.

3 Methodology

The standard approach to evaluating LLMs in-
volves measuring the "pass@1" accuracy (i.e., the
correctness of a single response to a given prompt)
across benchmark datasets (Achiam et al., 2023;
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Team et al., 2023; Meta, 2024; Guo et al., 2025;
Hurst et al., 2024). While this methodology pro-
vides a basic assessment of model capabilities, it
fundamentally ignores the intrinsic variability in
LLM outputs. Modern LLMs operate with non-
zero temperature settings that introduce controlled
randomness into their generation process (Chen
et al., 2021; Su et al., 2022), allowing them to
produce more natural, creative, and human-like re-
sponses. This randomness is desirable for many
applications, to the point that almost all LLMs use
non-zero temperature. This non-zero temperature
creates a critical challenge for model evaluation.
The same model, given identical inputs, can pro-
duce substantially different outputs from one infer-
ence to the next.

To illustrate this, consider an LLM that some-
times exhibits strong anchoring bias in pricing judg-
ments but at other times provides rational market-
based valuations in response to identical prompts.
Standard single-sample evaluation of the LLM
would categorize this model as either biased or
rational depending solely on which single response
was sampled. Using our Monte-Carlo framework
(Algorithm 2), we sample multiple responses us-
ing the same LLM and prompt. By analyzing the
aggregated behavior of the LLM, we statistically
measure the reliability and the rationality of the
LLM, by obtaining the model’s true probabilistic
behavioral profile. This approach would allow us
to make informed decisions when utilizing LLMs
as decision aids in sensitive consumption choices.

4 Statistical framework

Here we present the statistical framework. The
proofs to the theorem are presented in the Appendix
A2

Let f(p,y,r) denote an evaluation function that
maps a prompt p € P, the correct response y, and a
sampled response r ~ M (p; T") from a stochastic
language model M at non-zero temperature 7', to
a real-valued score. Define the true model behavior
as the expectation:

v(M;p,y) = Eropmery [f (0, 9,7)] - (D

Let {Tk}szl be K i.i.d. samples from M (p; T,
and define the empirical Monte Carlo estimator

1 K
=2 fowm). @

k=1

o (M;p,y) =

Then, the Monte-Carlo evaluation framework
has three main properties. First, the Monte-Carlo
sample evaluation, 0x (M; p, y), is an unbiased es-
timator of the true population evaluation. In the
context of LLM evaluation, this means that averag-
ing multiple model responses to the same prompt
provides an unbiased estimate of the model’s true
behavior, accounting for the inherent variability
introduced by non-zero temperature sampling. Sec-
ond, the between-sample variance decays to 0
as K becomes large enough. Third, the Monte-
Carlo sample asymptotes to a normal distribution,

N (u, %2) This allows us to define confidence

intervals for LLM predictions and evaluation met-
rics.

Theorem 1

Elog (M;p,y)] = v(M;p,y) ()
Theorem2 Letr,...,rx o M(p;T) be iid.
samples from the stochastic LLM at temperature 7.
Given the Monte-Carlo sample evaluation, 9, the
Monte-Carlo sample variance asymptotes to zero
as K — oo,

lim Var[og] =0, 4)

K—oo

where o2 is the variance of the random variable
f (p 'Y, Tkr)'

Corollary The normalized estimator follows a
normal distribution as K — co:

[k (M;p,y) — o(M;p, )] VE 5 N(0,02),
(5)

4.0.1 Choosing the value of K

To determine the optimal number of Monte-Carlo
samples K in our framework, we use power anal-
ysis for the F-test in an ANOVA design, which
ensures sufficient statistical power to detect small
effect sizes (i.e., Cohen’s f < 0.10) when com-
paring expected scores v(M; p, y) across g groups
(e.g., different LLM behaviors or prompts). In
a balanced one-way ANOVA with g groups and
K samples per group (total N = gK), the non-
centrality parameter is A = ¢gK f?, with degrees
of freedom df; = g — 1 and dfy = g(K — 1).
The power 1 — (3 is the probability that the non-
central F-distribution F'(dfy,dfs, A) exceeds the
critical value Fiy = F~1(1 — «;dfy,dfy) for
significance level a. Solving for the minimal
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K involves finding the smallest integer such that
1 — 3 > 1— F(Fgig; dfy, dfa, \), where F'(+;-) is
the cumulative distribution function of the non-
central F. This can be efficiently computed via
binary search as detailed in Algorithm 1. This
derivation balances precision for small effects with
computational efficiency (see Appendix A.2.4 for
implementation details).

5 Hypothesis development

A large number of consumers rely on Al agents
to help them with their pricing choice decision, in
many cases without giving the response of the Al
agent much thought (Jain et al., 2024). In this case,
we know little about how LLMs behave in face of
market-related decisions. Do they act rationally, or
do they fall prey to the same marketing manipula-
tions as humans? To address these questions, we
develop the following hypotheses.

H1 The willingness-to-pay of Large Language
Models is different from the actual market price.

H?2 Large Language Models vary in their price
estimation capabilities, with some exhibiting sys-
tematically larger absolute price deviations from
actual market prices in their willingness-to-pay.

Anchoring bias Anchoring bias occurs when
individuals rely heavily on an initially presented
value (i.e., the anchor) when making subsequent
judgments. In consumer contexts, this manifests as
higher willingness to pay (WTP) after exposure to
high price anchors and lower WTP after exposure
to low price anchors, regardless of the product’s
list price (Tversky and Kahneman, 1974; Ariely
et al., 2003). Strack and Mussweiler (1997) ex-
plain this phenomenon through selective accessibil-
ity, whereby the human brain selectively retrieves
certain stored information activated by the context
of the irrelevant number.

Since Large Language Models (LLMs) have
been shown to replicate human biases (Johnson,
2021), we hypothesize that LL.Ms will be prone
to anchoring biases. This is counter intuitive be-
cause LLLMs have been praised for their ability to
solve complex tasks such as answering difficult
questions in physics, chemistry, and biology. More-
over, LLMs show impressive attention to detail
that enables them to debug code and avoid spelling
errors. Thus, one could argue that LLMs would
be immune to cognitive biases. However, we hy-
pothesize that cognitive biases are embedded in the
training data of the LLMs, similar to social biases

(Johnson, 2021). Hence, LLMs would tend to repli-
cate the same type of judgemental errors, despite
their high level of attention to detail.

H 3 Large Language Models are susceptible to
anchoring effects, whereby high (low) anchoring
manipulation leads to higher (lower) willingness to
pay.

H 4 The effect of anchoring manipulation on
willingness to pay is moderated by the Large Lan-
guage Model used.

There is the assumption that LLMs improve from
each generation to the next. However, the main fo-
cus of researchers is improvements in benchmark
datasets, which is composed mainly of coding,
mathematics, and logical reasoning tasks (Hurst
et al., 2024; Achiam et al., 2023).

H 5y Newer generation LLMs perform at least
as well as older generation LLMs in their price
prediction accuracy.

Hb5 4 Newer generation LLMs perform worse
than older generation LLLMs in their price predic-
tion accuracy.

6 Experiments

This section details our experimental methodol-
ogy for evaluating LLM susceptibility to anchoring
bias in consumer decision-making contexts using
our Monte-Carlo framework. To demonstrate the
effectiveness of our framework, we introduce a
cognitive bias experiment drawn from consumer
behavior and behavioral economics literature (Tver-
sky and Kahneman, 1974; Dowling et al., 2020;
Kahneman, 2002; Ariely et al., 2003). This experi-
ment challenges LLMs with prompts designed to
elicit anchoring (Ariely et al., 2003; Ahmetoglu
et al., 2014; Santana et al., 2020). This experiment
serves as an effective case study for the proposed
evaluation framework, revealing how models may
exhibit susceptibility to cognitive biases depending
on sampling randomness.

6.1 Design

We designed a two-factor (anchoring: high, low,
and control x LLMs) factorial experiment to test
whether different LLMs exhibit this systematic irra-
tional behavior and to quantify its reliability across
different models. We selected 6 consumer products
(Ariely et al., 2003) across diverse categories with
well-established market prices. The products were
chosen from Amazon.com’s bestsellers list. The
goal was to replicate the original experiment using
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LLMs. Following Ariely et al. (2003), we ensured
the mean list price is close to USD 55 (Table 3).
For each product, we created three experimental
conditions. For the high (low) anchor condition,
we told the LLM that its Social Security Number
1s 987-65-4395 (987-65-4315), and asked whether
it would buy the product for a dollar amount equal
to the last two digits of its Social Security Number
(i.e., $95 or $15) (Ariely et al., 2003). We also
used a control group without any anchors. Next,
we asked the LLM its willingness-to-pay (WTP)
for the product, which serves as our dependent vari-
able.

We sampled 100 responses for each experimen-
tal condition and tested models from OpenAl, Meta,
and Anthropic '.

6.2 Measures

Common sense price To see whether the LLM
is providing a common sense price for each prod-
uct, we collected product information from Ama-
zon.com for each one of the products. We collected
a dataset for each product keyword (e.g., paper tow-
els) up to 10 pages of the top relevant products. 2
Let prin (k) and ppax (k) represent the minimum
and maximum observed prices for a given product
category k, as derived from Amazon’s dataset. For
a specific LLM m and sample response %, the re-
ported WTP for a product in category k is denoted
as WT'P; (k).

To determine whether the WTP from a particular
LLM aligns with observed market prices, we define
a binary indicator variable I; , (k).

Lim(K) = 1(pmin(k) < WP (k) x LWTP, (k) < prax(®))  (6)

The Common-Sense Validity Rate can be de-
rived as follows

N

1
CSVR(m. k) = > Iim(k)
=1

!The data collection for anthropic—claude-3-7-sonnet could
not complete because the Anthropic server became overloaded
after collecting 888 responses. Moreover, meta-1lama2-70 has
1788 out of the 1800 possible responses because for the 12
missing responses it did not followed the response schema
asking it for a floating point number. To ensure fairness and
reflect real-world performance, we did not attempt to recollect
or top up responses for these models, preserving the integrity
of our original sampling procedure.

2Since for a given keyword Amazon.com returns more
than 90,000 results, we limited the dataset to the top 10 pages
of relevant products.

which measures the proportion of instances where
the willingness to pay (WTP) reported by the LLM
for products in a specific category falls within the
observed market price range.

Absolute price deviation To further assess the
accuracy of the LLMs’ willingness-to-pay (WTP)
estimates, we compute the absolute price deviation
(APD) between the WTP and the actual list price
of a product. This metric quantifies the magnitude
of deviation regardless of direction (over- or under-
estimation).

Let piist(k) represent the actual list price of a
product in category k. For a specific LLM m and
instance ¢, we define the absolute price deviation
as

APDz’m(k) = ’WTPi’m(k) — plist(k)’

6.3 Results

First, we test model variability in willingness-to-
pay (WTP) predictions for the same prompt. We
use coefficient of variation, SVD. Figure 1 re-
veals substantial variability in WTP predictions
across different model-product combinations, as
evidenced by coefficient of variation values ranging
up to 0.44. This wide range indicates that for most
models, the predicted prices differ markedly un-
der the same prompt and product conditions. Such
high variability verifies the limitation of standard
metrics like pass@1 performance that sample only
a single output per prompt. pass@1 fails to re-
flect the inherent uncertainty and distribution of
model predictions, providing an incomplete and po-
tentially misleading assessment of model behavior.
In contrast, the Monte-Carlo sampling approach,
effectively captures the full variability of models’
responses.

Coefficient of Variation of WTP by Model and Product for Control Groups

Claude 3.5 Halku

Glaude 3.7 Sonnat

Model Name

&
o
Product

Figure 1: Coefficient of Variation of WTP by model and
product for the control group
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Figure 2: Absolute price deviation for the models tested
in the control group

6.3.1 Common-sense pricing by LLLMs

We test whether LLMs make common-sense price
predictions for each product. For the control
group, we measure the Common Sense Validity
Rate (CSVR) (6.2) across product categories and
model providers. For each product, we compare
LLMs’ willingness-to-pay with the price range of
products in the same category on Amazon.com.
Wilson score interval shows that for all product
categories, LLMs’ willingness-to-pay is within the
market price range with a CSVR close to 100%
(Figure 6). This shows that while LLMs might
struggle to estimate exact prices for various prod-
ucts, their pricing recommendations are generally
in a reasonable range for that product’s category.

To gain insight into the magnitude of pricing ac-
curacy, we look at the absolute price deviation (6.2)
of willingness-to-pay (WTP) and the actual market
price (List Price) in the control group. Figure 2
shows significant variations in pricing accuracy of
different LLMs. Overall, we see more accurate
pricing of larger and newer models. For Anthropic,
Claude-3.7-Sonnet has significantly lower absolute
price deviation than its predecessor, Claude-3.5-
Haiku. For Meta, Llama-2-70B (oldest) and Llama-
3.2-11B (smallest) show significantly larger abso-
lute price deviation compared to their larger and
newer counterparts. Lastly, for OpenAl, GPT 4.1
nano shows significantly larger absolute price de-
viation compared to the larger GPT 40 and GPT
4.1. This indicates that different LLMs have var-
ied accuracy when it comes to making common
sense price predictions, which can affect their re-
liability in different business and social sciences
applications.

Next, we test H1 by comparing the performance
of the LLMs in predicting product prices with-
out any anchoring manipulations. Using a one-

sample t-test, we compare the difference between
the LLMs’ willingness-to-pay (WTP) and the ac-
tual product’s list price. We observe that there is a
significant difference between the WTP of LLMs
and the actual list price (t(9295) =-23.15, p<0.001,
M =-6.98, SD =29.06, d = -0.24). This supports
HI1. We see that the average WTP of LLMs is $6.98
lower than the actual list price of the product.

To test H2, we investigate the effect of LLMs
tested on absolute price deviation of willingness-to-
pay (WTP). Table 6 shows the descriptive statistics
of absolute price deviations for the LLMs tested.
One-way ANOVA (Table 7) shows significant ef-
fect of the LLM used for generating willingness-to-
pay (WTP) on the absolute price deviation of WTP
and the list price, F(15, 27860) = 9.07, p < 0.001.
This supports H2 and shows that the differences
in Figure 2 are statistically significant. This indi-
cates that LLMs have significantly different levels
of capabilities when it comes to making pricing
judgements.

6.3.2 Susceptibility to anchoring
manipulation

We now test the effect of anchoring manipulations
on pricing accuracy of LLMs. Table 11 shows the
correlation between WTP and SSN for each LLM
compared to human average. LLMs (average corre-
lation = 0.697) tend to show stronger susceptibility
to anchoring manipulation compared to humans
(average correlation = 0.388). To test H3, we inves-
tigate the effect of anchoring manipulations on the
willingness-to-pay (WTP) of the LLMs. One-way
ANOVA (Table 8) shows significant effect of an-
choring on LLMs’ willingness-to-pay, F(2, 27873)
=412.56, p < 0.001. Regression analysis (Table
1) shows a significant positive effect of high an-
choring (B = 31.62, SE = 1.68, t(27873) = 18.84,
p < 0.001, 95% CI [28.33, 34.91]) and a signifi-
cant negative effect of low anchoring (B =-15.70,
SE = 1.68, t(27873) = -9.35, p < 0.001, 95% CI
[-18.98, -12.41]) on WTP. This supports H3 and
shows that Large Language Models are suscepti-
ble to anchoring biases and can be manipulated to
produce higher (lower) willingness to pay using
anchoring messages in the system prompt.

We now investigate the moderating effect of
LLMs on the relationship between anchoring and
absolute price deviation. Two-way ANOVA shows
a significant interaction between the anchoring ma-
nipulation and the LLM tested (F(30, 27828) =
12.75, p < 0.001), which indicates different LLMs
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Table 1: OLS regression results for the effect of anchor-
ing of willingness-to-pay (WTP)

B SE ¢ ) 95% CI
Intercept 46334 1.187 39.05 <.001 [44.01,48.66]
Anchoring[high] 31.617 1.678 18.84 <.001 [28.33,34.91]
Anchoring[low] ~ -15.696 1.678 -9.35 <.001 [-18.98,-12.41]

have varied susceptibility to anchoring manipula-
tion (H4 supported).

6.3.3 Generational improvements

We test HS to see whether new generation LLMs
are at least as good as or better than the older gen-
erations. We do pairwise comparisons of models
from the same providers and same size because
each provider officially claims that their newer
model outperforms its own previous generation.
With Meta, statistical analysis comparing abso-
lute price deviation reveals that Llama 2 70B (M
= 17.57, SD = 14.29) demonstrates significantly
lower prediction errors than Llama 3 70B (M =
33.16, SD = 13.92), t(3586) = 33.11, p < 0.001, d
= 1.11. This represents a 88.75% increase in pre-
diction error. The newer Llama 4 17b Maverick
(M = 34.04, SD = 12.94) shows further increase
in pricing error, even compared to Llama 3 70B
(t(3598) = 1.98, p = 0.024, d = 0.07), which shows
an additional 2.67% increase in pricing error. Sim-
ilarly, OpenAI’s GPT 3.5 turbo (M = 30.91, SD
=20.79) shows significantly lower absolute price
deviation compared to gpt-40-mini (M = 40.88, SD
=201.17,t(3598) = 2.09, p=0.018, d = 0.07) , and
GPT 4.1 nano * (M = 48.41, SD = 239.81, t(3598)
=3.08, p=0.002,d =0.10), a 32.22% and 56.59%
increase in prediction error respectively. Anthropic
models show a similar degradation from the older
generation to the latest one. Claude 3.5 Haiku (M
= 25.15, SD = 14.93) shows significantly lower
absolute price deviation compared to Claude 3.7
Sonnet (M =32.43, SD = 14.45), t(2686) = 12.01,
p <0.001, d =0.50, a 28.92% increase in predic-
tion error. These findings support our alternative
hypothesis that pricing accuracy decreases in the
newer generation models (HS supported; Figure 3).
A three-way mixed-effects ANOVA showed a
significant three-way interaction among number
of parameters, model generation, and anchoring
group, F'(10,14367) = 9.74,p < .001 (Table 2).
Follow-up OLS regression analyses showed that

30penAl claims that GPT 4.1 nano has similar intel-
ligence to GPT 40 mini https://platform.openai.com/
docs/models/compare?model=gpt-4.1

Provider
B Meta
OpenAl
B Anthropic
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2
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Figure 3: Mean absolute price deviation for similar
sized models across generations

Figure 4: Model-predicted absolute price deviation by
LLM generation and number of parameters, separately
for each anchoring group. Each line traces the effect of
increasing model scale within a generation, revealing a
strong 3-way interaction.

all three-way interaction terms were statistically
significant and positive (Table 10), indicating that
newer and larger models are significantly more sus-
ceptible to anchoring manipulation. Simple slopes
analyses further revealed that for newer model gen-
erations, increases in parameter count led to dispro-
portionately higher (lower) price deviations in the
high (low) anchoring group. Full predicted trajecto-
ries for each anchoring group and model generation
are visualized in Figure 4.

Table 2: Results of the three-way ANOVA for absolute
price deviation of LLMs by Meta

Source Sum of Squares (SS) df F p

Intercept 351232.85 1 3091 <.001
Model Generation 717195.55 5 12.62 <.001
Anchoring 11169.62 2 049 0612
Model Generation:Anchoring 532838.50 10 4.69 <.001
Number of Parameters 62115.70 1 547 0.019
Number of Parameters:Model Generation 232023.41 5 4.08  0.001

53761.87 2 2.37  0.094
1106642.51 10 9.74 <.001
163253684.92 14367

Number of Parameters: Anchoring
Number of Parameters:Model Generation: Anchoring
Residual

6.4 Discussion

We tested our Monte-Carlo framework in an experi-
mental setting that allowed us to statistically test the
presence of biases in LLM, in ways that traditional
single-sample evaluations could not. Through this
experimental design, we demonstrated how modern
LLMs are susceptible to behavioral biases. Even
though most LLMs predict prices that fall within
reasonable range of a product category (Figure 6),
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the predicted prices are significantly different from
the actual list price of the product. Furthermore,
cognitive biases further push LLM-predicted prices
from actual prices, casting doubt on the reliability
of LLMs in consumption scenarios. This finding
is specially important in consumer behavior since
consumers rely heavily on LLM predictions.

Perhaps the most striking finding of this arti-
cle is the significant decrease in pricing accuracy
observed in newer model generations across all
three providers tested. Llama-3-70B showed an
88.75% increase in prediction error compared to
Llama-2-70B, with a large effect size (d = 1.11).
Similarly, both OpenAI’s and Anthropic’s newer
models demonstrated significantly higher absolute
price deviations than their predecessors. This pat-
tern contradicts the general assumption that newer
model generations necessarily improve across all
capabilities.

We propose several potential explanations for
this counterintuitive finding. First, newer model
generations may prioritize alignment with human
preferences over numerical accuracy in specific
domains. As models are increasingly tuned to pro-
vide more nuanced responses, their ability to make
common-sense predictions and avoid cognitive bi-
ases may be inadvertently compromised. This sug-
gests a potential tradeoff between alignment and
domain-specific reasoning. Second, training objec-
tives may have shifted across generations to empha-
size capabilities other than those needed by social
sciences and business. Newer models might ex-
cel at coding, reasoning, or instruction following
while sacrificing performance on quantitative esti-
mation tasks that were not explicitly prioritized dur-
ing training. Third, newer models might be more
cautious in making price predictions, adding hedg-
ing language or broader confidence intervals that
mathematically result in larger average deviations
from ground truth. This "epistemic caution" could
manifest as worse performance on point estimates
while potentially representing a more accurate rep-
resentation of prediction uncertainty.

Our analysis revealed complex interactions be-
tween model parameters, model generation (old vs.
new), and anchoring manipulation. This suggests
that the relationship between model size and gener-
ation show deterioration in their performance in the
social sciences and business related tasks. While
conventional wisdom suggests that larger models
should perform better on most tasks, our findings
indicate that for price predictions this relationship

is non-monotonic. The significant three-way inter-
action of parameter count, model generation, and
anchoring manipulation confirms that larger and
newer models negatively influence pricing accu-
racy. This suggests that architectural improvements
or training methodology changes between genera-
tions may have inadvertently reduced performance
specifically on price estimation tasks, even as they
improved performance on standard benchmarks.

6.5 Implications for research and practice

These findings have several important implications
for research and deployment of LLMs. First, our
results highlight the importance of domain-specific
evaluation when deploying LLMs. Standard bench-
marks may not capture performance on specialized
tasks like price estimation. Organizations intend-
ing to use LLMs for pricing applications should
conduct thorough evaluations rather than assuming
newer models will perform better. Second, we iden-
tify a potential tension between general capabilities
and specialized numerical reasoning in LLMs.

As models become more generally capable and
aligned, they may sacrifice performance on specific
quantitative and qualitative tasks. This suggests the
need for specialized fine-tuning when deploying
models for numerical prediction tasks and the use
of Monte Carlo evaluation for assessing the true
reliability the LL.M for specialized tasks. Third,
our finding that newer models demonstrate greater
susceptibility to anchoring effects raises concerns
about their deployment in real-world consumption
scenarios (DeepMind, 2025) where such cognitive
manipulations might be present. This suggests that
system architects should explicitly evaluate and
mitigate cognitive biases and incorporate safety
measures for external manipulations (e.g., preda-
tory advertisers putting anchoring text inside prod-
uct descriptions to trick LLMs to purchase a certain
product on the behalf of a user).

6.6 Conclusion

We introduce a Monte-Carlo evaluation framework
for Large Language Models that accounts for inher-
ent stochasticity of LLM predictions. Our frame-
work enables statistical analysis of LLM responses
to obtain measure of its reliability, an approach
missing in standard LLM evaluation frameworks.
We use our framework to study the susceptibility
of LLMs to one of the most common human biases,
anchoring effect. We replicate experiments based
on behavioral sciences to test for cognitive biases.
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Our experiment challenges the assumption that
newer LLM generations necessarily improve across
all capabilities, revealing significant regressions in
pricing accuracy across multiple model providers.
These findings underscore the importance of task-
specific evaluation using the Monte Carlo frame-
work, instead of current pass@1 evaluation frame-
work. As LLMs continue to evolve, researchers
and practitioners should remain attentive to these
tradeoffs and develop strategies to improve model
reliability in critical application domains.

Limitations

This study has several limitations. We focused
primarily on consumer products with reasonably
standard pricing; future work should examine more
complex pricing scenarios including B2B contexts
and dynamic pricing environments. Additionally,
our analysis does not fully explain why newer mod-
els perform worse on pricing tasks, pointing to the
need for more detailed analysis of model internals
and training procedures. Future research should
investigate whether performance regression across
generations is unique to pricing tasks or extends to
other domains requiring precise numerical estima-
tion.
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A Appendix

A.1 Experiment details

We formulated prompts to elicit WTP judgments
while manipulating the presence and magnitude of
price anchors. Figure 5 shows the experimental
setup. The data collection for anthropic—claude-3-
7-sonnet could not complete because the Anthropic
server became overloaded after collecting 888 re-
sponses. Moreover, meta-llama2-70 has 1788 out
of the 1800 possible responses because for the 12
missing responses it did not followed the response
schema asking it for a floating point number. To
ensure fairness and reflect real-world performance,
we did not attempt to recollect or top up responses
for these models, preserving the integrity of our
original sampling procedure.

A.1.1 Additional results

H1 Per product analysis of WTP and actual list
price provides more detailed insight on the effect
of the product type on LLMs’ pricing accuracy.

Table 4 shows the descriptive statistics of
willingness-to-pay (WTP) and the list price for the
products tested.

The result of one-sample t-tests for each product
category is shown in Table 5. We see that for Dock-
ing station (t(4799) = 9.88, <0.001, M = 79.55,

Anchoring: low Anchoring: high

System prompt

Your social security number is 987-65-4315. ‘Your social securi
Answer the following questions.

ity number is 987-65-4395.

Answer the following questions.

L J

User
Product: {Product Title}

Would you buy this product for a dolar figure equal tothe last two digits of your soc
(ORefect / TAccept)

il security number?

Vv

um
Buyy

v

User
What is your dollar maximum willngness-to-pay for this product?

\

um
W

Control

System prompt
Answer the following questions.

User
Product: {Product Title}

Would you buy this product?
(0:Reject / T:Accept)

N2

[y
(Buy)
User

Whatis your dollar maximum willingness-to-pay for this
product?
m

WP I

Figure 5: The structure of prompting for inducing an-
choring effects and the control

SD = 207.34, d = 0.14), Coffee pods (t(4799) =
-29.68, <0.001, M = 43.69, SD = 31.78, d = -
0.43), Weighted vest (t(4787) = -18.71, <0.001,
M =51.33,SD =32.04, d =-0.27), Paperback book
(t(4499) = -8.18, <0.001, M = 46.18, SD = 154.17,
d =-0.12), Paper towels (t(4499) = -3.77, <0.001,
M =37.07, SD =96.55, d = -0.06), and Women’s
shorts (t(4499) = 11.60, <0.001, M = 50.70, SD =
3498, d = 0.17), LLMs have WTP that is signifi-
cantly different from the actual list price.

Three-way interaction effects Table 10 shows
the three-way interactions of LLM generation (i.e.,
Llama 2, Llama 3, Llama 3.1, Llama 3.2, Llama
3.3, and Llama 4), anchoring bias, and the number
of parameters for LLMs produced by Meta.
Correlation of the Social Security Number (SSN)
with the willingness-to-pay (WTP) for each LLM
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Table 3: Product Categories and List Prices

Category List Price (USD)
Computer Accessories 49.99
Grocery & Gourmet Food 57.31
Sports & Outdoors 59.99
Books 64.99
Health & Household 42.49
Clothing, Shoes & Jewelry 44.65

1.00

0.98

CSVR

0.96

0.94

anthropic meta openai
Model Provider

Figure 6: Common Sense Validity Rate of price predic-
tions (Error bars show Wilson score interval)

and human results (Ariely et al., 2003) are shown
in Table 11.

A.2 Statistical framework

In this section, we develop the statistical framework
for our Monte-Carlo evaluation framework.

A.2.1 Theorems and proofs
A.2.2 Unbiasedness

Let f(p,y,r) be an evaluation function mapping
the prompt p, ground-truth value ¥, and a sampled
response 1 ~ M(p; T) from a language model M
at temperature 7', to a real number. Define the true
expected value of the function as

v(M;p,y) =B [f 0y, )] (D

We estimate this quantity empirically using the
K -sample Monte Carlo estimator:

K
1
bk (M;p,y) == > fume), (8

K

k=1

where each ry, ~ M(p;T) is sampled indepen-
dently.

Theorem 1
E[or (M;p,y)] = v(M;p,y) )

Proof First, the i.i.d. (independent and iden-
tically distributed) assumption is strongly valid
for LLMs in the context of Monte-Carlo evalua-
tion. This is because repeated sampling of LLM

responses to the same prompt under a fixed temper-
ature setting does not influence subsequent samples.
Specifically, from sample k& to sample k£ + 1, there
is no dependency or effect of sample k£ on sample
k + 1. Each response is generated independently
based on the stochastic nature of the model at tem-
perature 7', and the underlying probability distri-
bution over possible outputs remains unchanged
across samples (assuming the researcher does not
fine-tune the LLM in between each sample). There-
fore, the responses can be considered i.i.d., satis-
fying a key requirement for the unbiasedness and
convergence properties of the Monte-Carlo estima-
tor.

Next, by definition of the Monte Carlo estimator,

K
1
k=1

Taking the expectation of both sides, and apply-
ing the linearity of expectation:

K
E[ox] = E [11{ ;f(p7y7rk)] (11)

K

E[f(p,y,7s)]-
=1

(12)

1
K
Each ry is drawn independently and identically

from the generative distribution of M (p;T'), and
therefore:

E [f(p7 Y, Tk)] = IErw/\/i(p;T) [f(pa Y, T)] (13)
=o(M;p,y), VEk. (14)
Hence,
1
Elog] = - K- v(M;p,y) (15)
= v(M;p,y). (16)

Therefore, Ux is an unbiased estimator of
v(M;p,y):

Elix] = v(M;p,y). B (17)

A.2.3 Variance decay

Variance decay property ensures as the number of
Monte Carlo responses K increases, the variance
of the estimated metric (e.g., MAPD or CSVR)
decreases at a rate of % Statistically, our estima-
tor converges more reliably to the true value of
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Table 4: Descriptive statistics for willingness-to-pay (WTP) per product

Product n M SD List Price (USD)

Coffee pods 4799 43.69 31.78 57.31

Docking station 4798 79.55 207.34 49.99

Paper towels 4496 37.07 96.55 42.49

Paperback book 4498 46.18 154.17 64.99

Weighted vest 4787 51.33  32.04 59.99

Women’s shorts 4498 50.70  34.98 44.65

Table 5: Results of the one-sample t-test

Product t p d K
Docking station  9.88  <0.001  0.14 Var[ok] = Z f(p,y, k) ] . (20)
Coffee pods -29.68 <0.001 -0.43 k
Weighted vest  -18.71  <0.001 -0.27 Since the f(p,y, ri) are i.i.d. random variables
Paperback book  -8.18  <0.001 -0.12 with finite variance o2 = Var|[f(p,y, 1)], we can
Paper towels -3.77  <0.001 -0.06 use the properties of variance. For any constants
Women’s shorts 11.60 <0.001 0.17

the model’s expected behavior as we average over
more samples, thereby enhancing reliability. This
also quantifies the confidence we have in our eval-
uations. With more samples, we reduce variability
arising from the model’s stochastic nature.

In practice, if we desire a specific tolerance for
our confidence interval (e.g., £2% MAPD), we can
reverse-engineer to find an appropriate K using

g

Ni e

Additionally, when comparing two models sta-
tistically, the variance decay can inform how many
samples are needed to achieve sufficient power for
t-tests or bootstrap comparisons.

Standard error = /Var[ox | = (18)

Theorem 2 Letrq,..., 7k S M(p;T) be i.id.

samples from the stochastic LLM at temperature 7.
Given the Monte-Carlo sample evaluation, v, the
Monte-Carlo sample variance asymptotes to zero
as K — oo,

lim V; —0,
i, Var(ox]

(19)

where o2 is the variance of the random variable
f (p 'Y, Tk)'

Proof We aim to compute the variance of vy, i.e.,
the variance of the sample mean of K i.i.d. random
variables. By the definition of variance, we have:

ar, € R and independent random variables X,

K
Za Var[X]. (1)

k=1

K
I Z aka]

k=1

In our case, ar = 7 and Var[X;] = o?, Vk.
Applying this rule gives:

1 K
= ﬁ Z Var[f(p, Y, ’f'k)]

1 K
Var KZf(Payﬂ'k)]
k=1 k=1

(22)

1

2

o
== (24)

Hence, the variance of the estimated metric is
given by

o2
Var[og]| = = (25)
Taking the limit,
lim Varforl = lim % —0. (26
K 3o arlox] = =0 @

This concludes the proof.
|

Asymptotic Normality of Monte Carlo Esti-
mates We now formally establish that the Monte
Carlo evaluation estimate of an LLM’s expected be-
havior over stochastic samples follows an asymptot-
ically normal distribution as the number of samples
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Table 6: Descriptive statistics of Absolute price deviations for the LLMs tested

Model Name

Claude 3.5 Haiku
Claude 3.7 Sonnet
GPT 3.5 turbo
GPT 4.1

GPT 4.1 mini
GPT 4.1 nano
GPT 40

GPT 40 mini
Llama 2 70b
Llama 3 70b
Llama 3.1 70b
Llama 3.2 11b
Llama 3.2 90b
Llama 3.3 70b
Llama 4 17b Maverick
Llama 4 17b Scout

n M SD
1800 25.15 14.93
888 3243 1445
1800 30.91 20.79
1800 29.05 15.26
1800 34.81 14.74
1800 48.41 239.81
1800 27.26 20.50
1800 40.88 201.17
1788 17.57 14.29
1800 33.16 13.92
1800 37.23 143.71
1800 31.46 15.01
1800 48.75 264.83
1800 34.01 14.24
1800 34.04 1294
1800 29.34 15.82

Table 7: Results of the ANOVA for Absolute Price Deviation of different LLMs

Source Sum of Squares (SS) df F p
Intercept 1138785.47 1 92.03 <.001
LLM 1682960.21 15 9.07 <.001
Residual 344749087.15 27860

grows. This justifies the use of confidence intervals
and statistical comparisons across models.

Let f(p,y,r) be a real-valued function repre-
senting the evaluation score for an LLM response
r ~ M(p;T) to prompt p with ground truth
y. Assume that responses {r;}X_  are indepen-
dent and identically distributed (i.i.d.) from the
stochastic language model’s conditional distribu-
tion M(p;T). Define the sample mean score
(Monte Carlo estimate) as

1 K
Ez‘f(pvyvrk)

k=1

O (M;p,y) = (27)

Corollary The normalized estimator follows a
normal distribution as K — o0:

o (M;p,y) — v(M;p,9)] VE 5 N(0,02),
(28)
where

U(M;pa y) = ETNM(p;T) [f(pa Y, T)] (29)

f(p,y,rk) is an independent draw induced by
the model sampling r; ~ M (p;T) that satisfies

true 1.i.d. conditions, since the LLM does not have
any state changes between each sample.
Then, we define the sample mean:

K
1
ﬁK(MaI%y) = ? E f(pvyark‘)a (30)
k=1

and the population mean:

w:=E[f(p,y, )] (31)
= IE7"~/\/l(p;T) [f(p7 Y, T)] (32)
= v(M;p,y), (33)

For the population variance, o2, we can safely as-

sume that 0 < oo (finite variance), because of the
conditions of the evaluation metric (e.g., bounded
or sub-Gaussian scoring functions such as classifi-
cation accuracy or standardized absolute error).

Based on the Central Limit Theorem, as k — oo,
the normalized sample mean satisfies:

VE (0 (M;p,y) — p)

g

4 N(0,1)

(34)

Now, multiply both sides of the normalized vari-
able formula by o, which gives:
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Table 8: Results of the ANOVA for the effect of anchoring on Absolute Price Deviation

Source Sum of Squares (SS) df F p
Intercept 19944203.42 1 1524.62 < .001
Anchoring 10793641.35 2 412.56 <.001
Residual 364617818.90 27873

Table 9: Results of the two-way ANOVA for the effect
of anchoring manipulation and LLM tested Absolute
Price Deviation

Source Sum of Squares (SS) df F p
Intercept 1647304.04 1 127.99 <.001
Anchoring 296106.68 2 11.50 <.001
LLM 482523.71 15 2.50  0.001
Anchoring x LLM 4924800.20 30 12.75 <.001
Residual 358170503.64 27828

VE (b (M;p,y) — 1) S N(0,6%)  (35)

Substituting p with v(M; p, y):

VE (i (Mip,y)—v(Mip,y) S N(0,0%) B

(36)

In the Monte-Carlo LLM evaluation framework,

we are estimating the expected score of the model
over stochastic outputs via:

K
. 1
Ok = 22 > F(D.y.7k) 37)
k=1
where . = E|[f(p,y,r)] is the "true" behavioral
profile of the model under its stochastic decoding.

A.2.4 Power Analysis for Determining
Optimal K

The power analysis for selecting the minimal K in
our Monte-Carlo framework, focuses on ensuring
sufficient power to detect small effect sizes (i.e.,
Cohen’s f < 0.10) in comparisons of LLM be-
haviors via ANOVA. We provide the derivations,
statistical setup, approximations, sensitivity analy-
ses, and implementation notes.

ANOVA Setup We frame the problem as a one-
way ANOVA to test for differences in expected
scores v(M; p,y) across g groups (e.g., different
LLMs, prompts, or behavioral categories). Each
group has K i.i.d. Monte-Carlo samples, yielding
a total sample size N = gK. The null hypothe-
sis is that all group means are equal (Hp : p1 =
fo = --+ = lg), while the alternative assumes
differences quantified by the effect size.

We use Cohen’s f as the effect size measure,

g 5
f= \/Zizl(M;Q )?/g

9

where 1 = >°7_, j1;/g is the grand mean, and
o2 is the common within-group variance (assumed
equal across groups, as per homoscedasticity in
ANOVA).

The test statistic is the F-ratio, which under H
follows a central F-distribution with degrees of
freedom df; = g — 1 (between groups) and df; =
g(K — 1) (within groups). Under the alternative,
it follows a non-central F-distribution with non-
centrality parameter

1 K (pi — o

2
= i
A== ) = gK f?,

g Iy —

since for balanced groups, >-7_, (u; — 1)%/g =

f?o2.

Derivation of Minimal K The power 1 — 5 is the
probability that the F-statistic exceeds the critical
value Fo = F~1(1 — a;dfy, dfy) under the non-
central F-distribution, where « is the significance
level (e.g., 0.05) and §3 is the Type II error rate:

1= B =1= F(Feig; dfy, dfz, ),

with F'(-;dfy, dfy, \) denoting the cumulative
distribution function (CDF) of the non-central F-
distribution.

To find the minimal K for a desired power 1 — 3
(e.g., 0.80), effect size f, «, and g, we solve for K
such that

F(Fcrit§ dfy, dfy, )‘) <5,

where A = gKf?, df; = g — 1, and dfy, =
g(K — 1). Note that df, and F; depend on K,
making this an implicit equation. The minimal
integer K is found by a binary search provided in
Algorithm 1.

For large K, approximations can be used. For in-
stance, the non-central F can be approximated by a
normal distribution for large dfs, but exact compu-
tation via numerical integration (e.g., using the ‘pf*
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Table 10: OLS regression results for Meta’s LLM generation, anchoring bias, and the number of model parameters

B SE t p CI Lower CI Upper
Intercept 13.870 2495 556 <.001 8.980 18.760
Model Generation[3] -0.001 0.001 -0.78 0.434 -0.003 0.001
Model Generation[3.1] -0.001 0.001 -0.94 0.347 -0.004 0.001
Model Generation[3.2] 13.848 2.500 5.54 <.001 8.948 18.748
Model Generation[3.3] -0.001 0.001 -0.50 0.617 -0.003 0.002
Model Generation[4] 0.021  0.013 1.63 0.103 -0.004 0.047
Anchoring[high] 2.663 3.528 0.76  0.450 -4.252 9.579
Anchoring[low] -0.632 3.528 -0.18 0.858 -7.548 6.283
Model Generation[3]x Anchoring[high] 0.007 0.002 3.79 <.001 0.003 0.010
Model Generation[3.1]xAnchoring[high] 0.006  0.002 347 0.001 0.003 0.010
Model Generation[3.2]x Anchoring[high] 2.627 3.535 0.74 0457 -4.303 9.557
Model Generation[3.3]x Anchoring[high] 0.006 0.002 3.57 <.001 0.003 0.010
Model Generation[4]x Anchoring[high] 0.058 0.018 3.19 0.001 0.022 0.094
Model Generation[3]x Anchoring[low] 0.006 0.002 3.23 0.001 0.002 0.009
Model Generation[3.1]x Anchoring[low] 0.009 0.002 529 <.001 0.006 0.013
Model Generation[3.2]x Anchoring[low] -0.653 3.535 -0.18 0.854 -7.583 6.277
Model Generation[3.3]x Anchoring[low] 0.006  0.002 3.15 0.002 0.002 0.009
Model Generation[4]x Anchoring[low] 0.048 0.018 2.60 0.009 0.012 0.084
Number of Parameters 0.168 0.072 234 0.019 0.027 0.309
Number of Parameters x Model Generation[3] -0.069 0.088 -0.78 0.434 -0.242 0.104
Number of Parameters x Model Generation[3.1] -0.083 0.088 -0.94 0.347 -0.256 0.090
Number of Parameters x Model Generation[3.2] -0.253 0.083 -3.06 0.002 -0.416 -0.091
Number of Parameters x Model Generation[3.3] -0.044 0.088 -0.50 0.617 -0.217 0.129
Number of Parameters x Model Generation[4] 0360 0.220 1.63 0.103 -0.072 0.792
Number of Parameters x Anchoring[high] -0.210 0.102 -2.07 0.038 -0.410 -0.011
Number of Parameters x Anchoring[low] -0.164 0.102 -1.62 0.106 -0.363 0.035
Number of Parameters x Model Generation[3] x Anchoring[high] 0.471 0.125 3.79 <.001 0.227 0.716
Number of Parameters x Model Generation[3.1]x Anchoring[high] 0.432  0.125 3.47 0.001 0.188 0.676
Number of Parameters x Model Generation[3.2] x Anchoring[high] 0.356  0.117 3.04  0.002 0.126 0.586
Number of Parameters x Model Generation[3.3] x Anchoring[high] 0.444  0.125 3.57 <.001 0.200 0.689
Number of Parameters x Model Generation[4] x Anchoring[high] 0.993  0.312 3.19 0.001 0.382 1.605
Number of Parameters x Model Generation[3] x Anchoring[low] 0.403 0.125 3.23 0.001 0.159 0.647
Number of Parameters x Model Generation[3.1]x Anchoring[low]  0.659  0.125 529 <.001 0.415 0.903
Number of Parameters x Model Generation[3.2] X Anchoring[low]  0.931 0.117 7.95 <.001 0.701 1.160
Number of Parameters xModel Generation[3.3] x Anchoring[low] 0.392  0.125 3.15 0.002 0.148 0.636
Number of Parameters x Model Generation[4] x Anchoring[low] 0.812 0.312 2.60 0.009 0.201 1.423

function in R or SciPy in Python) is recommended
for precision.

A.3 Algorithms
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Table 11: Correlation between WTP and SSN by Product and Model Name vs. Human Average for the Effect of

Paper towels

Paperback book  Weighted vest

Women'’s shorts  Average Corre

lation

Anchoring

Coffee pods Docking station
Claude 3.5 Haiku -0.306 0.946
Claude 3.7 Sonnet 0.961 0.994
GPT 3.5 turbo 0.913 0.302
GPT 4.1 0.749 0.979
GPT 4.1 mini 0.980 1.000
GPT 4.1 nano 0.041 -0.016
GPT 40 0.515 0.051
GPT 40 mini 0.752 -0.039
Llama 2 70b 0.020 -0.072
Llama 3 70b 0.995 0.976
Llama 3.1 70b 0.831 -0.059
Llama 3.2 11b 0.723 0.932
Llama 3.2 90b 0.818 -0.166
Llama 3.3 70b 0.983 0.988
Llama 4 17b Maverick 1.000 1.000
Llama 4 17b Scout 0.497 1.000

Human (Ariely et al. 2003)

0.413

0.958
0.682
1.000
-0.171
0.606
0.058
0.040
1.000
0.799
0.572
0.874
1.000
0.603
0.937

0.776 0.937 0.084
0.996
1.000 0.846 0.765
0.979 0.641 0.920
1.000 0.988 1.000
-0.078 -0.019 -0.074
0.814 0.478 0.670
0.992 0.821 0.983
0.091 0.063 -0.041
1.000 0.996 0.996
1.000 0.933 0.892
0.791 0.827 0.727
0.986 0.590 0.941
1.000 1.000 0.993
1.000 1.000 1.000
1.000 1.000 0.974

0.475
0.984
0.797
0.825
0.995

-0.053

0.523
0.594
0.017
0.994
0.733
0.762
0.674
0.994
0.934
0.901
0.388

Algorithm 2: Monte Carlo LLM Evalua-
tion for Pricing Tasks

Algorithm 1: Binary Search for Minimal
K

Input: Number of groups g, effect size f,
significance level «, target power
1-5
QOutput: Minimal integer K such that
power > 1— 3
low < 1;
high < some large integer (e.g., 10%);
while low < high do
mid < | (low + high)/2];
df; <+ g —1;
dfy < g(mid—1);
Fuip + F71(1 — a; dfy, dfy);
A+ g-mid - f%;
power <— 1 — F'(Fyg; dfy, dfa, A);
if power > 1 — 3 then
| high < mid;
else
‘ low < mid + 1;
end

end
return low;

Input: M: Set of LLMs to evaluate
D = {(p1,1), (p2,92);---, (PN, YN) }:
Evaluation dataset with prompts p; and
ground truth prices y;
K': Number of Monte Carlo samples per
prompt
T': Temperature parameter for sampling
C ={C1,Cy,...,Cn}: Valid price ranges
for each prompt
Output: CSVR scores and confidence
intervals for each model

MAPD scores and confidence intervals for
each model
Statistical comparisons between models
Function

EvaluateModels(M, D, K, T,C):

foreach model m € M do
CSVR,,, +

CalculateCSVR(m, D, K,T,C)
Algorithm 3;

MAPD,,, <
CalculateMAPD(m, D, K,T)
Algorithm 4;

end
PerformStatisticalAnalysis(M,

CSVR, MAPD) Algorithm 5;
return Results;

9430



Algorithm 3: Calculate CSVR

Input: M - Set of LLMs to evaluate
D = {(p1,y1), (p2:y2),- -, (PN, YN)} -
Evaluation dataset with prompts p; and
ground truth prices y;
K - Number of Monte Carlo samples per
prompt
T - Temperature parameter for sampling
C ={C1,Cy,...,Cn} - Valid price ranges
for each prompt
QOutput: CSVR scores and confidence
intervals for each model
Function CalculateCSVR(m, D, K,T,C):
p<+0; // Initialize empty array
for prompt-level CSVR
for: < 1to N do
valid_count < 0;
for j < 1to K do
RZ’J‘ —
GenerateResponse(m, p;, T")
; // Generate response
Yi,j < ExtractPrice(R; ;) ;
// Extract price
if }A/Lj € C; then
valid_count <+
valid_count + 1;
end

end

p; < valid_count/K ;
// Estimate CSVR for prompt
1

Add p; to p;

end

CSVR « + 3N ;5 // Calculate
overall CSVR

Clcsyr <

CSVR +1.96 x w;
return CSVR, Clcsyr, p;

Algorithm 4: Calculate MAPD

Input: M - Set of LLMs to evaluate

D ={(p1,y1), (p2:y2),-- -, (PN, YN)} -

Evaluation dataset with prompts p; and

ground truth prices y;

K - Number of Monte Carlo samples per

prompt

T - Temperature parameter for sampling

Output: MAPD scores and confidence

intervals for each model

Function CalculateMAPD(m, D, K, T):

i< 0;// Initialize empty array

fori < 1to N do

APD; + 0;
values

for j < 1to K do

Ri’j —
GenerateResponse(m, p;, 1");

// Store APD

Y;,j < ExtractPrice(R; ;);
APD; j < |Yi; — yil;
Add APDZ‘,J' to APD;;
end
fii < % 3j=1 APDyj;
~ K ~
67 = 7 2.1 (APDyj — f13)%;
Add ji; to i;
end

1 N .
MAPD <« N Zi:l His

N A~

s < yt1 2im1 (i — MAPD)?;
Clmapp < MAPD *tny_1 0975 X
return MAPD, Clyiapp, 13

2

S
VN’
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Algorithm 5: Perform Statistical Analysis

Input: M - Set of LLMs to evaluate

Output: Statistical comparisons between
models

Function

PerformStatisticalAnalysis(M,

CSVR, MAPD):

foreach pair of models
(ma,mp) € M x M where

ma # mp do
¢ o MAPDp, ~MAPDy

b
sty | Shp
N + N

2 2
Smy  mpy2
(5" .
st /N2 (st /N2

dfe<

N—-1 N—-1
p_value < ComputePValue(t, df);

(N-1)s7, , +(N-1)s7,
Spooled <~ 2AN_2 B,

d MAPDmA 7MAPDmB .
Spooled

b
pct_increase <—

MAPD,,, , —~MAPD,, , _
MAPD,, x 100%;

Store and report comparison results;

end
PerformANOVA(M, MAPD);
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