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Abstract

Filtering data, particularly data scraped from
the internet, has long been recognised as a
means to improve model performance. Recent
studies have shown that effective filters can be
created by utilising Large Language Models
(LLMs) to synthetically label data, which is
then used to train smaller neural models for
filtering purposes. However, this approach has
been tested mainly in English. Our paper ex-
tends this approach to languages beyond En-
glish, including languages not officially sup-
ported by the LLM. We validate our results on
the downstream task of NMT and demonstrate
that our approach is effective at both filtering
parallel text for translation quality and filter-
ing monolingual text for domain specificity.
For training the filtering model, we experiment
with two different objectives for finetuning pre-
trained transformers, as well as an efficient ap-
proach based on n-gram language models.

1 Introduction

Increasing model scale and larger pre-training
datasets have fuelled recent advances in the world
of LLMs. Beyond scale, other characteristics of
pre-training data also significantly impact down-
stream tasks, such as deduplication and removing
low-quality examples (Touvron et al., 2023; Young
et al., 2024). An interesting approach that has re-
cently been proposed is training filtering models
on synthetic labels, which are generated by prompt-
ing LLMs (Grattafiori et al., 2024; Abdin et al.,
2024; Penedo et al., 2024a; Lozhkov et al., 2024).
Such filtering models can be efficiently run on very
large corpora, such as pre-training data, to select
the most appropriate examples for training. Due to
the flexibility of designing prompts, this pipeline is
especially appealing, enabling data to be filtered on
criteria beyond quality without requiring labelled
data and thereby tailoring the selected pre-training
data to the eventual downstream task.

The FineWeb project (Penedo et al., 2024a) ob-
served that by filtering pre-training data towards
educational content, they were able not only to ob-
tain a 4% improvement on the MMLU benchmark
(Hendrycks et al., 2021) but also obtained faster
convergence when compared to a non-filtered base-
line. The educational content filter was a classifier
trained on synthetic LLM-labelled data, and the
approach was validated via training a 1.71B pa-
rameter model on 350 billion tokens; however, the
study focussed on English exclusively. Although
the experiment validates the methodology’s effec-
tiveness for English downstream tasks, the tech-
nique could also benefit other languages, where
data quality is even more crucial given the overall
scarcity of resources. This work attempts to un-
ravel one unexplored axis of synthetic filtering: the
method’s efficacy beyond English. From here on,
we refer to this approach as MDFS (Multilingual
Data Filtering using Synthetic Data).

We investigate and evaluate MDFS via the Neu-
ral Machine Translation (NMT) task. NMT is an ex-
cellent downstream task for several reasons. First,
it has a history of data filtering, for example the
WMT shared tasks (Conference on Machine Trans-
lation, Koehn et al., 2018, 2019, 2020). Secondly,
NMT models are reasonably cheap to train com-
pared to LLMs, allowing us to run a suite of exper-
iments investigating different setups for filtering
multilingual data using MDFS, which would be
prohibitively expensive if done with LLMs. Fur-
thermore, NMT has a history of neural QE (Qual-
ity Estimation) metrics such as COMET-KIWI or
BLEURT (Rei et al., 2022; Sellam et al., 2020),
which are effective at filtering training data (Pe-
ter et al., 2023). Hence, we can employ such QE
models trained on high-quality human annotations
as a robust filtering baseline. We use MDFS as
an instance of a synthetic LLM-labelled quality
estimator and validate the approach under general
translation and domain adaptation setups.
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As we initially stated, the most significant ap-
peal of MDFS is the flexibility to filter data based
on any criteria simply by adjusting the prompt, so
we assess its efficacy both in filtering for quality
and filtering for domain. Firstly, we train En→De
and En→Ar NMT systems filtered only for trans-
lation quality to analyse the MDFS pipeline for
non-English languages when compared to quality
filtering using models trained on human annota-
tions. Secondly, we train En→Ar and En→Ro
NMT systems which are trained with data filtered
for medical domain content.

We summarise our contributions as follows:

• We explore LLM-based data filtering tech-
niques for multiple supported and unsup-
ported languages and validate them on Neu-
ral Machine Translation, showing that they
work for filtering on both the source and tar-
get sides.

• We show that multlingual LLM-based filter-
ing is effective beyond selecting for quality
by filtering parallel corpora for domain. We
demonstrate that LLM filtering has benefits
over baseline keyword filtering.

• We compare filtering using the synthetic LLM
scores by finetuning pre-trained encoder only
models with classification or regression objec-
tives and efficient n-gram based approaches.

2 Related Work

Penedo et al. (2024a) introduced FineWeb-Edu
and demonstrate a 4% increase on MMLU and
a 11% increase on the ARC benchmark (Clark
et al., 2018). The Llama and Phi model families
(Grattafiori et al., 2024; Abdin et al., 2024) use
similar approaches when training. Our work also
experiments with filtering models trained from syn-
thetic labels. However, unlike these works, we
investigate filtering in non-English contexts and ex-
periment with different approaches for the filtering
models.

In NMT low amounts of noise in the training
data can lead to erroneous translations (Koehn
et al., 2018). As such, NMT has a history of data
filtering, especially for scraped corpora such as
ParaCrawl (Bañón et al., 2020). A series of clean-
ing tasks for parallel data (Koehn et al., 2018, 2019,
2020) resulted in the development of several clean-
ing models for NMT, including LASER (Schwenk
and Douze, 2017) embedding-based models and

BICLEANER (Sánchez-Cartagena et al., 2018;
Ramírez-Sánchez et al., 2020). Later Zaragoza-
Bernabeu et al. (2022) released an updated BI-
CLEANER incorporating a neural model. BI-
CLEANER is used to filter public corpora such as
ParaCrawl. Compared to our work, these models
all focus on removing training examples that are
not mutual translations of each other, rather than
picking the best translations and can only filter for
quality.

Peter et al. (2023) compare filtering training data
using BICLEANER (Zaragoza-Bernabeu et al.,
2022) to filtering using COMET-KIWI, a QE model
for NMT. The authors filter 50% the WMT 23
(Kocmi et al., 2023) training data for three language
pairs and show that filtering with COMET-KIWI
leads to improved COMET scores. They highlight
that filtering with QE metrics discriminates in a
more fine-grained manner. In contrast, our method-
ology extends beyond quality assessment, enabling
filtering based on different criteria, and is equally
applicable to monolingual corpora. Furthermore,
we conducted experiments implementing filtering
at varying threshold levels.

3 Filtering Pipeline

3.1 MDFS
We adopt the pipeline introduced by Penedo et al.
(2024a), which consists of three stages. First, we
use an LLM to score approximately 500,000 sen-
tences. Similarly to Penedo et al. (2024a), we fol-
low Yuan et al. (2024) and use an additive prompt.
The filtering criteria are divided into a 5-point scale,
and the LLM is instructed to determine a score
on a point-by-point basis; the total score is the
sum of the points awarded. The translation qual-
ity and medical domain task prompts are given
in Appendix A. We use Llama-3.1-70B-Instruct1 (re-
ferred to as Llama-3.1 from here on) to generate the
synthetic labels. As the primary benefit of this
approach is using out-of-the-box LLMs to create
synthetic training data, we avoid using specifically
multilingual LLMs such as Tower (Alves et al.,
2024), which are trained on human-labelled DA
(Direct Assessment) and MQM (Multidimensional
Quality Metrics) data.

The next step is training the MDFS filtering
models using the synthetic labels generated from
the LLM. To train the models, we finetune pre-
trained encoder models to replicate the scores as-

1
https://hf.co/meta-llama/Meta-Llama-3.1-70B-Instruct
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signed by the LLM. This step is required as using
LLM directly on large-scale corpora would be com-
putationally prohibitive. Specifically, we finetune
XLMR (Conneau et al., 2020), with either a regres-
sion or classification objective.

Finally, we use the MDFS filtering models to
score the NMT training data before selecting the
highest scoring data at different thresholds to be
the training data for our NMT models.

3.2 Translation Quality
In these experiments we aim to understand the
best pipeline for filtering multilingual data. Using
parallel data, we train the MDFS filtering mod-
els by concatenating the source and target sen-
tences. Therefore, the model can access both En-
glish and non-English sentences when scoring an
example. We select one high-resource language
pair, En→De, which Llama-3.1 fully supports and
is also part of the human-labelled DA data used
to train COMET-KIWI. We further incorporated
the more challenging En→Ar language pair. This
pair presents multiple complexities: it lacks official
support from the LLM, is absent from COMET-
KIWI’s training corpus, and employs a non-Latin
writing system.

3.3 Medical Domain
Unlike the translation quality experiments, we filter
only the source or the target side for the medical
domain experiments; the reasons for which are
twofold. Firstly, this makes the setup more com-
parable to filtering monolingual LLM pre-training
data for task-specific data. Secondly, it allows us
to evaluate the differences observed when filtering
on the English and the non-English side. We se-
lect En→Ar and En→Ro as both target languages
are not supported by Llama-31-70B-Instruct and have
available medical data to evaluate the NMT models.
In addition to the XLMR-based MDFS we also ex-
periment with an alternative approach which uses
the Cross-Entropy scores of an in-domain and an
out-of-domain n-gram language model (Moore and
Lewis, 2010). We split the LLM labelled data, se-
lecting scores of 3 or greater as medical sentences
and those with scores less than 3 as general domain
sentences. We then train two 4-gram language mod-
els using KenLM (Heafield, 2011), one using the
medical domain sentences and one using the gen-
eral domain sentences. Subsequently we take the
negated difference between the in-domain and out-
of-domain Cross-Entropy as the score. We repeat

this process for both the source and target language.

4 MDFS Models

4.1 Training Data

Our experimental setup uses parallel training cor-
pora for two purposes, training the MDFS models
and training the downstream NMT models. The
data for both parts of our pipeline as well as the
size of datasets are detailed in Appendix C. We
split the parallel corpora into two sets with zero
overlap, which, to avoid confusion we refer to as
follows:
MDFS Training Data: A small number (approxi-
mately 500,000) sentences which are labelled using
the LLM and used to train the MDFS models.
NMT Training Data: The remainder of the com-
plete parallel data once the MDFS Training Data
has been removed, which is filtered and used to
train the downstream NMT models.

For all translation quality experiments MDFS
training data is selected by simply selecting the
first 460,000 of the parallel data. As we evaluate
the translation quality MDFS models in both trans-
lation directions we use the first 230,000 sentences
in the En→X direction and the second 230,000 in
the X→En direction.

For medical content filtering, scoring the entire
training data is problematic as medical sentences
constitute only a small proportion of the general
datasets. For En→Ar, we address this by filtering
the datasets using a curated list of 30 English med-
ical keywords (Appendix B). We then select sen-
tences for the MDFS Training Data by uniformly
sampling 100,000 sentences that contain a medical
keyword and 100,000 sentences that do not contain
a medical keyword. Finally, we add the ELRC 248
Wikipedia-Health2 dataset (15,130 sentences) to
MDFS training Data.

For En→Ro we have access to a domain spe-
cific medical dataset (ELRC-2728-EMEA3), which
contains 783,742 sentences. As such we select the
first 115,000 sentences from the EMEA data and
first 115,000 sentences from CCMatrix to for the
MDFS Training Data. Unlike the translation qual-
ity experiments, the medical domain experiments
use the same sentences for the En→X and X→En
scoring directions. We made this choice to max-
imise the amount of medical data left in the NMT
training data.

2https://elrc-share.eu/elrc-wikipedia-health
3https://elrc-share.eu/elrc-emea
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4.2 Filtering Models
In order to train our filtering models, we label a
small subset of our training datasets with Llama-3.1.
Having obtained synthetic labels we remove 10,000
sentences as a test set for each experiment, with
the remainder being for training and validation of
the MDFS models.4 Based on higher validation
F1-scores for preliminary translation quality exper-
iments, we update all (non-embedding) parameters
for XLMR-based models. During training, we fine-
tune all model parameters with a classification or
regression objective function, the output projection
architecture is based on that of COMET (Rei et al.,
2020) (details for the Regression/Classification
heads are given in Appendix D).

We train for 10 epochs and select the best model
using the macro-averaged F1-score on the valida-
tion set. We base our hyperparameter selection on
the COMET-KIWI paper (Rei et al., 2022) (see
Appendix D for hyperparameters). As all models
are trained with either the combined En→X and
X→En data for the translation quality experiments
or the combined English and non-English data for
the medical domain experiments, we evaluate our
models bidirectionally at different thresholds. For
a given threshold score we convert the labels and
predicted scores into sets of binary values, where
positive is defined as a greater than or equal to
the threshold score, using the binary labels and
scores we then report the F1-score. As the test set
is created with labels from the LLM, we are only
evaluating how well our filtering models can repli-
cate the scores generated by the LLM; in the case
of regression, we follow the Fine-Web Edu authors
(Penedo et al., 2024a) truncating and rounding the
continuous scores to obtain ordinal scores.

4.3 Filtering Approaches
We compare the following approaches to filtering
the NMT training data.

RANDOM: Our first baseline randomly selects
sentences from the training data for filtering.

COMET-KIWI: Our second baseline uses
COMET-KIWI scores to filter the data. COMET-
KIWI is a QE model trained on human direct
assessment data, which has been shown to improve
NMT metrics when used for filtering training data
(Peter et al., 2023). Additionally, COMET-KIWI
is a compelling baseline because it uses the same

4
https://huggingface.co/datasets/waretupper/mdfs

pre-trained model as our pre-trained MDFS
models, XLMR.5. We only use this baseline for
the translation quality experiments were we filter
on bilingual text.

KEYWORDS: For the medical domain experi-
ments, our second baseline filters the English side
of the training corpus with a curated list of 30
medical keywords. Keywords are a quick and
simple method for filtering domain-specific data
but could be less effective in morphologically
richer languages than English.

MDFS-NGRAM: An additional filtering method
for the medical domain experiments that evaluates
the difference in Cross-Entropy of a sentence
under an in-domain and out-of-domain 4-gram
language models (Moore and Lewis, 2010). As the
n-gram models are trained using only the LLM
labelled data we include them as a MDFS method.

MDFS-REGRESSION: Regression refers to our
filtering model trained on the synthetic LLM labels
by finetuning all parameters and training with a
regression objective function.

MDFS-CLASS: Class refers to our filtering model
trained on the synthetic LLM labels by finetuning
all parameters and training with a classification
objective function.

4.4 MDFS Results

Table 1 and 2 give the F1-scores evaluated on the
LLM labelled test set for the XLMR-based MDFS
models (see Appendix E for Precision and Recall).
We exclude MDFS-NGRAM as it is not directly
replicating the Llama-3.1 scores. Results are given
when thresholding at scores of 3, 4 and 5.

Model MDFS-REGRESSION MDFS-CLASS

Thresh 3 4 5 3 4 5

En→De 0.908 0.777 0.640 0.908 0.782 0.644
De→En 0.892 0.673 0.381 0.890 0.670 0.430

En→Ar 0.920 0.757 0.398 0.918 0.745 0.385
Ar→En 0.934 0.804 0.570 0.929 0.791 0.571

Table 1: F1-scores for MDFS-REGRESSION and
MDFS-CLASS for the translation quality experiments.
Bold numbers indicate the higher F1-score when com-
paring MDFS-REGRESSION and MDFS-CLASS for
the same threshold and scoring direction.

5Although modified InfoXLM version (Chi et al., 2021)
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When thresholding at 3, the lowest F1-score
observed for either experiment is 0.890, for the
De→En translation quality MDFS-CLASS model.
This shows that in our approach, the MDFS models
can reproduce the distribution of scores generated
by Llama-3.1 to a sufficient level to differentiate be-
tween “good” and “bad” examples. We take this
as evidence that MDFS models are able to filter
for the same criteria as the Llama-3.1 in non-English
via transfer learning using synthetic labels. Ad-
ditionally, we observe that, even though filtering
for the quality of translation using parallel data
results in lower F1-scores when compared to the
monolingual domain filtering results, our method
is robust across different filtering requirements and
inputs. The lowest F1-scores in Table 1, (0.381 for
De→En and 0.398 for En→Ar) occur at a thresh-
old of 5, indicating that whilst MDFS models ef-
fectively distinguish between high and low scores,
they struggle to rank the best examples accurately.

Model MDFS-REGRESSION MDFS-CLASS

Thresh 3 4 5 3 4 5

Ar 0.950 0.854 0.658 0.947 0.853 0.670
En 0.912 0.853 0.744 0.917 0.870 0.734

Ro 0.974 0.948 0.754 0.976 0.952 0.779
En 0.964 0.938 0.812 0.964 0.938 0.826

Table 2: F1-scores for MDFS-REGRESSION and
MDFS-CLASS for the medical domain experiments.
Bold numbers indicate the higher F1-score when com-
paring MDFS-REGRESSION and MDFS-CLASS for
the same threshold and scoring direction.

Table 2 shows that filtering the non-English side
of the translation results in comparable F1-scores to
filtering the English sentences. When thresholding
at 3, the F1-scores for both Arabic and Romanian
are higher, with the former being 0.038 higher than
the English MDFS-REGRESSION model. How-
ever, Arabic and Romanian fall short of filtering
in English when selecting the highest quality sen-
tences. We suggest that both these results are due to
the MDFS models systematically predicting higher
scores for English compared to non-English for sen-
tences which do have medical content (for more
details Appendix E).

4.5 Domain Filtering Analysis
We focus on the medical domain experiments to
analyse the properties of the filtered datasets as they
enable a more direct comparison between filtering
English and non-English languages. Table 3 shows

the percentage of medical sentences in the NMT
training data, where we take all sentences with a
score greater or equal to 3 as having a degree of
medical content (we exclude MDFS-NGRAM as
there is no natural threshold for medical sentences).

Medical Percentage
Arabic Romanian

KEYWORD 4.35 4.52
MDFS-CLASS (En) 4.54 8.32
MDFS-CLASS 7.12 10.54
MDFS-REGRESSION (En)* 4.68 8.75
MDFS-REGRESSION* 7.56 11.04

Table 3: Percentage of medical sentences in the NMT
training data. Medical sentences for MDFS models are
taken as those with a score greater than 3.*REGRESSION
scores are clipped and rounded.

For En→Ar, we obtain a similar number of med-
ical sentences when filtering on the English side
as we do for the KEYWORD baseline. In contrast,
for En→Ro, filtering in either language identifies a
larger proportion of medical sentences than KEY-
WORD. In both experiments, MDFS models pre-
dict a greater number of medical sentences when
using non-English than English.

Arabic Romanian
Unique 1-gram Length Unique 1-gram Length

RANDOM 19,970 27 26,705 21
KEYWORD 14,621 37 22,251 33
MDFS-NGRAM (En) 13513 42 18,490 35
MDFS-NGRAM 12,479 43 17,733 36
MDFS-CLASS (En) 13,900 39 21,225 39
MDFS-CLASS 13,251 44 20,983 36
MDFS-REGRESSION (En) 13,494 40 19,614 43
MDFS-REGRESSION 12,938 46 18,702 44

Table 4: Unique token 1-grams and median sentence
lengths for the first 1M tokens at a threshold of 1M
sentences for Arabic and Romanian.

In order to analyse the diversity of the filtered
NMT datasets, we adopt an n-gram-based ap-
proach introduced by (Li et al., 2016). First, we to-
kenise the 1M threshold datasets using the XLMR
tokeniser before counting the unique 1-grams in the
first 1M tokens of the shuffled dataset to measure
the lexical diversity in each filtered dataset. Table
4 confirms that filtering for medical data leads to
reduced lexical diversity and increased sentence
length. Datasets created with MDFS exhibit a
lower lexical diversity than the KEYWORD base-
line. The lowest diversity is exhibited when filter-
ing on the non-English side using MDFS-NGRAM

for both Arabic and Romanian. Filtering the non-
English side of the datasets results in lower lexical
diversity for both languages.

9321



1% 10% 25% 50%

55

56

57

58

59

60

61
ch

rF
+

+

Random
COMET-KIWI
MDFS-Regression
MDFS-Class

1% 10% 25% 50%

46

48

50

52

54

56

Random
COMET-KIWI
MDFS-Regression
MDFS-Class

Threshold (Millions of Sentences)

Figure 1: Left: Mean chrF++ scores En→De. Right: Mean chrF++ scores En→Ar. Translation quality results are
reported on the Flores-200 test set using three different random seeds. The dashed horizontal line represents the
result when running on the entire training data.

5 Machine Translation as a Downstream
Task

In all NMT experiments, we translate from En-
glish. We train encoder-decoder standard trans-
former models with ∼63M parameters. All models
are trained for 100,000 updates using FAIRSEQ
(Ott et al., 2019), selecting the best model us-
ing BLEU on a held out validation set (for full
training hyperparameters see Appendix F). For
the translation quality experiments, we evaluate
on the FLORES-200 (NLLB Team, 2022; Goyal
et al., 2022) test set comprising 1,007 sentences.
The En→Ar medical domain experiments use the
TICO-19 (Anastasopoulos et al., 2020) dataset; we
use the first 1,000 sentences as the validation set
and the remaining 2,701 as the test set. Finally,
for the En→Ro experiments, we use the HIML6

(Health in My Language) and WMT18 (Bojar et al.,
2018) Biomedical test sets. Specifically, we com-
bine the 467 Cochrane sentences of HimL with the
278 WMT18 biomedical sentences as the test data.

We train the NMT models using the NMT Train-
ing Data as outlined in Section 4.1. For the trans-
lation quality experiments, we filter to thresholds
of 1%, 10%, 25% and 50% of the original NMT
training dataset size. Meanwhile, we use a thresh-
old of 1, 2.5, 5, and 10 million sentences for the
medical domain experiments. We generate all re-
sults using beam search with a beam size of 5. We
report chrF++ (Popović, 2015), a lexical metric as
neural metrics are less sensitive to wrongly named
entities, insertions and deletions (Amrhein and Sen-

6
https://www.himl.eu/test-sets

nrich, 2022; Alves et al., 2022). As medical content
often focuses on a few technical terms surrounded
by more general language, we believe a lexical
metric is more appropriate.

5.1 Translation Quality Results

Figure 1 shows the mean chrF++ scores from three
different random seeds thresholding at 1%, 10%,
25% and 50% of the NMT training data for the
translation quality experiments. Apart from the
1% threshold for En→Ar MDFS results in higher
mean chrF++ scores compared to the RANDOM

baseline. The largest improvement for En→De
over the best RANDOM result is 1.4 chrF++ for
MDFS-REGRESSION using 25% of the training
data, with a 2.8 chrF++ improvement compared
to training with the entire dataset. The maximal
improvement over RANDOM for En→Ar is lower
at 0.7 chrF++ when selecting 25% of the data using
MDFS-REGRESSION and 50% of the data using
MDFS-CLASS We hypothesise that this lower im-
provement is due to the pre-filtered En→Ar dataset
having a greater proportion of high-quality sen-
tences, as evidenced by the comparable chrF++
score achieved when training on the entire En→Ar
dataset. These results support that MDFS mod-
els effectively filter the training data and, by ex-
tension, that the filtering pipeline is effective for
non-English languages.

The mean chrF++ scores for MDFS-
REGRESSION and MDFS-CLASS do not
show much variation with a largest observed
difference of 0.4 chrF++ for En→De whilst
retaining 10% of the total training data, which is
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Figure 2: Left: Mean chrF++ scores En→Ar. Right: Mean chrF++ scores En→Ro. Medical domain results are
reported on the TICO-19 test set for En→Ar and a combination of HIML and WMT18 data for En→Ro using three
random seeds.

also supported by the comparable F1-scores for
En→De in Table 1.

For both En→De and En→Ar COMET-KIWI
results in worse translations at 1%, and for En→Ar,
this holds true at 10% as well. For En→De MDFS
performs worse than COMET-KIWI for the other
thresholds, whereas for En→Ar it achieves com-
parable chrF++ scores at 25% and 50% of the
data. This result is likely due to the fact that
COMET-KIWI has been trained with human DA
data for En→De but not for En→Ar. Overall, the
results suggest that MDFS is better at selecting
small amounts of data, whereas COMET-KIWI
improves with the size of the filtered dataset.

5.2 Medical Domain Results

Figure 2 shows the mean chrF++ plotted against the
threshold. In comparison to RANDOM, all MDFS
models achieve a higher chrF++ apart from the Ro-
manian MDFS-REGRESSION dataset containing
1M sentences. For En→Ar, MDFS-NGRAM (Ar) is
the strongest model according to the chrF++ scores.
This is true especially when training with more
than 1M sentences, with Arabic MDFS-NGRAM

scoring 0.4 chrF++ higher than any other MDFS
model and 2.0 chrF++ higher than RANDOM. In
Figure 2 MDFS-CLASS (En) results in the joint
highest chrF++ at all thresholds. However, MDFS-
REGRESSION (En) equals the chrF++ scores for
the three lowest thresholds, and Romanian MDFS-
REGRESSION does so for the two largest thresh-
olds. MDFS-NGRAM (En)’s chrF++ at a thresh-
old of 1 million is 1.1 lower than that of MDFS-
CLASS (En), however, at larger thresholds MDFS-

NGRAM is competitive with the pre-trained filtering
approaches. For both languages MDFS-NGRAM is
weakest at the 1 million threshold.

Overall, we find further evidence that the MDFS
pipeline achieves comparable results when applied
to non-English and English languages. The ma-
jor exception to this observation is for MDFS-
REGRESSION Romanian, which has lower chrF++
scores than the other MDFS models at 1M and
2.5M sentences. Qualitatively examining the
MDFS-REGRESSION 1 million threshold trans-
lation outputs reveals 68 sentences starting with
"In cazul" followed by several repetitions of "cate
o lingurita de trei ori pe zi". We attribute this de-
fect to erroneous training data, as we do not filter
for translation quality, serving as a reminder that
selecting a subpopulation of the entire data also
risks amplifying any biases. In order to evaluate
if MDFS models improve the translation of those
sentences that the LLM labels as being of high
quality we also evaluate our pipeline on our LLM
labelled test set in Appendix G.2.

The KEYWORD baseline is competitive with all
non-English MDFS baselines at the smaller data
sizes, whereas it achieves slightly lower chrF++
scores at larger sizes. The limitation of the key-
word approach is that, once all sentences contain-
ing the keywords have been selected, to increase
data set size we must use some other selection
method (in our experiments we use random selec-
tion). The strong chrF++ score for KEYWORD

filtering demonstrates the effectiveness of hand-
written rules, especially for terminology-heavy
fields such as medicine.
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Figure 3: Win rates % of models in terms of terminology
translation. Comparison of models trained with differ-
ent filtering in terms of capability to correctly translate
domain-specific terms.

Finally, we use the En→Ro medical domain
setup to evaluate how "quickly" models learn with
filtered data, by checkpointing every 1,000 updates
for the first 20,000 updates and evaluating on the
test set using beam search. When evaluating the
early training we find that after 5,000 updates all
filtering approaches apart from MDFS-NGRAM

(En) achieve the same chrF++ as that of the best
RANDOM checkpoint (full results are shown in
Appendix G.2). Finally, earlier updates exhibit a
larger difference between the RANDOM baseline,
demonstrating that the benefit of filtering reduces
with an increased number of updates.

5.3 Domain-specific Terminology Evaluation

The filtering techniques in our experiments select
different subsets of parallel corpora that may cause
a downstream model to exhibit patterns that we are
unable to capture via a system-level metric. There-
fore, given a medical domain adaptation task, we
decided to focus on an important aspect of domain
adaptation - terminology translation. Given the
flexibility of our approach, we decided to check if
whether our approach translates into the capability
to focus on domain nuances.

We set up our experiment as follows. Given our
medical evaluation dataset for En→Ro, we sample
100 examples using the subset2evaluate7 library
(Zouhar et al., 2025) to establish the most efficient
evaluation subset. Afterwards, we employ LLM-
based evaluation (Qian et al., 2024) to assess NMT
systems pair-wise. We compare MDFS-CLASS

with our baselines as well as MDFS-NGRAM.
7Used parameters: method="diversity", metric="lm"

Rather than focus on overall translation quality, we
rank the systems based on the accurate translation
of medical terminology, as judged by the LLM. We
provide this experiment’s prompt and more details
in Appendix H.

The evaluation results are presented in Figure 3.
Although the chosen evaluation data point (i.e. the
threshold of 2.5, see Figure 7) did not indicate
a substantial difference between KEYWORD and
MDFS-CLASS in system-level metric, in terms of
terminology translation, MDFS-CLASS obtains 16
percentage points more wins, which showcases the
robustness of the approach over hand-written rules.
Compared to the random baseline, MDFS-CLASS

provides even more benefits, reaching 54% wins
overall. The final comparison between MDFS-
CLASS and MDFS-NGRAM highlights that both
systems are balanced in terms terminology transla-
tion.

6 Conclusion

We trained classification, regression and n-gram
based data filtering models from labels generated
by Llama-3.1 to filter NMT data based on transla-
tion quality and medical relevance. We find that
all MDFS approaches effectively utilise the data,
including the n-gram based approaches. Labelling
data with LLMs is computationally expensive, and
as MDFS-NGRAM models are known to work well
with small amounts of training data and are cheap
to train we suggest that these prove an effective
alternative to finetuning pre-trained encoder only
models, especially when only filtering for one cri-
teria. Continuous ranking of sentences is not effec-
tive at selecting the very best sentences, highlight-
ing the inability of the MDFS models to correctly
distinguish between "good" and "excellent" sen-
tences.

Our findings show that the MDFS filtering
pipeline extends beyond English languages. For
our medical domain experiments, we report com-
parable NMT results when filtering English or non-
English data. Furthermore, these findings support
that LLMs can effectively generate labels for lan-
guages they do not officially support, even when
compared to a model like COMET-KIWI, which
was trained using manually annotated data.

Acknowledgements

This work was funded by UK Research and In-
novation (UKRI) under the UK government’s

9324



Horizon Europe funding guarantee 10052546 and
10039436, and by the National Science Centre,
Poland 2023/49/N/ST6/02691. For the purpose of
Open Access, the authors have applied a Creative
Commons Attribution (CC-BY) public copyright
licence to any Author Accepted Manuscript version
arising.

Limitations

All our experiments focus on training small NMT
models from scratch rather than finetuning larger
multilingual models. Additionally, we only trans-
late into non-English languages for the downstream
tasks. A natural extension to our work would be to
evaluate multilingual filtering on a large-scale LLM
pre-training dataset such as FineWeb 2 (Penedo
et al., 2024b). Additionally, we only experiment
with labelling data with Llama-3.1.

A computational limitation of this approach is
that labelling 500,000 segments with an LLM is
expensive, especially if the segments are for LLM
pre-training, which generally have longer context
windows than NMT models. Additionally, this
makes scaling the amount of synthetically labelled
data less appealing.

For this approach to work effectively, we assume
that the data we use to train the MDFS training
data is a representative distribution of both the train-
ing data and the data we want to run inference on.
As we actively chose to select languages for the
medical domain experiments that Llama-3.1 does not
officially support, we had a limited choice regard-
ing available test sets. Those that are available tend
to use more general language than scientific medi-
cal writing; this is especially true for the En→Ar
test set. Hence, the results may differ when translat-
ing sentences with a greater proportion of scientific
or technical content.

A significant risk of filtering training data is that
it can sometimes reinforce biases already present
in the training data. Such bias may also be ex-
acerbated by a distribution shift between the data
used to train the filtering model and the data to
which the filtering model is applied. Another risk
we identify is that the training data for current SOTA
LLMs is predominantly English or Chinese. Whilst
our approach is practical at filtering languages not
officially supported by our LLM, we would also
like to highlight that if an LLM is predominantly
trained in English, it may lead to MDFS models
with a "Western" bias in the data they select. Lastly,

we would like to point out that the prompt used to
generate the LLM scores for the translation quality
experiments has some minor spelling mistakes.
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A LLM Prompts

Evaluate the quality of the translation using the additive 5-point scoring system described below.

Points are accumulated based on the satisfaction of each criterion:

- Add 1 point if the both the source sentence and the translation are fluent well formed sentences.

- Add 1 point if the translation is a feasible translation of the sentence. The translation may be

suboptimal but should still convey the basic sense of the orginal sentence.

- Add 1 point if the translation adequately conveys the entire meaning of the original sentence. Such

a translation should not have any errors, but does not need to be completely unambigous or natural.

- Add 1 point if the translation contains the exact same information as the original sentence. Such

translations should be of professional standard and entail the same information as the original

sentence.

- Add 1 point if the translation quality is extremly high, the translation accuralety conveys the tone

of the original sentence or the translation accounts for cultural differences between the languages.

Below is an {SRC_LANGUAGE} sentence and a translation into {TGT_LANGUAGE}.

The sentence: {SRC}

The translation: {TGT}

After examining the extract:

- Briefly justify each point on the 5-point scoring system, up to 100 words.

- Conclude with the score using the format: “Translation score: <total points>"

Figure 4: Template prompt used for scoring data with Llama-3.1-70B-Instruct for translation quality.

Evaluate whether the sentence below is from the medical domain and could be helpful in a medical,

biological or public health context using the additive 5-point scoring system described below. Points

are accumulated based on the satisfaction of each criterion:

- Add 1 point if the sentence contains any information related to the medical domain.

- Add 1 point if the medical content is clear and presented in an organised manner.

- Add 1 point if the sentences only contain medical, biological or public health content.

- Add 1 point if the sentence is highly relevant and beneficial for medical, biological or public

health purposes whilst exhibiting a clear and consistent writing style.

- Add 1 point if the sentence is an outstanding example of scientific medical or biological content.

Below is an {SRC_LANGUAGE} sentence.

The sentence: {SRC}

After examining the sentence:

- Briefly justify each point on the 5-point scoring system, up to 100 words.

- Conclude with the score using the format: Medical score: <total points>"

Figure 5: Template prompt used for scoring data with Llama-3.1-70B-Instruct for medical content.
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B Keywords

Table 6 gives the 30 keywords that are used to filter
for medical sentences on the English side of the
parallel data as described in Section 3.3. They were
manually selected to be unambiguous.

vaccine drug health infect doctor patient
disease innoculate liver bone illness injury
treatment injection medicine symptom tissue infection
surgery aorta therapy hospital pancreas blood
cancer influenza protein dental pregnant virus

Table 6: List of the English medical keywords used to
filter for medical sentences for the KEYWORD baseline
and En→Ar MDFS training data.

C Data

Table 5 provides the dataset makeup and total num-
ber of sentences for each Downstream Task and
translation direction. For the En→De translation
quality experiments, we use ParaCrawl data from
the WMT23 campaign as training data (Kocmi
et al., 2023; Esplà et al., 2019) in addition too the
WMT22 test set to include a number of high-quality
translations. For the En→Ar translation quality ex-
periments, we use the CCMatrix dataset (Schwenk
et al., 2021).

For En→Ar medical domain experiments we
use CCMatrix, UNPC (Ziemski et al., 2016),
HLPT(Ona de Gibert, 2024), MultiUN(Eisele and
Chen, 2010), Neulab-TedTalks(Qi et al., 2018), and
ELRC Wikipedia-Health (only used for the MDFS
Training Data)8 corpus comprising of 15,130 sen-
tences. For En→Ro, we combine CCMatrix,
ParaCrawl9 and 783,742 sentences from ELRC-
EMEA.10 All the training data was downloaded
from OPUS (Tiedemann, 2012).

8https://elrc-share.eu/elrc-wikipedia-health
9https://paracrawl.eu (v9)

10https://elrc-share.eu/elrc-emea

During initial translation quality experiments
with En→Ar we observed many similar sentences
being selected when filtering using MDFS, thereby
degrading performance. Hence, we deduplicate all
data using BICLEANER (Ramírez-Sánchez et al.,
2020) to counteract this. This preprocessing step
is applied before splitting the data into MDFS and
NMT training data. The deduplication is run with
the ’–aggressive_dedup’ flag, which removes near
duplicates.

D MDFS Training

All XLMR-based MDFS utilise the following ar-
chitecture: projection from hidden-dimension to 3072
dimensions, tanh activation function, dropout, pro-
jection back to hidden-dimension, tanh activation func-
tion, dropout, and finally projection down to either 1
dimension or 6 dimensions depending on the learn-
ing objective. Table 7 shows the hyperparameters
that were used to finetune all XLMR-based models,
we train each model for 10 epochs and select the
best model using a held out validation set of LLM
labelled data.

Parameter Value

Epochs 10
Batch Size 2048
BFloat16 True
Learning Rate 5e-05
Optimizer Adam
Scheduler Linear
Warmup Updates 0
Label Smoothing 0.0
Dropout 0.1
Weight Decay 0
Save Intervals Epoch

Table 7: Hyperparameters used to finetune all XLMR-
based MDFS models.

Language Pair Downstream Task Datasets MDFS Training Data NMT Training Data

En→De Translation Quality ParaCrawl,
WMT22 (Test)*

464,021 52,441,859

En→Ar Translation Quality CCMatrix 520,000 30,892,792
En→Ar Medical Domain CCMatrix, UNPC, HLPT,

MultiUN, Neulab-TedTalks, ELRC 248
Wikipedia-Health*

430,260 53,971,034

En→Ro Medical Domain CCMatrix, ParaCrawl,
ELRC-251 EMEA

460,000 44,739,310

Table 5: Sources and sentence counts for both the MDFS and NMT training for all experimental setups experimental
setup. *WMT22 (Test) and ELRC 248 Wikipedia-Health are only used in the MDFS training data.
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En→De De→En

Thresh F1 Score Precision Recall F1 Score Precision Recall

MDFS-REGRESSION
3 0.908 0.896 0.920 0.892 0.866 0.921
4 0.777 0.675 0.914 0.673 0.566 0.829
5 0.640 0.585 0.705 0.381 0.472 0.319

MDFS-CLASS
3 0.908 0.904 0.911 0.890 0.883 0.897
4 0.782 0.744 0.824 0.670 0.644 0.698
5 0.644 0.530 0.820 0.430 0.422 0.438

Table 8: F1 Score, Precision, and Recall for Classification and Regression models at different thresholds in both
En→De and De→En translation directions.

En→Ar Ar→En

Thresh F1 Score Precision Recall F1 Score Precision Recall

MDFS-REGRESSION
3 0.920 0.899 0.955 0.934 0.911 0.960
4 0.757 0.640 0.927 0.804 0.709 0.927
5 0.398 0.385 0.411 0.570 0.508 0.651

MDFS-CLASS
3 0.918 0.899 0.938 0.929 0.910 0.949
4 0.745 0.671 0.836 0.791 0.737 0.854
5 0.385 0.413 0.360 0.571 0.490 0.684

Table 9: F1 Score, Precision, and Recall for Classification and Regression models at different thresholds in both
En→Ar and Ar→En translation directions.

En Ar

Thresh F1 Score Precision Recall F1 Score Precision Recall

MDFS-REGRESSION
3 0.912 0.920 0.905 0.950 0.951 0.950
4 0.853 0.906 0.805 0.854 0.874 0.836
5 0.744 0.680 0.822 0.658 0.629 0.689

MDFS-CLASS
3 0.917 0.910 0.925 0.947 0.949 0.945
4 0.870 0.874 0.867 0.853 0.883 0.825
5 0.734 0.628 0.884 0.670 0.587 0.779

Table 10: F1 Score, Precision, and Recall for Classification and Regression models at different thresholds for both
En and Ar.

En Ro

Thresh F1 Score Precision Recall F1 Score Precision Recall

MDFS-REGRESSION
3 0.964 0.947 0.982 0.974 0.963 0.984
4 0.938 0.938 0.938 0.948 0.946 0.949
5 0.812 0.818 0.806 0.754 0.792 0.720

MDFS-CLASS
3 0.964 0.946 0.982 0.976 0.964 0.988
4 0.938 0.915 0.961 0.952 0.932 0.972
5 0.826 0.851 0.803 0.779 0.777 0.780

Table 11: F1 Score, Precision, and Recall for Classification and Regression models at different thresholds for both
En and Ro.
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E MDFS Results

Tables 8, 9, 10 and 11 give the full MDFS results
for the XLMR-based filtering models including
the Precision and Recall. In the main text we sug-
gest that MDFS models predict a larger number of
5’s when labelling in English when compared to
non-English. We make this statement base on the
observation that the recall is higher for English in
both Table 15 and 16.

F NMT Training

For reproducibility, Table 12 gives the full set of
hyperparameters used to train the NMT models for
both the translation quality and medical domain
experiments. For data filtering techniques that in-
volve random sampling, we also generate three data
sets with different seeds.

Parameter Value

Architecture Transformer
Learning Rate 5e-04
Optimizer Adam
Scheduler Inverse Square Root
Warmup Updates 4000
Initial Learning Rate 1e-07
Label Smoothing 0.1
Dropout 0.3
Weight Decay 0
Max Tokens 16,000
Update Frequency 2
Attention Dropout 0.1
Metric BLEU
Save Intervals 2500
Seeds 42, 2025, 962

Table 12: FAIRSEQ hyperparameters used to train all
NMT models for both the translation quality and med-
ical domain experiments. We train for 100,000 steps
and select the best checkpoint according to the BLEU
scores on a held-out validation set.

G NMT Results

G.1 Full spBLEU, chrF++ and COMET
Scores

Threshold Method spBLEU chrF++ COMET

1%

RANDOM 32.1 ± 0.2 54.7 ± 0.2 0.783 ± 0.001
COMET-KIWI 32.0 ± 0.3 54.8 ± 0.2 0.763 ± 0.003
MDFS-REGRESSION 34.6 ± 0.1 56.5 ± 0.1 0.800 ± 0.001
MDFS-CLASS 34.7 ± 0.1 56.7 ± 0.1 0.801 ± 0.001

10%

RANDOM 37.8 ± 0.2 59.0 ± 0.1 0.833 ± 0.001
COMET-KIWI 40.8 ± 0.2 61.0 ± 0.1 0.848 ± 0.000
MDFS-REGRESSION 40.3 ± 0.2 60.6 ± 0.1 0.845 ± 0.001
MDFS-CLASS 39.6 ± 0.3 60.2 ± 0.2 0.844 ± 0.000

25%

RANDOM 38.0 ± 0.2 59.2 ± 0.1 0.835 ± 0.001
COMET-KIWI 41.0 ± 0.1 61.1 ± 0.1 0.852 ± 0.000
MDFS-REGRESSION 40.4 ± 0.2 60.7 ± 0.1 0.847 ± 0.001
MDFS-CLASS 39.8 ± 0.1 60.4 ± 0.1 0.847 ± 0.001

50%

RANDOM 38.3 ± 0.2 59.3 ± 0.1 0.836 ± 0.001
COMET-KIWI 40.3 ± 0.2 60.6 ± 0.1 0.849 ± 0.001
MDFS-REGRESSION 39.7 ± 0.2 60.3 ± 0.1 0.847 ± 0.000
MDFS-CLASS 39.7 ± 0.2 60.3 ± 0.1 0.846 ± 0.001

Table 13: Mean spBLEU, chrF++ and COMET scores
for the En→De translation quality experiments. The
mean is take from three runs with different random
seeds and the errors are the Standard Error of the Mean.

Further to the chrF++ scores given in Section 5 we
report spBLEU, chrF++ and COMET in the tables
below. Additionaly, we report the errors on the
mean of the three runs calculated using the Stan-
dard Error on the Mean. Tables 13 and 14 give the
results for the translation quality experiments and
Tables 15 and 16 give the results for the medical
domain experiments.

Threshold Method spBLEU chrF++ COMET

1%

RANDOM 28.8 ± 0.2 49.7 ± 0.1 0.803 ± 0.001
COMET-KIWI 24.4 ± 0.1 45.2 ± 0.0 0.749 ± 0.001
MDFS-REGRESSION 28.6 ± 0.1 48.3 ± 0.0 0.789 ± 0.000
MDFS-CLASS 28.5 ± 0.1 48.2 ± 0.0 0.792 ± 0.001

10%

RANDOM 35.2 ± 0.1 55.0 ± 0.1 0.846 ± 0.001
COMET-KIWI 35.0 ± 0.1 54.8 ± 0.1 0.846 ± 0.000
MDFS-REGRESSION 36.6 ± 0.2 55.5 ± 0.1 0.852 ± 0.001
MDFS-CLASS 36.8 ± 0.1 55.5 ± 0.0 0.854 ± 0.000

25%

RANDOM 35.5 ± 0.1 55.5 ± 0.1 0.849 ± 0.000
COMET-KIWI 36.1 ± 0.1 55.9 ± 0.1 0.856 ± 0.000
MDFS-REGRESSION 36.8 ± 0.3 56.2 ± 0.2 0.856 ± 0.000
MDFS-CLASS 36.6 ± 0.1 56.0 ± 0.1 0.856 ± 0.001

50%

RANDOM 35.5 ± 0.1 55.3 ± 0.1 0.849 ± 0.001
COMET-KIWI 36.3 ± 0.1 56.1 ± 0.1 0.858 ± 0.000
MDFS-REGRESSION 36.2 ± 0.2 56.0 ± 0.2 0.856 ± 0.001
MDFS-CLASS 36.3 ± 0.1 56.2 ± 0.1 0.858 ± 0.001

Table 14: Mean spBLEU, chrF++ and COMET scores
for the En→Ar translation quality experiments. The
mean is take from three runs with different random
seeds and the errors are the Standard Error of the Mean.
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Threshold Method spBLEU chrF++ COMET

1.0

RANDOM 34.5 ± 0.2 54.6 ± 0.2 0.832 ± 0.001
KEYWORD 37.4 ± 0.1 56.8 ± 0.2 0.846 ± 0.001
MDFS-NGRAM (EN) 35.9 ± 0.1 55.9 ± 0.1 0.837 ± 0.001
MDFS-REGRESSION (EN) 35.8 ± 0.1 55.7 ± 0.1 0.835 ± 0.001
MDFS-CLASS (EN) 35.9 ± 0.2 55.7 ± 0.2 0.836 ± 0.001
MDFS-NGRAM 37.1 ± 0.1 56.7 ± 0.2 0.844 ± 0.000
MDFS-REGRESSION 36.8 ± 0.2 56.1 ± 0.1 0.840 ± 0.001
MDFS-CLASS 37.4 ± 0.1 56.8 ± 0.1 0.844 ± 0.000

2.5

RANDOM 35.9 ± 0.2 55.5 ± 0.2 0.840 ± 0.001
KEYWORD 38.1 ± 0.2 57.4 ± 0.1 0.848 ± 0.001
MDFS-NGRAM (EN) 37.7 ± 0.0 57.3 ± 0.0 0.847 ± 0.001
MDFS-REGRESSION (EN) 37.3 ± 0.3 57.0 ± 0.1 0.845 ± 0.001
MDFS-CLASS (EN) 37.6 ± 0.1 57.1 ± 0.1 0.847 ± 0.001
MDFS-NGRAM 38.1 ± 0.1 57.7 ± 0.2 0.850 ± 0.001
MDFS-REGRESSION 37.9 ± 0.2 57.3 ± 0.1 0.849 ± 0.000
MDFS-CLASS 38.1 ± 0.3 57.5 ± 0.2 0.850 ± 0.001

5.0

RANDOM 36.3 ± 0.2 56.0 ± 0.2 0.840 ± 0.001
KEYWORD 37.9 ± 0.3 57.2 ± 0.1 0.848 ± 0.001
MDFS-NGRAM (EN) 38.0 ± 0.2 57.6 ± 0.2 0.849 ± 0.001
MDFS-REGRESSION (EN) 37.9 ± 0.1 57.5 ± 0.1 0.849 ± 0.001
MDFS-CLASS (EN) 38.0 ± 0.1 57.5 ± 0.1 0.848 ± 0.001
MDFS-NGRAM 38.6 ± 0.2 58.0 ± 0.1 0.853 ± 0.001
MDFS-REGRESSION 38.2 ± 0.1 57.6 ± 0.0 0.850 ± 0.000
MDFS-CLASS 38.0 ± 0.2 57.6 ± 0.1 0.850 ± 0.001

10.0

RANDOM 36.0 ± 0.0 56.0 ± 0.2 0.841 ± 0.000
KEYWORD 37.5 ± 0.2 56.9 ± 0.2 0.846 ± 0.001
MDFS-NGRAM (EN) 38.2 ± 0.2 57.8 ± 0.2 0.850 ± 0.001
MDFS-REGRESSION (EN) 37.9 ± 0.1 57.5 ± 0.2 0.850 ± 0.001
MDFS-CLASS (EN) 38.3 ± 0.2 57.6 ± 0.1 0.850 ± 0.000
MDFS-NGRAM 38.4 ± 0.3 57.9 ± 0.2 0.852 ± 0.000
MDFS-REGRESSION 38.0 ± 0.0 57.6 ± 0.0 0.849 ± 0.000
MDFS-CLASS 37.9 ± 0.1 57.4 ± 0.0 0.849 ± 0.001

Table 15: Mean spBLEU, chrF++ and COMET scores
for the En→Ar medical domain experiments. The mean
is take from three runs with different random seeds and
the errors are the Standard Error of the Mean. The
threshold is millions of sentences.

We use sacrebleu11 to calculate spBLEU scores,
and the COMET scores use the default model12.
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Figure 6: chrF++ scores for En→Ro evaluated on the
test set with Beam Search plotted against updates in
the range 2000-7000. The dashed line represents the
maximal chrF++ achieved by the random baseline.

G.2 Learning Curve and LLM Labelled Test
Set

Figure 6 shows the learning curves for the medical
domain experiments on for En→Ro, evaluated on

11
https://github.com/mjpost/sacrebleu

12
https://huggingface.co/Unbabel/wmt22-comet-da

Threshold Method spBLEU chrF++ COMET

1.0

RANDOM 39.2 ± 0.2 58.3 ± 0.1 0.864 ± 0.001
KEYWORD 41.8 ± 0.3 60.0 ± 0.1 0.878 ± 0.001
MDFS-NGRAM (EN) 41.4 ± 0.0 59.6 ± 0.0 0.871 ± 0.001
MDFS-REGRESSION (EN) 42.8 ± 0.1 60.6 ± 0.1 0.877 ± 0.000
MDFS-CLASS (EN) 42.7 ± 0.3 60.6 ± 0.2 0.878 ± 0.000
MDFS-NGRAM 41.4 ± 0.2 59.5 ± 0.1 0.866 ± 0.001
MDFS-REGRESSION 39.9 ± 1.2 58.2 ± 0.5 0.837 ± 0.007
MDFS-CLASS 42.0 ± 0.2 60.0 ± 0.1 0.873 ± 0.002

2.5

RANDOM 40.0 ± 0.2 58.9 ± 0.2 0.870 ± 0.001
KEYWORD 42.5 ± 0.2 60.5 ± 0.1 0.880 ± 0.000
MDFS-NGRAM (EN) 42.5 ± 0.1 60.5 ± 0.1 0.878 ± 0.001
MDFS-REGRESSION (EN) 43.0 ± 0.2 60.7 ± 0.1 0.880 ± 0.001
MDFS-CLASS (EN) 42.9 ± 0.3 60.7 ± 0.2 0.881 ± 0.001
MDFS-NGRAM 42.4 ± 0.4 60.4 ± 0.3 0.880 ± 0.001
MDFS-REGRESSION 42.1 ± 0.4 60.1 ± 0.2 0.874 ± 0.001
MDFS-CLASS 42.7 ± 0.1 60.5 ± 0.1 0.875 ± 0.002

5.0

RANDOM 40.5 ± 0.2 59.1 ± 0.2 0.872 ± 0.000
KEYWORD 42.1 ± 0.1 60.3 ± 0.1 0.878 ± 0.000
MDFS-NGRAM (EN) 42.2 ± 0.2 60.3 ± 0.1 0.878 ± 0.000
MDFS-REGRESSION (EN) 42.7 ± 0.2 60.6 ± 0.1 0.881 ± 0.000
MDFS-CLASS (EN) 42.8 ± 0.2 60.6 ± 0.1 0.881 ± 0.000
MDFS-NGRAM 42.5 ± 0.1 60.5 ± 0.1 0.880 ± 0.000
MDFS-REGRESSION 42.8 ± 0.3 60.6 ± 0.2 0.881 ± 0.001
MDFS-CLASS 42.3 ± 0.1 60.4 ± 0.1 0.881 ± 0.000

10.0

RANDOM 40.8 ± 0.1 59.4 ± 0.1 0.872 ± 0.001
KEYWORD 41.8 ± 0.1 60.1 ± 0.1 0.877 ± 0.001
MDFS-NGRAM (EN) 41.9 ± 0.2 60.0 ± 0.1 0.878 ± 0.001
MDFS-REGRESSION (EN) 41.8 ± 0.1 60.0 ± 0.0 0.879 ± 0.000
MDFS-CLASS (EN) 42.1 ± 0.0 60.3 ± 0.0 0.879 ± 0.000
MDFS-NGRAM 41.6 ± 0.2 59.9 ± 0.1 0.880 ± 0.001
MDFS-REGRESSION 42.2 ± 0.2 60.3 ± 0.1 0.879 ± 0.000
MDFS-CLASS 42.1 ± 0.2 60.3 ± 0.1 0.880 ± 0.001

Table 16: Mean spBLEU, chrF++ and COMET scores
for the En→Ro medical domain experiments. The mean
is take from three runs with different random seeds and
the errors are the Standard Error of the Mean. The
threshold is millions of sentences.

the test set using beam search with a beam size of
5 for updates 2000-7000. In addition to showing
that filtering achieves the same performance as the
RANDOM baseline after 5000 updates we also ob-
serve that the difference between filtering and the
RANDOM decreases as a function of the updates.

We construct an additional test set for En→Ro
from the 10,000 sentence test set (originally ex-
tracted from the training data) labelled with the
LLM and used to evaluate the MDFS filtering mod-
els. We create the test set by taking all sentences
that receive a score of 4 or higher from the LLM in
the En→Ro direction and selecting the top 1,000
according to COMET. The chrF++ scores for these
are given in Figure 7. The results evidence a larger
improvement of the MDFS methods. The MDFS-
NGRAM models achieve the highest chrF++ scores
at a threshold of 1 million, and by extension are the
best at translating sentences labelled as good medi-
cal examples by the LLM. This is in contradiction
to the main results on the En→Ro test set which
suggest that n-gram based approaches are weakest
at low thresholds.
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Figure 7: Mean chrF++ scores En→Ro reported on
1,000 best sentences according to COMET from the
held-out test set labelled with Llama-3.1-70B-Instruct us-
ing three different random seeds. The errors are calcu-
lated using the Standard Error of the Mean.

H Domain-specific terminology
evaluation details

We present the evaluation prompt in Figure 8. Fol-
lowing the findings of Qian et al. (2024), we in-
clude a chain of thought to the prompt to improve
the LLM evaluation. The experiment was done
using gpt-4o-mini as a judge.

The terminology evaluation experiment uses the
2.5 million threshold systems from the experiment
depicted in Figure 7 and described in Section 5.2.
As a representative of MDFS, we employ MDFS-
CLASS (English).

Please find the medical word pairs in the source and

target language sentences. Refer to the above word

pairs to count the disambiguation accuracy in the

generated sentences of System A and System B.

Think step by step and produce a final score: 0 if

System A produced a better translation, 1 if it is a

tie, 2 if System B produced a better translation.

Source: "{source}"

Target: "{target}"

System A: "{system_a}"

System B: "{system_b}"

Figure 8: Template prompt used for medical terminol-
ogy LLM-based evaluation.

I GPU Hours and Copilot Declaration

Code for this project was in parts written with the
assistance of Copilot.

Labelling datasets with Llama-3.1-70B-Instruct

was run on a single A100-80GB GPU. We labelled
four datasets, each running taking around ∼ 70
hours.

Training MDFS models took ∼ 10 hours on
either one A100-40GB GPU or two RTX 3900 GPUs.
Labelling the NMT data takes ∼ 24 hours, again
run on either A100-40GB GPU or two RTX 3900 GPUs.
We train and predict twice for each language pair
and task for a total of 8 runs.

NMT training and evaluation is run on either one
A100-40GB GPU or one RTX 3900, with each run and
evaluation taking ∼ 4 hours; we train 240 NMT
models.
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